高纯氧化铜
2017-06-06 17:50:02
高纯氧化铜,顾名思义就是纯度很高的氧化铜。高纯氧化铜的纯度到达99.9%之高,熔点不变,一样为1326℃,密度为6.3 g/cm3,晶体折射率为n=2.6,规格为颗粒、压片、靶材三种,外观为棕黑色。
高纯氧化铝
2017-06-06 17:50:09
高纯氧化铝 是白色无定形粉末,俗称矾土,密度3.9-4.0g/cm3,熔点2050摄氏度,沸点2980摄氏度,不溶于水。适用于各种化验室、实验室,
金属
、非
金属
样品分析及熔料和各种工业分析用。可根据用户需求订做各种异形氧化铝刚玉陶瓷坩埚 高纯氧化铝坩埚、刚玉瓷坩埚特点: 99瓷以优质α-氧化铝为原料,其氧化铝含量一般在99%以上 ,99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等,用作耐腐蚀、耐磨部件。 1.高纯度氧化铝,氧化铝含量大于99% 2.耐化学腐蚀 3.耐高温,正常使用在1600℃,短期1800℃ 4.耐骤冷骤热,不易炸裂 5.采用注浆成型,密度高 高纯氧化铝坩埚99%刚玉陶瓷坩埚规格有:5ml 10ml 15ml 20ml 25ml 30ml 50ml 100ml 150ml 200ml~5000ml。 高纯氧化铝的使用提到了抷体的密度,流动性,强度,提高了二次莫来石生成量等,降低加水量和气孔率。
国内高纯氧化铝企业迎来高速增长
2019-01-10 13:40:30
上调目标价52.0元,上调至“增持”评级。由于公司陶瓷墨水毛利率不及预期,我们下调2014年EPS到0.65元(原来0.79元),由于公司新增高纯氧化铝业务将在2015年迎来爆发,我们上调2015、2016年年EPS到1.30元、1.76元(原来1.15元、1.63元)元。我们认为,公司两个较重要的储备产品高纯氧化铝和纳米氧化锆在2015年均有望放量贡献业绩,给予公司2015年40倍PE估值,与行业平均水平相当,上调目标价至52.0元,上调至“增持”评级。
国内高纯氧化铝企业迎来高速增长。由于下游锂电池和蓝宝石领域出现爆发式增长,高纯氧化铝需求将从2013年的7737吨上升到2016年的29122吨,三年复合增速为55.5%,2016年对应市场空间合计为38.6亿元。另外,随着国内企业技术不断进步,技术领先、具备高性价比的国内优势企业将迅速实现进口替代,并且进军国际市场出口高纯氧化铝。
公司布局高纯氧化铝业务,2015年迎来业绩爆发。公司公告设立控股子公司来发展高纯氧化铝业务,预计在2015年年初合资公司有望达到1000吨以上产能。锂电池应用领域目前国内只有公司一家企业通过多家国内外主流电池厂家的认证,蓝宝石也与国内外数家知名企业合作。我们认为,公司高纯氧化铝投产后产能可以得到有效的消化,预计合资公司2015年有望实现1000吨的销量,实现销售收入1亿元,贡献利润约3000万元。
高纯氧化铝在锂电池隔膜涂层上的应用
2018-12-27 14:45:30
什么是陶瓷隔膜 陶瓷涂覆特种隔膜:是以PP,PE或者多层复合隔膜为基体,表面涂覆一层纳米级三氧化二铝材料,经过特殊工艺处理,和基体粘接紧密,显著提高锂离子电池的耐高温性能和安全性。陶瓷涂覆特种隔膜特别适用于动力电池。 锂离子电池对隔膜的要求 隔膜性能决定了电池的内阻和界面结构,进而决定了电池容量、安全性能、充放电密度和循环性能等特性。因此需满足如下一些特性: 好的化学稳定性:耐有机溶剂; 机械性能良好:拉伸强度高,穿刺强度高; 良好的热稳定性:热收缩率低;较高的破膜温度; 电解液浸润性:与电解液相容性好,吸液率高。 三氧化二铝作为一种无机物,具有很高的热稳定性及化学惰性,是电池隔膜陶瓷涂层的很好选择。 陶瓷隔膜对氧化铝的性能要求 粒径均匀性,能很好的粘接到隔膜上,又不会堵塞隔膜孔径; 氧化铝纯度高,不能引入杂质,影响电池内部环境; 氧化铝晶型结构的要求,保证氧化铝对电解液的相容性及浸润性。 涂覆氧化铝隔膜的优点 耐高温性:氧化铝涂层具有优异的耐高温性,在180摄氏度以上还能保持隔膜完整形态; 高安全性:氧化铝涂层可中和电解液中游离的HF,提升电池耐酸性,安全性提高; 高倍率性:纳米氧化铝在锂电池中可形成固溶体,提高倍率性和循环性能; 良好浸润性:纳米氧化铝粉末具有良好的吸液及保液能力; 独特的自关断特性:保持了聚烯烃隔膜的闭孔特性,避免热失控引起安全隐患; 低自放电率:氧化铝涂层增加微孔曲折度,自放电低于普通隔膜; 循环寿命长:降低了循环过程中的机械微短路,有效提升循环寿命。 锂电池隔膜用高纯三氧化二铝技术指标
从低品级菱镁矿中提取高纯氧化镁的研究
2019-01-24 09:36:25
Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。
我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。
一、矿石性质研究与工艺流程
试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。
粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析
(一)煅烧试验
天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下:
菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑ (1)
为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验
许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下:
MgO+H2O→Mg(OH)2 (2)
轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。
1、消化浓度
将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。
2、消化时间
由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度
在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验
将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下
Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O (3)
借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验
碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下:
5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑ (4)
根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论
(一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。
(二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。
(三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。
碲金精矿的氧化焙烧
2019-02-20 14:07:07
碲金精矿中的碲化金,在碱性化液中经长期化虽可分化,但经过预先焙烧
Au2Te+O2 2Au+TeO2
使金复原呈金属状况,更易分化。
此外,当碲化物与黄铁矿等硫化物共生时,经过焙烧可一起将它们除掉。
高纯氧化铝在锂电池隔膜涂层的技术应用优势
2018-12-28 09:57:29
优势一:电流过大时,能够阻断电流。PP/PE材料的锂电池隔膜是通孔,当电流过大时,很容易造成穿孔现象,进而造成锂电池燃烧或者爆炸,而用高纯氧化铝(VK-L500G)作为涂层材料与粘合剂一起使用涂覆在PP/PE材料表面可以起到调孔的作用,这是因为高纯氧化铝为板状晶体结构,当电流过大时,材料发热,进而板状晶体结构的高纯纳米氧化铝涂层材料就会体积膨胀,就会闭合锂电池隔膜上的电流传导孔,从而起到阻断电流的作用,当温度降下来时,材料体积会收缩,这时隔膜上的电流传导孔就会重新打开,利用该材料特殊的物理和化学性能,可以大大提高锂电池的安全性能,从而为大功率锂电池高能量安度且安全可靠充放电提供了可能。 优势二:高纯纳米氧化铝(VK-L500G)还具有非常优良的导热性能,电池温度过高里,这种材料可以很好地进行热量传导,从而解决了PP/PE材料导热性差的问题。 优势三:高纯纳米氧化铝(VK-L500G)材料还具有优良的阻燃性,这是因为高纯氧化铝材料本身就是非常优良的阻燃剂,即使因为温度过高,达到燃烧零界点,该材料的良好的阻燃性能会阻止大范围的燃烧甚至爆炸。
碲常识
2019-03-14 09:02:01
碲 碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
碲知识
2019-03-08 09:05:26
碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。
碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。
碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。
镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。
稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。
稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。
我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
粗铋的碱性碲渣回收碲
2019-01-31 11:06:04
粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。
一、工艺流程
出产碲的流程如图1。图1 碲出产工艺流程图
二、首要技能条件
(一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。
(二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为:
Na2PbO2+Na2S+2H2O=PbS↓+4NaOH
参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为:
Na2SiO8+CaCl2=CaSiO8↓+2NaCl
操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。
(三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为:
Na2TeO3+H2SO4=TeO2+Na2SO4+H2O
鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。
(四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。
(五)造液。TeO2能溶于NaOH溶液,反应为:
TeO2+2NaOH=Na2TeO3+H2O
每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。
(六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。
通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。
(七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。
三、首要设备
(一)球磨机。φ600×1000毫米,转速45转/分。
(二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。
(三)真空泵。SZ-2二台。
(四)电解槽。六个,钢板衬胶,790×600×640毫米。
(五)硅整流器。GZH3-40型一台,100安,50伏。
四、产品用处
碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。
五、产品质量
一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。
六、其它办法收回碲
(一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。
(二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。
碲铜
2017-06-06 17:50:05
碲铜,即碲和铜的合金。 碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。 碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。 碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子
行业
中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。 以下是碲铜的产品标准、化学成分以及机械性能的指标:
碲铜
2017-06-06 17:50:03
碲铜是碲和铜的合金。根据两种
金属
的含量不同,碲铜的主要性能有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。此外碲铜具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。碲铜的具体物理及化学特性如下:
碲锭
2017-06-02 16:19:17
碲锭碲的产品形态物质。碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的
金属
外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲除了兼具金属和非金属的特性外,碲还有几点不平常的地方:它在周期表的位置形成“颠倒是非”的现象──碲引比碘的原子序数低,却具有较大的原子量。如果人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲消费量的80%是在冶金工业中应用:钢和铜合金加入少量碲,能改善其切削加工性能并增加硬度;在白口铸铁中碲被用作碳化物稳定剂,使表面坚固耐磨;含少量碲的铅,可提高材料的耐蚀性、耐磨性和强度,用作海底电缆的护套;铅中加入碲能增加铅的硬度,用来制作
电池
极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可作温差电材料的合金组分。碲化铋为良好的制冷材料。碲和若干碲化物是半导体材料。超纯碲单晶是新型的红外材料。 碲有毒,属于危险品 ,碲是一种稀有的元素,在地壳中的含量和金、铑差不多,化学性质和硒差不多,而毒性较小。在空气中将碲加热熔融,会生成氧化碲的白烟。它使人恶心飞头痛飞眩晕飞口渴、皮肤搔痒、呼吸短促和心悸 人体吸入碲后,在呼气、汗、尿中产生一种令人不愉快的大蒜臭气。这种臭气很容易被别人感觉到而本人往往感觉不到。若口服适量的维生素C,即以消除气味。较大剂量的碲能抑制汗腺的分泌,损害皮肤,并能妨碍消化机能。碲锭目前的市场价格是每公斤1400元人民币左右。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
氢氧化高镍
2017-06-06 17:49:58
中文名称:氧化高镍 英文名称:nickelic hydroxide; nickel (Ⅲ) hydroxide 性状: 黑色粉末。 溶解情况: 不溶于水和碱溶液。溶于酸和氨水。 用途: 用于制碱蓄电池等。 制备或来源: 由氢氧化镍用次氯酸盐氧化而得。 其他: 在熔点分解。氢氧化高镍采用水溶液氧化沉淀法,试制了Ni(OH)3粉末材料。实验选用Na2O2等多种氧化剂与无水NiCO3,NiSO4·6H2O等四种镍盐发生反应,比较了制取高纯氢氧化高镍的反应效果及结果,并从中确立了较合理的氧化剂和镍盐配方。在此基础上,分析了反应液温度和反应液pH值两个主要参数对氢氧化高镍生成的影响,确立了制取氢氧化高镍的基本方法。
金属铝冶炼用拜尔法制纯氧化铝
2019-01-04 11:57:12
代表性的铝原矿是铝土矿,其主要成分为不同晶形的三水铝石(y-A12O3·3H2O)、一水铝石(y-A12O3·H,O)、硬水铝石(a-A12O3·H2O),各以单独状态或以混合状态存在。一般组成为45-60%A12O3, 2-20%Fe2O3,1-10%Si021-4%TiO2,10-30%的结合水,其他微量成分(Mn, GaCa, V, P, As等)。低品位矿有霞石(Na2O -A12O3·2SiO2K2O·A12O3·2SiO2)、矾土页岩A12O3·H2O+A12O3,2SiO2一2H20)、明矾石(K2O.3A12O3.4SO3·6H20)、粘土等。冶炼法主要是用拜尔法制纯A12O3,以此,用霍尔一埃鲁法进行熔盐电解。 1.氧化铝的制法用拜尔法从铝土矿制氧化铝的主要反应分以下三个阶段:(1)铝土矿中的AI2O3用NaOH溶液溶解生成NaA1O2: A12O3+2NaOH=2NaA1O2+H2O (6-14) (2)NaAIO2水解,析出A12 O3 .3H2O 2NaA1O2+4H20=A12O3·3H20O+2NaOH (6-15) (3)A1203·3H2O加热脱水,生成A12O3 A12O3.3H2O=Al2O3+3H2O (6-16)
硬水铝石准溶于NaOH溶液,因此此法不适用,不过以此为主要成分的原矿产地也只有极少数。
下图示出了拜尔法的简略操作流程图。三水铝石比一水侣石易溶子NaOH溶液。(1)三水铝石为主要成分的矿石处理。作为预处理,对原矿也有进行加热于燥的。在高压釜中的一般溶解条件是,碱浓度Na20为100-1501cg/m3,榕液中的Na2O和A1203的摩尔比为1.4-1.7,温度为410-420K.原矿中富于反应性的SiO2和A12O3一起一度溶解后,称为脱硅反应灼二次反应缓慢发生,即Na2O3和A12O3结合,生成不溶性的方钠石系化合物3(Na2O·A12O3·2SiO2)Na2X·nH2O(X表示CO32-、SO4 2-、2C1-、2OH-、2A1O2-)。此时,添加少量的Ca(OH)2也可减少Na2O的耗量,生成Fe2O3·xH2O,Na2TiO3等不溶性化合物。但添加高分子沉降促进剂,则和方钠石系化合物一起,在浓缩器中分离沉降出赤泥。 A12O3溶解生成的NaA1O3溶液送往结晶槽,加适量的粉状A12O3·3H,0作为晶种,长时间连续搅拌后缓冷,在330-350K发生水解,生成所谓白泥的A12O3·3H2O白色沉淀。在分级糟从溶液分离的A2O3·3H2O的一部分留为晶种,其余在1400-1500K缎烧为A12O3其中的杂质SiO2, Fe2O3一般各为0.010-0.015%,Na2O为0.5%左右。(2)一水铝石为主要成分的矿石处理。一水铝石较三水铝石难溶于NaOH溶液,因此,有必要提高溶解温度或NaOH浓度.或二者同时提高。例如,在Na2O为200kK/m’, 470K下或在Na2O 300kg/m3,440K的条件下,并增加提取时间。多半不提高NaOH浓度,而在Na20和A12O3的康尔比为1.5左右的条件下,在480-510K进行高沮溶解。从低碱浓度(NaOH100~140kg/m3)和高温(338-448K)挤液短时间析出的Al2O30·3H2O所得A12O3称为砂状三氧化二铝,从高碱浓度(NaOH150-200kg/m3)、低温(328-333K)条件下长时间析出的Al2O3·3H2O所得Al2O3,称为粉状三氧化二铝。前者表观密度和流动性大,而后者表观密度和流动性均小A12O3溶解生成的NaA1O3溶液送往结晶槽,加适量的粉状A12O3·3H,0作为晶种,长时间连续搅拌后缓冷,在330-350K发生水解,生成所谓白泥的A12O3·3H2O白色沉淀。在分级糟从溶液分离的A2O3·3H2O的一部分留为晶种,其余在1400-1500K缎烧为A12O3其中的杂质SiO2,Fe2O3一般各为0.010-0.015%,Na2O为0.5%左右。从低碱浓度(NaOH100~140kg/m3)和高温(338-448K)挤液短时间析出的Al2O30·3H2O所得A12O3称为砂状三氧化二铝,从高碱浓度(NaOH150-200kg/m3)、低温(328-333K)条件下长时间析出的Al2O3·3H2O所得Al2O3,称为粉状三氧化二铝。前者表观密度和流动性大,而后者表观密度和流动性均小
(3)其他矿石的处理。基本是添加石灰石焙烧或熔融,使之.生成铝酸钙(CaAl2O3),用喊溶液提取的方法。用酸处理法也有各种方案。
碲铜 英文
2017-06-06 17:50:14
碲铜 英文是?碲铜英文:tellurium copper碲和铜的合金。常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。合 金 美国 ASTM 中国 GB 日本 JIS 德国 DIN 英国 BS碲铜 C14500 QTe0.5 C1450 CuTeP C109化学成分 合 金 化学成分 %Cu Te P碲铜 C14500 99 % 0.4-0.7 % 0.01 %机械及物理性能 合 金 状态 抗拉强度 MPa 硬度 HV 延伸率 % 导电率 %IACS 车削性 %碲铜 C14500 H04 330 100 15 93 85应用:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、 汽车零件、弹性元件、焊接电极、炉内组件等。铜是一种化学元素,它的化学符号是Cu(拉丁语:Cuprum),它的原子序数是29,是一种过渡
金属
。 铜呈紫红色光泽的
金属
,密度8.92克/立方厘米。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2。电离能7.726电子伏特。铜是人类发现最早的
金属
之一,也是最好的纯
金属
之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜Cu2(OH)2CO3,这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀。铜是古代就已经知道的
金属
之一。一般认为人类知道的第一种
金属
是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种
金属
,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3·Cu(OH)2或者Cu2(OH)2CO3,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到
金属
铜。纯铜制成的器物太软,易弯曲。人们发现把锡掺到铜里去,可以制成铜锡合金──青铜。铜,COPPER,源自Cuprum,是以产铜闻名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外颜色的
金属
。铜与金的合金,可制成各种饰物和器具。加入锌则为黄铜;加入锡即成青铜。更多有关碲铜请详见于上海
有色
网
碲化镉
2017-06-02 16:18:18
金属
碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质 棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。 密度:6.20 熔点:1041℃ 碲化镉的用途 光谱分析。也用于制作太阳能
电池
,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海
有色网www.smm.cn
。我们会为您提供最为详细的相关资讯。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
碲铜合金
2017-06-06 17:50:05
碲铜合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜合金来生产加工,其优越性是很明显的。
碲铜合金
2017-06-06 17:50:02
碲铜合金(DT) 该合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜材料来生产加工,其优越性是很明显的。
金-碲矿石选矿技术
2019-02-12 10:07:54
金与银都或多或少地能与碲结合成化合物。金的碲化物用起泡剂就能浮选。但因为碲化物很脆,磨矿过程中易泥化,然后给碲化物的浮选形成困难。因而,处理金-碲矿石时,必须进行阶段浮选。
金-碲矿石的优先浮选准则流程如图1所示。首要,从矿石中收回金的碲化物和其他易浮矿藏。在苏打介质(pH=7.5~8)中只用松根油或其他起泡剂进行浮选,使一部分游离金进入精矿中,而尾矿则用巯基捕收剂进行硫化物浮选。金-碲精矿进行长期化(4~5d)处理,而金-硫化物精矿则实施焙烧,然后对焙砂进行化。
图1 金-碲矿石优先浮选准则流程
另一个准则流程(如图2所示),是从混合浮选精矿及其化尾矿平分选出含碲产品。必要时,可对精矿进行再磨、洗刷和脱水,然后在苏打-介质中以碳氢油作为捕收剂进行碲化物浮选。
图2 金-碲-黄铁矿矿石的混合-优先浮选流程
当时,金-碲矿石可用下列两种计划进行处理。
(1)将难溶金用浮选法选入精矿中,对精矿实施氧化焙烧,焙砂和浮选尾矿进行化。
(2)将矿石直接进行化,化尾矿进行浮选。对浮选精矿进行焙烧,其焙砂进行化。
澳大利亚的莱克-维尤恩德-斯塔尔选金厂选用第一种计划处理难溶金-碲矿石的选冶工艺流程如图3所示。
图3 澳大利亚某选金厂处理难溶金-碲矿石的选冶工艺流程
所处理矿石含金7.5g/t,金主要为碲化物的细粒包裹体,粒度由微细到5mm。图3为重选-浮选和浮选精矿焙烧-化以及浮选尾矿化的联合流程。矿石进行三段破碎(至小于10mm)和四段磨矿,以防碲化物过破坏。在磨矿与分级循环中先用绒布溜槽收回粗金粒金,粗选溜槽给矿粒度为15%-1.65mm,扫选溜槽给矿粒度为20%+0.074mm。磨碎后的矿石用浮选法收回难溶金。浮选精矿经脱水并焙烧(500~550℃),以便解离含金硫化物和碲化物,使之适合于化。因为浮选精矿含硫量很高,所以进行独自焙烧,其焙砂先用溜槽收回单体金,然后进行两段化。重选精矿进行混。
该厂金总收回率为94.2%。其间,原矿溜槽选别收回率为13.02%;焙砂溜槽选被收回率为20%;焙烧化收回率为57.60%;浮选尾矿化收回率为3.60%。
金-碲矿石的处理
2019-02-14 10:39:49
金与银都能或多或少地与碲结合成化合物。金的碲化物脆而易浮(单用起泡剂就能浮),在金-碲矿石中部分为细粒浸染的碲化物。因而处理此类矿石可有二种计划: 1.将难溶金用浮选法选入精矿中,对金-碲精矿实施氧化焙烧,焙砂和浮选尾矿进行化。但在焙烧时,应逐步升温以避免金的碲化物溶化吸收与其连生体的金,而延伸化时刻;一起焙烧时还要避免部分金随烟尘而丢失。 2.将矿石直接化,化尾矿进行浮选,对浮精进行焙烧,其焙砂再进行化。由于金的碲化物比游离金难溶于中,其溶解度随溶液中含氧和硷浓度的进步而添加,一起能分化碲化物,化能将物料细磨(到达-200目占99%),延伸浸出时刻(50~60小时),使用高硷度溶液(CaO浓度大于0.02%),往矿浆中激烈充气或参加氧化剂(Na2O2用量 1为200~500克/吨)和化(用量为的—)等 3办法。
碲金矿的浮选和氰化
2019-02-19 10:03:20
恩佩罗尔(Emperor)矿业公司处理斐济维图考兰(Vatukoula)邻近的由细粒天然金与碲化金及黄铁矿和毒砂紧密结合的矿石。矿石湿润而易碎。其间细粒矿泥占矿石总重量的22%,它含有占总量48%的金。为了战胜处理这种矿石进程中所存在的困难,改善后的流程如图1。图1 恩佩罗尔矿业公司简明流程
工厂处理矿石的才能为1200t∕d。矿石经破碎、磨矿和浓缩,溢流抛弃。浓浆加碳酸钠于阿格特(Agitair)浮选机中浮选产出精矿送二次磨矿。尾矿抛弃,选用这种处理办法是因为浓缩机溢流中的有害可溶盐和浮选尾矿中的矿泥难于除掉的原因。
二次磨矿在化液中进行,矿石虽磨到65% -0.074mm(200目),但金一般仍是不能与脉石别离。磨过的矿浆经粗选、精选和二次精选产出含金30kg∕t的高品位浮选碲精矿。所用的浮选药剂丁基黄药11g/t、Teric402 4g/t。为按捺黄铁矿和毒砂,浮选液中还含0.02%NaCN、0.015%CaO。
处理碲精矿运用图2的流程。行将精矿再磨矿后,于0.9m×1.2m的拌和机中将矿浆调整至含2%的NaOH和等量的Na2CO3,并按原猜中每公斤碲参加相当于2.2kg氯的漂(或次等),拌和2h使碲化物氧化后分批过滤。渣再经磨矿和压滤后,滤饼于0.9m×1.8m拌和机中化3~4h后过滤洗刷。图2 恩佩罗尔矿业公司收回金属碲生产流程
洗刷渣于0.9m×1.5m拌和机中加Na2S浸出一夜使碲溶解。此刻,铁、铜和铅等被硫化沉积。硫化渣送焙烧。矿浆过滤洗刷后,滤液和洗液兼并,于1.5m×1.8m拌和机中稀释到含碲5~10g∕L,按含碲量的3倍参加钠使碲复原沉积。沉积物过滤,于真空炉中枯燥后,在硼砂覆盖下熔铸成碲锭。
矿石含碲12.2g∕t,碲的收回率约为88%。
浮选碲矿后的尾矿,经浓缩于串联的5台拌和机中化。矿浆于穆尔过滤机中过滤,滤液用焙烧炉来的SO2充气使金复原沉积。滤渣调浆再于华莱士(Wallace)充气机中充气使硫化物活化后进浮选。经粗、扫、精选产出精矿。尾矿抛弃。所用的浮选药剂硫酸铜200g∕t、捕收剂(乙基黄药、丁基黄药和气体促进剂404)164g∕t、起泡剂86g∕t。
浮选精矿于3台60型长耙式爱德华焙烧炉焙烧后,水洗收回铜。洗刷后的焙砂先加石灰浆化,然后化60h。
药剂总消耗量为370g/t、石灰4.73kg∕t。矿石含金8g∕t,金总收回率为86.2%。
铋的碱性精炼除碲、锡
2019-01-07 17:37:58
一、碱性精炼机理
图1为Te-Bi系状态图。图1 Te-Bi系状态图
从图1可见,在585℃,碲与铋组成中含Bi 52.2%时,出现化合物Bi2Te3结晶:在266℃含Te 2.4%(原子),出现(Bi+Bi2Te3)共晶;在413℃含Te 90%(原子),出现(Bi2Te3+Te)共晶;在540℃时,出现BiTe包品反应;在420℃时,在较宽的区域内出现均质的Bi2Te包晶反应;在312℃时,在较窄的区域内出现均质的包晶反应。碲在铋中的溶解度,在272℃时为2.6%(原子),在300℃时为4%(原子)。
Sn-Bi系状态图如图2所示。图2 Sn-Bi系状态图
铋与锡组成的低熔点合金在液态完全互溶,共晶点温度139℃,组成为含铋43%(原子)或含铋57%(重量)。当温度139℃时,铋在锡中溶解度为13.1%(原子),而锡在铋中的溶解度为0.2%(原子)。
碱性精炼的目的是为了回收碲与锡。
碱性精炼除碲,可以看作是一种改良的哈里斯(Havris)法,即以鼓入之压缩空气为氧化剂,以NaOH为吸收剂。加入NaOH可减少过程中铋以Bi2O2形式损失,同时NaOH与碲的氧化物的反应比Ri2O3与碲的氧化物的反应更为强烈,使碲可以在低于Bi2O3的氧势下氧化。
已被压缩空气氧化之碲,反应为:
对尚未被压缩空气氧化之碲,其反应为:
由于NaOH熔点为318℃,碲熔点为452℃,TeO2熔点为733℃,将碱性精炼温度控制在500~520℃,可保持反应在液态进行,而反应产物呈浮渣分离。
在除碲的同时,少量锡也能与NaOH反应,生成亚锡酸钠:碱性精炼除锡,是在铋液中加入NaOH、NaCl与NaNO3,其中NaNO3是强氧化剂,而NaOH是有效的吸收剂,NaCl加入后,有助于提高NaOH对锡酸钠的吸收能力,降低碱性浮渣的熔点和粘度,减少NaNO3的消耗。其反应为:
分析反应的气相成分为N2 77%、NH3 23%,说明锡的氧化主要按第一反应进行。
某厂碱性精炼中碲、锡的去陈程度如图3所示。图3 碲、锡的去除程度
二、碱性精炼实践
为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。
将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。
捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。
某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。
表 碱性精炼渣成分(%)
高砷次氧化锌综合回收技术
2019-01-21 18:04:24
一、前言
韶关冶炼厂两个系统的鼓风炉渣经烟化沪回收的次氧化锌达10000 t左右,其主要化学成份见表1。
表1 次氧化锌的化学成份元素ZnPbAsGeAg成份(%)50.28~54.225.21~16.184.17~9.740.022~0.0550.008~0.023
另外还有少量的C,S,Cl,F等,晶相表明:Zn,Pb,As以氧化物形态存在,Ge大部分以锗酸盐形态存在,Ag则被包含于Pb中。
目前绝大部分的次氧化锌返回烧结配料,这种处理方式有三个不足之处。
(一)由于次氧化锌中含砷总量近1000 t,韶关冶炼厂全厂约50%的砷富集进次氧化锌中,是该厂砷的汇聚点,同时每年从铅锌精矿中带人的砷约为500~800 t,如不及时处理。砷将会在系统中不断富集循环,对环保造成巨大的压力。
(二)砷的不断富集,各物料中砷含量将会越来越高,而高砷物料对该厂主体工艺—ISF炉有不可忽视的负面影响,同时给有价稀散金属锗、铟回收带来困难。
(三)次氧化锌返烧结配料时,粉尘大且含砷高,造成操作环境恶劣,同时配料加入过多的次氧化锌使烧结块的强度和成块率下降,影响烧结块的质量和产量。
因此,寻找合适的处理次氧化锌的方法,综合回收铅锌锗砷等有价金属,产出市场受欢迎的产品则能变废为宝,获得可观的经济效益。
二、试验原理及工艺流程
将次氧化锌加硫酸及少量水混合,则锌、铅迅速生成硫酸盐,发生的反应式主要有:
ZnO+H2SO4=ZnSO4+H2O (1)
PbO + H2SO4 = PbSO4+H2O (2)
ZnGeO3 +H2SO4 = ZnSO4 + GeO2+H2O (3)
As2O3十3H2O=2H3AsO3 (4)
在350~550℃烙烧时,H3ASO3被重新分解,H2O和As2O3挥发:
2H3AsO3=AS2O3+3H2O (5)
而硫酸锌要在大于600℃时才能分解,硫酸铅的熔点则达1170℃,并且在950℃以上开始分解,这两种产物在此温度下都会留在焙砂中,不被挥发;由于次氧化锌中有少量碳,GeO2可能被部分还原成GeO,另外由于次氧化锌中的Cl, F存在也可能生成GeCl4,GeF4而造成有部分被挥发;而Cl,F则主要生成HCI,HF挥发出去。
将焙砂水浸时,硫酸锌溶于水中,锗也有30%溶解,而铅银则被富集在渣中以便进一步回收。其主要工艺流程图如图1。图1 硫酸焙烧水浸综合回收次氧化锌原则流程
三、试验部分
(一)直接酸浸
将次氧化锌加硫酸直接浸出:1/s= 5∶1,温度70~90℃,时间1.5h,终酸10~20 g/L,浸出时,Zn有96%被浸出,As,Ge约浸出94%、70%, F、Cl浸出90%以上,而Pb、Ag银留在渣中,浸出液的化学成份(g/L);Zn90~100,As8~20,Ge0.1~0.2,F0.1~0.2,Cl0.1~0.2,酸浸液中的As、F、Cl含量都较高,要将其直接净化成电解液,难度十分大。
(二)硫酸焙烧
将次氧化锌加直接酸浸量酸耗110%~120%的硫酸和少量水混匀,然后将混料放入石墨坩埚中焙烧。试验考察了不同焙烧温度、硫酸量、焙烧时间等参数。
1、不同硫酸量对物料挥发率的影响
各取200 g次氧化锌加90mL,100mL,110mL,120mL,130mL硫酸于400℃焙烧7h,金属挥发率如图2。F,Cl在这种酸度范围挥发较彻底。图2 不同硫酸量对金属挥发率的影响
由图2可知,在这种酸度范围内,铅、锌全部在焙砂中,砷锗则随加酸量的增加而增加,在加入硫酸110~120mL(即加入直接酸浸耗酸量 110%~120%)时效果较好,砷的挥发率为90%以上。
2、不同焙烧温度对金属挥发率的影响
各取200 g次氧化锌加120 mL硫酸及少量水混匀,于300℃、350℃、400℃、500℃烙烧7h。F、Cl在较低温度范围内挥发完全,而砷则在350℃以上挥发可达90%以上,锗的挥发为40%左右,而铅、锌几乎不被挥发。挥发温度取400~500℃较合适。见图3。图3 不同焙烧温度对金属挥发率的影响
3、焙烧时间对金属挥发率的影响
各取200 g次氧化锌加115 mL硫酸(98%)及少量水于400~500℃焙烧3h、4h、5h、6h、7h,F、C1在3h就几乎挥发完全,金属挥发率曲线变化如图4。 图4 不同焙烧时间对金属挥发率的影响
由图4知,锌、铅始终没有什么挥发,砷、锗随时间增加挥发率增加。在5h左右时砷的挥发率达到90%以上,试验取焙烧时间5h较好。
综合以上条件,硫酸焙烧的最佳条件为:加入次氧化锌重量的1.1~1.2倍的硫酸,在400~500℃焙烧5h,便可获得理想的焙烧结果。
(三)焙砂酸漫将焙砂加水浸出,条件I/s= 5∶1,温度70℃,时间1.5 h,浸出终点pH=3,浸出渣量为次氧化锌的30%,浸出液及渣的化学成份如表2。
表2 焙砂水浸液及渣的化学成份物料ZnPbGeAsFCl1#液(g/L)105.280.0220.0320.300.00120.00381#渣(%)3.1451.700.0140.40——2#液(g/L)101.550.0140.0330.160.002650.00382#渣(%)2.5256.140.0120.21——3#液(g/L)107.210.0170.0290.170.001850.002963#渣(%)3.8352.620.0200.40——
由表2知,浸出液中的As都在0.3g/L以下,F、Cl已符合电解要求,只要对酸浸液稍加处理就可得到合格的电解前液,而渣被富集成含铅50%以上含砷小于0.4%的铅精矿,可以返烧结配料或另外处理。
四、工业试验
工业试验共处理9.2 t次氧化锌,产出17.36t焙砂,0.75 t烟尘。试验利用回转窑进行脱砷、氟、氯,窑长12 m,直径1.2m倾斜度5。。试验条件为:次氧化锌:硫酸=1∶0.91,焙烧时间5 h,焙烧温度为450~550℃,进料500kg/h。由于加入的硫酸量几乎是与次氧化锌反应的量,所以烟囱的烟气几乎没有。其技术指标为:脱砷率在85%~95%,而F、Cl的脱除率大于95%,而Ge的挥发率比小型试验好,小于30%,而Pb、Zn、Ag几乎不挥发,焙砂中的砷小于0.5%,扩大试验中次氧化锌、焙砂及烟尘的化学成份的平均值如表3。
表3 工业试脸中次氧化锌、焙砂及烟尘的化学成份(%)物料PbZnAsGeAgFCl次氧化锌13.9052.895.420.0310.02250.06430.030焙砂7.5027.400.370.0120.0150.001180.00070烟尘6.002.6732.350.00290.0023——
由表3可知,工业试验与小型试验基本吻合。
五、结语
(一)采用“硫酸焙烧-水浸”处理次氧化锌,工艺流程简单,铅、锌直收率高,成本低,所耗试剂少。在小型试验的基础上,工业试验证明该工艺能较好脱除次氧化锌的砷、氟、氯。
(二)在焙烧条件为:温度400~500℃,加酸量为次氧化锌重的110%~120%,焙烧时间为5 h,焙砂水浸条件为:1/s=5∶1,时间1.5 h,温度60~80℃,铅的直收率大于99%,锌的直收率为98%,砷的脱除率为90%,锗的直收率为60%。原料中的98%的锌、60%左右的锗、0.5%左右的砷进入浸出溶液,而铅、银全部留在渣中,浸出渣含铅50%以上,含砷小于0.4%。
(三)该工艺一个不足之处是锗在流程中分散,增加了锗的回收成本,降低了锗的回收率。
碲的理化性质和用途
2019-03-07 10:03:00
一、碲的理化性质 元素碲(音帝),源自tellus意为“土地”,1782年发现。除了兼具金属和非金属的特性外,碲还有几点不往常的当地:它在周期表的方位构成“颠倒是非”的现象——碲比碘的原子序数低,具有较大的原子量。假如人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。 元素称号:碲 元素符号:Te 相对原子质量:127.6 原子序数:52 摩尔质量:128 所属周期:5 所属族数:VIA 碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发作反响的一切溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。磅首要从电解铜的阳极泥和炼锌的烟尘等中收回制取。
二、碲的用处: 首要用来添加到钢材中以添加延性,电镀液中的光亮剂、石油裂化的催化剂、玻璃上色材料,以及添加到铅中添加它的强度和耐蚀性。碲和它的化合物又是一种半导体材料。 三、碲的发现 碲在自然界有一种同金在一起的合金。1782年奥地利首都维也纳一家矿场监督牟勒从这种矿石中提
高硅氧化锌矿浸出脱硅工艺技术
2019-01-07 07:51:26
前言
随着锌用途范围的扩大,世界各国锌产品消耗逐年增加。硫化锌矿日渐供应不足,氧化锌矿的开采利用逐渐引起人们的重视。氧化锌矿主要是含有硅酸锌矿Zn2SiO4,异极矿Zn4(Si2O7)(OH)2·H2O和菱锌矿Zn2CO3的含锌矿物,有些氧化锌矿含锌品位高达20%~30%,其特点是:
1、氧化矿很难通过选矿富集;
2、含可溶硅高,浸出矿浆很难实现固液分离。在未解决浸出矿浆难过滤问题之前,一般采用火法冶炼处理,但在能源日益紧张和环保要求日益严格情况下,氧化锌矿火法冶炼逐渐被湿法冶炼工艺取代。
湿法处理氧化锌矿的最大难点是浸出时生成难以过滤的胶质SiO2。几十年来人们围绕着如何获得易于过滤的矿浆,做了大量的工作,经过长期的研究,在应对矿浆中硅的危害方面取得了突破,已有一些处理硅酸锌矿的酸浸技术用于工业生产。
2004年笔者参加国外某氧化锌矿湿法冶炼半工业试验,对当地矿石的浸出脱硅工艺进行多方案探索,提出新的浸出脱硅工艺,并将新工艺在半工业试验厂实施。新工艺与原工艺对比,锌回收率提高9.4%,酸碱消耗降低50%。本文详细介绍了浸出脱硅流程的选择,半工业试验情况及取得的技术经济指标。
一、工艺流程选择
由于成矿条件不同,不同地区高硅氧化锌矿的性质差异较大。为适应原矿特性,世界上开发出了多种湿法处理工艺。本试验原料特性及较成熟的处理工艺简述如下。
(一)原料特性
本试验所用的氧化锌矿含有大量的碱性物质及大量碳酸根,浸出过程中产生大量二氧化碳且耗酸量大。小型试验表明,在低酸条件下,浸出时间30 min,终点pH 1.5时,锌浸出率高达95.3%,主要杂质Fe,Al和Si浸出率很低。其化学成分及物相组成分别见表1和表2。(二)工艺流程
目前工业上应用的3种较成熟的工艺是:V.M法;EZ法;Radina法。
1、老山工艺(Vieille-Montagne)
V.M工艺是比利时老山公司发明的,其特点是将浸出槽串联起来,在严格控制浸出温度7090T条件下,缓慢加酸,逐步提高酸度,经8-10h终点pH达到1.5后,继续搅拌2h使SiO2呈结晶形式沉淀。
2、EZ工艺
EZ法是澳大利亚电锌公司发明的,其特点是:先进行氧化锌矿酸性浸出,再进一步中和凝聚。浸出控制在自热(较低)温度40~45℃下进行,终点pH1.8~2.0,凝聚温度控制在6070 9C,加人Fe3+,A13+凝聚剂及中和剂,终点pH 5.2~5.4。全过程4-6 h,从而使胶质SiO2凝聚成易于过滤的沉淀物。
3、Radina法
Radina法是巴西工商公司研制的方法,该法的关键点在于浸出过程胶质SiO2浓度低,用已沉淀析出的SiO2作晶种,在硫酸铝凝聚剂存在下,使胶质SiO2结晶沉淀下来。其操作程序如下:
将硫酸铝、废电积液(10% H2SO4)加人浸出槽中,加热到90℃左右。用过量的氧化锌矿石中和至pH=4左右,再加人一批废电积液,其量与第一批相同,浸出0.5 h,然后用氧化锌矿中和槽中的废电积液,至少要加3次废电积液及相应量的矿石使浸出槽装满。
抽出三分之一已中和浸出好的矿浆送去过滤,再加人新电积液。因为浸出槽只有三分之一的体积是有效的,Radina法也被称为“三分之一”法。
以上3个方法均采用稀硫酸直接浸出氧化锌矿,使锌和硅分别以硫酸锌和硅酸形态进人溶液,但解决矿浆的过滤问题则分别采取不同措施。M.V法与Radina法都是在浸出过程中使二氧化硅形成结晶沉淀,EZ法则分为浸出和硅酸凝聚两段组成,SiO2在中和絮凝段聚合成颗粒紧密易于过滤的沉淀物。
M.V法与Radina法浸出结晶时间长达8~10 h使用原矿作中和剂,浸出中和渣含锌较高(Zn5.0%~9.0%),锌浸出率较低。
EZ法浸出絮凝时间较短(3. 5~6.0 h ),使用石灰作中和剂,浸出中和渣含锌较低(Zn 3.5%~5.0%),但浸出过程酸耗增加。
外方选择了生产能力相对较高的,用石灰中和的EZ法,工艺流程见图1。二、中和絮凝法(EZ)的基本原理
(一)氧化锌矿浸出过程中SiO2的行为
氧化锌矿的主要成分均易被稀硫酸溶解,在锌溶解的同时SiO2也进人溶液,其反应式如下:
硅酸锌 Zn2SiO4+2H2SO4→2ZnSO4+H4SiO4 (1)
异极矿 Zn4(Si2O7)(OH)2·H2O+4H2SO4→4ZnSO4+2H4SiO4+2H2O (2)
菱锌矿 ZnCO3+H2SO4→ZnSO4+CO2↑+H2O (3)
进人溶液的硅酸很不稳定,分子间将发生多次
聚合作用,形成多聚硅酸、硅溶胶、水凝胶。当溶液中SiO2浓度足够大时,在放置过程中就会自动进人胶凝过程而成为水凝胶,呈半固体状态失去流动性,使固液分离完全停顿。
硅酸是带电的,通常认为原硅酸的等电点在pH=2附近。
在pH>2时,部分原硅酸按下式离解::
H4SiO4 H3SiO4-+H+ (4)
原硅酸与带一个负电荷的H3SiO4-作用,生成带一个负电荷的硅酸的二聚体,此二聚体又可与原硅酸作用生成三聚体、四聚体等多硅酸,进而生成SiO2溶胶。
在pH
H4SiO4+H+ H5SiO4+ (5)
原硅酸与带正电荷的
H5SiO4+进行经联反应形成双硅酸,进而生成三硅酸、四硅酸等多硅酸,生成硅
溶胶。
因此,在pH>2的溶液中是原硅酸与一价阴离子的缩合作用;而在酸液内是原硅酸与一价阳离子的聚合作用。
(二)硅酸在溶液中的聚合形态
硅酸在溶液中由于其聚合程度不同,以α、β、γ三种形态存在。α形态接近于单分子状态(即原硅酸或简单的偏硅酸),不致影响溶液的澄清过滤,即pH=2左右的溶液,此时溶液最稳定。β形态的硅酸聚合程度略高,约大于α形态的350倍,这种胶凝物难于沉淀,即当pH>2或pH
因此,浸出溶液含二氧化硅较高时,会出现下列现象:
1、在pH=2左右时,以稳定的胶体溶液存在;
2、在较高pH时,聚集成一种巨大的疏松网状结构,即凝胶;
3、在迅速聚集的条件下(高温、高pH值、高离子强度、絮凝剂和相反电荷等)就絮凝成胶体颗粒紧密堆积的沉淀物。
通过控制特殊的工艺技术条件,保证生成二氧化硅沉淀而不发生胶凝,从而改善矿浆的澄清与过滤问题。
三、半工业试验
外方按小试方法选择了EZ法作为半工业试验方案,并设计了半工业试验厂。中方专家根据原矿性质及现场小试结果提出新工艺流程并修改试验厂设计。半工业试验采用两个试验流程完成浸出脱硅过程试验。
(一)工艺流程
1、原工艺流程
原工艺流程见图1。在控制Fe、A1、Si较低的浸出率条件下,常温加人石灰石、絮凝剂进行中和絮凝,使矿浆易于沉降。此工艺与E.Z法很相似,但在中和絮凝段未加温,未加人含Fe3+、A13+的絮凝剂。该工艺优点在于工艺流程简单,锌浸出率较高 (约94%);其缺点为:①浸出后液含酸高,溶液量大,中和溶液中残酸消耗大量的石灰石和可再利用的酸同时增大了中和渣量;② 中和渣量大,含锌较高(6.2%~8.5%),中和段锌损失率高。
2、新工艺流程
新工艺流程见图2。在分析原小试工艺流程优缺点后,结合矿石及原方案中和渣特性,对原工艺作如下修改:(1)用部分原矿代替石灰作中和剂;
(2)增加脱硅渣二次酸浸工序;
(3)二次酸浸液(含Fe3+、Al3+)返回二次酸浸,达到降低弃渣含Zn量,降低酸、碱消耗量,提高全流程经济效益的目的。
(二)试验过程
1、浸出工序
浸出工序两种工艺相同,设备为3个串联连续浸出槽。
球磨后矿浆底流进1#浸出槽,同时加入废电解液、二次酸浸浓密机溢流液、滤液及洗水在常温下浸出1h,1#、2#浸出槽加人浓硫酸控制浸出pH=1.5,3#浸出槽pH=1.8~2.0。浸出矿浆自流进中和脱硅槽。
2、中和脱硅工序
中和脱硅工序设备为3个串联连续中和槽及中和浓密机。
浸出矿浆进入1#中和脱硅槽,同时加人原矿矿浆控制中和pH=3.6~3.8,3#中和脱硅槽加人CaCO3矿浆控制中和pH=4.5~4.8。中和脱硅温度85~90℃,中和时间2.5~3h。中和后矿浆加人絮凝剂后流人中和浓密机。中和浓密机溢流液部分返回磨矿,其余去净液工序,底流进行二次酸浸。原工艺中和浓密机底流进过滤洗涤工序。
3、二次酸浸工序
二次酸浸工序设备为一个二次酸浸槽和酸浸浓密机。
中和浓密机底流泵人二次酸浸槽,加浓硫酸和二次洗水,常温下进行二次酸浸。二次酸浸时间:60min,液固比1.6:1,酸浸pH=1.0~1.5。经二次酸浸后矿浆泵人酸浸浓密机,酸浸浓密机溢流返回浸出工序,底流洗涤过滤后堆存。
4、过滤洗涤工序
过滤洗涤工序设备为真空吸滤盘及滤液、洗水贮槽。
二次酸浸后渣泵人吸滤盘过滤、洗涤。滤液及部分洗水进滤液贮槽,返浸出工序,一次洗水返二次酸浸工序,二次洗水返磨矿工序。
(三)试验结果
试验在国外某试验厂进行了3个月,共处理矿石30t。两种工艺同时进行,取得的指标见表3。从表3中看出,新方案锌实际回收率比原方案高近10个百分点。
四、结束语
在新工艺流程与原工艺流程都经过充分试验后,双方均认为:新方案利用当地高硅氧化锌矿石的特性,合理选用工艺流程,大幅度降低原辅材料消耗,提高锌回收率,是本半工业试验的最佳方案。其优点如下:
(一)用原矿取代石灰作中和剂,酸耗降低约50%,碱耗减少约75%;
(二)通过增加中凝聚渣的二次酸浸工序,提高锌回收率约9%。
高纯铝锭
2017-06-06 17:49:59
高纯铝锭相关知识很多,让我们对它进行下介绍。高纯铝锭指的是Al含量≥99.999%(5N)的铝。高纯铝具有许多优良性能,用途广泛。它具有比原铝更好的导电性、延展性、反射性和抗腐蚀性,在电子工业及航空航天等领域有着广泛的用途。在电子工业中,用于制作高压电容器铝箔、高性能导线、集成电路用键合线;航空航天工业中,高纯铝用来开发制作等离子帆(推动航天器的最新动力);高速轨道交通中,高速轨道交高纯铝锭参数范围: 10±1Kg ,YS/T275-2000。铝及铝产品分类 1、电解铝的生产过程:铝土矿→氧化铝→电解铝。 2、按照铝锭的主成份含量可以分成三类:高级纯铝(铝的含量99.93%-99.999%)、工业高纯铝(铝的含量99.85%-99.90%)、工业纯铝(铝的含量98.0%-99.7%)。 3、按照铝锭的市场产品型态可以分成三类:一类是加工材,如板、带、箔、管、棒型、锻件、粉末等;一类是铸造铝合金、盘条线杆电缆等;一类是日常生活中的各类铝制品等。 铝锭分类铝锭按成分不同分重熔用铝锭、高纯铝锭和铝合金锭三种:按形状和尺寸又可分为条锭、圆锭、板锭、T形锭等几种,下面是几种常见的铝锭; 重熔用铝锭--15kg,20kg(≤99.80%Al): T形铝锭--500kg,1000kg(≤99.80%Al): 高纯铝锭--l0kg,15kg(99.90%~99.999%Al); 铝合金锭--10kg,15kg(Al--Si,Al--Cu,Al--Mg); 板锭--500~1000kg(制板用); 圆 锭--30~60kg(拉丝用)。在我们日常工业上的原料叫铝锭,按国家标准(GB/T 1196-2008)应叫“重熔用铝锭”,不过大家叫惯了“铝锭”。它是用氧化铝-冰晶石通过电解法生产出来的。铝锭进入工业应用之后有两大类:铸造铝合金和变形铝合金。铸造铝及铝合金是以铸造方法生产铝的铸件;变形铝及铝合金是以压力加工方法生产铝的加工产品:板、带、箔、管、棒、型、线和锻件。按照?重熔用铝锭?国家标准,“重熔用铝锭按化学成分分为6个牌号,分别是Al99.85、Al99.80、Al99.70、Al99.60、Al99.50、Al99.00”(注:Al之后的数字是铝含量)。目前,有人叫的“A00”铝,实际上是含铝为99.7%纯度的铝,在伦敦市场上叫“标准铝”。大家都知道,我国在五十年代技术标准都来自前苏联,“A00”是苏联国家标准中的俄文牌号,“A”是俄文字母,而不是英文“A”字,也不是汉语拼音字母的“A”。和国际接轨的话,称“标准铝”更为确切。标准铝就是含99.7%铝的铝锭,在伦敦市场上注册的就是它。通过了解高纯铝锭的知识,我们才可以掌握其真正的价值,你可以登陆上海有色网查找更多的信息。
高纯三氧化钼中的知识简介
2019-02-12 10:08:00
高纯三氧化钼中MoO3的分量百分含量一般为99.8%~99.99%,它是制取金属钼粉的根本质料,也可作高纯试剂的质料。出产高纯三氧化钼的根本质料是钼焙砂——工业三氧化钼粉。
由钼焙砂出产高纯三氧化钼粉,有两条截然不同的工艺道路:一条习惯上称湿法——由焙砂经浸,湿法提纯净化,出产成仲钼酸铵粉,仲钼酸铵经加热解离,驱逐净气而获高纯三氧化钼;另一条习惯称火法—由钼焙砂直接加温,钼焙砂中杂质残留在焙烧渣中,而大部分三氧化钼经提高,再结晶而净化,生成高纯三氧化钼粉。
火法,湿法都可出产出纯度很高的产品,常见标准见下表。
表 高纯三氧化钼质量标准
供应商
含量
元素克莱麦克斯标准 1971年典型分析规范MoO399.9599.95Al0.00100.0025Ca0.00100.0025Cr0.00050.0015Cu0.00100.0025Fe0.00100.0030Pb0.00200.0040Mg0.00050.0010Ni0.00050.0010Si0.00900.0140S0.00150.0300Sn0.00500.0100Ti0.00050.0010
高硅铝矿提取氧化铝新工艺
2019-02-21 15:27:24
高硅铝矿是指铝硅比低于3.5的含铝矿藏质料,包含低档次铝土矿、高岭土、粉煤灰、煤歼石、黄砂以及猫土等。传统工艺在用铝矿提取Al2O3时,因为质猜中SiO2的存在,常常会发作铝硅酸钠Na2O·A12O3·2SiO2,而下降Al2O3的提取功率。所以,拜耳法只能挑选SiO2含量低的软铝石型铝土矿做质料来避开Na2O·A12O3·2SiO2的搅扰.而烧结法也仅仅用石灰中的CaO去替换Na2O·A12O3·2SiO2中的大部分Na2O开释出部分Al2O3不管拜耳法仍是烧结法,实践上都不能彻底处理提取Al2O3进程中的Na2O·A12O3·2SiO2搅扰问题,都只能挑选铝硅比至少大于3.5的含铝矿藏作为提取Al2O3的出产质料。
提取Al2O3的新工艺
全球优质软铝石型铝土矿首要散布在澳大利亚、巴西、印度、加拿大、美国、圭亚那、俄罗斯等国家。欧美等国家依托丰厚的优质铝土矿资源,大多数选用拜耳法提取Al2O3少量国家选用拜耳法与烧结法联合的方法来提取Al2O3。就现在全球Al2O3出产的现状来看,因为资源和技能的约束,美国、澳大利亚等铝土矿资源丰厚的国家多选用拜耳法,欧洲国家则较多选用烧结法与联合法。
关于铝硅比低于3.5的高硅铝矿质料,因为质料转化进程中发作的Na2O·A12O3·2SiO2对提取Al2O3的严峻搅扰问题,全球各国根本都不能直接用来提取Al2O3对粉煤灰、煤研石、低档次铝土矿、高岭土等Al2O3含量很低而SiO2含量很高的质料,都只能用堆积、埋葬、回填坑道、填方处理或用来出产陶瓷制品、水泥、砖块、作路基材料等进行低附加值运用。我国是铝土矿资源非常匮乏的国家,据报道,人均铝土矿占有量缺乏300千克,而且我国的绝大多数铝土矿都是铝硅比较低的中低档次一水硬铝石型铝土矿,现已不能确保2010年的国内需求,考虑前景储量,也只能确保20年左右。据海关计算,为满意国内需求,2005年全国共进口铝土矿217万吨,2006年添加到925万吨,2007年猛增到2326万吨,而2008年仅1~6月,全国就现已从国外进口了高档次铝土矿1344.92万吨,大部分用来与国内的中低档次铝土矿掺合,用烧结法进行氧化铝出产。现已有分析以为:“铝土矿进口开展惊人、直销趋紧,或成‘铁矿石第二’。”
处理提取Al2O3进程中的Na2O·A12O3·2SiO2搅扰,开发一种运用铝硅比低于3.5的高硅铝矿提取Al2O3新技能工艺,能够从全国现已堆积的近100亿吨高硅铝矿质猜中提取Al2O3,关于我国的Al2O3出产工业具有非常实践的重要意义,见表1。
表1 高硅铝矿质料的化学组成(%)组 分Al2O3SiO2Fe2O3CaOMgOTiO2K2ONa2OP2O5SO3其它含量(%)24.8662.764.500.671.230.901.851.200.490.541.00
实践上,提取Al2O3时,在碱性环境下转化进程中新生成的铝硅酸钠是一种具有沸石型松懈结构的结晶体,很简单被高浓度的烧碱分化.运用“C-JSTK”技能,经过添加溶液的Na2O浓度和进步反响温度,彻底能够将碱性环境下转化进程中生成的Na2O·A12O3·2SiO2悉数从头分化成Na2O·A12O3·2SiO2,并施行别离,从高硅铝矿中一起提取Al2O3和SiO2。
实验质料及工艺流程
出产实验用高硅铝矿质料取自江苏镇江某矿区,纯碱与烧碱用工业品。高硅铝矿质料的化学组成列于表。实验研讨的工艺进程描绘如下(见图1):
图1 “C-JSTK”技能工艺流程简图
高硅铝矿粉与纯碱按必定份额配料、入炉进行碱融转化反响,得到的熔压触体用冷水水淬成1~5毫米的细颗粒压料。将细颗粒料湿磨成浓稠浆料、稀释、过滤.滤饼用浓烧碱溶解后再加热浓缩、烘焙枯燥.将得到的干粉料溶解、过滤;滤饼再用浓烧碱溶解、过滤。将3次过滤的滤液兼并稀释水解,得到Al(OH)3沉积和滤液。将碱融进程发作的CO2气体搜集并经净化、加压,引进稀释水解后的滤液中使之碳酸化分化,然后顺次得到剩下的Al(OH)3沉积、H2SiO3沉积和Na2CO3稀溶液。洗刷液会集循环用于弥补水淬液和用作溶解、稀释用水.将Na2CO3稀溶液浓缩后收回纯碱Na2CO3溶液和烧碱NaOH溶液,副产出沉积CaCO3。收回的纯碱Na2CO3溶液循环至前道配料工序与高硅铝矿粉混合、枯燥后循环用于纯碱碱融工序。烧碱NaOH溶液循环至前道两段烧碱溶解工序。将纯碱碱融的高温烟道气换热成洁净的热空气,用于Al(OH)3和H2SiO3及CaCO3的枯燥,终究得到工业品Al(OH)3沉积SiO2和沉积CaCO3。
工艺原理
1、纯碱碱融
首要用纯碱Na2CO3处理高硅铝矿粉,是为了让高硅铝矿中的SiO2和Al2O3与Na2CO3反响转化成为可溶的Na2O·SiO2和Na2O·Al2O3与高硅铝矿质猜中的其它成别离离。
依照质量比,高硅铝矿粉:Na2CO3=1:1.2-1.3配料,在1300℃温度下反响约30分钟后,Na2CO370%左右分化开释出Na2O并分出CO2;高硅铝矿中的大部分SiO2和A12O3与Na2O结合转化成为Na2O·SiO2和Na2O·Al2O3,残留有部分游离的A12O3和消融的Na2CO3;部分Na2O·Al2O3和Na2O·SiO2又进一步反响生成Na2O·Al2O3·2SiO2。
Fe2O3大部分转化成为Na2O·Fe2O3;CaO与MgO转化成为2CaO·SiO2、CaO·Fe2O3、Na2O·CaO·SiO2、MgO·SiO2、MgO·2CaO·Fe2O3、CaO-TiO2、MgO-TiO2等。
2、湿磨与浆料稀释溶解
纯碱碱融时新生成的Na2O·Al2O3·2SiO2很简单被NaOH分化,开释出Na2O·Al2O3和Na2O·SiO2。
Na2O·Al2O3遇水会部分发作水解,发作Al(OH)3与NaOH;Na2O·Fe2O3遇水悉数水解,发作Fe(OH)3与NaOH。
经过湿磨及对湿磨后的浓浆料加水溶解,Na2O·A12O3和Na2O·Fe2O3水解发作的NaOH与Na2O·A12O3·2SiO2反响,部分Na2O·A12O3·2SiO2被分化成为Na2O·A12O3·2SiO2溶解于水进入溶液。过滤后,溶解的Na2O·A12O3和Na2O·SiO2与包含未反响的Na2O·A12O3·2SiO2固体及Fe(OH)3、部分Al(OH)3的杂质固体先行别离。
湿磨、溶解后的浆猜中,70℃时SiO2的溶解情况见图2,
从图2能够看出,在2小时内,SiO2在溶液中的最大溶解度约55克/升。湿磨、溶解后的浆料应该在2小时内过滤别离。
图2 70℃Na2O200克/升、Al2O3120克/升时溶液中SiO2含量
与时刻联系曲线
3、烧碱碱熔
向湿磨、溶解后的滤饼中参加烧碱NaOH溶液并烘焙枯燥成干粉料,其作用是跟着溶液的不断蒸腾浓缩,NaOH浓度也不断增大,终究NaOH浓度将挨近于最大的纯NaOH消融情况浓度。一起,跟着溶液的蒸干,物料的反响温度也到达挨近供热环境的最高温度,反响动力到达最大,然后将滤饼中的Na2O·A12O3·2SiO2悉数分化成为Na2O·A12O3和Na2O·SiO2。
一起,滤饼中包含的Al(OH)3和Fe(OH)3也被从头转化成Na2O·A12O3和Na2O·Fe2O3。
4、干粉溶解
一般,SiO2在Na2O·Al2O3溶液中的安稳溶解度很低,过量的SiO2会与Na2·A12O3生成Na2O·A12O3·2SiO2沉积,使A12O3与SiO2的提取率下降,Na2O碱耗(Na2CO3耗费)增大。
图3是70℃时SiO2在Na2O·A12O3溶液中的溶解情况。
图3中,曲线AB上方(Ⅲ区)为SiO2的过饱和区(不安稳区),AB与AC之间(Ⅱ区)为介稳情况区,AC下方(I区)为不饱和区(安稳溶解区)。
图3 SiO2在分子比(MR)为2.0的Na2O·Al2O3溶液中的溶解
度和介稳情况溶解度(70℃)
从图3看,当Na2O·Al2O3溶液中的MR为2.0,A12O3为75克/升时,SiO2的最大介稳浓度大约只需2克/升。
可是,SiO2溶解于Na2O·A12O3溶液中时,开端经常常是过饱和的,并不会当即发作Na2O·Al2O3·2SiO2沉积,需求在长时刻的拌和后,才干将其浓度降到平衡含量,到达介稳浓度。
实验成果证明,当加大溶液的MR到4.2以上,Al2O3为75克/升左右时,将烧碱碱熔得到的干粉溶解于水后,Na2O·SiO2在Na2O·Al2O3溶液中将会构成SiO2过饱和溶液,经过拌和、加热2小时或放置4小时后,SiO2才逐渐到达溶解平衡的介稳情况,溶液中会发作无定型的Na2O·Al2O3·2SiO2。因为没有晶种,在10~15天内Na2O·Al2O3·2SiO2都不会呈现结晶分出,溶液能够安稳存在。
所以,干粉溶解于水后,在溶液天然温度下,应该在2小时或4小时内过滤别离,防止溶液中的杂质颗粒代替Na2O·Al2O3·2SiO2晶种,促进Na2O·AlO3·2SiO2晶体的生成。
干粉溶解后,Na2O·Al2O3和Na2O·SiO2悉数溶解于水,部分Na2O·Al2O3发作水解,发作Al(OH)3与NaOH;Na2O·Fe2O3悉数水解,发作Fe(OH)3与NaOH。水解发作的 NaOH会进一步加大SiO2(Na2O·SiO2)在溶液中溶解的安稳性。
将干粉溶解后的溶液过滤别离,滤饼中除了杂质,还有部分Al(OH)3。
5、烧喊溶出
用烧碱溶液溶解干粉溶解后的滤饼,使滤饼中的Al(OH)3与NaOH反响转化成Na2O·Al2O3溶解进入溶液,并与杂质别离。
6、稀释水解
将前面3次过滤别离得到的滤液兼并,加水稀释,85%左右的Na2O·Al2O3发作水解,得到大部分Al(OH)3。
7、碳化别离
稀释水解后的滤液用CO2气体加压进行碳酸化处理,中和掉NaOH,下降溶液的PH值,使溶液中剩下的Na2O·Al2O3简直悉数水解成为Al(OH)3沉积,残留的Na2O·Al2O3浓度低于10-3摩尔。
别离出Al(OH)3后,溶液成为Na2CO3和NaHSiO3混合溶液。
持续对Na2CO3和NaHSiO3混合溶液用CO2气体加压进行碳酸化处理,下降溶液的PH值,使溶液中NaHSiO3简直悉数水解成为H2SiO3沉积。
别离出H2SiO2后,溶液成为稀Na2CO3溶液。
8、碱收回
将稀Na2CO3溶液直接用生石灰进行苛化处理,得到副产品CaCO3与稀NaOH溶液。NaOH溶液经过恰当浓缩今后作为浓烧碱循环用于烧碱碱熔和烧碱溶出两道工序作质料。
将稀Na2CO3溶液恰当浓缩后,再与高硅铝矿粉混合、枯燥除掉水分得到混合干粉,混合千粉循环用于纯碱碱融工序作质料。
Al2O3与SiO2提取率和碱丢失率
影响Al2O3提取率的首要因素包含碱融转化的温度和时刻以及干粉溶解后的滤饼用烧碱溶出时的浓度和温度。碱融温度过高或时刻过长,生成的沸石型Na2O·Al2O3·2SiO2的松懈结构将发作转化,变得愈加细密,会添加后续烧碱处理的难度,进而下降Al2O3的提取率;滤饼用烧碱溶出时的浓度和温度添加,Al2O3的提取率增大。
影响SiO2提取率的首要因素包含质猜中的CaO和MgO含量以及碱融反响的温度和时刻。质猜中的CaO和MgO含量增大,碱融时耗费的SiO2量添加,使SiO2的提取率下降;碱融温度过高或时刻过长,SiO2的提取率也下降。
处理进程的碱丢失首要取决于碱融反响的温度和时刻。温度过高或时刻过长,因为Na2CO3的蒸腾和生成的Na2O·Al2O3·2SiO2结构趋向细密添加后续处理难度,将使部分Na2O不能被开释,都会使Na2CO3的丢失率增大。
在年处理3000吨高硅铝矿质料的工业出产设备上的实验成果证明,对表1所列质料,取高硅铝矿粉:纯碱粉=1:1.2~1.3配料、碱融温度1150~1350℃、反响时刻40~25分钟,出料温度1050~1150℃,烧碱浓度50%左右、烧碱溶出温度70~80℃时,A12O3和SiO2的提取率别离能够到达95%与90%以上,纯碱Na2CO3的循环份额可达98%以上。
废气、废液循环和废热运用
高硅铝矿粉在纯碱碱融进程中,因燃料的焚烧和Na2CO3的分化,将放出很多的CO2气体,工艺中的碳化处理则需引进CO2将纯碱碱融进程中发作的CO2循环至碳化工序中,不只CO2浓度能满意要求,而且CO2总量还有充裕。
碳化构成的Na2CO3稀溶液与AI(OH)3沉积以及H2SiO3沉积别离后,经过恰当浓缩,循环用于配料,与高硅铝矿粉混合得到浆料,再用工艺中的废热对所配得的浆料进行烘干,得到“高硅铝矿粉-Na2CO3”混合干粉,循环至纯碱碱融工段从头配料,完成了纯碱的循环运用。
出产中耗费的烧碱,用碳化所构成的Na2CO3稀溶液与生石灰进行苛化处理,收回得到烧碱,经过浓缩后循环至烧碱碱熔和烧碱溶出工段运用,完成了烧碱的循环运用。
各个工艺段的洗刷液会集搜集,用作水淬液和相应工段的溶解用水。
出产进程的碱丢失,经过洗刷液的循环运用和高硅铝矿质猜中含有的K2O与Na2O的弥补,能够根本完成平衡。
纯碱碱融时发作的高温烟道气首要别离用洁净的常温空气和水进行换热处理,得到550℃左右与350℃左右两种温度的洁净热空气和热水以及500~600℃的中温烟道气;500~600℃的中温烟道气直接用于对第二碳化后别离得到的、经过蒸腾浓缩的浓Na2CO3溶液与高硅铝矿粉混合后的混合浆料进行枯燥,得到混合干粉与200℃左右的低温烟道气;200℃左右的低温烟道气再经水洗、净化处理,得到含CO3的常温洁净烟道气,加压后作为CO2质料气体用于榜首碳化和二碳化工艺,别离得到Al(OH)3和H2SiO3沉积;550℃左右的洁净热空气用于烧碱碱熔工段的供热;350℃左右的洁净热空气用于产品枯燥;热水用于各个相应工段的滤饼洗刷。
烧碱溶出后得到的滤渣,与苛化的废渣兼并,用于对洗刷烟道气后的污水进行絮凝净化处理。净化处理后的清水循环用于烟道气洗刷。
结束语
用“C-J STK”技能从高硅铝矿质猜中提取Al2O3和SiO2,一起作废气、废液循环运用和废热分级运用的新工艺,是高硅铝矿资源化、高附加值综合运用的有效途径。运用该技能工艺,只需质猜中的Al2O3含量到达20%或Al2O3与SiO2含量算计到达70%,经济上就有开发运用价值。经过对表1所列质料的工业出产实验,每处理1吨该高硅铝矿质料,能够获得约360千克Al(OH)3和约820千克H2SiO3一起副产出CaCO3约500千克,产量超越5500元,利税达2500元以上。
经过对得到的Al(OH)3与H2SiO3进行进一步深加工,还能够出产出品种完全、规格繁复的高附加值的各种铝盐与硅酸盐以及氧化铝、铝酸盐、沉积白炭黑、硅胶等数十种化工产品。这些产品能够用于造纸、油墨、印染、纺织、医药、油脂、催化剂、塑料、橡胶、日化、石油、环保、无机盐等10多个工业职业作为质料运用,国内的年需求总量到达几千万吨。
本工艺不只完成了高硅铝矿中铝资源与硅资源的全面收回和热能资源的合理转化运用,完成了高硅铝矿资源的合理运用,大幅度进步了高硅铝矿资源运用的经济效益,防止了资源糟蹋,减轻了环境污染,而且下降了出产成本,消除了出产中的二次污染,到达了清洁出产的意图,特别针对我国这种软铝石型铝矿与高档次铝矿资源紧缺的实践情况,具有巨大的经济效益、社会效益和环境效益。
铅阳极泥的除硒、碲
2019-03-05 09:04:34
大都工厂在火法熔炼前经预先焙烧除硒、碲,但有些工厂则于贵铅氧化熔炼中造渣收回。后者与铜阳极泥分银炉氧化熔炼造碲渣的操作类似。阳极泥预先除硒、碲的办法,一般经回转窑或马弗炉焙烧除硒,再从焙烧渣中浸出碲。
一、回转窑焙烧除硒碲。
该作业进程是将铅阳极泥与浓硫酸混合均匀,于回转窑中进行硫酸盐化焙烧。开端温度300℃,最终逐渐升至500~550℃,使硒呈二氧化硒蒸发遇水生成亚。焙烧除硒和亚的复原与处理铜阳极泥相同。
焙烧渣经破碎,用稀硫酸浸出,可使70%左右的碲进入溶液,然后加锌粉置换取得碲泥。碲泥再经硫酸盐化焙烧使碲氧化,然后用浸出。并用电解法从浸出液中出产电解碲,碲的总收回率约50%。
二、马弗炉焙烧除硒碲。
阳极泥与浓硫酸混合均匀,置于焙烧炉内涵150~230℃下进行预先焙烧。然后将焙烧物料转入马弗炉内,在420~480℃温度下进行焙烧除硒。硒的蒸发率可达87%~93%。焙烧渣破碎后用热水浸出,并用锌粉置换取得碲泥,然后再进行提纯。