金-碲矿石选矿技术
2019-02-12 10:07:54
金与银都或多或少地能与碲结合成化合物。金的碲化物用起泡剂就能浮选。但因为碲化物很脆,磨矿过程中易泥化,然后给碲化物的浮选形成困难。因而,处理金-碲矿石时,必须进行阶段浮选。
金-碲矿石的优先浮选准则流程如图1所示。首要,从矿石中收回金的碲化物和其他易浮矿藏。在苏打介质(pH=7.5~8)中只用松根油或其他起泡剂进行浮选,使一部分游离金进入精矿中,而尾矿则用巯基捕收剂进行硫化物浮选。金-碲精矿进行长期化(4~5d)处理,而金-硫化物精矿则实施焙烧,然后对焙砂进行化。
图1 金-碲矿石优先浮选准则流程
另一个准则流程(如图2所示),是从混合浮选精矿及其化尾矿平分选出含碲产品。必要时,可对精矿进行再磨、洗刷和脱水,然后在苏打-介质中以碳氢油作为捕收剂进行碲化物浮选。
图2 金-碲-黄铁矿矿石的混合-优先浮选流程
当时,金-碲矿石可用下列两种计划进行处理。
(1)将难溶金用浮选法选入精矿中,对精矿实施氧化焙烧,焙砂和浮选尾矿进行化。
(2)将矿石直接进行化,化尾矿进行浮选。对浮选精矿进行焙烧,其焙砂进行化。
澳大利亚的莱克-维尤恩德-斯塔尔选金厂选用第一种计划处理难溶金-碲矿石的选冶工艺流程如图3所示。
图3 澳大利亚某选金厂处理难溶金-碲矿石的选冶工艺流程
所处理矿石含金7.5g/t,金主要为碲化物的细粒包裹体,粒度由微细到5mm。图3为重选-浮选和浮选精矿焙烧-化以及浮选尾矿化的联合流程。矿石进行三段破碎(至小于10mm)和四段磨矿,以防碲化物过破坏。在磨矿与分级循环中先用绒布溜槽收回粗金粒金,粗选溜槽给矿粒度为15%-1.65mm,扫选溜槽给矿粒度为20%+0.074mm。磨碎后的矿石用浮选法收回难溶金。浮选精矿经脱水并焙烧(500~550℃),以便解离含金硫化物和碲化物,使之适合于化。因为浮选精矿含硫量很高,所以进行独自焙烧,其焙砂先用溜槽收回单体金,然后进行两段化。重选精矿进行混。
该厂金总收回率为94.2%。其间,原矿溜槽选别收回率为13.02%;焙砂溜槽选被收回率为20%;焙烧化收回率为57.60%;浮选尾矿化收回率为3.60%。
金-碲矿石的处理
2019-02-14 10:39:49
金与银都能或多或少地与碲结合成化合物。金的碲化物脆而易浮(单用起泡剂就能浮),在金-碲矿石中部分为细粒浸染的碲化物。因而处理此类矿石可有二种计划: 1.将难溶金用浮选法选入精矿中,对金-碲精矿实施氧化焙烧,焙砂和浮选尾矿进行化。但在焙烧时,应逐步升温以避免金的碲化物溶化吸收与其连生体的金,而延伸化时刻;一起焙烧时还要避免部分金随烟尘而丢失。 2.将矿石直接化,化尾矿进行浮选,对浮精进行焙烧,其焙砂再进行化。由于金的碲化物比游离金难溶于中,其溶解度随溶液中含氧和硷浓度的进步而添加,一起能分化碲化物,化能将物料细磨(到达-200目占99%),延伸浸出时刻(50~60小时),使用高硷度溶液(CaO浓度大于0.02%),往矿浆中激烈充气或参加氧化剂(Na2O2用量 1为200~500克/吨)和化(用量为的—)等 3办法。
碲金精矿的氧化焙烧
2019-02-20 14:07:07
碲金精矿中的碲化金,在碱性化液中经长期化虽可分化,但经过预先焙烧
Au2Te+O2 2Au+TeO2
使金复原呈金属状况,更易分化。
此外,当碲化物与黄铁矿等硫化物共生时,经过焙烧可一起将它们除掉。
碲常识
2019-03-14 09:02:01
碲 碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
碲知识
2019-03-08 09:05:26
碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。
碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。
碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。
镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。
稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。
稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。
我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
粗铋的碱性碲渣回收碲
2019-01-31 11:06:04
粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。
一、工艺流程
出产碲的流程如图1。图1 碲出产工艺流程图
二、首要技能条件
(一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。
(二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为:
Na2PbO2+Na2S+2H2O=PbS↓+4NaOH
参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为:
Na2SiO8+CaCl2=CaSiO8↓+2NaCl
操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。
(三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为:
Na2TeO3+H2SO4=TeO2+Na2SO4+H2O
鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。
(四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。
(五)造液。TeO2能溶于NaOH溶液,反应为:
TeO2+2NaOH=Na2TeO3+H2O
每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。
(六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。
通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。
(七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。
三、首要设备
(一)球磨机。φ600×1000毫米,转速45转/分。
(二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。
(三)真空泵。SZ-2二台。
(四)电解槽。六个,钢板衬胶,790×600×640毫米。
(五)硅整流器。GZH3-40型一台,100安,50伏。
四、产品用处
碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。
五、产品质量
一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。
六、其它办法收回碲
(一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。
(二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。
碲铜
2017-06-06 17:50:05
碲铜,即碲和铜的合金。 碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。 碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。 碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子
行业
中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。 以下是碲铜的产品标准、化学成分以及机械性能的指标:
碲铜
2017-06-06 17:50:03
碲铜是碲和铜的合金。根据两种
金属
的含量不同,碲铜的主要性能有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。此外碲铜具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。碲铜的具体物理及化学特性如下:
碲锭
2017-06-02 16:19:17
碲锭碲的产品形态物质。碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的
金属
外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲除了兼具金属和非金属的特性外,碲还有几点不平常的地方:它在周期表的位置形成“颠倒是非”的现象──碲引比碘的原子序数低,却具有较大的原子量。如果人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发生反应的所有溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中燃烧带有蓝色火焰,生成二氧化碲;可与卤素反应,但不与硫、硒反应。溶于硫酸、硝酸、氢氧化钾和氰化钾溶液。易传热和导电。碲消费量的80%是在冶金工业中应用:钢和铜合金加入少量碲,能改善其切削加工性能并增加硬度;在白口铸铁中碲被用作碳化物稳定剂,使表面坚固耐磨;含少量碲的铅,可提高材料的耐蚀性、耐磨性和强度,用作海底电缆的护套;铅中加入碲能增加铅的硬度,用来制作
电池
极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可作温差电材料的合金组分。碲化铋为良好的制冷材料。碲和若干碲化物是半导体材料。超纯碲单晶是新型的红外材料。 碲有毒,属于危险品 ,碲是一种稀有的元素,在地壳中的含量和金、铑差不多,化学性质和硒差不多,而毒性较小。在空气中将碲加热熔融,会生成氧化碲的白烟。它使人恶心飞头痛飞眩晕飞口渴、皮肤搔痒、呼吸短促和心悸 人体吸入碲后,在呼气、汗、尿中产生一种令人不愉快的大蒜臭气。这种臭气很容易被别人感觉到而本人往往感觉不到。若口服适量的维生素C,即以消除气味。较大剂量的碲能抑制汗腺的分泌,损害皮肤,并能妨碍消化机能。碲锭目前的市场价格是每公斤1400元人民币左右。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
碲铜 英文
2017-06-06 17:50:14
碲铜 英文是?碲铜英文:tellurium copper碲和铜的合金。常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。合 金 美国 ASTM 中国 GB 日本 JIS 德国 DIN 英国 BS碲铜 C14500 QTe0.5 C1450 CuTeP C109化学成分 合 金 化学成分 %Cu Te P碲铜 C14500 99 % 0.4-0.7 % 0.01 %机械及物理性能 合 金 状态 抗拉强度 MPa 硬度 HV 延伸率 % 导电率 %IACS 车削性 %碲铜 C14500 H04 330 100 15 93 85应用:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、 汽车零件、弹性元件、焊接电极、炉内组件等。铜是一种化学元素,它的化学符号是Cu(拉丁语:Cuprum),它的原子序数是29,是一种过渡
金属
。 铜呈紫红色光泽的
金属
,密度8.92克/立方厘米。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2。电离能7.726电子伏特。铜是人类发现最早的
金属
之一,也是最好的纯
金属
之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜Cu2(OH)2CO3,这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀。铜是古代就已经知道的
金属
之一。一般认为人类知道的第一种
金属
是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种
金属
,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3·Cu(OH)2或者Cu2(OH)2CO3,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到
金属
铜。纯铜制成的器物太软,易弯曲。人们发现把锡掺到铜里去,可以制成铜锡合金──青铜。铜,COPPER,源自Cuprum,是以产铜闻名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外颜色的
金属
。铜与金的合金,可制成各种饰物和器具。加入锌则为黄铜;加入锡即成青铜。更多有关碲铜请详见于上海
有色
网
碲化镉
2017-06-02 16:18:18
金属
碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质 棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。 密度:6.20 熔点:1041℃ 碲化镉的用途 光谱分析。也用于制作太阳能
电池
,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海
有色网www.smm.cn
。我们会为您提供最为详细的相关资讯。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
碲铜合金
2017-06-06 17:50:05
碲铜合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜合金来生产加工,其优越性是很明显的。
金的矿化学选矿
2019-02-22 10:21:22
近几年来,贵金属特别是金银的化学选矿首要取得了以下几个方面的展开:(1)针对难浸金矿直接化浸出浸出率低的问题,在浸出前对矿石进行焙烧、碱性预处理或加人防膜剂、催化剂等预处理办法,可进步金浸出率。(2)经过在化浸出进程中,对温度、氧气和粒度等的条件进行操控以及参加、等助浸刑,可进步浸出速率和浸出率并下降的耗费。(3)针对化法存在的环境污染和人身损害的问题,清洁提金技能取得了较大的展开,首要体现在:经过加人添加剂的办法处理法提金进程中耗费大的问题:铁、氧气等要素对硫代硫酸盐法浸金进程的影响;新的ZLT(一种氧化性有机物)氯化提金系统的发现。
1 难浸金矿预处理技能的展开
难浸金矿石是指矿石经细磨后仍有适当一部分金不能用惯例化法有用浸出的金矿石。这类矿石难浸出的原因许多,一般以为构成难浸的矿藏学原因有以下几种:(l)矿石中含有化难溶解含金矿藏及化合物;(2)矿石中含有黄铁矿、砷黄铁矿等包裹金的矿藏;(3)在焙烧或化进程中,铁、铅、锑等氧化物或砷、硫化物的沉淀物在金粒表面发作薄膜,薄膜的构成阻挠金的溶解等。这些原因构成了难浸金矿有必要经过特殊的处理才干得到较高的收回率。为了有用地从难处理金矿中收回金,国内外展开了很多的预处理研讨。
针对含砷、含锑的难浸金矿,研讨者们发现在浸出前,对这类矿石选用碱性预处理、参加防膜剂和催化剂等的预处理办法,能够显着进步浸出目标。Oktay Celep等人在处理含锑难浸金银矿时发现,直接化浸出只取得了金49%和银18%的提取率,在温度80℃、浓度5mol/L、矿石粒度5μm的条件下对矿石进行碱性预处理,银的浸出率由18%进步到90%,金的浸出率也进步了20%
~30%。王婷等人在对甘肃天水某砷硫铅质金矿的研讨中发现,砷硫铅质金矿在化浸出前,参加防膜剂、活化剂可进步金浸出率。李学强等人针对某含砷难处理金银精矿提出“催化氧化酸浸湿法治金”新工艺,选用HNO3作为催化剂、SAA为活化剂、氧气为氧化剂,经过操控温度与压力预处理后进行化提金,收回率可由惯例的13%~56%进步到92%~95%。金世斌等人用难处理金矿石和精矿在不同条件下进行焙烧-焙砂化浸金实验发现,三氧化二锑不对化浸金发作晦气影响,但会对焙烧后焙砂的化浸金发作晦气影响。田树国等人在对高砷难选冶的金矿进行碱浸顶处理脱砷时,加人和等助剂辅佐碱浸脱砷,取得了很好的作用。薛光等人经过研讨发现,金精矿中砷的含量一般操控在0.1%以下,跟着砷含量的添加,金、银的化浸出率逐渐下降。砷质量分数为0.45%的金精矿,在焙烧时参加矿样量4%~5%的硫酸钠,可使金、银的化浸出率别离到达95%和60%以上。
在处理其他类型的难没金矿时,在浸出前选用焙烧、碱预处理等办法,可显着进步金的浸出率。张锦祥等人选用“碱预处理+化浸出”的柱浸法来处理新疆哈密某难选金矿,金浸出率可到达80.91%。新疆某难选金矿浮选精矿的惯例化金的收回率仅达40.82%,张立征等人经过对某金精矿进行两段焙烧预氧化处理后再化浸出,金的化收回率可到达91.42%以上。方夕辉等人针对某难浸银精矿铜含量高、嵌布特性杂乱、惯例工艺浸出率低的特色,提出石灰+硫酸铵预处理一段不磨二段再磨强化浸出工艺,取得了74%以上的浸出率,比现场目标进步了9%,具有实践辅导意义。吴在玖选用焙烧-酸浸-化工艺归纳收回杂乱金精矿中的金、银、铜时发现:焙烧温度、焙烧时刻、焙烧添加剂品种和用量对金、银、铜浸出率影响显着。
2化提金工艺的展开
化法仍然是现在最遍及选用的提金办法,化法包含渗滤化、拌和化、堆浸、炭浆法、炭浸法、全泥化等。针对化进程中怎么进步浸出速率,进一步进步浸出率,下降耗费的问题,研讨者们首要进行了以下两个方面的研讨:(l)浸出条件如温度、氧气、粒度等对浸出进程的影响;(2)在化提金进程中加人、等助浸剂来进步金的浸出目标。下面临以上化法的展开作一简略评述。
(1)渗滤化和拌和化工艺的展开
渗滤化和拌和化是化提取金银较为常用的两种办法。渗滤化设备简略,出资少,见效快,溶剂耗费少,省电,且化后的矿浆不用进行浓缩和过滤。拌和化法有机械化程度高、浸出时刻短和浸出率高的特色。
崔毅琦等人经过对浸银进程的推导核算,发现只需氧化剂的氧化电位(U )大于-0.3097V,在氧化剂参加下浸银反响在热力学上就能够发作。滕云等人针对查干银矿床进行了化浸出办法的实验研讨,断定了适合于该矿石的最佳化条件,在该条件下银的浸出率为54%~67%。黄卫平、陈庆根等人也做了相似作业。王吉青等人在选用边磨边浸、富氧化工艺处理山东金洲的金精矿时发现,在一段磨矿参加适量的,能够强化银金矿浸出,进步金、银的浸出率,按捺铜浸出和进步的有用运用率。与不加比较,金化浸出率进步了0.47%,银浸出率进步了5.33%,铜浸出率下降了6.50%。罗仙相等人为进步某氧化金矿金银的浸出率,针对矿石的特性,提出选用强化化浸出的工艺进行处理,与原工艺比较,金、银的浸出率显着进步,别离进步了5%和9%左右,经济效益非常显着。
(2)堆浸工艺的展开
化堆无法提金具有金收回率高、对矿石适应性强、能就地产金、工艺简略、操作简略、出产本钱低一级特色,至今仍是低档次金矿浸出出产的首要办法。其处理0.5~3g/t的低档次矿石,金的收回率可达50%-80%。
在黄金堆浸工艺的规划与运用中,矿石因索、化溶液浓度、温度、喷淋强度、溶解中氧等许多因索需求合理掌握与操控,这些因索将直接影响黄金堆积工艺的运用作用;因而,合理掌握与操控影响黄金堆浸工艺运用的多种因索,可更好地辅导工业实践,发挥堆浸工艺的最大功用,使低档次金矿、含金废石以及尾矿等矿石资源中的金能有用地提取并得到最大化的运用。魏宗武等人经过对贵州某氧化金矿进行正交堆浸实验,得出影响金浸出作用的要素依次为矿石粒度>浸出时刻>NaCN用量>石灰用量。在紫金山金矿选矿厂,贺日应经过对影响堆浸作用的矿堆高度、人堆矿石粒度、喷淋液NaCN浓度及pH值、贵液NaCN浓度及pH值、喷淋准则、喷淋强度等首要工艺参数进行优化研讨,进一步断定了堆轻工业出产合理的工艺参数。石英、余忠宝等人也做了相似的研讨作业。
尹江生等人针对1985年树立的某200t/d金矿选矿厂,选用了尾矿制粒堆浸办法,使矿山在不添加地勘费的情况下,添加了黄金产值。齐蕊霞等人经过实验发现,选用酸浸铜、化浸金的堆浸工艺计划对陇南铜金矿石进行浸出收回铜、金,得到较好的作用,铜的浸出率达86.82%,金的浸出率达82.10%,酸耗38kg/t,耗量0.32kg/t。杜立斌、巫汉泉等人也进行了相似作业。
(3) 炭浆法的展开
炭浆法一般是指化浸出完结之后,一价金[KAu(CN)2]再用炭吸附的工艺进程。它是近30年才展开起来的,成为金的水冶新工艺。炭浆法首要适用于矿泥含量高的含金氧化矿石。
常宁市龙鑫矿业公司采选冶规划为400t/d的黄金矿山,近年来跟着原矿性质发作了改变,选用原有全泥化-锌粉置换工艺,收回率只要70%左右;而用制粒堆浸-炭吸附提金,收回率不到50%。公司经过技能改造,选用炭浆法代替原有全泥化-锌粉置换工艺,金的收回率进步近10%,每年多创赢利210万元。王婷等人在研讨甘肃天水某砷硫铅质金矿时发现,该矿石直接选用炭浆工艺化浸出率为5%~10%,浸出速度适当缓慢。选用NaOH及H2O2氧化12~15h后,在化进程中参加防膜剂及活化剂,化浸出率有较大起伏进步并且浸出速度加速。
(4) 炭浸法的展开
炭浸法和炭浆法相同是近年间发现的一种湿法冶金新工艺。两者原理相同,国外的学者以为两种工艺的差异在于:炭浆法是浸出和炭吸附两道工序分先后独自进行;而炭浸法则是浸出和炭吸附两道工序合二为一,一起进行。矿石中含砷、锑、铜等杂质高和耗氧金矿石运用炭浸法更为优胜。
某碳质金矿自20世纪70年代以来,都选用浮选-金精矿焙烧-化提金工艺,金收回率均为60%左右,致使此矿床多年来未得以开发运用。马晶等人针对矿石中存在石墨、有机碳及金的赋存状况,进行多要素工艺条件优化,终究研讨选用预处理-化炭浸提金工艺,预处理-化炭浸金浸出率比直接化炭浸金浸出率进步5%以上。选用炭浸工艺提金,为了使金充沛露出,以便与CN-触摸而溶解,一般要求细磨矿,国内炭浸厂磨矿细度多在-0.074mm占90%以上,这样一般需求两段磨矿,才干到达要求的细度。在夏家店金矿规划出产时,依据矿石性质选用了粗磨矿下炭浸提金,金浸出率均匀到达了94.26%,用量均匀262.7g/t,大大低于一般出产用量。
(5) 全泥化工艺的展开
全泥化法浸出提金适用于细粒-微细粒、涣散、氧化的石英脉型金矿石,该办法具有工艺老练、目标安稳、收回率高、对矿石针对性强、就地产金的长处。
近年来,一些选矿厂进行了全泥化工艺的改进,金的浸出率和收回率得到了显着的进步。杨长颖等人经过对某难处理金矿进行实验研讨发现,选用全泥化+浮选的两段收回办法,取得了金浸出率64.78%、收回率为93.05%较抱负的技能目标。关通针对山东某金矿矿石风化严峻、具有多孔状结构的细粒天然金的特色,在金档次为4.45g/t的情况下,选用全泥化浸出工艺,可取得金浸出率为97.30%的目标。刘国英等人对河北省某氧化石英脉型金矿选用全泥化浸金工艺,将原矿磨矿细度断定为-0.074mm占85%,加人石灰对金矿石进行碱预处理,再参加浸金,取得了浸出率为96.89%,吸附率为99.55%的实验目标。
在全泥化进程中参加助浸剂,可加速金的浸出,进步金的浸出率。刘孝柱等人以灰岩型含碳微细粒金矿为研讨目标进行了全泥化及添加助浸剂强化浸出的实验研讨。毕凤琳等人针对该矿石选用正交析因法,进行全泥化优化操控条件挑选,终究断定NaOH为碱浸药剂,并取得了最优的工艺参数。张晓平、白鹤天等人也进行了相似的作业。
(6) 其他办法的展开
树脂矿浆法是当今比较先进的无过滤提金技能,树脂具有吸附速率快、吸附容量大、可在常温常压下解吸等特性,在黄金出产中已逐渐得到运用。树脂与传统的活性炭比较具有抗污染才能强、耐磨才能强、简略再生、功率高级优势。虽然树脂矿浆法较炭浆法有许多优势,但树脂矿浆法受提金专用树脂功能、树脂解吸工艺及设备等因索限制。柴胡栏子金矿选矿厂处理规划为150t/d,选用树脂矿浆法,与原有的全泥化锌粉置换工艺比较,浸出率进步了6.06%,金的选矿总收回率进步了5.58%,选矿厂的经济效益也得到了较大的进步。安徽省霍山县东溪金矿原有提金工艺是炭浆法,金银浸出率和收回率都不高,吉林省冶金研讨院在该金矿进行了树脂矿浆法提金工艺的工业实验,金的浸出率到达97.29%,吸附率99.95%;银的浸出率66.67%,吸附率99.66% 。针对树脂矿浆法所具有的缺陷,韩春国等人对D370型、201×4型和201×7型树脂从化贵液中吸附金、银的吸附容量以及挑选性吸附才能进行了比照实验,发现D370型树脂对金、银吸附容量大,挑选性好,能够在常温常压下进行解吸,有杰出的解吸作用。
超细磨在造纸涂料、塑料、橡胶、印刷油墨和石油化工等职业得到了广泛运用,微米级或亚微米级的粉末加工技能日臻老练。跟着超细磨技能的展开和进步,许多学者展开了运用超细磨翻开硫化物包裹,使金解离的研讨,并取得了不同程度的展开。蓝碧水[201]对某难处理金精矿进行了超细磨-化浸金的实验研讨,得到了最优工艺条件,在此实验条件下,金浸出率可达93.70%,某低档次金矿石具有低硫半氧化微细粒浸染的特色,选用惯例磨矿化浸出金的浸出率为70%左右,脉石包裹金根本没有得到收回。罗增鑫针对此矿石选用超细磨技能,使连生体得到充沛解离,联合全泥浸出提金工艺,得到了浸出率为94.33%的杰出目标,与惯例化浸出比较金浸出率进步了近25%。
在某些特定的矿山,研讨者们提出了富氧浸出的新工艺。某氧化金矿坐落高原区域,海进步,空气中氧气含量低,选用惯例的化工艺,浸出周期较长,这将影响到矿山的经济效益。为了保证金收回率,缩短金的浸出周期,胡敏等人提出了“氧化金矿石富氧浸出新工艺”,金的吸附率可达99.14%,与惯例浸出比较,富氧浸出时刻能够缩短一倍,并且实验进程中用量只需求惯例浸出的一半。
3 清洁提金技能的展开
虽然化法提金技能老练、操作简略、本钱低,但其剧毒性给人类生态环境和生命安全带来极大损害,一起它还不能直接处理某些难浸矿石,跟着这些难于直接化的难处理金矿的日益增多,无提金办法的研讨也相应活泼起来,并且已有以下几个方面的展开:(1)经过加人添加剂(如CL)办法处理了法浸金进程中耗费大的问题;(2)发现铁、氧气、六偏磷酸钠等要素在硫代硫酸盐系统下对金的浸出有较大影响;(3)发现了一种由氧化性有机物ZLT和氯化钠组成的ZLT氯化法浸金系统,可处理无机氯化法本钱较高的问题。
(1)法
法对错提金法研讨较多的一种办法。近年来,许多金银矿山对原有的工艺进行了改进,以取得更好的目标和效益。某铁锰型金银矿为低档次难处理矿,直接用浸出金银时,金、银浸出别离为46.25%和18.37%,耗费12g/t。曾亮等人发现,经过将矿样加热到90℃并参加硫铁矿和浓硫酸进行浸锰预处理后,在pH值为1.5、电位300mV.钠6g、浸出时刻4h的最佳浸出条件下,金、银浸出率别离为98%,45%,耗费仅为6g/t。罗斌辉、和晓才等人也进行了相似的作业。董岁明等人对某富硫高砷金精矿进行了加添加剂CL浸金实验研讨。结果标明,添加剂CL能够改进浸金进程,下降浸出所需的浓度,进步金浸出率,可使该金精矿的金浸出率到达89%以上。
(2) 硫代硫酸盐法
D.Feng和J.S.J.van Deventer在用硫代硫酸盐法提取金银上做了很多的研讨。他们经过很多实验发现:在硫代硫酸盐系统中黄铁矿、赤铁矿、金属铁和铁离子的存在会严峻影响金的浸出;用硫代硫酸盐从黄铁矿精矿和硫化矿石中提取金的系统中加人少数的二氧化锰,能够不添加硫代硫酸盐的耗费量而进步金的浸出率和浸出速率;在纯金的硫代硫酸盐系统中,氧气的存在会削减金的溶解浸出而氮气泡的存在会大起伏添加金的溶解;硫代硫酸盐的类型显着影响矿石中金的浸出,金与不同的硫代硫酸盐的溶解行为决议着金的提取率;在硫代硫酸铵盐浸出纯金和硫化金矿两种系统中,钠和六偏磷酸钠都能够进步金的浸出率。J.A.希思等人也经过实验发现,三价铁的EDTA和草酸盐的合作物,与硫代硫酸盐的反响活性都很低,并且在加人作为浸出催化剂时,能够进步金的浸出速率。实验还标明,黄铁矿和磁黄铁矿的存在会还原铁的合作物,金的浸出率显着下降。
国内的研讨者们对硫代硫酸盐法的研讨也取得了不少展开。郑若锋等人选用覆膜-铜硫代硫酸盐滴淋堆浸提金工艺对四川某高寒区域400t氧化型金矿石进行户外实验,取得了金收回率60.8%的杰出目标。彭会清等人对安徽某磁选厂的尾矿收回金选用绿色环保的硫代硫酸盐法浸金工艺,经过实验得到了浸金的最佳工艺条件,在此条件下金浸出率到达90%以上。张卿将超声强化作用于硝酸催化氧化进程,并与硫代硫酸盐浸金相结合,提出一种含砷难处理金矿湿法浸金新工艺。结果标明:选用超声强化,能够使硝酸根离子传质进程加速,显着加速硝酸催化氧化进程,下降反响温度,一起超声场下硝酸氧化与硫代硫酸盐浸金的结合能够损坏或溶解矿藏表面的单质硫或钝化膜,大大减缓单质硫对后续提金的按捺作用,进步金的浸出率,金浸出率可由惯例化浸出的13.94%进步到85.6%。
(3) 氯化法
氯化法又称为化法或水化法,泛指运用具有氧化功能的氯化物提取金的一类办法,它包含法、次氯酸盐法、高温氯化法等。但由于上述许多无机氯化法提金工艺都存在本钱较高的问题,故难以真实代替化法提金工艺。
氯化法在近年来有了必定的立异。石嵩高级人研讨出一种由氧化性有机物ZLT和NaC1新组成的ZLT氯化法浸金溶液系统,该系统具有极强的氧化才能,能将单质金氧化成可溶性的氯金合作离子[AuCl4]-,在这个基础上,针对多种不同特性的金、银质料展开了相应的ZLT提金工艺研讨实验,使ZLT法可广泛地运用于处理含金银的氧化矿石、原生矿石、低档次多金属矿石、高砷高石墨碳质型难处理金矿石以及含高档次金、银的铜铅电解阳极泥等多品种型质料。
碲铜合金
2017-06-06 17:50:02
碲铜合金(DT) 该合金广泛应用于特种精密电机绕线、铜排、电缆、空调、冰箱散热管、晶体管底座、IT芯片、引线框架铜带、冷凝器、汽车水箱等
行业
。 目前,太阳能作为全球的清洁能源受到各国政府的大力支持和重点发展,这个
行业
的发展带动了连接器的大量
市场
需求。一般连接器为了成本等方面的考虑很多都采用无氧铜或者黄铜来加工生产,但是,由于太阳能的许多连接都是暴露在野外高温潮湿等复杂的气候环境条件下使用,环境的复杂性加快了对连接部件材料的腐蚀,从而缩短部件的使用寿命。另由于太阳能在转换为电能的过程中,对连接器的传导性能提高可以减少电能在传输过程中的损失和衰减,从而保持和提高了太阳能的转换率。连接器腐蚀产生的氧化物会造成连接件端子的电阻增大,增大了在传输过程中的能耗,使太阳能的光电转换大大降低。所在在太阳能
行业
的连接器生产就需要一种高传导和在复杂气候环境下耐腐蚀的材料。 碲铜合金材料由于有优良的切削性能可以精密加工成各种精密部件,材料的抗腐蚀性能可以应用于复杂气候环境下的连接器及端子而不被轻易腐蚀或氧化从而提高部件的使用寿命,碲铜保持了较高的传导性能,保证了在传输过程中的能耗和衰减对太阳能造成的影响。 在高端连接部件端子以及复杂气候环境条件要求的太阳能连接部件生产方面,以碲铜材料来生产加工,其优越性是很明显的。
矿仕奇谭之选金
2019-01-17 13:33:13
如果说当我们对矿山的基本情况有所了解,可以完成矿权交易,那是不是就可以马上建厂了呢?这个答案当然是否定的。对于深埋在地下的东西来说,很多因素都是未知的,为了了解矿山的最大收益,避免盲目投资,在地勘人员进行详细勘察的同时,应该有代表性的选取矿样,对该矿石进行探索性试验。
探索性试验又成为可选性试验,着重研究和探索各种类型和品级矿石的性质与可选性差别,基本选矿方法与可能达到的选矿指标,有害杂质剔除的难易,伴生成分综合回收的可能性等。
试验研究的内容和深度应能判定被勘探的矿床矿石的利用在技术上是否可行、经济上是否合理,能为制订工业指标和矿床评价提供依据。但是探索性试验一般都由地勘部门进行,其深度达不到选矿设计要求,因此不能作为设计依据。
金矿的探索性试验一般包括三个部分,重选试验、浮选试验、浸出试验,一般来说,由于三种试验对磨矿细度的要求不同,基本可以按照先重后浮再浸出的原则来实施。
重选试验
目前公认的重选效果最好的设备是尼尔森离心重选机,其也有针对试验室制造的小型设备,但由于价格昂贵(约30万元),一般试验室很少有配备,所以大部分探索试验的重选部分都是通过摇床来实现的,摇床对于重矿物的补收存在一个粒级范围,试验中,过细产品不易进入精矿,因此通常在磨矿细度120目时,较为准确。
对于存在裂隙金的含金石英脉,重选可以获得很高的精矿品位,但不可能获得很好的回收率指标,如果确实发现重选很难实现有效的回收,我们可以利用原矿进行浮选试验,如果说效果较好,则可以用重选尾矿进行浮选。尼尔森离心重选机
浮选试验
探索试验的浮选部分绝大多数是依靠经验来试验的,当我们选取原矿或重选尾矿来进行试验时,首先会考虑磨矿细度在-200目占65%。其实这个细度并非该矿石的最佳磨矿细度,而是工业生产上比较容易实现的一个细度,一般情况下,工业磨矿系统,在磨至这个细度的时候,浓度通常在32-35%,符合浮选浓度的一般要求。
金矿的浮选试验绝大多数考虑一粗三扫三精流程,探索实验很少会做闭路试验,所以我们看到的闭路试验结果,往往是通过开路试验数据拟合出来的,因此不太具备实际参考价值。如果我们一定要仔细分析数据的话,基本上可以把粗选回收率认定为最终回收率。旋流静态微泡浮选柱
浸出试验
似乎在大部分人的认识中,浸出是最暴力最有效的提金方法,浸出试验一般会把矿石磨至-325目占95%左右,浸出的时间会从12小时开始做到48小时,浸出的最终产品有四个,尾矿、贵液、贫液、碳,通过尾矿计算浸出的回收率,通过贵液和贫液计算吸附的回收率,但是有一个关键数据常常是被忽视的,即碳的饱和吸附能力,试想一下,一吨碳的售价约12000元左右,吸附300克金,则克金成本为40元,吸附3000克金,则克金成本为4元,这对于以销售载金碳来说的小型选厂,这个成本相去甚远。浸出反应实验装置图
那么,探索性试验的数据往往会被地质勘察报告作为一个必要的章节,以证明该矿石的可利用价值,估算未来的投资收益,但真正要上升到计算建厂投资,及设备选型,这些数据是远远不够的。
碲金矿的浮选和氰化
2019-02-19 10:03:20
恩佩罗尔(Emperor)矿业公司处理斐济维图考兰(Vatukoula)邻近的由细粒天然金与碲化金及黄铁矿和毒砂紧密结合的矿石。矿石湿润而易碎。其间细粒矿泥占矿石总重量的22%,它含有占总量48%的金。为了战胜处理这种矿石进程中所存在的困难,改善后的流程如图1。图1 恩佩罗尔矿业公司简明流程
工厂处理矿石的才能为1200t∕d。矿石经破碎、磨矿和浓缩,溢流抛弃。浓浆加碳酸钠于阿格特(Agitair)浮选机中浮选产出精矿送二次磨矿。尾矿抛弃,选用这种处理办法是因为浓缩机溢流中的有害可溶盐和浮选尾矿中的矿泥难于除掉的原因。
二次磨矿在化液中进行,矿石虽磨到65% -0.074mm(200目),但金一般仍是不能与脉石别离。磨过的矿浆经粗选、精选和二次精选产出含金30kg∕t的高品位浮选碲精矿。所用的浮选药剂丁基黄药11g/t、Teric402 4g/t。为按捺黄铁矿和毒砂,浮选液中还含0.02%NaCN、0.015%CaO。
处理碲精矿运用图2的流程。行将精矿再磨矿后,于0.9m×1.2m的拌和机中将矿浆调整至含2%的NaOH和等量的Na2CO3,并按原猜中每公斤碲参加相当于2.2kg氯的漂(或次等),拌和2h使碲化物氧化后分批过滤。渣再经磨矿和压滤后,滤饼于0.9m×1.8m拌和机中化3~4h后过滤洗刷。图2 恩佩罗尔矿业公司收回金属碲生产流程
洗刷渣于0.9m×1.5m拌和机中加Na2S浸出一夜使碲溶解。此刻,铁、铜和铅等被硫化沉积。硫化渣送焙烧。矿浆过滤洗刷后,滤液和洗液兼并,于1.5m×1.8m拌和机中稀释到含碲5~10g∕L,按含碲量的3倍参加钠使碲复原沉积。沉积物过滤,于真空炉中枯燥后,在硼砂覆盖下熔铸成碲锭。
矿石含碲12.2g∕t,碲的收回率约为88%。
浮选碲矿后的尾矿,经浓缩于串联的5台拌和机中化。矿浆于穆尔过滤机中过滤,滤液用焙烧炉来的SO2充气使金复原沉积。滤渣调浆再于华莱士(Wallace)充气机中充气使硫化物活化后进浮选。经粗、扫、精选产出精矿。尾矿抛弃。所用的浮选药剂硫酸铜200g∕t、捕收剂(乙基黄药、丁基黄药和气体促进剂404)164g∕t、起泡剂86g∕t。
浮选精矿于3台60型长耙式爱德华焙烧炉焙烧后,水洗收回铜。洗刷后的焙砂先加石灰浆化,然后化60h。
药剂总消耗量为370g/t、石灰4.73kg∕t。矿石含金8g∕t,金总收回率为86.2%。
铋的碱性精炼除碲、锡
2019-01-07 17:37:58
一、碱性精炼机理
图1为Te-Bi系状态图。图1 Te-Bi系状态图
从图1可见,在585℃,碲与铋组成中含Bi 52.2%时,出现化合物Bi2Te3结晶:在266℃含Te 2.4%(原子),出现(Bi+Bi2Te3)共晶;在413℃含Te 90%(原子),出现(Bi2Te3+Te)共晶;在540℃时,出现BiTe包品反应;在420℃时,在较宽的区域内出现均质的Bi2Te包晶反应;在312℃时,在较窄的区域内出现均质的包晶反应。碲在铋中的溶解度,在272℃时为2.6%(原子),在300℃时为4%(原子)。
Sn-Bi系状态图如图2所示。图2 Sn-Bi系状态图
铋与锡组成的低熔点合金在液态完全互溶,共晶点温度139℃,组成为含铋43%(原子)或含铋57%(重量)。当温度139℃时,铋在锡中溶解度为13.1%(原子),而锡在铋中的溶解度为0.2%(原子)。
碱性精炼的目的是为了回收碲与锡。
碱性精炼除碲,可以看作是一种改良的哈里斯(Havris)法,即以鼓入之压缩空气为氧化剂,以NaOH为吸收剂。加入NaOH可减少过程中铋以Bi2O2形式损失,同时NaOH与碲的氧化物的反应比Ri2O3与碲的氧化物的反应更为强烈,使碲可以在低于Bi2O3的氧势下氧化。
已被压缩空气氧化之碲,反应为:
对尚未被压缩空气氧化之碲,其反应为:
由于NaOH熔点为318℃,碲熔点为452℃,TeO2熔点为733℃,将碱性精炼温度控制在500~520℃,可保持反应在液态进行,而反应产物呈浮渣分离。
在除碲的同时,少量锡也能与NaOH反应,生成亚锡酸钠:碱性精炼除锡,是在铋液中加入NaOH、NaCl与NaNO3,其中NaNO3是强氧化剂,而NaOH是有效的吸收剂,NaCl加入后,有助于提高NaOH对锡酸钠的吸收能力,降低碱性浮渣的熔点和粘度,减少NaNO3的消耗。其反应为:
分析反应的气相成分为N2 77%、NH3 23%,说明锡的氧化主要按第一反应进行。
某厂碱性精炼中碲、锡的去陈程度如图3所示。图3 碲、锡的去除程度
二、碱性精炼实践
为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。
将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。
捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。
某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。
表 碱性精炼渣成分(%)
南非锑金(砷)矿选矿浮选-重选
2019-01-29 10:09:41
该厂属于麦契逊金矿发展公司,主要含锑矿物为辉锑矿,含有少量辉锑钛矿(FeS、Sb2S3),此外矿石中还含有砷锑金矿。该石所用浮选-重选流程见下图。
图 南非麦契逊锑选厂流程图
日处理矿石能力为1800~2000t,原矿含锑3%时,可获得品位为60%的锑精矿。
碲的理化性质和用途
2019-03-07 10:03:00
一、碲的理化性质 元素碲(音帝),源自tellus意为“土地”,1782年发现。除了兼具金属和非金属的特性外,碲还有几点不往常的当地:它在周期表的方位构成“颠倒是非”的现象——碲比碘的原子序数低,具有较大的原子量。假如人吸入它的蒸气,从嘴里呼出的气会有一股蒜味。 元素称号:碲 元素符号:Te 相对原子质量:127.6 原子序数:52 摩尔质量:128 所属周期:5 所属族数:VIA 碲有结晶形和无定形两种同素异形体。电离能9.009电子伏特。结晶碲具有银白色的金属外观,密度6.25克/厘米3,熔点452℃,沸点1390℃,硬度是2.5(莫氏硬度)。不溶于同它不发作反响的一切溶剂,在室温时它的分子量至今还不清楚。无定形碲(褐色),密度6.00克/厘米3,熔点449.5±0.3℃,沸点989.8±3.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。磅首要从电解铜的阳极泥和炼锌的烟尘等中收回制取。
二、碲的用处: 首要用来添加到钢材中以添加延性,电镀液中的光亮剂、石油裂化的催化剂、玻璃上色材料,以及添加到铅中添加它的强度和耐蚀性。碲和它的化合物又是一种半导体材料。 三、碲的发现 碲在自然界有一种同金在一起的合金。1782年奥地利首都维也纳一家矿场监督牟勒从这种矿石中提
中矿金业多元素回收技术
2019-02-15 14:21:16
"多元素收回"是中矿金业继"湿法冶炼"国家发明专利技术今后的又一个具有独立知识产权的科研项目,发明了山东省黄金职业从化尾渣中提取有价金属、完成清洁出产的先例。该项目总投资3000万元,安顿充裕员工100多人,年完成赢利1150万元。 招远市黄金冶炼厂商的化尾渣--硫矿,曩昔一向作为廉价的化工质料销往外地。2002年曾经,因为化工市场疲软,导致硫矿长时间滞销并且,因为硫矿中含有及其它化学成分,不行避免地对产销两地形成二次污染。为化害为利,使化出产工艺完成"吃干榨净",中矿金业在前期与科研单位协作攻关未获成功的情况下,依托自己的力气在北截试验室试验成功,并通过了小型工业试验。2003年7月,"多元素收回"车间在北截金矿建成投产。 "多元素收回"项目以化尾渣为质料,使用泡沫浮选工艺归纳收回铜、铅、锌、银等有价金属,不只增加了产品附加值,维护了环境,并且充分使用了有限的不行再生的资源,具有明显的社会效益和经济效益。2003年被山东省经贸委认定为"资源归纳使用演示项目"。
含金硫化矿的重选、浮选和氰化
2019-02-19 10:03:20
加拿大西部最大的卡罗来恩(Carolin)金矿,属热液交待型透镜体硬砂岩矿床,金呈细粒涣散赋存于磁黄铁矿、黄铁矿、毒砂等各种硫化矿藏中。
因为矿区坐落海拔850m的卡斯卡德(Cascade)山的高山区域,地势峻峭,工作场地缺少,采出的矿石经设在井下的两套开路破碎体系进行粗碎(-600mm)、中碎(-100mm)和细碎(-25mm)后,由皮带运输机将矿石从井下跳过沟各运往选矿厂的细矿仓。
细矿仓矿石由槽形给料机卸至皮带上,再经过装有计量传感器的变速皮带定量供入2.9m×3.7m多米诺恩(Dominion)棒磨机和90mm棒磨机进一步破碎后,送入3.2m×3.7m多米诺恩球磨机磨矿至66% -0.074mm(200目)。因为部分金粒在磨矿时呈单体解离,故在磨矿回路中刺进跳汰机和摇床等重选设备先收回这些解离的单体金粒。
球磨后的矿浆,经调整至pH8.7,增加硫酸铜150g∕t,戊基钾黄药150g∕t,31号空气漂浮剂4.5g∕t和36g∕t,于4台8.5m3浮选机中进行浮选,精矿产出率为给料的6%,精矿中金的收回率为91%。尾矿矿浆再于4台8.5m3浮选机中进行扫选,产出的扫选精矿中约能收回残留金量的50%。该矿山日处理矿石1500t,约可产出含金55.99g∕t的精矿100t,金的日产量为5.44~6.22kg。不久,矿石的处理量将增加到2400t/d,日产金9.33kg。
精矿矿浆于旋流器中浓缩除掉剩下的水后,在2.1×1.8m球磨机中加石灰磨矿到98% -0.043mm(325目),然后于反响槽中加和在空气拌和下化72h。药剂的消耗量为0.58kg∕t、石灰1.2kg/t。
化矿浆经浓缩洗刷后,浸出液和洗液混合泵送框式弄清机除掉颗粒和悬浮固体,再经除气塔除气后,运用梅里尔·克劳法加锌粉和置换沉积金。置换贫液中锌金沉积的别离运用两台佩林(Perrin)压滤机。锌金沉积经空气枯燥后,于单膛炉中加熔剂熔炼成合质金锭。
整个作业过程中,金的总收回率为83%。
该厂化废液的处理,是向呈碱性的废液中通入分化后,溶液经过两台1.8×1.8m垫玻璃纤维的槽过滤除掉固体,再经炭柱除掉剩下的氯和其他有害离子。此法除了不会污染环境外,还可经过炭柱吸附收回一些未被锌置换沉积的金。
扫选尾矿和化尾矿由泵会集后,经过长183m、直径150mm的管道,用2757.88kPa(400磅/英寸2)的压力输送至尾矿坝。尾矿坝渗出的水呈细流流入聚水池,池内驳船上的泵将弄清水抽入上部池中,再从那里流回选矿厂运用。
铅阳极泥的除硒、碲
2019-03-05 09:04:34
大都工厂在火法熔炼前经预先焙烧除硒、碲,但有些工厂则于贵铅氧化熔炼中造渣收回。后者与铜阳极泥分银炉氧化熔炼造碲渣的操作类似。阳极泥预先除硒、碲的办法,一般经回转窑或马弗炉焙烧除硒,再从焙烧渣中浸出碲。
一、回转窑焙烧除硒碲。
该作业进程是将铅阳极泥与浓硫酸混合均匀,于回转窑中进行硫酸盐化焙烧。开端温度300℃,最终逐渐升至500~550℃,使硒呈二氧化硒蒸发遇水生成亚。焙烧除硒和亚的复原与处理铜阳极泥相同。
焙烧渣经破碎,用稀硫酸浸出,可使70%左右的碲进入溶液,然后加锌粉置换取得碲泥。碲泥再经硫酸盐化焙烧使碲氧化,然后用浸出。并用电解法从浸出液中出产电解碲,碲的总收回率约50%。
二、马弗炉焙烧除硒碲。
阳极泥与浓硫酸混合均匀,置于焙烧炉内涵150~230℃下进行预先焙烧。然后将焙烧物料转入马弗炉内,在420~480℃温度下进行焙烧除硒。硒的蒸发率可达87%~93%。焙烧渣破碎后用热水浸出,并用锌粉置换取得碲泥,然后再进行提纯。
含细粒金板岩、砂岩矿的全泥氰化
2019-02-19 11:01:57
新奥克顿塔尔(New Occidental)金矿,原选用化法处理含细粒金的矽化板岩和砂岩矿石。矿石中含有需耗费的约1%的黄铜矿和1%~2%的磁黄铁矿。后者的存在需求细心操控溶液的碱度,以下降的耗费和进步金的回收率。
尽管该厂已停产,但原作业中运用加氧化铅以下降的耗费量和改进金的提取率的流程(图1),仍是具有必定实际意义的。图1 新奥克顿塔尔金矿流程
该厂原处理矿石的才能为8000t∕月。矿石破碎至-9.5mm,加石灰、和氧化铅于两段闭路流程中磨矿至90% -0.074mm(200目)。经分级机浓缩的矿浆,于串联的4台德弗罗拌和机中拌和化30h。溶液坚持含0.06%NaCN和0.007%CaO。药剂耗费量为NaCN 1.14kg∕t、CaO1.4kg∕t、PhO300g∕t。
化产出的沉淀物,经焙烧后加氧化剂熔炼,产出高铜合质金锭,再将其与硫一同熔炼除掉若干铜,产出含金86%、银4%和贱金属(主要是铜)10%的合质金锭。
矿石含金8.7g∕t,金的回收率为91%。
碲化铋拓扑绝缘体应用前景广阔
2019-01-04 09:45:23
近年,拓扑绝缘体成为了物理学领域最为热门的话题之一,这些拓扑绝缘体材料可同时作为绝缘体和导体,因其内部结构阻止了电流通过,而其边缘以及表面却能保证电流运动。而最为重要的可能是拓扑绝缘体的表面可保证旋转极化电子运动,另外也防止了能量消耗时出现的电子分散情况。因这些种特性,未来拓扑绝缘体材料在晶体管、存储设备以及磁性传感器等能耗效率高的产品领域均有很大的应用前景。在《自然纳米科技》杂志上,来自加州大学洛杉矶分校(UCLA)的工程及应用科学院和澳洲昆士兰大学的材料研究所的研究员发表论文,展示了碲化铋拓扑绝缘子的表面传导渠道,说明了这些绝缘体的表面可以根据费密能级的位置来调节表面态的传导性能。USLA工程及应用科学院的教授Kang L. Wang说道:“我们的发现为新一代低功耗的纳米电子和自旋电子器件的研发创造了更大的空间。”碲化铋以其热电性能而出名,并因其独特的表面状态被推断为三位拓扑绝缘体。最近针对碲化铋散装材料开展的一些实验也说明了其表面态具有二位传导渠道。但是 这种能带隙小的半导体的热激发性以及纯度不够等原因造成的重要体散射也使得调整表面导电功能成为一项很大的挑战。而拓扑绝缘纳米技术的发展在这方面做出了补充。这些纳米材料绝大程度的夯实了表面条件,使得靠外力完全能控制表面状态。Wang和他的团队使用碲化铋纳米材料作为场效应晶体结构的传导渠道。这依赖于外部电场来控制费密能级,从而调控渠道的传导状态,最高传导率可达到51%。研究员们首次做到了展示调节拓扑绝缘体表面的可能性。中国小金属资源信息网
含金细泥氧化矿的电氯化法
2019-02-21 13:56:29
某含金9g/t的“铁帽”氧化矿,以褐铁矿为主,经磨矿后往往呈细的矿泥,属较难处理的矿石。氧化矿中,金的粒度一般为0.001~0.005mm,赋存于褐铁矿的裂隙内,单个较大金粒也只要0.074~0.06mm。因为磨矿后细微的金粒进入矿泥中,故曾先后选用混-摇床、混-浮选、混-浮选-渗滤化等流程处理,金的回收率仅为63%左右。后在电氯化-树脂浆法实验中,金的回收率进步到83.80%。
一、金的电氯化浸出和树脂吸附
电氧化-树脂浆法作业,是将矿石破碎并经磨矿后,与氯化钠、和树脂一同参加电解槽中,经电氯化浸出和树脂吸附,产出载金树脂、阴极泥、终究浸出渣和尾液。实验运用717型乙烯强碱性阴离子交流树脂。
电氯化是经过电解碱金属氯化物(通常是氯化钠),使在水溶液中放出活性氯将矿石中的金氧化隹成AuCl3,进而成为HAuCl4及其复盐NaAuCl4,并在水中离解成离子:
HAuCl4 H++AuCl4
NaAuCl4 Na++AuCl4
AuCl4 Au3++4Cl-
生成的AuCl4-被阴离子交流树脂所吸附。过程中离解生成的Au3+,有极少数堆积于阴极板上成阴极泥。
向电解槽中参加,除为了在电解过程中能分出一部分氯外,主要是用来避免氯化钠离解生成的氯被碱或水吸收而损耗活性氯。
鉴于阴极隔阂易被细粒矿泥阻塞,此法选用无隔阂拌和电解槽。电解槽为圆筒形钢板槽,槽体兼作阴极(φ900mm×1000mm)。拌和桨φ300mm,转速374r∕min。阳极用250×700mm的石墨板,每槽5块,沿电解槽圆周固定于拌和桨与槽壁之间,极距离200mm。作业条件为:矿石粒度71.92%-0.074mm(200目),矿浆浓度22.25%,面积电流285A∕m2(电流浓度0.65A∕L),槽电压13V,液温50℃。按质料配入氯化钠30kg∕t,20kg/t制成的矿浆,pH为2。再参加-16~+50意图717型湿树脂10kg∕t,在接连拌和下通电氯化和吸附8h。经144h的实验,所得的平均指标为:树脂含金量1.69mg∕g,尾液含金0.03mg∕L,除掉阴极上少数的阴极泥(含金6.26g∕t)忽略不计,金的吸附回收率为99.10%。
为了调查含金硫化矿(主要是黄铁矿)对电氯化的影响,还进行了含30%硫化矿的混合矿样实验。结果表明。参加少数含金硫化矿对金的浸出和吸附几乎没有影响。
选用跳汰筛分-摇床联合流程从矿浆中别离载金树脂获得了好的别离作用。
二、树脂的洗脱
树脂上金的洗脱选用电解洗脱沉积法。实验用φ340mm×500mm的瓷拌和桶。桶内装置φ70mm螺旋桨,转速252r∕min。洗脱渣含4%、2%,固液比1∶7。阳极用石墨板,阴极用铅板,极距80mm。电流密度400A∕m2,槽电压2V。经电解8h,树脂上金的洗脱率为99.6%,金的沉积率为98.2%,的损失率为16%。
电氯化和电洗脱作业均在密封电解槽中进行,抽出的废气于洗气塔顶用2%NaOH液洗气后排入大气。因为矿石中金的粒度小,磨矿粒度未到达要求,试样的浸出渣含金未降至1g/t以下,金的总回收率只达83.80%。但与其它办法比回收率已进步20%。
三、树脂的再生
电解洗脱金的树脂,先用2%液(固液比1∶3)拌和处理2h,过滤后用水冲刷至中性。再用2%液(固液比1∶3)拌和处理2h,树脂即可回来运用。
铜阳极泥综合渣中碲的回收
2019-01-21 18:04:33
碲作为一种稀散元素,其应用领域越来越广泛。在自然界中独立碲矿床较少,碲常伴生于铜、铅、铋等矿中,在这些金属的冶炼副产中得以富集,人们一直都很重视从这些副产中分离提取碲。我国某铜冶厂铜电解阳极泥中含碲4.9%~9.3%,在碲的提取过程中产生的碱浸渣、净化渣、碲电积阳极泥中碲的含量高低不一,成分复杂,碲回收困难。本研究采取氧化酸浸的方法,从这些渣、泥的混合料中富集提取碲,取得了较好的结果。
一、试验原料
本试验所用原料为某铜冶炼厂铜阳极泥分铜渣回收碲过程中产生的碱浸渣、净化渣、碲电积阳极泥的混合渣料,其主要化学成分如表1所示。
表1 原料主要化学成分(%)成分NaSiCaCrFeCuSnTePbBiAs含量4.4425.1570.1290.2480.6514.5301.7825.19045.3006.2091.407
二、试验方法
取一定量的硫酸到1L的反应烧瓶中,在水浴上加热到一定温度,加入50g混合渣和一定量的氧化剂,到达预定的反应时间后,取样用原子吸收分光光度计分析浸出液中碲的浓度,计算碲的浸出率。
三、试验结果与讨论
(一)常规酸浸
在浸出温度为80℃、硫酸浓度为0.5mol/L、液固质量比为5:1的条件下,对50g物料直接用H2SO4浸出,结果如图1所示。 由图1可知,随着浸出时间的延长,碲和铜的浸出率均增大,但铜的浸出率较高,最高可达85.85%,而碲的浸出率较低,最高只有43.91%,说明在不加氧化剂的条件下直接酸浸,混合渣中的碲无法彻底溶出。因此,以下试验采用氧化酸浸方法。
(二)氧化酸浸
1、氧化剂的选择
在浸出温度为80℃、硫酸浓度为3.6mol/L、液固质量比为5:1、浸出时间为5h的条件下,分别以Fe2(SO4)3、KMnO4、H2O2和空气为氧化剂对50g物料进行氧化酸浸,考察氧化剂种类对碲浸出率的影响。试验中Fe2(SO4)3、KMnO4加入量为10g,H2O2加入量为10mL,空气流量为10L/min。试验结果如图2所示。◆-空气;■-Fe2(SO4)3;▲-H2O2;□-KMnO4
由图2可知,采用不同的氧化剂,碲的浸出率差别较大。采用空气作为氧化剂时,碲的浸出率只能达到54.91%;采用Fe2(SO4)3和H2O2作为氧化剂时,碲的浸出率同样较低,最高不过65.59%。因此,碲混合渣的氧化浸出不宜采用以上3种物质作为氧化剂。而当采用氧化性更强的KMnO4时,碲的浸出率急剧上升,可高达90.75%,说明对碲混合渣进行酸浸时KMnO4是有效的氧化剂。根据这一试验结果,确定后续试验中的氧化剂采用KMnO4。
2、KMnO4用量对碲浸出率的影响
在浸出温度为80℃、硫酸浓度为3.6mol/L、液固质量比为5:1、浸出时间为5h的条件下,改变KMnO4用量对50g物料进行氧化酸浸,碲浸出率的变化如图3所示。
由图3可知,随着KMnO4用量的增加,碲的浸出率先快速上升,然后缓慢下降,在KMnO4加入量为0.4g时碲的浸出率达到最大值91.7%。因此确定,对于50g物料,氧化剂KMnO4的用量为0.4g。 3、硫酸浓度对碲浸出率的影响
在浸出温度为80℃、液固质量比为5:1、KMnO4用量为0.4g、浸出时间为5h的条件下,改变硫酸浓度对50g物料进行氧化酸浸,碲浸出率的变化如图4所示。 由图4可知,随着硫酸浓度的提高,碲的浸出率逐渐上升,当硫酸浓度从0.9mol/L提高到3.6mol/L时,碲的浸出率从83.71%上升到91.7%,但当硫酸浓度继续提高到4.5mol/L时,碲的浸出率仅上升了0.4百分点,为92.1%,而且硫酸浓度过高对后续工艺不利,因此选定硫酸浓度为3.6mol/L。
4、浸出时间对碲浸出率的影响
在浸出温度为80℃、硫酸浓度3.6mol/L、液固质量比为5:1、KMnO4用量为0.4g的条件下,改变浸出时间对50g物料进行氧化酸浸,碲浸出率的变化如图5所示。
由图5可知,随着浸出时间的延长,碲的浸出率提高,当浸出时间为5h时,碲的浸出率达到91.7%,此后再延长浸出时间对碲的浸出率没有大的影响。因此选定浸出时间为5h。 5、浸出温度对碲浸出率的影响
在硫酸浓度3.6mol/L、液固质量比为5:1、KMnO4用量为0.4g、浸出时间为5h的条件下,改变浸出温度对50g物料进行氧化酸浸,碲浸出率的变化如图5所示。
由图6可知,当浸出温度从40℃升高到80℃时,碲的浸出率从55.0%升高到91.7%,继续升高温度到90℃,碲的浸出率仅仅升高到92.1%。因此选定浸出温度为80℃。 (三)扩大试验
通过上述试验,确定了碲混合渣氧化酸浸的适宜条件为浸出温度80℃、液固质量比5:1、KMnO4用量0.008g/g(对原料)、硫酸浓度3.6mol/L、浸出时间5h。在此条件下对500g物料进行扩大氧化酸浸试验,结果如表2所示。
表2 氧化酸浸扩大试验结果浸出液含Te
/(g/L)浸出液含Cu
/(g/L)Te浸出率Cu浸出率9.358.8690.0997.81
由表2可知,在所确定的适宜浸出条件下,扩大试验碲的浸出率达到90.09%,证明氧化酸浸法能有效浸出碲混合渣中的碲,同时还可使97.81%铜被浸出。
四、结论
采用氧化酸浸法可以有效浸出某铜冶铁厂铜阳极泥综合渣中的碲。在浸出温度为80℃、液固质量比为5:1、KMnO4用量为0.008g/g(对原料)、硫酸浓度为3.6mol/L、浸出时间为5h的适宜条件下,碲的浸出率达到90.09%,同时铜的浸出率达到97.81%。浸出液可进一步提取碲和铜。
浸矿液的性质对堆浸提金的影响
2019-02-18 15:19:33
浸矿液的性质是指浸矿液中的浓度、氧的浓度和浸矿液的pH值。 1.浓度 化浸出反响是一个先受分散操控,然后受氧的分散操控的反响,因此离子分散流的巨细直接影响浸出反响的速度。特别是溶液中离子浓度较低,对反响的影响更为显着,而离子的分散流是随其浓度的增大而增大的。所以,金的浸出速度随浓度的添加而直线地上升。 在其他条件相一起,到达附近的金的浸出率,运用0.1%浓度的溶液所需的浸出时刻是运用0.025%浓度的溶液所需的浸出时刻的四分之一(见下图)。在堆浸提金进程中,浸矿液中的浓度一般操控在0.1~0.03%。 2.氧化浓度 从金的溶解进程机理看,反响速度受分散操控,氧的浓度无疑是重要的要素。由于氧浓度的巨细也决议了氧化的分散流的巨细,特别是当浓度满足高时,金的溶解速度取决于氧的浓度。但单纯进步或氧的浓度是不能到达抱负的浸出速度的,为了使浸出速度到达最大值,关键是要坚持浸矿液中游离与氧含量的摩尔比等于6为最佳。在堆浸中,选用自然通风充气来确保此条件是有困难的,但创造条件坚持矿堆的通风杰出和浸矿液在喷洒时与空气充沛触摸,以确保有满足的氧参与反响,是有利于金的浸出的。 3.pH值 浸矿液pH值对浸出的热力学方面有影响,即随pH值增高金的复原电位下降,有利于金的浸出。更重要的是有利于在水溶液中易发作水解反响发生HCN气体: CN-+H2O→HCN↑+OH- 然后污染周围环境并消耗很多。因此有必要坚持溶液为碱性。但碱度过高会下降金的溶解速度,对浸出晦气。因此浸出进程中应坚持浸矿液适合的碱性,以取得较高的浸出速度。出产中常用石灰或操控浸矿液的pH值在10~11之间。
含粗粒金硫化矿的混汞、浮选和氰化
2019-02-19 10:03:20
澳大利亚维多利亚州的沃特尔·古利(Wattle Gully)金矿公司所处理的脉金矿石,天然金的粒度从极细的微粒到大于20mm的金块,其间约80%的金粒大于0.15mm(100目)。并含有1%~2%的含金黄铁矿和毒砂。处理流程如图1。图1 沃特尔·古利金矿工厂流程
矿石破碎后,经球磨机磨矿(并一起进行内混)到0.98mm(-16目),再经混板处理。混尾矿于威尔弗利(Wilfley)和菲尼克斯·韦尔(Phoenix-Weir)摇床上收回含金硫化物,然后经溜槽处理收回细粒硫化物、金和从混板上丢失的与齐。
摇床和溜槽产出的精矿,于2台1.5m福伍德·唐(Forwood Down)磨矿盘中加碾磨,再于3台4.8m×2.1m拌和机顶用德弗罗螺旋桨结合风管拌和化。化液加锌沉积,沉积物经酸洗后熔铸成合质金条。
混板每日作恰当处理,齐沉积箱每两周整理一次,清出的齐于伯达恩溜槽处理后进蒸和熔铸。
矿石含金12.6g∕t,总收回率87.9%,其间,混收回率73.2%,化收回率14.7%。尾矿含金1.5g∕t,相当于工厂进料含金量的l2%。
上述的流程,如今虽被一些小厂用来处理少数的矿石。但由于本矿矿石结构杂乱,故金的收回率不高。为了削减尾矿的含金量和下降出产费用,新建的工厂改用图2的流程。图2 沃特尔·古利金矿公司改善后的流程
矿石破碎至80% -13mm,于球磨机、旋流器组成的磨矿流程中磨至65% -0.074mm(200目)。球磨时向磨机中参加碳酸钠使pH保持在8左右。矿浆经丹佛跳汰机处理产出的精矿储存于矿仓,然后每隔1~3d由放料盘分批送混。精矿经混后送化处理而不送浮选,因它含有石灰在浮选中会影响金和含金硫化物的收回。
跳汰尾矿经旋流器富集的重粒产品送球磨,旋流器溢流调浆后入费格伦浮选机进行粗选、扫选和精选。浮选药剂为二丁基黄药和气体起泡剂65。浮选尾矿经脱水后填充井下或抛弃。
浮选精矿约为选厂进料分量的2%。经过滤洗刷除掉大部分浮选药剂和存在的可溶盐类。然后用化贫液调浆、充气4h过滤,滤饼再进行3段4~8h化(加氧化铅于化液中)。化渣加水洗刷后抛弃。该厂过滤均运用1.6m×1.2m圆盘真空过滤机。化液经弄清、除气后用梅里尔·克劳法沉积金。药剂消耗量为航空牌(Aero Brand) NaCN7.3kg∕t、CaO2.5kg∕t。新工厂的流程与老厂流程比,金的收回率进步1g∕t以上。
莱克维尤(Lake View)和斯塔有限公司(Star Ltd.)运用先浮选后化的流程来处理杂乱难选的矿石。矿石磨矿后经衬呢绒(24h替换一次)覆面的溜槽处理产出精矿送混。矿浆再加黄药等浮选,浮选尾矿加焙烧后进化。浮选精矿经焙烧使金与碲化物别离后送溜槽处理收回粗粒金。溜槽尾矿经洗刷后化。矿石含金8.1g∕t,总收回率92.5%。
格雷特·博尔德(Great Boulder)矿业有限公司选用先化后浮选的流程来处理卡尔古利的矿石,且自以来已取消了重选作业进程。该流程是将矿石加化液磨矿后先进行化和过滤,滤饼再调浆并于充气塔中通SO2充气,然后于拌和机中除掉过剩的SO2送浮选。浮选精矿经焙烧、洗刷除掉大部分可溶铁和铜盐后再次化。矿石含金9g∕t,总收回率91.5%。
碲的资源、用途与提取分离技术研究现状
2019-02-22 12:01:55
碲是1782年赖兴施泰因在含金的矿石中发现的L1J,也有说法是1798年M.H.克拉普罗兹在一种白色金属中首要发现了碲。碲及硒、铼等一般被称作“稀有元素”、“涣散元素”或“稀散金属”。
它在地壳中均匀丰度值很低(6×10-5),碲与镉、锗、镓、硒、铟、、钪、铼等均属涣散元素。在天然界,碲矿藏除了天然碲外,首要是与Au、Ag和铂族元素以及Pb、Bi、Cu、Fe、Zn、Ni等金属元素构成碲化物、碲硫(硒)化物以及碲的氧化物和含氧盐等矿藏品种L2J。现在,稀有元素碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重。
1、碲的资源
因为在上个世纪90年代曾经,人们普遍以为国际大部分可收回的碲都伴生于铜矿床中,所以美国矿业局就以铜资源为根底,按每吨铜可收回0.065kg碲核算,计算出全球碲储量在22000t左右,储量根底38000t,首要散布在美国、加拿大、秘鲁、智利、赞比亚、扎伊尔、菲律宾、澳大利亚、日本、欧洲等国家和地区[3]3。可是,近年来国内外一系列重要的碲化物型金银矿床的发现和地质勘查研讨标明,涣散元素碲的地球化学性状远比传统知道的要活泼得多,它能够大规模富集、矿化构成具有经济价值的独立的矿床或工业矿体,如四川石棉大水沟碲铋金矿床HJ、山东归来庄碲金矿床 5、河南北岭碲化物型金矿[6]等。这使得人类不得不对碲资源的散布有了从头的知道。我国现已探明伴生碲储量在国际处于第三位。伴生碲矿资源较为丰厚,全国已发现伴生碲矿产地约30处,保有储量近14000t,碲矿区散布于全国16个省(区),但储量首要会集于广东(占全国总量的42%)、江西(41%)和甘肃(11%)三省。我国的碲矿也首要伴生于铜、铅锌等金属矿产中,据主矿产储量计算,我国还有未计人储量的
碲矿资源约10000t[47|。一直以来我国碲矿资源会集在热液型多金属矿床、矽卡岩型铜矿床和岩浆铜镍硫化物型矿床中,它们别离占我国伴生碲储量的44.77%、43.89%和11.34%。广东曲江大宝山、江西九江城门由铜矿(占全国伴生碲储量的23.6%,碲矿石档次为0.0028%)、甘肃金JII自家嘴子为我国三个大型一特大型伴生碲矿床,三者储量之和为全国伴生碲储量的94%E7]。1991年8月,全球榜首例独立碲矿床在我国四川I省石棉县大水沟发现,然后彻底打破了涣散元素碲“能构成独立矿藏,但没有可挖掘的独立矿床[7],’的传统知道,填补了矿床学理论上的一项空白,并将改动对稀有元素成矿才干的知道,一同也必将改动现有的只能从其它矿种中提取伴生碲的现状,改动碲资源的散布格式并有或许使我国成为一个碲矿资源大国。除了到达工业档次的已查明的铜矿床中所含的很多副产品碲储量根底以外,还有一些副产品碲之来历:铅矿床储量根底中所含的碲是工业铜矿床中碲的25%,但现在很少用电解法提炼铅,而只有用这种办法才干趁便收回碲;从金碲化物矿石中也能收回少数碲,未开发的、不行工业档次的或没有发现的铜及其它金属资源中所含碲的数量是已查明工业铜矿中碲的数倍,据估计,煤矿中均匀含碲0.015×10-4%,即煤矿中所含的碲是工业铜矿床中碲的4倍,但在近期内从煤中收回碲仍是不或许的。
2、碲的用处
稀散元素碲被誉为“现代工业、国防与顶级技能的维生素,发明人世奇观的桥梁”,“是今世高技能新材料的支撑材料”。这是因为跟着宇航、原子能、电子工业等范畴对包含碲在内的稀散金属的需求日积月累,使得碲已经成为电子核算机、通讯及宇航开发、动力、医药卫生所需新材料的支撑材料。
2.1碲在冶金职业中的运用
工业纯的碲(99%)广泛用作合金增加剂,以改进钢和钢的机械加工功能。只是增加少数的碲就能改进低碳钢、不锈钢的切削及加工功能;能够增加切削东西寿数并取得优秀的光洁度。在铸造进程中,增加小于0.1%分量的碲能够用来操控冷却结晶深度,向铅(锡或铝)合金中增加碲可进步其抗疲劳及抗腐蚀功能,并可进步其硬度与弹性。
2.2碲在化工职业中的运用
在化学工业中,碲首要用作石油裂解催化剂的增加剂、橡胶的二次催化剂及制取乙醇的催化剂,碲的化合物还能够制成各种触媒,用于医药(作为茵剂)、玻璃着色剂、陶瓷、塑料、印染、油漆、护肤药品及珐琅职业等。
2.3碲在电子职业中的运用
较高质量的碲(99.99%或更高)能够运用在各种电子学中。例如,化合物半导体碲化铋可同碲化锑一同用在温差电器材中。碲化铋在温差致冷中是重要的材料,因为它是具有高电子搬迁率的“多谷”半导体,具有高的导电率和能发生高温差功率的高有用质量。因而具有杰出致冷功能的碲化铋可替代氟里昂并成为削减大气污染与环境的抱负材料。碲及其化合物的其他电子运用是红外探测器和发射器、太阳能电池及静电印刷术。少数的碲可用作器材的电子施主掺杂剂。
3 、碲的别离提取技能
现在碲的首要来历仍是铜精粹厂的阳极泥,含碲高达9%。其它或许来历是硫酸厂的泥浆以及硫酸厂和冶炼厂的静电集尘器中的尘土。因而,获取碲的途径仍是首要从阳极泥中提取,本文将侧重介绍几种提取碲的办法:
3.1纯碱焙烧法
将碳酸钠和水与阳极泥充沛混合构成一种浓膏,在530~650℃的温度下进行焙烧,在不考虑碲蒸发的状况将其彻底转化为六价状况。焙烧过的球粒或团块经磨细后,用水浸出,因为阳极泥中的另一种元素硒在此进程已构成钠,一同因为碲酸钠极难溶解于此种强碱性溶液而残留在渣中。此刻脱硒的纯碱浸出渣用稀硫酸处理会使不溶解的碲酸钠转化为可溶解的碲酸:
Na2Te04(不溶)+H2S04=HzTe04(可溶)+Na2S04碲酸复原为碲可用和二氧化硫处理来完结:
H2Te04+2HCl=H2Te03+H20+C12H2Te03+HzO+2S02=2H2S04+Te在必定的酸性条件下,碲酸用钠复原成二氧化碲,可从热的溶液中收回得到细密的、浅黄色的固体。H2Te04+Na2S03=TeOz+Na2S04+H20转化为金属碲最好的办法使在中溶解,用电解碲酸钠的办法来完结:Na2Te03+H20+4e一=Te+2Na20H+02再生的碱可返回到溶解二氧化碲的进程中再使用。工业上常用氧化加压或氯化加压的办法完结碱性浸出,首要用的几种氧化浸出工艺是用氧或氯的压力浸出或许用氯载体浸出(例如),也能够把几个进程组合,促进反响敏捷进行。因为和碲化物的反响速度比和硒的反响速度更快些,所以要当心操控,避免不溶性的六价碲化合物把四价硒别离为可溶性化合物[8]。加压浸出工艺的长处在于能够确保碲悉数转化为六价形状,完结其在碱性浸出液中的彻底不溶解。别的,还能够使介质无腐蚀性,硒无蒸发丢失,无洗刷或气体净化工序,而且基本上可定量完结碲的提取。可是,其不足之处也很明显,就是整个工艺耗费的氧气和的量较大。氧化进程不只要考虑碲的氧化,还要考虑硒的氧化以及精粹铜的进程中运用附加物作为成长调节剂而引人的有机物的氧化19J。
3.2硫酸化焙烧
硫酸化焙烧技能是依据硒和碲的四价氧化物在焙烧温度500~600℃度下其蒸发性不同。从阳性泥中选择性提取硒后,因为可溶解六价和四价碲,所以直接从剩下的焙渣顶用浸出的办法可收回碲。酸性焙烧是运用硫酸作为氧化剂使硒或硒化物和碲或碲化物转化成他们各自的四价氧化物。其间碲的氧化反响是:Cu2Te+6H2S04=2CuS04J+Te02 l+4S02 f+6H20t工业出产中并不引荐此工艺,这是因为,浸出会导致阳极泥中的银转化为极难溶的氯化银,使今后的银的收回愈加困难,一同如果有六价碲存在,它能够氧化而释放出,接着它又会溶解阳极泥中的金,这就会在后续碲和金的别离方面发生一些实质性的问题L9J。据工业出产的实践数据标明,包含碱性氧化物压力浸出和含铜、镍、贵金属、硒和碲阳极泥压力硫化效果在内的彻底湿法冶金的工艺进程能够使悉数组分杰出分出。别离出的硒和碲的纯度能够达90%以上哺J。
3.3液膜别离法
液膜别离物质是一种高效、快速、节能的新式高技能别离办法,2003年由王献科[10]提出用伯胺N192,制备乳状液膜,能敏捷地搬迁富集碲,在收回、处理提取及分析测定微量碲方面,具有很好的运用远景,也为进一步从杂乱组分的料液或低档次碲矿中富集碲的开发使用奠定了根底。液膜富集Te4+是经过活动载体N1923来完结的。依据别离进程和溶剂萃取的原理,N1923以RN表明,用离子缔合原理萃取元素。首要是在膜相外界外相中HCl生成RNH+C1,而外相中Te4+以TeBr62一方式与膜相中RNH+C1反响生成[RNH]22十[TeBr6]2-,溶于有机膜,并穿过液膜分散内相界面于NaOH水溶液效果、离解,Te.Br62一和H+迁入内相,这是因为Cl一和TeBr6卜与N1923相互竞赛缔和的成果。用乳状液膜别离富集碲的研讨,断定了膜相由7%N1923(伯胺)、4%Lll3B和89%火油(包含正辛醇)组成,内相为0.3mol/LNaOH水溶液,外相酸度为5mol/LHCl介质,R。l为1:1,R。。为20:50~20:100,室温(15~36℃)条件下,碲的收回率为99.5%~100%,内相富集了较高浓度的碲。一般常见的阳阴离子,都不被搬迁富集,选择性适当高。但此法在工业上还未能得到推行。
3.4微生物法
生物冶金以其成本低、无污染,对低档次、难选冶的矿产资源的开发使用有着宽广的工业运用远景。廖梦霞等人[11】在2004年提出在我国首例独立碲矿床资源的开发战略上走生物冶金的路途。其实在2003年Rajwade等[12]曾运用微生物的接连拌和,提出了含碲贵液的生物复原工艺,即对含碲lOmg/L的溶液中,pH操控在5.5~8.5,温度在25~45℃,用微生物吸附一复原沉积元素碲,可有用替代强复原剂,然后进步功率下降出产成本。这一理论创始了生物冶金在碲的提取工艺上运用的先河。廖梦霞等人L11J以为石棉大水沟独立碲铋矿床碲铋含量0.00X一0.0X%,金银含量0.X—Xg/t的硫化矿贫矿储量大,传统工艺很难有用到达经济开发使用的意图,因而提出微生物提取碲的办法,并总结了国内外针对硫化矿生物氧化的研讨,首要有浸矿细菌的别离和判定、细菌的培育条件和细菌氧化工艺条件研讨、细菌浸出硫化精矿粉进程中细菌浸出的物理要素和化学要素以及细菌浸出的浸出动力学和浸出机理研讨。在面临生物冶金的杰出问题生物(氧化周期长导致出产功率低)上,其课题组使用金属离子、表面活化剂催化、磁化强化等办法加速细菌氧化反响速率,使这一问题的处理有了一些新的思路。
4 、结 论
稀散金属碲以其在现代高科技工业、国防与顶级技能范畴中所占有的重要位置,越来越遭到人们的注重,运用规模也越来越广。可是因为碲从发现至今时刻较短,一同独立碲矿的开发也只是是近几年的工作,大多数工艺技能仍处于实验研讨阶段,这使得咱们很难断语何种工艺为最佳。但跟着人们对稀散元素知道的加深以及碲在各个范畴运用的广泛,咱们信任碲的开发将会得到进一步的开展,研讨和开发碲的别离提取的新工艺也愈加具有现实意义。
铂矿
2019-02-11 14:05:30
铂是一种稀有、柔软的银白色金属,十分沉重。铂和它的同系金属——钌、铑、钯、锇、铱和金相同,简直彻底成单质情况存在于自然界中。它们在地壳中的含量也和金附近,且它们的化学慵懒和金比较也平起平坐,可是人们发现并运用它们却远在金后。它们在自然界中的极度涣散和它们的高熔点,可能是形成这种情况的原因。至今发现的最大的天然铂块是9.6千克。铂的熔点1772℃,钌的熔点2310℃,铑的熔点1966℃,钯的熔点1552℃,锇的熔点2054℃,铱的熔点2410℃,而金的熔点是1063℃。南美洲古代印第安人早已经使用铂和金的合金制成装饰品。因为铂在铂系矿产中的含量比其他元素的含量大的多,因此它是铂系元素中首要被发现的。在欧洲首要说到铂的可能是法国矿产学家斯卡里吉在1557年宣布的著作中。他讲到一切金属都能熔化,但有一种墨西哥和达里南Darian(今巴拿马)矿里的一种金属不能熔化。这能够以为是指铂。18世纪中叶,南美洲的铂矿传到欧洲一些学者手中,他们对铂进行了研讨。不少学者以为铂不是一种纯金属,而是金、铁和的合金,还有人以为它是一种半金属。1752年瑞典化学家谢斐尔必定它是一种独立的金属,称它为aurum album(白金)。1789年拉瓦锡宣布他拟定的元素表,铂被列入其间。如今铂的拉丁名称是platinum,元素符号是Pt。
铂挖掘自天然游离态铂矿产。用于制作首饰、坩埚、特种容器和标准量具衡具,充任催化剂,与钴合制强磁体。铂耐蚀、耐酸(在外)。铂在氢化、脱氢、异构化、环化、脱水、脱卤、氧化、裂解等化学反应中均可作催化剂。