您所在的位置: 上海有色 > 有色金属产品库 > 钒电池的应用

钒电池的应用

抱歉!您想要的信息未找到。

钒电池的应用百科

更多

钒的主要应用

2019-03-08 12:00:43

在我国,钒90%左右用于钢铁工业,钒在钢中的使用首要是经过增加钒来提 高强度和耐性。在结构钢中参加0.1%的钒,可进步强度10%—20%,减轻结构分量15%—25%,降低成本8%—10%。因为钒钢具有强度大,耐性、耐磨性及耐蚀性好的特色而广泛使用于输油(气)管道、建筑、桥梁、钢轨和压力容器等工程建设中。2000年我国钒钢使用量现已到达120万t/a,含钒钢使用量年均增加10%。 钒和钛组成重要的金属合金Ti—6Al—4V,用于飞机发动机、宇航船舱骨架、、军舰的水翼和引入器、蒸汽涡轮机叶片、火箭发动机壳等。此外,钒合金 还使用于磁性材料、硬质合金、超导材料(如V,Ca)及核反应堆材料等范畴。国内出产钒铝中间合金的厂商有宝鸡有色金属加工厂和锦州铁合金厂,国内的钒铝合金产值不能彻底满意国内需求,每年需要从国外进口一部分,钒铝中间合金的商场发展潜力相当大。 在化工中首要使用的钒制品有深加工产品V2O5,(98%—99.99%),NH4VO3()、NaVO3及KVO3等。它们别离使用于催化剂、陶瓷着色剂、显影剂、干燥剂及出产高纯氧化钒或钒铁的质料。V2O5作催化剂具有特殊的活性,其它元素难以替代。国内的粉状V2O5现首要由石煤提取。因为国内相关厂商规模小、产值低、且难出产高级产品。因而这部分高级产品现首要靠进口处理。 钒的盐类的色彩五颜六色,有绿、红、黑、黄等。如二价钒盐常呈紫色;三价钒盐呈绿色,四价钒盐呈浅蓝色,四价钒的碱性衍生物常是棕色或黑色,而五氧化二钒则是赤色的。这些色彩缤纷的钒的化合物,被制成艳丽的颜料,如加到玻璃中,可制成彩色玻璃,也能够用于制作各种墨水。 此外,二氧化钒薄膜和超细粉体因为其本身共同的相变特性,可广泛使用于电学和光学开关设备、太阳能操控材料、光盘介质材料、涂层、热敏电阻等范畴;北京烁光特晶科技有限公司研制出长距离光纤通讯用的钒酸钇晶体材料,具有双折射率大、透过率高、透光性好,是功能极佳的双折射晶体。

含钒石墨尾矿提钒新技术应用实例

2019-02-20 11:03:19

金溪石墨矿是一个储量达2600万t的大型鳞片石墨矿床,矿石石墨含量高,固定碳均匀档次为10.18%。该矿最大的特色是矿石中有档次较高的钒。钒以氧化钒的方式赋存于钒白云母中,钒白云母呈片状或扇状集合体与鳞片石墨共生,单晶片径0.2~5mm,集合体可达1cm以上,大多沿片理平行散布。石墨矿石中钒白云母的含量占5%~10%,V2O5的含量为0.4~0.7%。该类型的伴生钒资源是我国发现的一种新的共同的钒资源类型。 华东理工大学的研讨标明:选用一段磨矿4次浮选工艺选别金溪石墨矿,可得到固定碳含量为73.72%的石墨精矿;选用酸法和碱法对浮选石墨精矿进行化学提纯,能够取得固定碳含量≥99.9%的高纯石墨产品;石墨矿中伴生的钒绝大部分都进入尾矿中,若随尾矿被抛弃,将构成钒资源的巨大糟蹋。因为金溪石墨矿中的钒是一种新的共同的钒资源类型,钒首要以类质同象的方式赋存在钒的钒白云母中,而钒白云母的结构十分安稳,因而金溪石墨矿中钒的提取技能尚有待研讨。有关专家从维护资源的视点动身,提出要开发金溪石墨矿,有必要处理以下几个问题:1、石墨矿石中钒的赋存状况;2、含钒白云母与石墨的别离;3、钒白云母中钒的提取。 钒作为具有重要战略意义的稀有金属,在航空工业、原子能工业、宇航工业、国防顶级工业等范畴中被越来越广泛地使用,是一种不行短少的重要资源。因而,对金溪石墨尾矿进行提钒技能研讨,对促进该石墨矿的开发,进步我国钒资源的保证程度具有现实意义。 一、实验计划 金溪石墨矿石现在发现的仅有的含钒石墨矿类型,该类型含钒资源的提钒技能在国内均属空白。而从石煤中提取钒是我国取得钒资源的一个重要途径,我国石煤提钒技能十分老练,为含钒石墨尾矿的提钒打下了较好的技能根底。金溪石墨矿中钒的赋存状况等虽与石煤有必定的不同,但也有其相似之处。本实验在学习石煤提钒技能成果的根底上,对金溪石墨尾矿进行提钒技能探究研讨。 依据金溪石墨矿石中钒的特色,结合石煤提钒工艺技能,拟定了从金溪石墨尾矿中提钒的实验计划,其准则工艺流程如下图所示。图  金溪石墨尾矿提钒准则工艺流程 二、实验质料、试剂及仪器设备 实验质料:华东理工大学对金溪石墨矿石进行浮选实验取得的尾矿。石墨尾矿的粒度为-0.074mm,化学组成见表1。 表1  金溪石墨矿石浮选尾矿化学组成  %成分V2O5Fe2O3TiO2SiO2Al2O3CaOMgOK2ONa2O烧失含量0.5562.231.6079.339.890.234.402.560.131.30 试剂:浓硫酸,分析纯;火油,工业级;磷酸三丁酯(TBP),工业级;磷酸二异辛酯(P-204),工业级;碳酸钠,分析纯;过氧化氢,分析纯;氯化钠,分析纯;,分析纯;,分析纯。 实验设备及仪器:马弗炉,SXZ-10-12型;恒温水浴锅HH-2型;电动拌和器,JJ-1型;冰箱,家用型。 实验中钒的测验依照国标GB731511-1987,选用氧化-硫酸亚铁铵复原滴定法。 三、实验成果 (一)加酸焙烧-水浸 金溪石墨尾矿中含钒的矿藏为钒绿云母,v首要以类质同象方式替代硅酸盐矿藏晶格中的Al。含钒的铝硅酸盐矿藏结构十分安稳,难以被水、酸和碱溶解,归于难浸难溶物质。要浸出含钒铝硅酸盐矿藏中的钒,有必要先损坏铝硅酸盐矿藏的晶体结构,使赋存在铝硅酸盐中钒的价态发生变化,即便三价或四价钒转变为五价钒。有实验标明,焙烧可使云母类矿藏中的V3+削减,V4+和V5+增多。 实验发现,选用直接氧化焙烧和氯化钠焙烧工艺,钒的浸出率均很低。因而,改用加酸焙烧工艺进行了探究实验。成果标明,在500℃下加硫酸焙烧2h后进行水浸,钒的浸出率显着比直接氧化焙烧和氯化钠焙烧时高得多。 依据探究实验成果,进行了加酸焙烧-水浸条件实验。实验办法为:称取100g石墨尾矿样品于坩埚中,参加10mL浓H2SO4和适量的水,混合均匀,置于马弗炉中,在必定的温度和时刻下焙烧,然后取出天然冷却。将冷却后的焙烧产品置于烧杯中,参加500mL水,于90℃恒温水浴中拌和浸出必定时刻,使钒以离子方式转入溶液中,然后将渣滤出。 通过实验,断定石墨尾矿加酸焙烧-水浸的最优条件为:硫酸参加量10%,焙烧温度550℃,焙烧时刻3h,浸取时刻2h。在此条件下,钒的浸出率到达95.4%~95.6%,得到的滤渣量超越80g。 (二)除钾除铝 焙烧产品的浸出进程中,石墨尾矿中的Al2O3、Fe2O3、K2O等组分也会随钒一同溶出,以K+、Al3+、Fe3+离子的方式进入浸出液中,因而在提钒前有必要对浸出液进行净化处理。实验选用冷凝结晶和加络合的办法使钾和铝以钾明矾[K2SO4·Al2(SO4)3·24H2O]和铵明矾[(NH4)2SO4·Al2(SO4)3·24H2O]的方式结晶出来(钒不参加结晶),到达除钾除铝的意图。 实验办法:先将浸出液浓缩到所需浓度,放入5℃左右的冰箱中冷凝24h,使钾和部分铝结晶成钾明矾晶体,然后将钾明矾晶体从浸出液中别离出来。别离出钾明矾晶体之后的浸出液中还有部分Al3+存在,通过参加必定量的,一起参加适量的浓硫酸以弥补硫酸根离子,使剩下Al3+被根离子和硫酸根离子络组成铵明矾结晶而得以别离。 依据实验,加络合的最佳条件为浸出液、、浓硫酸的体积比=50∶7∶3.1(溶液pH值在1左右)。 依照上述办法,处理100g石墨尾矿可取得钾明矾9.2g、铵明矾23.2g。 (三)萃取和反萃取 通过焙烧-浸出的办法将含钒白云母中的钒转变为水溶性或酸溶性的含钒离子团(如 等)后,用有机萃取剂(85%火油+5%TBP+10%P-204)将浸取液中的钒离子转移至有机相中,然后使钒与其它金属离子别离(其它金属离子大都不能进入有机相)。含钒有机溶液再用反萃取剂(0.5mol/L的Na2CO3溶液)进行反萃取,使钒从有机相转入再水相中。 实验办法:使水相(浸出液)与有机相(萃取剂)的体积比=4:1,调整混合液的pH值在2~3之间,于分液漏斗中振动、静置,使钒从水相转入有机相中,然后测萃余液(水相)中剩余钒的含量。对萃取液(有机相)依照水相(反萃取剂)与有机相的体积比=1:4的条件进行反萃,使钒转入水相中,然后测水相中钒的含量。 实验成果标明,萃取-反萃取的最佳pH值为2.6。在此条件下,浸出液通过3次萃取,钒的总萃取率到达87.6%;萃取液通过1次反萃取,钒的反萃取率到达99.9%。 反萃取液中的钒呈四价,沉钒之前须将其用氧化成五价。氧化后在拌和条件下用调溶液pH=1.9~2.2,然后在90~95℃下持续拌和1~3h,沉积出(红钒),沉积率可到达99.0%。 实验标明:pH值控制在2左右可取得最高沉积率;进步温度可加快钒的沉积;拌和能使沉积物均匀分散,进步反应速度,特别是在沉积后期溶液中钒浓度不断下降时,拌和的影响更显着。 沉积出的红钒经洗刷后,在氧化气氛中于500~550℃下热解2h,可得到棕黄色或橙红色粉状精钒产品。 四、三废处理计划 石墨尾矿提钒的进程中,会发生废气、废水和废渣,假如直接排放会对环境构成极大的损害,因而有必要加以管理。 废气管理:废气首要为石墨尾矿加酸焙烧进程中发生的SO2气体。此外,烟道中还含有必定量的烟尘。关于SO2气体,能够选用天然高比表面积多孔矿藏材料进行吸附。如斜发沸石、丝光沸石具有杰出的耐酸、耐高温功能,能够用来吸除SO2气体,并可通过解吸办法收回SO2。 废石管理:浸出、萃取和沉钒进程中会发生废水,其间含有酸、有机物、金属离子等,不能直接排放,须通过管理。可选用直接循环回用工艺技能,尽量削减废水排放量。终究排出的废水,可选用中和技能处理其间的废酸,选用活性炭吸附工艺处理其间的有机物。对废水中的铁、钛、镁等金属杂质,可使其以氢氧化物的方式沉积;对少数的铬离子等有害元素,能够使用构成的氢氧化物进行吸附。 废渣管理:废渣首要指石墨尾矿经焙烧浸出后发生的滤渣。该滤渣的首要组分是由SiO2、Al2O3、CaO、MgO、K2O、Na2O、Fe2O3、TiO2等组成的硅酸盐,并且粒度较细(-300目),又通过热处理,因而具有较高的活性,能够将其替代粉煤灰和矿渣作为水泥掺合料和出产建筑材料的质料,然后完成废渣的资源化。 五、定论 选用加酸焙烧-水浸-除钾铝-萃取-反萃取-氧化沉钒处理金溪石墨矿浮选尾矿,钒的浸出率、萃取率、反萃取率和沉积率可别离到达95.5%、87.6%、99.9%和99.0%,一起可取得对浮选尾矿产率别离为9.2%和23.2%的钾明矾和铵明矾。此外,浸出渣首要由硅酸盐组成,并具有较高的活性,能够作为水泥掺合料和出产建筑材料的质料。

话说铝燃料电池: 铝燃料电池的应用(一)

2019-01-08 17:01:35

车辆牵引动力 铝燃料电池可分为功率型的与容量型的,前者适用于牵引动力,应用于车辆、航空航天器、航船等领域;后者主要适用于UPS(不间断电源),应用于通讯基站、移动式充电桩、智能微电网等,以及应急电源、备用电源、信号电源、便携电源等。铝燃料电池可设计成储备电池,使用前进行活化,使用期满后,可通过移去消耗的铝阳极,换上新的铝阳极,此过程称为机械再充,铝阳极被称为可更换极。机械可再充铝燃料电池已用于取代因质量和噪声限制而不适合某些方面应用的柴油和汽油发动机,且应用潜力巨大。下面介绍一些在车辆领域,东深新能源科技有限公司的铝燃料电池系统的应用实例。 E2 RPS电电并行充供电系统 此系统已在国内某品牌SUV(sport utility vehicle,多用途跑车)得到应用,在标准马路上试跑了1008km,与标配锂电池的技术参数比较见表1。 乘人车不同行驶速度下续航1000km并行方案配置数据 东深新能源科技有限公司对装有纯锂离子电池与E2 RPS铝燃料电池的某型乘人车进行上路试跑,它们的并行方案配置数据对比见表2,由表中的数据对比可见,铝燃料电池的各项指标明显优于纯锂电池的。 特斯拉汽车公司生产的铝燃料电动汽车每行驶400km——600km放出一次氢氧化铝Al(OH3),行驶1600km——3100km(约3个月)添加或换一次铝燃料。 汽车动力指标比较 东深新能源科技有限公司对锂离子电池、氢燃料电池、铝燃料电池、汽油作为汽车动力源时的各项指标作了比较,铝燃料电池优势极为明显,而从长远来看尤为突出。2016年,中国科学院宁波材料研究所研制出石墨稀阴极千瓦级铝燃料电池,其性能得到更大全面提升。 铝燃料电池除可全面广泛用作乘人小车、公共汽车、冷藏车等的牵引动力外,在中国还已用作全铝纯电物流车的动力。中通客车公司自主研发生产的全铝厢式纯电物流车LCK5045XXYEV6已于2017年5月底在中通公司“轻舟”生产基地正式下线。该车是中通客车公司专门面向城市物流行业打造的一款新一代纯电动物流车,车身长6m、整备质量2.9吨,较大总质量4.5吨,装载空间13.5m3,耗电量低,仅0.25kWh/km。 小飞机及舰船驱动 铝燃料电池除可以广泛应用于驱动各种汽车外,还可以驱动舰船与用作AIP系统(自动图象处理系统),以及用作小飞机的动力源。国内一企业的双人座轻型电动飞机用铝燃料电池驱动,该机翼展14.5m,机长6.6m,较大起飞质量500kg,较大载荷230kg,较大飞行速度160km/h,目标飞行时间≥2h,而眼下全世界较长飞行时间的电动飞机为45min。

话说铝燃料电池:铝燃料电池的应用(一)

2019-01-08 09:58:37

车辆牵引动力 铝燃料电池可分为功率型的与容量型的,前者适用于牵引动力,应用于车辆、航空航天器、航船等领域;后者主要适用于UPS(不间断电源),应用于通讯基站、移动式充电桩、智能微电网等,以及应急电源、备用电源、信号电源、便携电源等。铝燃料电池可设计成储备电池,使用前进行活化,使用期满后,可通过移去消耗的铝阳极,换上新的铝阳极,此过程称为机械再充,铝阳极被称为可更换极。机械可再充铝燃料电池已用于取代因质量和噪声限制而不适合某些方面应用的柴油和汽油发动机,且应用潜力巨大。下面介绍一些在车辆领域,东深新能源科技有限公司的铝燃料电池系统的应用实例。 铝燃料电池可分为功率型的与容量型的,前者适用于牵引动力,应用于车辆、航空航天器、航船等领域;后者主要适用于UPS(不间断电源),应用于通讯基站、移动式充电桩、智能微电网等,以及应急电源、备用电源、信号电源、便携电源等。铝燃料电池可设计成储备电池,使用前进行活化,使用期满后,可通过移去消耗的铝阳极,换上新的铝阳极,此过程称为机械再充,铝阳极被称为可更换极。机械可再充铝燃料电池已用于取代因质量和噪声限制而不适合某些方面应用的柴油和汽油发动机,且应用潜力巨大。下面介绍一些在车辆领域,东深新能源科技有限公司的铝燃料电池系统的应用实例。 E2 RPS电电并行充供电系统 此系统已在国内某品牌SUV(sport utility vehicle,多用途跑车)得到应用,在标准马路上试跑了1008km,与标配锂电池的技术参数比较见表1。 乘人车不同行驶速度下续航1000km并行方案配置数据 东深新能源科技有限公司对装有纯锂离子电池与E2 RPS铝燃料电池的某型乘人车进行上路试跑,它们的并行方案配置数据对比见表2,由表中的数据对比可见,铝燃料电池的各项指标明显优于纯锂电池的。 特斯拉汽车公司生产的铝燃料电动汽车每行驶400km——600km放出一次氢氧化铝Al(OH3),行驶1600km——3100km(约3个月)添加或换一次铝燃料。 汽车动力指标比较 东深新能源科技有限公司对锂离子电池、氢燃料电池、铝燃料电池、汽油作为汽车动力源时的各项指标作了比较,铝燃料电池优势极为明显,而从长远来看尤为突出。2016年,中国科学院宁波材料研究所研制出石墨稀阴极千瓦级铝燃料电池,其性能得到更大全面提升。 铝燃料电池除可全面广泛用作乘人小车、公共汽车、冷藏车等的牵引动力外,在中国还已用作全铝纯电物流车的动力。中通客车公司自主研发生产的全铝厢式纯电物流车LCK5045XXYEV6已于2017年5月底在中通公司“轻舟”生产基地正式下线。该车是中通客车公司专门面向城市物流行业打造的一款新一代纯电动物流车,车身长6m、整备质量2.9吨,zui大总质量4.5吨,装载空间13.5m3,耗电量低,仅0.25kWh/km。 小飞机及舰船驱动 铝燃料电池除可以广泛应用于驱动各种汽车外,还可以驱动舰船与用作AIP系统(自动图象处理系统),以及用作小飞机的动力源。国内一企业的双人座轻型电动飞机用铝燃料电池驱动,该机翼展14.5m,机长6.6m,zui大起飞质量500kg,zui大载荷230kg,zui大飞行速度160km/h,目标飞行时间≥2h,而眼下全世界zui长飞行时间的电动飞机为45min。

黑色金属钒简介及应用

2019-03-07 10:03:00

钒(V)元素简介 单质:钒 单质化学符号:色彩和状况:银白色。密度:5.96克/厘米3。熔点:1890±10℃沸点:3380℃,发现人:塞夫斯唐姆 发现时代:1830年元素描绘高熔点金属之一,呈浅灰色。密度5.96克/厘米3。熔点1890±10℃,沸点3380℃,化合价+2、+3、+4和+5。其间以5价态为最安稳,其次是4价态。电离能为6.74电子伏特。有延展性,质坚固,无磁性。具有耐和硫酸的身手,并且在耐气-盐-水腐蚀的功能要比大多数不锈钢好。于空气中不被氧化,可溶于、硝酸和。

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。

含钒溶液的水解沉钒

2019-01-21 18:04:28

含钒溶液经净化后,钒多以五价钒酸根存在。随溶液酸度增加,钒酸根会以钒酸的形式析出,俗称红饼。钒的水解主要取决于酸度、温度、钒浓度及杂质的影响。析出的沉淀也会因pH值、钒浓度的变化呈不同的聚合状态。有关的机理在认识上还不统一。大致可勾画如下,由图1及图2关于钒酸水溶液的性质图可以看出:钒浓度/(mol·L-1)溶液pH值主要的钒离子水解产物低,10-4酸性低4~8高,50×10-32~3高,50×10-31~6高,50×10-310~12高,50×10-313~当pH值约1.8时,V2O5的溶解度最小,约230mol/L。V2O5与H2SO4之间的浓度关系如下:[H2SO4]/(g·L-1)2.312.017.121.2V2O5/(g·L-1)0.240.781.142.04 表1列出一组V2O5-H2SO4-H2O系的数据。 表1  V2O5-H2SO4-H2O系统平衡数据30℃75℃V2O5/%H2SO4/%密度/(g·㎝-3)析出相V2O5/%H2SO4/%析出相1.637.31.066①1.4817.43①4.7923.51.219①2.0024.18①7.437.261.370①5.0633.0①4.4145.01②5.4838.02②5.554.361.519②5.2741.01②9.1460.421.661②5.1346.56②5.4466.76③8.0952.31③1.5974.67③9.0857.33③6.2173.26④10.860.20④0.27680.411.727④7.514.98④0.05399.161.817④7.5270.50④9.2640.491.440①②0.1393.44④10.4962.221.734②③6.1034.30①②1.5077.481.714③④8.2949.53②③11.9657.56③④表中析出相:①V2O5·3H2O,V2O5 红褐色、针状; ②V2O5·2 H2O,2SO3·8H2O 粉红色、无定形、棕红色、针状; ③V2O5·H2O,V2O5·2SO3·3H2O 淡黄、针状、红色、柱状; ④V2O5,V2O5·5SO3·4H2O 黄色、针状、黄色、晶状。 对钒水解有重要影响的因素有温度、酸度、钒浓度及杂质含量等。图1  图2  V2O5溶解度与pH的关系(25℃) 1—V2O5/ ,lg =-0.82-pH;2—不析出V2O5 lg =-0.04-pH;3—V2O5/ ,lg =-4.44+pH; 4—不析出V2O5,lg =-3.00+pH;5— / , pH=1.03-0.333 lg ;6— / ,pH=2.62; 7— / ,pH=7.38+lg图2  钒在水溶液中的状态与钒浓度及pH的关系(25℃) 一、温度 钒水解沉淀应在90℃以上进行,最好在沸腾状态。不同温度及酸度下沉淀率与时间的关系见图3。图3  沉淀率与时间的关系:Ⅰ-0.855;Ⅱ-0.954;Ⅲ-1.16;Ⅳ-1.18 二、钒浓度 溶液中含V以5~8g/L为宜。浓度过高,则结晶成核过快,易形成疏松的滤饼,吸附较多杂质及游离水。红饼组成xNa2O·yV2O5·z H2O中的x/y偏大。当溶液中含钒浓度低时,则会有负面影响。 三、杂质的影响 磷与钒形成稳定的络合物H7[P(V2O5)6],还与Fe3+、Al3+形成磷酸盐沉淀,会污染红饼。为此要求净化后液含P小于0.15g/L。当酸度较高时,可使FePO4、AlPO4的溶解度提高,而减少磷对红饼的污染。 硅、铬、铝、铁等离子浓度较高时,水解生成的胶体沉淀物,妨碍V2O5晶体的长大,使水解速度变慢,生成的红饼沉降、过滤困难。适当提高酸度,可以改善此类不良的影响。 氯离子可以加快钒水解沉淀的速度。而硫酸钠含量在20~160g/L,会使钒水解沉淀速度下降,主要表现为延长晶核孕育期。氯化钠或硫酸钠过多都会使红饼中V2O5含量降低。 四、搅拌 钒的水解沉淀是一个伴有热量、质量传递的水解反应过程,因此必须保持适宜的搅拌速度,已达到临界悬浮状态,没有任何死角为宜。工业用的机械搅拌沉钒罐为圆柱形,内径2~5m,容积4~5m3。罐内壁衬耐酸瓷砖或辉绿岩。中心安装不锈钢搅拌器。罐壁附近设不锈钢蒸汽加热管。 水解沉钒是间歇作业,先加入25%的沉钒前液,开始搅拌,再加入所需的硫酸,然后通蒸汽加热到90℃以上接近沸点。继续添加剩余的75%的沉钒前液。最后分析溶液中游离酸及钒的浓度,调整酸度或补加沉钒前液,以使最后溶液中含钒小于0.1g/L为终点。停止加热、搅拌、再静置10~20min后过滤,即得红饼。根据生产规模,过滤设备可采用吸滤盘、压滤机或鼓式真空过滤机。 红饼须先经干燥去除水分,再在1073~1173K温度下熔化,浇铸成片状,作为炼钒铁的原料。 水解沉钒早期用得比较普遍,但所产红饼熔片V2O5的含量仅为80%~90%,纯度较低,且耗酸量大,污水量大,故现已基本为铵盐沉钒所取代。

电池用铝阳极材料的开发与应用

2019-03-08 12:00:43

Hulot于1850年提出铝作为Zn(Hg)/Zn-SO4/AL电池电池的阴极。1857年铝初次作为阳极运用在AL/HNO3/C电池中,该电池的电动势为1。77V。有实践意义的铝电池是20世纪50年代开端研发的AL/MnO2电池。20世纪60年代初证明了铝-空气电池的可行性。70年代中期,美国及西欧发达国家以对铝合金阳极材料的研讨要点主根体现在对高速电动力源阳极的研发,如美国水下系统中心(NUSC)、通用电气公司、法国沙伏特公司(SAFF)、加拿大铝业公司以及俄罗斯、日本等都对铝合金阳极材料的开发运用进行过深入研讨,并获得成功。我国在这方面起步较晚,于20世纪80年代初期才开端着手研讨,经过多年的探索和研发,也获得了可喜成绩。     近年来,经过开发各种新式的铝合金电极及相应的电解质增加剂,更使铝电池的研讨获得突破性的发展,铝合金电池产品在户外便携设备、应急电源、备用电源、机动车辆和水下潜艇的驱动等方面得到了广泛运用。        1、阳极材料的开发   铝作为阳析材料需求活化,可是活化后的铝阳极的抗腐蚀功能下降。因而电极的活化和抗腐蚀功能的进步是铝阳极研讨进程中需处理的首要问题。铝电极的活化是经过合金完成的,效果是减小氧化膜的厚度或减小直接被水复原反响速率。例如当发作阳极化时,在铝-镓合金的表面会有镓的富集,因而战胜氧化物表面膜的阻止效应是到达进步电压意图有用处径之一。研讨标明,金属CA、IN、SN、PB、BI、HG、CD、MG及MN等进步铝合金阳极归纳功能的首要元素。例如,增加比铝高价的合金元素,如SN,可使铝氧化膜发作孔隙,然后下降氧化膜的电阻。在铝合金中增加SN,高价SN在氧气膜表面替代AL,发作一个附加空穴,损坏了氧化膜的细密性,然后使氧气膜电阻  用铝阳极与二氧化锰构成的电池,理论电压要比锌-二氧化锰电池高0.9V,且能够防止锌电极含的问题。因为金属铝表面卜的氧化膜,实践电压仅比锌电池高0.2V,且当氧化膜被损坏时会发作金属腐蚀。近年来,经过优化合金组成和选用电解质增加剂的两层途径,铝阳极合金的耐腐蚀功能已大幅度进步。如人们发现,向铝合金中参加必定量的锰元素,且与其间的杂质含量成必定的比例关系,能够有用地减小杂质Fe的有害影响,并能很大程度上下降铝合金阳极的制作本钱。美国专利4554131t5:也指出合金元素Mn在其专利合金中对消除有害杂质Fe影响有必定的效果,一起还指出,除有害杂质Fe影响有必定的效果,一起还指出,向合金中增加—定量的镁,有助于进步合金在空载条件下的抗腐蚀功能。     经过增加少数合金元素的办法制成的含有镁、钙、锌、镓、铟、、锡、铅,等元素的二元、二元或四元合金,能够有用地活化铝电极并增强其抗腐蚀功能。       迄今为止,研讨的铝合金阳极材料功能较好的有Al-Ga-Mg系列合金、A1—in-mg和Al Ga—Bi Pb系列合金。  (1)Al-Ga-Mg系列合金     Al-Ga-g系列合金是美国专利合全”典型本钱(分量%)为:Fe0.02%—O.10%O.02—O,20%,Ga0.02—O.06%,Mg0.2.00%,Si为fe含量的0.5-2位。与其它阳极合金比较,该合金的优势在于下降了铝阳极材料的制作本钱,不用99。99%的高纯铝,而用94.18—99.95%的纯铝制作。Al—Ga—Mg系列合金在含1 0MAl3十和0.06MSn4&的4.OMNaOH溶液中腐蚀放电,在施加电流密度较小时,体现出了较好的电化学功能,但在较高电流密度下却不尽善尽美。   (2)Al—In—Mg系列合金   其基本成分(分量%)为:o.02—o.15%.O.02-0.20%Mn,O.05—l 0%Mg,余量为铝,铝的纯度至少为99.95%,最好不低于99.99%?。Al—in—Mg系列合金在纯碱液中就可获得优秀的电位与腐蚀抗力平衡,而不用向电解液增加锡酸钠缓蚀剂,由此防止厂缓蚀剂对阳极功能的晦气影响,Al-in—Mg系列合金在碱性溶液高电流密度放电的条件下.体现出较好的电化学功能  (3)al-ga-bi-pb系列合金   Al—Ga—Di—PL系列合金,是西南铝业(集团)有限责任公司与武汉712所协作一起研发成功的一种高功能阳极材料。该材料在中性溶液的电化学功能优秀,而在碱性溶液中的功能al—In—Mg合金稍差:Al—Cd—ni—Pb系系合金首要用于民用电动力源以及海上无电区,如航标灯。        2 研讨材料熔炼铸造工艺的研讨   作为电极活性材料的铝合金,有必要具有优秀的电化学功能和耐腐蚀功能。要想到达这一点,铸炼铸造是非常重要的第一步。在熔炼铸造进程中常现3种严峻缺陷:偏析、热裂及带人有害杂质元素。铝阳极增加合金元素的性质,是影响合金熔炼铸造工艺参数的首要因素。由此,确定向铝中增加高比重、低熔点金属的熔炼铸造工艺,以防止合金成分偏析、铸锭搀杂以及热裂等缺陷,一起防止工艺操作进程中有害杂质元素的混入而影响铝阳极耐腐蚀功能,是铝合金阳极熔炼铸造工艺研讨的首要内容。 :。   (1)阳极铝合金铸锭存在枝晶偏析和晶界偏析;晶界偏析首要是合金元素构成低共溶混合物的成果;   (2)削减或防止合金元素积累(构成第二相或许在晶界富集)能显着下降铝的腐蚀速率;   (3)低共溶混合物在晶界集合,是导致铸锭热裂增人的首要原因。合理挑选铸造参数,改动铸锭凝结办法,是防止铸锭热裂的有用办法。例如,选用金属水冷模铸造成或进行高温热处理等;   (4)严格操控杂质Fe,Si含量,削减析氢腐蚀。研讨标明.选用高品位原材料和选用非铁质具或用涂料维护,选用少数掩盖剂、惰性气体精粹是操控杂质fe、5i等含量的有用办法。   3、铝阳极材料的运用   铝阳极材料一般运用于两类电池。一类水溶液电池,包含铝/二氧化锰电池、铝/电池、铝/空气电池、铝/过氧化氢电池以及近来开发的铝/铁酸电池和铝/硫电池等。另一类是熔盐和常温有机熔盐电池,包含铝/、铝/氮化铁、铝/和铝/二硫化铁等电池。  3.1 水溶液电解质电池   与融熔盐或其他非水有机溶液剂系统比较,水溶液电解质系统具有操作简略、电导率较高、报价低廉、环境污染少等长处。传统的水溶液电池(如铅酸电池和镍镉电池)的缺陷在于能量密议较小和污染环境。比较之下,铝电池系统的电化学功能和环境污染方面要优胜得多。  3 1 1 铝—二氧化锰电池   二氧化锰是典型的阴极材料,与锌阳极构成的干电池是市场上盛行的产品之一,用铝作阳极与一氧化锰构成的电池,理论电压要比锌电池高o.9V,且能够防止锌电极含的问题。现在这类电池仅限于一些特殊用处,如选用海水作电解质,用作水下电源。  3.1.2 铝—电池   被广泛用于各种电池,与锌阳极构成的电池(选用碱性电解质)是能量密度最高的电池系统之一,因而叫以做成又薄又小的钮扣电池   因为铝比锌阳极更为优胜,铝和构成的电池得到广泛的研讨,可作为水下军事没施的驱动动力,尤其是在动力电源方面的运用更足遭到各国诲军的高度重视。   美国ELTECH公司研发厂140V,L.66kW?h的M/AgO电池系统,能量密度为82WK/kR,用于小型潜艇,据报道,选用有机聚合物粘结的电池,和碱性电解质组成的电池,容量已到达1.2Ah/3。作为新一代动力电池,铝/电池有很大的发展潜力。估计在近期,经过改进和进一步优化,质量或许能够到达150—2dOWh/kg,质量比功率可到达1000~1500W/kg  3.1.3 铝—空气电池   美国的Zammb等在1960年代证明了铝—空气电池系统在技术上的可行性:其时选用的是浓KOH溶液和高纯铝阳极:尔后北美的大多数研讨者致力于选用碱性电解质。在欧洲,Despic等首要研讨了以盐水(海水)为电解质的铝—空气电池:   铝—空气电池的容量取决于铝阳极结构和电解质中AL(OH),堆积的处理。关于铝阳极结构的设汁有3种计划。最普通的一种选用定时替换阳极。另一种是选用楔型阳极,在歪斜放置的两片阴极之间,经过重力来完成主动进料。第三种计划是选用铝屑、铝珠或铝颗粒作阳极,主动进料。   这种电池可用于水下驱动或港口、航标等照明、户外充电电源或其他军事用处:据报道,一种直径3cm的电缆电池可长达数百米,1 kglm,功率密度640Wh/kg,可在水下运用半年之久。  3.1.4过氧化氢电池 铝—过氧化氢电池是铝—空气(氧气)的一个分支。在运用气体反响物不方便(如水下运用)的条件下,过氧化氢是快捷的氧源。 这种电池的规划有两种办法,一种是选用直接向电解液中参加H2,H~vold等选用向KOH中接连增加kLO的办法,成功研发厂铝—过氧化氧电池系统,用作潜艇的能塬。该电池能够驱动潜艇屡次飞行,每次飞行36小时,中间距离1小时来弥补过氧化氧溶液。Rao等规划了多功能铝电池,当参加海水作为电解质时,电池低功率(1kW)运转,而以海水利过氧化氢混合液体作为电解质时,完成高功率(20kW)运转  3.2 熔盐和常温有机熔盐电池     因为金属铝能够从熔盐或非水有机电解质系统中电堆积,这样的电解质能够用于开发再充电的高能二次铝电池,现在人们对这种电池的研讨首要会集在选用硫及其本家元素作为阴极材料:因为硫电极存在于易贮存和溶解等问题,日本、丹麦等国家的科学家研讨厂各种过渡金属(如镍网阴极)及其硫化物电极,如FES。FE,nis等等,其间ns2和FeS是最常用的阴极材料。   在175℃下,AI/NaCI—AICb/MeS熔盐电池具有很高的放电容量。可是铝阳极在充电的进程中堆积的铝常常呈枝晶状,因而影响电极的可逆性。向电解质中增加MaCl2笄无机盐町以有用地改进堆积铝的质量。别的,高温下金属硫化物在熔体中的溶FeS2,FeS,TiS2。CR2S3,NAFES2,COS3,NIS,NI3S2,MOS3等等,其间FES2和FES是最常用的阴极材料。   近年来的研讨侧重于常温有机盐系统。能够和有机氯化物构成常温熔盐电解质系统。碱性熔体可用于一次电池,而酸性熔体才能够用于二次电池,熔体中电堆积的铝能够有用地再放电而不会引起电解质的分化,因而酸性熔体被广泛用于二次电池的开发。在常温熔盐系统中,研讨过一次和二次有AL-CL2,AL-FECL3,AL-DECL3,AL-CUCL2,AL-FES2等电池。      4、结束语。   铝是一种高温强度的能量载体,是开发电池的抱负电极材料。近年来新式铝阳极合金材料的研讨开发获得了突破性的发展,用其开发的铝电池现已广泛用于应急电源、备用电源、机动车辆和水下设备的驱动动力。铝电池已构成了铝运用电化学的一个重要分支。往后的工作要点仍是不断研发和开发功能优秀的电池用铝合阳极,并下降其制作本钱,使要其在民用电动力源范畴上也得到活跃运用。

含钒溶液的铵盐沉钒

2019-02-21 15:27:24

净化后的含钒溶液,首要是Na2O-V2O5-H2O系统,依据浸取条件的不同,可所以酸性或碱性。因为钒酸铵盐的溶度积小于钒酸钠,因而参加NH4Cl、(NH4)2SO4等 离子能够生成或多钒酸按沉积。其条件取决于溶液的酸度。 一、弱碱性铵盐沉钒 当pH值=8~9时,溶液中的钒首要以 ,即 方式存在。故参加 时,构成NH4VO3结晶分出。影响铵盐沉钒的要素如下: (一)依据图1,NH4VO3溶解度随温度下降而下降,故NH4VO3的结晶应在20~30℃条件下进行;图1  NH4VO3在水中的溶解度、密度与温度的联系 1-溶解度与温度;2-饱和溶液的密度与温度 (二) 浓度应较化学计量数大,以借同离子效应促进沉积彻底; (三)拌和、晶种效应:NH4VO3溶液易构成过饱和溶液,为此加晶种、拌和会加速结晶,如图2。图中可观察到四种条件下的结晶状况。阐明拌和加晶种可明显加速结晶的速度。图  2  NH4VO3结晶动态图 1-静置;2-参加晶种静置; 3-拌和;4-拌和下参加偏钒酸按晶种; 5-20~30℃下偏钒酸按的平衡浓度 (四)弱碱性铵盐沉钒后,残液中含钒较高,约为1~2.5g/L V2O5。操作时间长,能耗高,所得NH4VO3经煅烧后可得纯度为99%的V2O5。放出的约0.187kg/kg V2O5,应予收回。弱碱性铵盐沉钒常用于精制水解法制得的红饼。 二、弱酸性铵盐沉钒 在pH=4~6,钒首要以 存在,参加 ,则以十钒酸盐方式沉积。因为净化后液含很多钠离子,故沉积一般为:式中,x一般为0~2之间。为取得不含钠的产品,需将其溶于热水中,在pH为2的条件下重结晶,如此可得(NH4)2V6O16结晶。弱酸性铵盐沉钒的残液可使V2O5含量下降至0.05~0.5 g/L。 三、酸性铵盐沉钒 当pH=2~3时,溶液中的钒当参加铵离子时,首要以六沉积。沉钒时用硫酸调pH值,参加适量的(NH4)2SO4,在高于90℃下沉钒。本法取得的产品纯度高,沉钒速度快,沉钒率高,铵盐耗费低,约0.06kgNH3/kgV2O5,只为耗量的1/3。硫酸耗量较水解沉积法少。故已成为我国现在以钒渣为质料出产V2O5的首要办法,在国外也被广泛选用。 四、钒酸铵的煅烧分化 NH4VO3、(NH4)2V6O16的分化在450~600℃下煅烧,反响如下: 6NH4VO3=(NH4)2V6O16+4NH3+2H2O (NH4)2V6O16=3 V2O4+N2+4 H2O V2O4+1/2O2=V2O5 榜首步反响放出很多,应予收回。第二步进一步分化并被还原成四价钒,但在进一步氧化气氛中被氧化成V2O5。钒酸铵的煅烧通常在回转窑中进行。窑内分三个区,榜首区为枯燥区,300~500℃;第二区为分化区,450~600℃;第三区在450℃以上,引进空气,充沛氧化。

铅炭电池的应用以及发展前景

2018-10-19 10:57:58

简介:铅炭电池是一种电容型 铅酸电池,是从传统的铅酸电池演进出来的技术,它是在铅酸电池的负极中加入了 活性炭,能够显著提高铅酸电池的寿命。普通铅酸电池的正极活性 材料是 氧化铅(PbO2),负极活性材料是铅(Pb),若把负极活性材料Pb全部换成活性炭,则普通铅酸电池变成混合电容器;若把活性炭混合到负极活性材料Pb中,则普通铅酸电池变成铅炭电池。应用:由于铅炭电池是在传统的铅酸电池上发展起来的,它具有很多优势:一是充电快,提高8倍充电速度;二是放电功率提高了3倍;三是循环寿命提高到6倍,循环充电次数达2000次;四是性价比高,比铅酸电池的售价有所提高,但循环使用的寿命大大提高了;五是使用安全稳定,可广泛地应用在各种新能源及节能领域。随着产量增高,铅炭电池的成本随着规模效应提升而进一步下降,未来的应用前景更加广阔。发展前景:铅炭电池是铅酸蓄电池领域最先进的技术,也是国际新能源储能行业的发展重点,具有非常广阔的应用前景。储能电池技术是制约新能源储能产业发展的关键技术之一。光伏电站储能、风电储能和电网调峰等储能领域,要求电池具有功率密度较大,循环寿命长和价格较低等特点。铅炭电池、锂离子电池和液流电池是新能源储能电池的三大发展方向。其中,锂电成本相对较高,一致性问题也仍然存在;液流电池成本也很高;而铅炭电池是相对实际可行的储能技术路线。普通铅酸电池具有低成本优势,但其循环寿命短的缺点,导致单位次数储能成本较高。铅炭电池由于加入了活性炭,阻止了负极硫酸盐化现象,延长了电池寿命,同时也降低了单位次数使用成本,在新能源储能领域发展潜力很大。铅炭电池在部分荷电态下循环寿命和功率性充放电性能方面得到大幅提高,再加上成本等优势,大大提高了铅炭技术在各类储能系统中的应用。中国仍然处于储能产业化的初级阶段,处于多种储能技术并存的状态,不论是铅炭电池、锂电池和液流电池等,在不同的应用领域会有不同的优势,主流储能技术将由市场选择。中国铅酸蓄电池龙头企业南都电源已实现规模化生产与销售一种新型铅炭电池,在储能市场大蛋糕中将占据相当可观的份额。