您所在的位置:
上海有色 >
有色金属产品库 >
钒离子电池
钒离子电池
锂离子电池
2018-05-11 19:18:46
锂离子电池锂离子二次电池作为新型高电压、高能量密度的可充电电池,其独特的物理和电化学性能,具有广泛的民用和国防应用的前景。其突出的特点是:重量轻、储能大、无污染、无记忆效应、使用寿命长。在同体积重量情况下,锂电池的蓄电能力是镍氢电池的1.6倍,是镍镉电池的4倍,并且目前人类只开发利用了其理论电量的20%~30%,开发前景非常光明。同时它是一种真正的绿色环保电池,不会对环境造成污染,是目前最佳的能应用到电动车上的电池。我国从二十世纪九十年代开始开发和利用锂离子电池,至今已取得突破性进展,研制出了完全拥有自主知识产权的锂离子电池。
锂离子电池价值何在
2019-03-08 09:05:26
纵观人类前史,咱们现已阅历了两次工业革新,第一次是蒸汽机,第2次是电力。现在,咱们正在阅历第三次工业革新,即关于动力互联网与再生性动力的革新。
第三次工业革新有五大支柱
一、向不行再生动力转型;
二、将每一大洲的建筑转化为微型发电厂,以便就地搜集可再生动力;
三、在每一栋建筑物以及基础设施中运用氢和其他存储技能,以存储间歇式源;
四、运用互联网技能将每大洲的电力网转化为动力同享网络,调剂余缺,合理装备运用;
五、运输工具转向插电式以及燃料电池动力车,所需电源来自上述电网。
动力存储技能发展至今,针对不同的范畴、不同的需求,人们已提出和开发了多种储能技能来满意运用。全球储能技能主要有物理储能、化学储能(如钠硫电池、全钒液流电池、铅酸电池、锂离子电池、超级电容器等)、电磁储能和相变储能等几类。
锂离子电池原理
锂离子电池一般是运用锂合金金属氧化物为正极材料、石墨为负极材料、运用非水电解质的电池。
充电时,正极的锂离子和电子分隔,锂离子在电池内部,穿过隔阂进入负极材料,电子经过充电机外部电路进入负极,和锂离子结合,停留在负极材料。
正极
正极材料:可选的正极材料许多,干流产品多选用锂铁磷酸盐。
正极反响:放电时锂离子嵌入,充电时锂离子脱嵌。
负极
负极材料:多选用石墨。新的研讨发现钛酸盐可能是更好的材料。
负极反响:放电时锂离子脱嵌,充电时锂离子嵌入。
简略来说,锂离子电池就是由正极材料、负极材料、电解液、隔阂和外壳组成的能量贮存设备。相比较而言,锂离子电池储能则是现在储能产品开发中最可行的技能道路。锂离子电池具有能量密度大、自放电小、没有回忆效应、工作温度规模宽、可快速充放电、运用寿命长、没有环境污染等长处,被称为绿色电池。此外,它的均匀输出电压高(约3.6V),为Ni-Cd、Ni-MH电池的3倍,输出功率大,充电效率高,第1次循环后基本上为100%。当下,在特斯拉、比亚迪、银隆等厂商推进下,锂离子电池成为储能干流电池技能的趋势越来越显着。
现在,在新动力范畴得到广泛运用的锂离子电池主要有三元锂电池、磷酸铁锂电池和钛酸锂电池。
你能分清锂电池、锂离子电池、锂聚合物电池吗?
2019-01-04 15:16:49
12345678
不会爆炸的水基锂离子电池
2019-01-04 09:45:37
9月10日物理学家组织网报道称,美国华人科学家团队研制出一款基于水基电解液的新型锂离子电池,不仅电压首次达到笔记本电脑等家用电子产品所需的4伏标准,且能完全避免现有商用锂电池存在的着火和爆炸危险。尽管当前它的续航还不如传统材料,但研究人员希望可为进一步的研究奠定基础。市面上最常见的电池,仍然采用了两侧都有电极的锂离子方案。在充放电的过程中,粒子可在两极间来回移动。位于中间的电解质,可以帮助粒子的移动。然而大多数情况下,电解质都是由易燃的有机化学物质构成。马里兰大学工程师、兼研究合著者ChunshengWang表示:虽然有防火的水基电解质存在,但水并不是很活泼,因此这种安全电池通常也并不强劲。现有电子产品中,锂离子电池都使用非水性电解液。工作时,电池电压必须满足4伏标准,而在这个工作电压下水容易分解,所以锂电池常用有机溶剂作为电解液,但这类电解液易燃易爆,可能导致电子产品着火爆炸,存在极大安全隐患。
马里兰大学王春生团队联合美陆军研究实验室许康等科学家,合作开发出了这款升级版水基锂电池。研究人员设计出一种新型聚合物凝胶涂层,因其特殊的排水性,涂在电极上后,水分子无法靠近电极表面;首次充电后,凝胶分解形成稳定界面,将电极和电解液隔离,阻止水分子在工作电压下分解。该技术不仅提高了电池的储能和充放电性能,还完全规避了有机溶剂电解质易爆炸的危险。
虽然新电池的工作电压已达到商用水平,但与现有锂离子电池相比,还有很大的提升空间。比如,新电池的材料成本较高,且只能充放电50次到100次,要想具有商业竞争优势,充放电周期必须达到500次以上。
但不可否认的是,新电池背后的电化学处理方法,对钠离子电池、锂硫电池、锌镁多离子电池等电池技术,以及电镀和电化学合成等领域,具有重要借鉴意义。
锂储量有限,钠离子电池能否大放异彩?
2019-03-07 09:03:45
导读
美国地舆查询估量,全球锂资源约为 3950 万公吨,而具有商业挖掘价值的锂储备量则仅为 1351.9 万公吨。在现在的工业情况下,这样的锂资源可用上超越300 年不成问题,但若是需求爆炸性生长,在一年 80万吨的情况下,不到 17 年就会竭尽。
动力问题
动力是支撑整个人类文明前进的物质基础。跟着社会经济的高速开展,人类社会对动力的依存度不断进步。现在,传统化石动力如煤、石油、天然气等为人类社会供应首要的动力。化石动力的消费不只使其日趋干涸,且对环境影响显着。因而,改动现有不合理的动力结构已成为人类社会可持续开展面对的首要问题现在,大力开展的风能、太阳能、潮汐能、地热能等均归于可再生清洁动力,因为其随机性、间歇性等特色,假如将其所发生的电能直接输入电网,会对电网发生很大的冲击。在这种局势下,开展高效快捷的储能技能以满意人类的动力需求成为国际规模内研讨热门。
锂离子电池
现在,储能办法首要分为机械储能、电化学储能、电磁储能和相变储能这四类。与其他储能办法比较,电化学储能技能具有效率高、出资少、运用安全、运用灵敏等特色,最契合当今动力的开展方向。电化学储能历史悠久,其间锂离子电池是开展较为老练的储能电池。
锂离子电池具有能量密度大、循环寿数长、作业电压高、无回忆效应、自放电小、作业温度规模宽等长处。但其依然存在许多问题,如电池安全、循环寿数和本钱问题等。并且跟着锂离子电池逐步运用于电动汽车,锂的需求量将大大添加,而锂的储量有限,且散布不均,这关于开展要求报价低廉、安全性高的智能电网和可再生动力大规模储能的长寿数储能电池来说,可能是一个瓶颈问题。因而,亟需开展下一代归纳效能优异的储能电池新系统。
钠离子电池
比较锂资源而言,钠储量非常丰厚,约占地壳储量的2.64%,且散布广泛、提炼简略。一起,钠和锂在元素周期表的同一主族,具有相似的物理化学性质,其根本的性质比照见表 1。
表1 与金属锂根本性质比照钠离子电池具有与锂离子电池相似的作业原理,运用钠离子在正负极之间嵌脱进程完成充放电。
充电时,Na+从正极脱出通过电解质嵌入负极,一起电子的补偿电荷经外电路供应到负极,确保正负极电荷平衡。放电时则相反,Na+从负极脱嵌,通过电解质嵌入正极。
在正常的充放电情况下,钠离子在正负极间的嵌入脱出不损坏电极材料的根本化学结构。从充放电可逆性看,钠离子电池反应是一种抱负的可逆反应。因而,开展针关于大规模储能运用的钠离子电池技能具有重要的战略意义。
钠离子电池优势
与锂离子电池比较,钠离子电池具有的优势:
1.钠盐原材料储量丰厚,报价低廉,选用铁锰镍基正极材料比较较锂离子电池三元正极材料,质料本钱下降一半;
2.因为钠盐特性,答应运用低浓度电解液(相同浓度电解液,钠盐电导率高于锂电解液20%左右)下降本钱;
3.钠离子不与铝构成合金,负极可选用铝箔作为集流体,能够进一步下降本钱8%左右,下降分量10%左右;
4.因为钠离子电池无过放电特性,答应钠离子电池放电到零伏。钠离子电池能量密度大于100Wh/kg,可与磷酸铁锂电池相媲美,可是其本钱优势显着,有望在大规模储能中替代传统铅酸电池。
钠离子电池存在的问题及解决办法
1.钠离子电池是一种有别于锂离子电池的电池系统,将锂离子电池电极材料直接运用到钠离子电池的研讨上是一种捷径。但寻觅新的具有高能量密度和功率密度的正极材料,一起寻觅在循环进程中体积改动小的负极材料,进步电池的循环稳定性,才是进步钠离子电池功能的重要途径,也是使钠离子电池提前运用到大规模储能的要害;
2.现在关于钠离子电池电极材料的组成办法比较单一,传统的固相法和凝胶溶胶法是首要的制备办法,且对电极材料的改性研讨较少。寻觅更简略高效的组成办法,一起对功能较好的材料进行改性研讨也是进步钠离子电池功能的一条途径;
3.安全问题是限制锂离子电池开展的重要因素,而钠离子电池相同面对安全问题。因而,大力开发新的电解液系统,研讨更为安全的凝胶态及全固态电解质是缓解钠离子电池安全问题的重要方向。
此外,钠离子的液态回忆这项难题现在也被霸占。(液态回忆:将液体形状改动,通过一段时间,本身会康复到之前的状况。)
跟着钠离子电池研讨的深化,将会开发出新的材料,电池的容量和电压将会进一步得到提高。钠离子较低的本钱,使得钠离子电池有望运用在智能电网或可再生动力的大规模储能中。
废旧锂离子电池有价金属回收技术
2019-02-21 15:27:24
一、干法技能
干法是经过复原焙烧别离钴、铝,浸出别离钴和黑的一种锂离子电池收回处理办法。该办法将电池坚持在阻隔水分与空气的环境中,一般是在氮气或气环境中进行,将锂离子电池在高温下进行燃烧,别离出各种金属。温豪杰,等提出了高温焙烧收回金属钴的工艺。先对锂离子废旧电池进行放电处理,剥离外壳,收回金属材料;将电芯与焦炭、石灰石混合,投入焙烧中进行复原焙烧。有机物燃烧生成二氧化碳及其他气体,钴酸锂被复原为金属钴和氧化锂,氟和磷元素被沉渣固定,铝被氧化为Al2O3炉渣。大部分氧化锂以蒸气方式逸出,将其用水吸收,金属铜、锂、镍、等构成含碳合金,再用惯例湿法冶金技能进行深加工处理。干法工艺流程较短,进程中考虑了氟污染的防治,而且锂元素得以收回。
在国外,日本索尼和住友金属矿山公司合作开发出了从废旧锂离子电池中收回钴等元素的技能。先将电池燃烧,去除有机物,再挑选去除铁、铜后,将剩下粉末加热并溶于酸中,用有机溶媒提取氧化钴。
Churl Kyoung Lee,等先把废旧锂离子电池破碎,并在不同温度范围内进行热处理,将碳粉和粘合剂等可燃材料变为气体,留下LiCoO2。在恒温水浴(75℃)、液固体积质量比20L/g、硝酸浓度1mol/L、1.7%H2O2溶液中溶解LiCoO2,Co和Li的浸出率均到达85%。
干法工艺相对简略,不足之处是能耗较高,电解质溶液和电极中其他成分经过燃烧转变为CO2或其他有害成分,如P2O5等。燃烧除掉有机物的办法易引起大气污染,合金纯度较低,后续湿法冶金进程仍需一系列净化除杂进程。
二、湿法技能
湿法是以无机酸溶液将废旧电池中的各有价成分浸出后,再以络合交换法、碱煮-酸溶法、酸溶-萃取-沉积法等加以收回。
Zhang Pingwei,等用4mol/L溶液在80℃下浸出锂离子二次电池正极废料,Co、Li的浸出率均大于99%,之后用0.9mol/L的PC-88A(2-乙基已基磷酸-单-2乙基已基醚)萃取Co,反萃取后以硫酸钴方式收回钴。溶液中的锂经过参加饱满碳酸钠溶液,在100℃下沉积为碳酸锂得以收回,收回率挨近80%。Kudo Mistuhiko,等用酸浸出锂离子电池正极废料,往浸出液中参加金属,使Co2+变成Co,然后加碱去除金属,获得金属Co。Hayashi,等用硫酸或浸出,在浸出液中参加碱金属碳酸盐,沉积物质经焙烧获得更纯的正极活性物质。Supasan,等用HNO3溶液浸出锂离子电池正极废料,往混合浸出液参加LiOH,使各金属生成氢氧化物沉积,沉积物经过滤并焙烧,得金属氧化物的混合物。
王晓峰,等先将电极材料在80℃的稀中溶解,滤去不溶物质后用调理pH=4,挑选性沉积出铝的氢氧化物,然后参加含NH4Cl的,调理pH至10左右,使钴、镍生成的合作物,再通入纯氧气把CO2+、Ni2+氧化为三价离子,并将溶液重复经过弱酸性阳离子交换树脂,对饱满树脂用不同浓度的硫酸铵溶液洗脱钴和镍,再用草酸盐从洗脱液中沉积钴和镍。申勇峰选用硫酸浸出-电解工艺收回钴。用10mol/L硫酸溶液,在70℃下浸出钴、锂,调理溶液pH至2.0~3.0,90℃鼓风拌和,中和水解脱除其间的杂质,再在55~60℃下以钛板作阳极,以钴片作阴极,以235A/m2电流密度电解,得到契合国家标准的电钴。钟海云,等从锂离子二次电池正极废料-铝钴膜中收回钴选用的是碱浸-酸溶-净化-沉钴的全湿法流程。先用100g/L的NaOH溶液浸出铝钴膜废料,制备氢氧化铝,再向剩下废猜中参加稀H2SO4和H2O2,酸溶后的溶液调pH至5.0净化除杂,然后参加草酸铵溶液淀钴,终究制得草酸钴产品。吴芳选用碱溶解电池材料,预先除掉约90%的铝,然后选用H2SO4+H2O2系统浸出滤渣,浸出后的滤液中含有Fe2+、Ca2+、Mn2+等杂质,用P2O4溶剂萃获得到钴和锂的混合液,然后用P507溶剂萃取别离钴、锂,反萃取后得到硫酸钴,萃液沉积收回碳酸锂,得到的碳酸锂到达零级产品要求,锂的一次收回率为76.5%。专利“从含钻下脚猜中高效提取钴化合物的新工艺”供给了另一条思路。将钴锰料在反响釜顶用工业硫酸溶解,去除不溶的有机物残渣后得到弄清的CoSO4、MnSO4混合溶液。将溶液参加到含有工业的化器中,坚持pH在9以上,反响必定时刻后用离心机将沉积别离,滤液送反响釜。向反响釜中参加NaOH溶液并加热至欢腾坚持5min。热沉的悬浮液冷却到60℃后用离心机别离出钴化合物。将钴化合物在反响釜顶用浓硫酸溶解并稀释、过滤得到硫酸钴弄清液。此弄清液送沉积槽,参加碳酸钠溶液调pH至8.0,使生成紫红色沉积,对此沉积拌和水洗数次,然后晒干得碱式碳酸钴产品。金泳勋,等研讨了选用浮选法从废旧锂离子电池中收回锂钴氧化物,但收回的锂钴氧化物含有石墨等杂质,不能用来制造锂离子电池。温豪杰,等选用碱浸-酸溶-净化-沉钻工艺收回锂离子电池正极废猜中的铝和钻,得到化学纯氢氧化铝,收回率为94.89%,以草酸钴方式收回钴,直收率为94.23%。
以湿法处理废旧锂离子电池,浸出液需求严厉净化,耗费许多电能,有机试剂也会对环境和人体健康有晦气影响,而且工艺流程长,对设备要求高,本钱高。现行的湿法工艺都较杂乱,资源收回率低,存在二次污染等问题。有研讨者提出的AEA工艺,虽有工艺简略、二次污染程度低、资源收回率高级优势,但其经济可行性还需进一步研讨。
McLaughlin提出,选用Toxco法(火法与湿法相结合),首先将抛弃材料在液氮中冷却,机械破碎后,参加去离子水,使锂与水反响生成氢氧化锂,并以此作为首要产品,但该法未述及对钴等其他元素的收回。
Kim,等对电极材料的直接修正进行了实验探究,但其处理功率还不能得到确保,而且修正之后的电极材料是否具有杰出的充放电和安全功能、是否可以直接用作锂离子电池的电极材料,还有待进一步考证。
总归,各国对抛弃锂离子电池的收回再生工艺研讨起步都较晚,而且因为锂离子电池对环境的污染相对其他电池品种较小、收回处理本钱高,所以一向没有高效、经济、环保的收回工艺,所以有必要寻求一种合理、有用、清洁的金属收回和资源使用途径。
三、生物浸出工艺
所谓微生物浸出就是用微生物将系统的有用组分转化为可溶化合物并挑选性地溶解出来,得到含金属的溶液,完成目标组分与杂质组分别离,得到含金属的溶液,完成目标组分与杂质组分别离,终究收回有用金属。生物浸出技能是生物、冶金、化学等多学科穿插技能,是一个杂乱的进程,包含细菌成长代谢的生物学、细菌与矿藏表面相互效果的表面化学、动力学等,化学氧化、生物氧化与原电池反响往往同时发生。其间微生物对细菌浸出的特殊效果一般认为有3种氧化机理:直接氧化反响、Fe3+氧化硫化物的化学氧化反响、原电池反响。在这3种浸出机理中,微生物都起着至关重要的效果。生物浸出中的首要菌种有氧化硫杆菌、氧化铁杆菌、氧化铁硫杆菌和聚硫杆菌等,它们都归于自养菌,能成长在普通微生物难以生计的较强的酸性介质里,经过对S、Fe、N等无机化合物的氧化获得能量,从CO2中获得碳,从铵盐中获得氮来构成本身细胞。在许多酸性水域中都有这类杆菌成长,只需取回某各水来加以驯化、培育,即可接种于所要浸出的废渣中进行细菌浸出。这种办法具有低本钱、低能耗、无污染等长处,已在采矿工业中广泛使用。
生物浸出技能已成功使用于从低档次,难处理矿石中提取金属,使用于废水处理及从各种抛弃物如抛弃线路板、干电池、镍-镉电池等中收回金属,也是一个十分抢手的研讨课题。学习生物冶金技能,使微生物直接或直接参加废旧电池粉末中的二氧化锰的复原收回,二氧化锰的终究浸出率可达93%。与传统电池收回技能比较,其特殊优势在于环境友好,并可完成有机废物与废旧电池的综合治理。使用生物浸出技能处理抛弃锂离子电池的研讨才刚刚起步。辛宝平,等研讨了选用生物淋滤溶出法从抛弃锂离子电池中收回钴。先把废旧电池拆分并挑选,用含有微生物的溶液淋滤溶出废旧锂离子电池中的钴,调查了培育条件、质量浓度、开始pH值和电极材料参加量等对生物淋滤钴溶出的影响,并探讨了进步钴离子生物溶出功率的办法及工艺条件。选用氧化亚铁硫杆菌和氧化硫硫杆菌的混合菌液进行实验,关于锂离子电池中的钴,生物淋滤较之比化学浸出具有更高的溶出功率。国外最近也报导了选用嗜酸氧化铁硫杆菌浸出抛弃锂离子电池中的钴和锂的实验研讨结果。因为选用单一菌种,浸出率很低,未对其他金属的收回进行研讨,也未进行浸出机理及动力学方面的研讨。
你真敢1.1秒给电池充满电?拿起科学手术刀解剖铝离子电池
2019-01-08 13:40:18
前一阵子,浙江大学高超老师团队做出了优 秀的工作,即利用石墨烯做正极的高倍率性能、高循环寿命的铝离子电池,兼具柔性功能。工作发表在了期刊《SCIENCE ADVANCES》上。
一经推出,就得到了业内广泛的关注和讨论。有不少朋友都在询问该技术对于电池产业界的影响,大家非常关心该类电池技术,那正好今天就展开讲讲对铝离子电池的发展应用前景做一个简单的分析展望。
1、铝离子电池——能量密度能有多少?
首先看看作者本人的摘要中对该电池的介绍。该工作的创新点在于,做了一种新型结构的3高3连续(3H3C)石墨烯膜正极,其具有高质量,取向性和局部通道,这样可以保证电子、离子传导以及足够的活性物质质量。该正极容量在1.1s充电时的容量为120mAh/g,25万次循环后容量保证率为91.7%,在高低温下工作性能出色,而且具有柔性。
不难看出,该石墨烯-铝金属的铝离子电池的高低温、柔性、倍率性能很优 秀,这当然很大程度利益于制备的石墨烯电极。然而摘要是一个突出亮点的地方,突出的成果都会在这里反应,可是在这里电池的几个重要的参数都没有说:比如体积能量密度、质量能量密度。
1)体积能量密度低的话,手机和汽车这两个电池zui为重要的领域中想要应用基本是没有希望的——空间非常有限,必须充分利用。而手机和汽车同样都在追求长续航,此时必须要求高的能量密度。
翻到文章第5页,看到了作者对自己电池性能的介绍:66Wh/kg(质量能量密度)。首先,66Wh/kg仍然是铝离子电池典型能量密度范围值40——65Wh/kg,这个数据比锂离子电池要低很多:磷酸铁锂100+Wh/kg,三元的接近200Wh/kg。以铝离子电池这样的能量密度在手机和汽车领域上用,基本也只能对准混合动力汽车了,而且插混都有点悬,手机则更难有希望。2)更大的问题在于全文都没有提及体积能量密度相关数据,考虑到该电池质量能量密度不高,使用的材料偏膨松(石墨烯等),其体积能量密度可能也很难达到三元类锂电池的1/3。因为该文作者并没有提到这方面的数据,因此笔者也只能基于已有数据和常识进行推断:体积能量密度数据很可能很难看。
在这里再强调一下体积能量密度的意义:如果造的电池不重,但是体积好大,携带装载也会有很大的问题,尤其是在移动储能用途中(手机、汽车)难以实用。而对于体积要求不太严格的固定式储能,体积庞大的储能方式可能会更合适,比如液流电池就是典型代表。
实际上,目前铝离子电池体系很难找到合适的正极材料,钒系化合物的容量和电压都不好看,石墨烯也只能是从矮子里拨将军,而电解液(只能用离子液体)等方面的限制也使得铝离子电池能量密度没有突破的迹象,因此目前的能量密度性能极大的限制了该技术的更广泛应用的可能性。
2.成本分析
综合以上两方面性能作者报出的数据,以及分析可以看出该电池可能更适合功率型场合,对于现有锂离子电池的取代潜力不是太大,对电容的威胁倒是不小,如果成本能做下来也可以去跟能量密度差不多的铅酸做竞争。
而在zui后作者也给出了一个自己的评价——主要针对capacitor-dominant high-power density energy storage system。总之就是针对高功率领域。体积能量密度从目前来说无从知晓,刚才也说到了如果成本能够做下来可能也会有一定的潜力。不过该体系用了几个材料:石墨烯、离子液体、铝金属。
石墨烯正极的原料为氧化石墨烯GO,将其涂成定向膜后再还原,zui后再在2850℃条件下处理才能得到zui终需要的材料,与生产石墨需要的处理温度相似。因此该工艺路线使用的石墨原料-石墨烯电极制备相当于要经过两次2850℃的处理,这肯定会增加对于炉体的要求、耗能方面的需求。
有人可能会问:为什么二次处理石墨烯时不能降低温度?答案简单:石墨烯如果是走的氧化还原路线,材料结构完美程度会受氧化影响遭受破坏,温和的还原条件是不足以解决问题的,需要高温才能使其有效回复;而如果使用石墨烯用的是其它方法,比如CVD、机械剥离,制备的材料的质量会很高,可能不用高温处理,但是这些方法的量产能力常常非常受限。两难之处就在于此。
另外离子液体的确也是比较重要的有发展前景的技术。然而对于铝离子电池来说,目前其技术似乎极其依靠离子液体,其目前存在粘度大、成本高等一系列的问题,这极大的加大了铝离子电池的成本。当然了,假以时日,在科研界和工业界的共同努力下,以后离子液体的确有很大的进步空间,应用前景值得期许。
因此总体来说,相比于现在常见的电池体系:锂电池、铅酸使用的材料都已经比较常规,可以做到稳定的量产,这对于(尤其是近年来)降低电池成本起到了相当大的支撑作用。但是对于铝离子电池体系来说,原料产业化、经济实用化的工作,还有相当多的工作要做。
3.你真的敢1.1s给电池充满电么?
实际上这一类文章的槽点是共性的:如果真的要1s充满电,对于一个很小容量的实验室量级的电池自然是可以。而如果是手机电池呢?按10Wh一块1s充满的话,充电功率是36kW,大家回忆下自己初中物理学习到的计算发热量的焦耳定律,以及看看自己家电表,然后好好琢磨一下是否可行。
总结
铝离子电池技术的确有自己的特色,然而缺点也很明显。希望其在未来的发展中能够在能量密度、成本下降潜力方面实现突破,从而加速其实用化进程。
浅析鳞片石墨在锂离子电池中的应用
2019-01-04 15:16:49
鳞片石墨是一种非金属矿物质,结晶完整,片薄且韧性好,物化性能优异,具有耐高温、耐氧化、抗腐蚀、导热、导电性能强等特有的物理、化学性能。
鳞片石墨的导电性比一般非金属矿高100倍,是运用范围极为广范的导电材料。其中,锂离子电池就是利用鳞片石墨粉的导电性进行工作的。
在锂离子电池材料中,负极材料是决定电池性能的关键。作为一种高结晶度的石墨材料,鳞片石墨的粒度直接影响电极比表面积和边缘碳原子所占的比例,这与首次充电时的不可逆比容量有很大的影响,所以鳞片石墨在电池中起到至关重要的作用。
一、鳞片石墨具有电子导电率高、锂离子扩散系数大、嵌埋容量高和嵌埋电位低等诸多优点,所以鳞片石墨是锂电池最重要的材料之一。
二、鳞片石墨可以使锂电池电压平稳,减小锂电池中的内阻,可以使电池中电量储存时间长。增加电池的利用时间。
三、鳞片石墨可以减少锂电池中鳞片石墨粉的用量,使电池成本大大降低。
综上所述,鳞片石墨对锂离子电池来说,不仅能够延长电池使用时间,促使电压平稳,增强导电率,还可降低电池成本。
阴离子膜矿浆电解回收干电池正极材料中的锰
2019-02-21 10:13:28
我国的电池工业起源于20世纪20年代,发展到今日,电池年产量现已到达140亿只,占国际电池总产量的1/3。但因为办理和技能的两层原因,废旧电池的污染操控却严峻滞后,形成绝大多数废旧电池到处乱扔或随日子废物一同填埋,其间的重金属和酸碱等污染物,经过各种途径进入人的食物链。还有一部分废1日电池与日子废物一同燃烧填埋,对大气有严峻的污染。
电池中含有很多的有用金属。据有关资料核算,全国废干电池中每年可收回的有价金属数量可观,其间锰粉达109200t、锌皮38200t、铜600t、铁皮29600t、2.48t。度旧锌锰干电池中含有很多未发作反响的MnO2,和以其他形状存在的Mn。锰不只是电源重要的正极材料之一,也有恰当广泛的非电池用处。近年来,锰的非电池用处也在逐渐扩展,除在传统的冶金、精细化工、电池等领域外,在环境保护、先进电池材料、锰锌铁氧体、陶瓷材料等方面有了新的用处。因为锰具有很强的催化氧化/复原、离子交换和吸附才能,在经过恰当化学处理与成型后,是一种功能全面的优秀清水滤料,与常用的活性炭、沸石等清水滤料比较,具有更强的脱色和去除重金属的才能。因而从废1日锌锰干电池中将各种形状的锰收回运用,有着重要的环保含义和杰出的经济远景。
现在,许多发达国家已树立完好的废电池收回处理系统,处理办法首要有火法冶金收回法和湿法冶金收回法。国内一些研究者在此基础上,经过对传统办法的改善,并与实践出产相结合,提出一些具有发展远景的废电池综合运用新技能与工艺。从环保视点动身,现在的火法简单形成严峻的大气污染,湿法运用很多酸,本钱高,处理后的废液废渣简单对环境形成污染。针对现有办法的缺乏,提出运用离子膜矿浆电解的办法,将废旧干电池的正极材料在阴极室复原,制备出硫酸锰溶液,在阳极室将硫酸锰转化成二氧化锰或四氧化三锰。在此要点介绍废旧干电池的正极材料在阴极室复原浸出的工艺技能条件和浸出机理。
一、试验
(一)试剂与仪器
试验所需试剂硫酸锰(MnSO4),(AgNO3),硫酸( HgSO4),硝酸(HNO3)等均为分析纯。精细超级恒温水槽DF-03,南京舫奥科技有限公司;数显电流表MB4206,陕西协力光电仪器有限公司:紫外可见分光光度计IU-1810,北京普析通用仪器有限责任公司。离子交换膜电解槽克己,阴阳极室体积均为800mL,运用钛镀钌作阳极,石墨作阴极,阴阳电极面积均为0.008m2。试验所用废旧干电池为华太牌5号电池,运用1.2中办法,测得其间的锰含量为35.0%。
(二)分析办法
称取0.5490g硫酸锰溶于约200mL去离子水中,加1.5mL浓硝酸,再定容至1000mL容量瓶中,则此溶液中锰离子浓度为0.2g/L。别离取标准试液0、1.5、2.5、5、7.5mL,硫酸锰于100mL锥形瓶中,向5个锥形瓶中各参加1mL-硫酸溶液,别离参加约50mL去离子水,1g过硫酸铵,在电炉上加热至有大气泡呈现,并持续1min,取下,放置1min后用冷水冷却。别离转移至100mL容量瓶中,摇匀,定容至刻度线,则5个容量瓶中锰离子的浓度别离为0、3.0、5.0、10.0、15.0mgL。用1cm比色皿于530nm波利益测定标准系列溶液的吸光度,得标准曲线如图1。
图1 硫酸锰标准曲线(三)试验办法
将若干废旧华太牌5号电池竖向剪开,剥掉外层锌皮,称取必定量研磨好的正极部分,按必定液固比,加到硫酸溶液中,对阴极室中电解液进行匀速拌和,在各要素条件下进行恒流电解,电解时刻90min,每隔15min取样3mL过滤,从中取样1mL,用去离子水稀释至100mL容量瓶中,测其吸光度,核算锰离子浓度。
二价锰离子浓度的校对公式如下: 式中 Cn'-为校对的浓度;
Cn -为n时刻点的测得浓度;
V-为取样体积:
V0-承受池中承受液的总体积。
则M=Cn'×V
二、成果与评论
(一)电流密度的影响
别离在0.8、1.0、1.26、1.5 A下电解,锰离子浓度随电解时刻的改变、锰离子收回率和表观电流效率如图2、3。从图2能够看出,电流越低,浸出液中锰离
子浓度越小。在1.26A与1.5A电流条件下,锰离子浓度随浸出时刻的两条曲线根本重合,标明在1.26A条件下,锰离子的浸呈现已到达最大值,持续进步电流不能加速浸出速率,但使阴极过电位升高,析氢加剧,槽电压升高,故在后面的试验中电流均为1.26A。一起能够发现在电解的前15min,Mn2+浓度快速添加,标明此阶段Mn2+的浸出除电化学复原外,有化学浸出,并且化学浸出起到首要作用。随后锰离子浓度随电流密度和电解时刻简直按线性联系添加。在浸出15min后,能够以为化学浸出根本完毕,电化学反响开端起到主导作用。图2 不同电流下浓度随时刻的改变图3 不同电流密度下的表观电效与收回率
从表观电流效率与电流密度的联系能够看出,电解90min时,收回率随电流密度的升高增大,但表观电流效率随电流密度升高而下降,在119、150A/m2时,表观电流效率根本相同,如图3。当电流为0.8A时,电流效率>100%。因为运用废旧电池,一部分Mn以MnOOH、Mn(OH)2等方式存在,溶液中浸出的Mn2+。并不都是由电解复原发作,恰当一部分是酸溶所造成的,假定化学浸出进行15 min完毕,随后以电化学复原为主,因而进行近似处理,即核算电流效率时,减去前15min浸出的锰量。0.8A时表观电流效率为128.3%,阐明很大一部分由酸浸出,而不是电化学复原。当电流到达1.5A时,因为阴极发作严峻析氢反响,表观电流效率开端下降。在电流为1.26A时,表观电流效率和收回率最高,因而在后续试验中电流均在1.26A条件下进行。
(二)硫酸浓度的影响
硫酸浓度影响化学浸出速率,添加电解液电导,下降槽电压,并对电流效率发作影响。
按液固比10∶1将磨细的正极部分参加不同浓度的硫酸溶液中,在1.26A恒流下进行电解试验,硫酸锰浓度随电解时刻改变的规则如图4。图4 不同酸度下锰浓度随时刻的改变
与图2类似,在电解15min时,锰离子浓度快速添加,且随酸度添加而增大,随后根本依照线性进步。由此阐明,酸度不只影响化学浸出速率,也能够进步电化学浸出速率。当电流密度相同,酸度由0.5mol/L增大到1.0mol/L,硫酸锰浓度逐渐增大并到达最大值,酸度持续增大时,浓度开端下降。一起能够得出,当反响进行15min后,因为电流相同,在不同硫酸浓度时浓度添加的速率根本相同,再次阐明化学浸出可溶性锰离子的反响根本能够在15min内完结。当酸度为1.0 mol/L时,复原浸出作用最佳。从电流效率和90min时的收回率也能够得到相同的定论,如图5。图5 不同酸度下的表观电效与收回率
从图5能够看出当酸度为1.0mol/L时,电流效率最大。酸度过高会发作较严峻的析氢反响,酸度过低也缺乏以浸出贱价锰氧化物,上述两种条件均可导致电流效率的下降。故挑选硫酸浓度1.0mol/L为阴极电解液。
(三)液固比的影响
别离称取67、80、100、133g混合均匀的磨细的正极部分,参加到1.0mol/L的硫酸溶液中,在1.26A恒流下进行电解,Mn2+浓度随电解时刻的改变规则如图6。图6 不同液固比时浓度随时刻的改变
从图中能够得出,当液固比太小时,因为化学浸出耗费的酸添加,使电解液中酸度下降,MnO2的复原速率下降,因而液固比6∶1时锰离子浓度最低,液固比太大时也不利于复原浸出,适宜的液固比为8∶1。图7 液固比不同的表观电流效率
图7为不同液固比条件下,表观电流效率随液固比大小的改变。在液固比为6∶1时,电流效率运高于100%,首要因为矿样量的添加,使化学浸出量大起伏进步,电化学浸出量相对下降。液固比8∶1与10∶1时的电流效率根本相同。液固比持续增大到12∶1时,电流效率快速下降,标明太大的液固比不利于电解复原。
(四)温度的影响
按液固比为8∶1,将磨细的正极部分参加浓度为1.0mol/L的硫酸溶液中,用恒温水槽保持电解液温度别离在20、35℃和40℃,在1.26A恒流下进行电解,试验成果如图8。从图中能够看出,在本试验的温度范围内,温度对浸出速率影响较小。图8 不同温度时锰浓度随时刻的改变
(五)浸出机理
依据一般固体浸出遵从的“未反响核减缩模型”,将不同电流、酸度的浸出率代入1-(1-α)1/3中,做1-(1-α)1/3与时刻的曲线,成果见图9与图10。图9 不同电流时浸出时刻与1-(1-α)1/3的联系图10 不同酸浓度时浸出时刻与1-(1-α)1/3的联系
由图9、10可得该浸出反响遵从“未反响核减缩模型”,生成物硫酸锰溶于水,固相二氧化锰的外形尺寸随反响的进行而减小直到消失。
若反响速度受化学反响操控,应契合:k't=1-(1-α)1/3,若反响速度受界面扩散操控,应契合: K〃t=1-2/3α-(1-α)2/3 。 将20℃和40℃浸出前1h的浸出率别离代入式1-(1-α)1/3和1-2/3α-(1-α)2/3中,对浸出时刻别离做曲线,成果标明均非线性联系。这阐明既不是界面扩散操控,也不是化学反响操控,估测应为混合操控。
将上述2个温度下浸出1h后的浸出率代入1-(1-α)1/3,与时刻有杰出线性联系,如图11所示,标明浸出速率应为化学反响操控。核算得两直线的斜率为0.0002、5 E-05,即为表观速度常数,将之代入Arrhenius公式:
1nK=1nA-Ea/RT
式中K-表观速度常数:
Ea-浸出活化能;
T-反响绝对温度:
R-普适常数,8.314。
求出反响的活化能为52.5kJ/mol,这就进一步阐明浸出反响速率为化学反响操控。图11 不同浸出温度时浸出时刻与1-(1-α)1/3的联系
三、定论
(一)废旧干电池正极材料的离子膜矿浆电解浸出反响速率可由“未反响核减缩模型”来解说,浸出能够大致分为3个阶段:第一阶段根本在15min内完结,首要为可溶性锰化合物的硫酸浸出;第二阶段发作在浸出开端15min至1h之间,浸出反响的操控过程为混合操控;第三阶段发作在浸出反响1h后,浸出速率由化学反响操控,表观活化能为52.85 kJ/mol。
(二)经过单要素试验成果标明较佳条件为:电流密度150 A/m2,即电流1.26A,硫酸浓度1.0mol/L,液固比8∶1,温度20℃。在此条件下恒定电流通电90min,收回率为25.77%,表观电流效率为101.1%。
离子稀土
2017-06-06 17:50:13
离子稀土发现、命名与提取工艺发明大解密稀土是稀土族元素的简称,人们往往将17种元素划归于稀土大家族。我国是稀土资源最丰富的国家,储量和
产量
均居世界首位。离子型稀土是我国特有的一种新型的稀土矿产资源。以其配分齐全、高附加值元素含量高、放射性比度低、高科技应用元素多、综合利用价值大"五大"突出优点,异军崛起,独占鳌头,并从某种意义上改变、促进和加速了世界高科技的进程。离子型稀土第二代提取工艺--"原地浸矿工艺",于1996年荣获"八五"国家科技攻关重大成果奖,是国家"八五"科技攻关中"十大世界领先技术成果"之一,1997年荣获国家发明奖。该项研究成果1996年被中央电视台在新闻联播节目中予以报道,这是我国特有的离子型稀土自1970年发现、命名和二代提取工艺发明以来,在经历25年保密管理之后,首次向国内外的正式公开"亮相"。 离子型稀土的技术是我国完全拥有的自主知识产权。赣州
有色
冶金研究所是我国离子吸附型稀土矿的发现、命名和二代稀土提取工艺科技成果的主要享有单位。时任赣州
有色
冶金研究所分管科研副所长、后任所长的丁嘉榆同志,作为离子型稀土矿第二代提取工艺的发明及应用的主要参与者、领导者,对这一事件的历史发展进程有着刻骨铭心的记忆。应记者之约,丁嘉榆同志对这一历史事件进行了全面地、系统地回顾和总结。时至1970年,在过去长达175年的稀土矿产资源开发利用史中,人们发现自然界中含稀土元素及其化合物的矿物多达 200 种。但真正实际有工业利用价值的稀土矿物原料却为数不多,数量约十种左右。主要有独居石、铈硅石、氟碳铈矿、硅铍钇矿、磷钇矿、褐帘石、铌钇矿、黑稀金矿。但这些矿物中却大部份含有一定数量的铀或钍,而且稀土矿物均以固态、矿物相矿物性态存在,它们往往是与放射性元素共生或伴生 。 20世纪后期,随着世界范围内高科技及其工业化进程突飞猛进的发展,尤其是自20世纪80年代以来,全球范围内对中、重稀土元素的使用量激增,其中又特别是对钕、钐、铕、钆、铽、镝、钬、铒、钇等稀土元素的需求量剧烈地增长。鉴于下述原因:一是在传统的稀土矿产资源中,上述大多数稀土元素的含量有限,获取稀土精矿较为困难;二是由于生产工艺的繁锁,流程很长,成本较高,
价格
昂贵,若得工业化应用,难度很大,
产量
也难以满足要求;三是根据传统稀土矿床资源赋存的特点,若希望在某一矿山,同时获得上述目标的元素,难能凑效,必然要开采多个、多种不同配分的稀土矿山,才有可能同时满足上述需求。显而易见,仅仅依靠对传统稀土资源的开发,势必难于满足现代高科技高速发展态势,对有关稀土元素的需求。因此,这种局势必然导致人们对稀土新资源的追求和探索,期望着能够获得高科技所需稀土资源的可靠保障。 其实早在20世纪60年代,我国就从战略的高度,认识到中、重稀土,尤其是重稀土资源在国防建设和国民经济建设中的重要作用。20世纪60年代中叶,原冶金工业部根据国家军工计划任务的安排,组织了南方重稀土资源科研大会战。旨在针对南方某矿围岩中,通过科技攻关,获得代号为"6号产品"的重稀土产品。经参战单位的协同攻关,已打通工艺流程,并拿出"6号产品"样品。但成本很高,工业化实施存在困难。然而接踵而至的"文革",会战只好暂时中断。在几经周折,使用传统试验研究方法均遭失败的情况下,依然不惧艰难,百折不挠,坚持探索,努力攻关。经过艰苦的工作,抛弃了以往研究花岗岩风化壳稀土矿床的传统做法,创造性地采用稀土可溶性分析和矿浆树脂吸附等多种综合技术手段,精诚所至,金石为开,终于逐步地揭开了这种"不成矿"的"离子吸附型稀土矿"的奥秘。更多有关离子稀土的内容请查阅上海
有色
网