钒矿提钒工艺技术
2019-02-25 09:35:32
概 况
钒在地壳中的含量大约是地壳分量的0.02%,散布较广,但涣散。含钒矿藏已发现的就有70多种,其间的绿硫钒矿、钒云母矿和钒铅锌矿等含钒氧化物高达8-20%,钒钛磁铁矿含钒档次低,一般含v2o5为0.2-1.4%,但它的储量最多,国际储量在400亿吨以上,是提取钒的首要质料。
全球的钒铁磁铁矿和钒资源恰当丰厚,已查明国际钒铁磁铁矿的储量为400亿吨以上,且会集在少数几个国家,有前苏联、美国、我国和南非,首要赋存于钒钛磁铁矿、磷块岩矿、含铀砂岩和粉砂岩型矿床中。此外还有许多钒赋存于铝土矿和含碳质的原油、煤、油页岩和沥青沙中。
据美国矿藏局统计资料标明,按现在挖掘规划,已探明的钒资源可继续挖掘150年,且会集散布在南非洲、亚洲、北美洲等区域,(南非占47.0%,前苏联占24.6%,美国占13.1%,我国占9.8%,其他国家总和占小于6%)。
钒具有杰出的可塑性和可锻性,常温下可制成片、拉成丝和加工成箔。但少数的杂质,特别是空隙元素(如碳、氢、氧、氮)会显着影响钒的物理性质。如钒含氢0.01%时引起脆变,可塑性下降;含碳2.7%时其熔点升高到2458。K。钒的熔点高,硬度大,电阻率高,呈弱顺磁性,线胀系数小,钒的弹性模量密度和钢附近,可用作结构材料。
钒是重要的战略物资之一,首要用于冶金工业,作为合金元素增加剂,改进钢材的结构、功能,进步强度和耐性,次之与钛制成具有高温高强度合金,再次之是化学工业,以钒的氧化物形状,用作出产催化剂、触媒等等。
国外钒的提取基本上是从副产品中收回的,如南非、芬兰、前苏联等国家是从钒钛磁铁矿炼铁中收回,美国大部分钒是钾钒铀矿及磷铁矿中收回,加拿大是从焚烧石油焦搜集的尘中收回,少数国家还从石煤中提取钒。总归,国际上钒首要是从钒钛磁铁矿中收回的,现在从钒钛磁铁矿收回的钒,每年约为7万吨左右,约占总产量的%。
钒的产品分为初级产品、二级产品和三级产品。初级产品包含含钒矿藏,精矿、钒渣、作废的粹的废催化剂,作废触媒和其他残渣。二级产品包含v2o5,也可所以一种可用的工业产品,即出产硫酸的触媒和粹用的催化剂。三级产品包含钒铁、钒铝合金、钼钒铝合金、硅锰钒铁合金及钒化合物,其间钒铁是最为重要钒材料,它占钒消费量的85%。各国钒铁标准可分为50-60%和70-85%的二类。
我国钒工业起步于20世纪50年代,1958年康复并扩建锦州铁合金厂提钒车间,以承德大庙含钒铁矿精矿为提钒质料,1960年今后我国的其他提钒厂相继建成投产,70年代攀枝花钢铁公司建成投产,从此我国的钒工业便进入一个新的历史时期,至80年代中已成为国际首要产钒国家之一,能出产各种钒制品,钒的推广运用也取得较快的开展。
从含钒质料提取纯钒化合物的技能,视质料不同而有所差异。钒钛磁铁矿、钒铁精矿、含钒石煤、石油渣、钒铀矿、钒磷铁矿等等,现分述收回技能。
一、 钒钛磁铁矿提钒技能:
钒钛磁铁矿提钒能够概括为火法和湿法两大类。火法流程能够处理含钒档次低的质料,能够经过火法富集,然后处理收回,也称之为简接法;湿法流程具有流程短、收回率高的长处,但要求处理的质料含钒档次相对较高,也称之为直接法。
1.火法工艺流程
将选出的钒铁精矿参与高炉或电炉炼铁,矿石中的钒大部分进入铁水中,将含钒铁水送入转炉吹炼成钢,钒高度富集在表面渣中,即钒渣,钒渣再经破碎、焙烧、浸出、过滤即得到V2O5。这是前苏联、挪威和南非等国所选用的办法。我国也选用相似的办法收回钒。
2、湿法工艺流程
选用含钒铁精矿加芒硝制团、焙烧、水浸,使钒酸钠进入溶液,再加硫酸使之转化为V2O5沉积,过滤后直接得到V2O5,水浸后的球团用于炼铁质料。
南非海威尔德公司是西方国家一起运用以上两流程(即生铁—钒渣流程和焙烧浸出流程)的典型比如。
生铁—钒渣流程
含钒铁精矿
料仓配料
回转窑预复原
含钛炉渣 炼铁
暂存堆积未处理 含钒铁水
板坯 氧气 吹炼 出售
钢水 顶吹炼钢 半钢 钒渣
钢坯 出产V2O5
焙烧浸出流程
含钒铁精矿
H2O 芒硝(碱或Na2SO4)NaCl
配料制团
钠化氧化焙烧1000℃
水浸
过滤 铵盐
球团 溶液
炼铁 过滤 H2SO4
废液废液 V2O5
含钒铁精矿或钒渣的浸出首要化学反响为
(1)4FeO.V2O3+4Na2CO3+5O2=8NaVO3+2Fe2O3+4CO2
(2)4FeO.V2O3+8NaCl+5O2=2Fe2O3+8NaVO3+4Cl2
(3) 4FeO.V2O3 +8NH4Cl +5O2=2Fe2O3+8NH4VO3+4Cl2
(4)2NaVO3+H2SO4=V2O5 + Na2SO4+H2O
(5)2NH4VO3+H2SO4=V2O5 + (NH4)2SO4+H2O
3、生铁—钒渣流程主体设备
① 首要视炼铁的主体设备,曾经苏联炼铁主体设备是高炉,挪威、南非等国则是电炉。
② 吹炼:不同国家选用的设备也不相共同
a.底吹转炉提钒:前苏联丘索夫联合公司是将含钒铁水装入底吹转炉吹炼,在炼半钢进程氧化表面构成含钒渣,钒渣经破碎、焙烧、水浸收回V2O5,然后炼成钒铁。从精矿到钒铁、钒的总收回率为60%左右。
b.顶吹转炉双联提钒:前苏联下塔吉尔钢厂则用顶吹转炉将含钒铁水吹成半钢和钒渣。就铁水到钒渣钒的收回率达92%—94%。我国的承钢、马钢和攀钢也用该法出产钒渣,钒的收回率为80%—88%。
c.高炉铁水雾化法提钒,该法实际上是将含钒铁水倾入中间缸,然后进雾化器,经雾化反响之后,使钒由V2O3氧化成V2O5、 V2O4、V2O3的混合物流入半钢缸,半钢面上构成钒渣。该法由我国攀钢首要实验成功并投入出产运用的,并且是我国钒渣出产的首要办法,钒的氧化率达85~90%,收回率为73.6%,半钢收回率为93.9%。该法的首要长处是:炉龄长(最高炉龄已达12000炉)、处理才干大(可达366吨/时)、可半接连化出产、设备简略、操作简略。
d.曹式炉提钒:我国马钢曾用槽式炉吹炼提钒,槽式炉才干为70T/h,实验的首要技能目标,钒的氧化率达88.5~95.2%,钒的收回率为81.3~90.49%,半钢率90.20~94.1%,出产目标不如实验目标。该法的长处是能接连出产、设备简略、出产本钱低,缺陷、钒渣含铁高、钒收回率还欠低。因而现在已停止运用,需求进一步完善,仍不失可供挑选的好办法之一。
4、焙烧浸出流程设备
湿法流程即焙烧浸出流程的中心首要是使钒氧化然后转化构成水可溶性的钒酸盐,选用何种焙烧设备,完成其意图。
a. 南特殊特腊厂,所运用钒钛磁铁矿成分: Fe 50~60%,V2O5 2.5% ,TiO2 8~20%, Al2O31~9%, Cr2O31%,选用回转窑焙烧完成氧化和转化。
b. 前苏联和澳大利亚阿格纽克拉夫有限公司都选用欢腾炉焙烧使97~98%的钒转化可溶性钒而被浸出。
c. 芬生奥坦馬基,运用原矿成分Fe40%,TiO215.5%,VO26%(V2O5:0.71%)原矿制团,在竖炉焙烧和转化,转化率达80~90%。
二、钾钒铀矿和磷铁矿收回钒技能
1、 美国钒的出产供应商处理的质料的以钾钒铀矿石、铀钼钒矿和磷铁矿石为主,钾钒铀矿的化学式为:K2(VO2)2(V2O8)" 3H2O或K2O" 2UO2"V2O5"3H2O。最近澳大利亚西部伊利里的钙结石乐岩中发现大型钾钒铀矿,我国陕西、湖南区域也发现钒铀共生矿。国际上最大的矿冶公司——美国联合碳化物公司从钾钒铀矿石出产钒的工艺流程是焙烧、浸出、沉积、复原和再浸出。该法钒铀浸出率别离为70~80%和90~95%,其流程如下:
钾钒铀矿
6~9%NaCl 钠化氧化焙烧 (多膛炉850℃ φ5m.8层)
1~2%Na2CO3
急冷
浸出
H2SO4 浸出液中和煮沸
PH:3
NaOH或NH3 沉积PH7 钒滤液
滤饼 沉积
Na2CO3 或NaCl 复原熔化 钒化含物
H2O 浸出 钒溶液
含铀沉积物收回铀
酸法和碱法浸出含钒溶液,可用离子交换法、溶剂萃取法、或挑选性沉积法进行别离提纯。该公司年产V2O8454吨,V2O51360吨。
2、 钒铁矿的处理与钾钒铀矿有所不同,钒铁矿运用真空揉捏和焙烧炉,先将矿粉与盐混合,送揉捏机揉捏成条、堵截,焙烧浸出提纯沉积后得V2O5。
3、 钒磷铁矿的处理
钒磷铁矿电炉出产单质磷和磷肥的副产品(含钒磷铁)用来作提钒质料,美国的克尔麦吉(KerrMeGee)化学公司所用的含钒磷铁含钒3.26%~5.2%,磷24.7%~26.6%,铁59.9%~68.5%,铬3.4%~5.7%,镍0.84%~1.0%。
先将含钒磷铁磨至粒度小于0.42mm,配入1.4倍纯碱和0.1倍的食盐在回转窑中770~800℃下焙烧,钒便转变成水溶性的钠盐,焙砂在沸水中浸出,钒、铬、磷均溶入浸出液,过滤后滤液结晶折出磷酸钠晶体,粗磷酸钠可再行纯化直至产品合格。磷酸钠结晶母液含磷>0.98g/L,可参与适量CaCl2,使其以磷酸钙(CaPO4)沉积,然后水解收回钒,随后往母液中参与以沉积。此工艺的钒、铬和磷的收回率别离能够到达85%、65%和94%。
三、含钒褐铁矿收回钒技能
含钒褐铁矿五氧化二钒含量为0.5~2.5%,Fe20~40%,SiO230~65%.
矿石首要由针铁矿、赤铁矿和脉石组成。脉石以石英为主,其次是泥质还有少数的绢云母。钒在褐铁矿中没有呈独立矿藏存在,而是以离子型吸附状况存在于铁和泥质中。处理的准则流程是:破碎球磨 焙烧 浸出 沉积Nu4VO3 或V2O5。
研讨标明褐铁矿V2O5含量不同,钒的转化率受矿石组分的影响,其间首要影响要素是矿石CaO的含量,跟着的CaO的含量增加,影响钒的转化,焙烧温度的进步能进步钒的转化率。不同含钒矿石,最高转化率的温度是有差异的。
四、含钒石油渣提钒技能
一般讲,原油和石油砂都含有钒,虽然有些国家至今仍未把油含钒列为钒资源,但这些原油确是钒的潜在资源,全球的石油中钒的含量改动很大,委内瑞拉、墨西哥、加拿大和美国原油含钒为220~400ppm,是全球石油含钒量较高的少数几个国家。
美国、日本、德国、加拿大和俄罗斯等国家从石油渣,石油灰中提钒,提钒的终究产品首要是V2O5,但也能够直接炼成钒铁。提取的办法许多,首要依据质料成分或性质上的差异,挑选不同的工艺。
1、 从石油会集收回钒技能
委内瑞拉的原油经过裂化处理得到石油焦含0.4%V,石油焦用作蒸气锅炉的燃料,焚烧后烟尘用电收尘器收尘,尘含V2O5达15%,作为收回钒的质料。收回办法是将搜集烟尘直接酸浸,经过滤滤液加次(NaClO4)将钒氧化成五价,滤液由兰色变黄色后,加NH3调PH由0.3至1.7,使钒以铵盐方式沉出,然后枯燥锻烧得V2O5或V2O5熔化铸片。流程图:
石油焦尘埃 酸
浸出
滤液 残渣NaClO4氧化 沉积 调PH 洗刷
滤块 残渣 洗液
抛弃
烘干
锻烧 V2O5
首要化学反响:酸浸工序: V2O5+6HCl 2VOCl2+3H2O+Cl2 或V2O5+2H2SO4 VOSO4+2H2O
NaClO4氧化: VOCl2+NaClO4 NaVO3+2NaCl+Cl2VOSO4+NaClO4 NaVO3+NaSO4+Cl2
沉积锻烧 NaVO3+NH4Cl NH4VO3+NaCl2NH4VO3 V2O5+2NH3+H2O
2、 从炼油渣中收回钒技能
美国Amax和CRIVentures公司就是处理炼油渣、归纳收回钒、钼、钴、镍和铝。他们处理的工艺:炼油渣与烧碱混合磨矿进行加压浸出,在高温和加压下氧化,硫转化硫化物,碳氢化合物大部分分化,钒、钼溶入溶液,经过滤别离,从溶液收回钒钼。或石油渣加Na2CO3或NaCl配料后,在硫化物和硫酸盐存鄙人进行电炉熔炼,取得钒渣和镍锍。钒渣首要惯例处理办法制取工业V2O5。美国是20世纪80年代末开端用石油渣,石油灰为质料出产钒的,现在仍然是该质料出产钒的最大出产国。
五、石煤提炼钒技能
在普查磷矿时意外地发现了石煤含有钒,进而发现石煤中还有铀、铜和镍等金属和非金属60多种,就当时的技能水平而言,具有挖掘和商业价值的只要钒。我国的石煤资源非常丰厚,估计石煤中钒的总储存量为钒钛磁铁矿中钒总储存量的七倍。但石煤中含钒档次各矿相差甚大。现在条件下石煤含钒超越0.8%,才有挖掘价值。美国内华达州含钒页岩分为风化页岩(V2O30.93%)和碳质页岩(V2O50.84%)。我国石煤资源会集在南边各省,现有钒的厂20多家,年产量为2500~3000吨,本钱2.5~30万元/吨。
石煤提钒选用加食盐焙烧、浸出、萃取、沉积的出产工艺。含钒碳质页岩是用于烧锅炉或液态化床发电的脱碳焚烧,在焚烧进程中钒富集在烟灰中,富集钒烟灰加NaCl或Na2Co3进行化焙烧,使钒转变为水溶性的NaVO3和Na2V2O5.
4FeOV2O3+4Na2CO3+5O2=4Na2OV2O5+2Fe2O3+4Co2
NaCl+1/2O2= Na2O+Cl2
Na2O+V2O3=2NaVO3
用热水浸出钠化焙烧产品,钒酸钠和偏钒酸钠便溶于热水而与大部分不溶杂质别离,含钒浸出液经提纯和别离,产出钒的纯化合物。
美国内华达对含钒页岩提钒流程:
页岩
↓
破碎、枯燥
↓
焙烧
↓ H2O
残渣←弱酸浸出 H2SO4
NH3 ↓
浸出液除硅 PH值由2.5调至5
↙ ↘
硅渣 含钒溶液 PH5调回PH3
↓
萃取(三级)
萃取有机相 萃取废液
↓
再生萃取 ←二级反萃 ←NaCO3 溶液
有机相 ↓
含钒溶液
↓
NH4Cl →钒酸铵沉积
↓
过炉、洗刷、枯燥→废液
↓
制品
阐明:除硅需将溶液调至PH值5,但萃取别离又需将溶液PH从头调回至PH3,用的萃取剂是混合十三胺(DITDA),偏钒酸胺煅烧脱后能够得到V2O5。
在我国,已建有从含钒石煤中提取钒的工厂,各厂依据其资源特色开发出具有必定特色的提钒工艺流程,他们的准则流程是:
石煤提钒的准则流程
石煤破碎、磨矿
↓
加水→配料←NaCl
↓
成球
↓
平窑焙烧
↓
水浸
↙ ↘ ↙H2SO4或HCL
浸出渣 浸出液
↙ ↘
粗钒 废水
↓
NAOH → 碱熔
↓ NH4CL
水溶
↙ ↘
废水↓
热分化
↓
五氧化二钒
石煤提钒的新工艺有:1.石煤加食盐,欢腾焙烧—酸浸—离子交换法。2.石煤无盐焙烧—酸浸—溶剂萃取法。3.酸浸—中间盐提钒
新工艺的所谓新,会集在二个环节上,首要是焙烧所选用的炉型,由平窑焙烧转而运用欢腾炉,回转窑,竖炉等,成果是竖炉的操作条件不简略操控,转化率不稳定,劳动条件差,未能在工业上取得大规划运用。回转窑广泛运用于钒渣的钠化氧化焙烧,但石煤含硅(SiO2)较高(65%--68%),在焙烧进程中简略呈现粘窑、结圈、影向回转窑正常操作和钒的转化率,故不宜作为石煤焙烧设备,作为石煤焙烧设备最好是欢腾炉。
其次的环境是溶液的处理,除已有的化学沉积法外引证了离子交换法和溶剂萃取技能,因为新技能的引证,能够带来技能目标的进步,削减废水的处理,视操作的差异,或许影响加工本钱。
六、废催化剂和触媒的提钒技能:
钒的化合物具有杰出的催化功能,即它自身不参与化学反响,但在它的参与下,可加快反响的进行。用钒化合物与其载体作成的能改动某些化学反响速率,而自身又不参与反响的化学试剂,称之为催化剂。钒催化剂(V2O5•NH4VO3)替代铂用于出产硫酸,使SO2转化为SO3。在石油工业中,钒首要用做裂解催化剂(VS),以及脱硫剂。在橡胶工业中,用乙烯和的交联合成橡胶的催化剂(VCl4)。化学工业上的氧化成马来酐,蔡氧化成酞酐的钒催化剂(NH4VO3)等等。特别是化学工业和石油工业运用过的废钒催化剂数量较大,是很好的钒二次资源,不只能够从中收回许多的钒,并且一起收回镍、钼等价金属。
1. 石油裂解用废催化剂(VS)的收回技能
废硫化钒催化剂经焙烧得到产品,能够选用高温浸法,钒废质料在参与压煮器中,473。K温度下用1—14MOL/L浓度的压煮4小时,钒酸铵便溶于中,经过炉别离后,将钒酸铵滤液的温度降至323。K,便分出钒酸铵结晶,结晶浆液经过滤、水洗、枯燥后,在473--873。K温度下煅烧,便得到V2O3,结晶的母液回来浸出循环运用。
除以上办法外,也能够用碱浸出从这种钒废猜中收回钒,用NaOH或Na2Co3溶液在363--378。K温度下浸出1-6个小时,然后过滤别离,在浸液中通入和二氧化碳,坚持298--308。K温度,按1MOL钒参与1.5—5MOL量,并将溶液PH调至6—9。经处理,坚持308。K,便能够沉积出钒硫铵。滤液送解吸器,用蒸气驱逐液体中的NH3和CO2,然后回来浸出,钒硫铵处理同前。
2. 从原油脱硫用的废催化剂的收回技能:
废催化剂在1073。K温度下进行氧化焙烧,先制得含钒10.88%,钼5.49%,钴2.03%,镍1.94%,铝35.48%的焙烧料,然后按150g焙烧猜中参与300ml含溶液NaOH15%的溶液,在333。K温度下拌和浸出3小时,浸出料液在323。K温度下过滤,浸出液由323。K降至278。K,便分出含钒结晶体,母液回来运用,结晶体经水洗、枯燥、煅烧后得到V2O3。
除此之外,焙烧料也可用酸浸流程,催化剂除钒外,其他有价元素Mo、Ni、Co等都转入流液,除杂后钒用萃取别离法收回。
美国AMR是一家从石油裂变废催化剂提钒大公司,其处理的废催化剂的量占全美的50%,年处理废催化剂16000吨,能够归纳收回1500吨V2O3,1000多吨Mo,400—600吨Ni,110—180吨Co,还有部分Al2O3.
3、从《制酸废触媒(V2O5,NH4VO3)》收回钒技能
硫酸工业上用矾触媒进程中,因为SO2气体中的AS2O5和触媒中V2O5构成络合物,在触媒的正常操作温度480摄氏度下该络合物随气体蒸发掉。蒸发量占V2O5总量的40—50%,除此以外还有K2SO4和SiO2。新废触媒成分如下:
成分称号 V2O5 K2SO4 SiO2
新触媒成分 9---------10% 20-------------22% 20%
废触媒成分 5---------6% 10------------12% 80%
因而废触媒中的三中首要成分都是名贵资源。废触媒的处理,工业上能够选用①直接酸浸工艺②化焙烧水浸工艺:
直接酸浸工艺:为了下降溶液杂质和游离酸,削减酸碱耗费。用两段逆流浸出,一段为弱酸浸,二段为高酸浸。高酸浸出液参与到新加废触媒进行弱酸浸出。二段浸出成果钒浸出率可达88.5-91.1%,浸出渣含V2O5能够降到0.59%,当进步二段浸出酸浓度到80—100G/T,渣含V2O5可降到0.3%。溶液的净化选用N235或P204萃取,碱反萃取,用NH4Cl沉,煅烧得到V2O5。
考虑到直接酸浸液除钒外,还含有许多Fe离子为溶液处理带来费事。经过预焙烧使钒氧化成高价钒,一起使其转型,削减了提钒的困难。因为废触媒自身含有10%硫酸钾组分,因而氧化焙烧水浸流程可分为不加钠盐和加钠盐两种。前者焙烧温度900摄氏度到达最佳转化率(~80%)。再高或再低温度的焙烧,钒的转化率都不抱负,后者增加5%的Na2CO3在800摄氏度下焙烧2小时,钒的转化率可达92%,是比较抱负的。
焙砂进行两段浸出,即先水浸后酸浸或碱浸,它的特色是先将钾盐、钠盐和近80%钒水浸进入低酸溶液。这种溶液杂质少,易处理,可收回运用钾盐。酸浸或碱浸意图在于不容于水的钒盐尽或许多地溶解,以进步钒的收回率。
溶液中的钒用N235萃取别离,碱返萃,NH4CL沉积,煅烧得V2O5。
总归,流程的挑选,要视供应商的现状,以为钠化氧化焙烧水浸提钒工艺较好。物料过滤功能好,浸出液中钒呈高价,杂质少,下步钒别离、净化进程简略,也能够直接用NH4CL沉积,省去萃取进程,下降产品加工本钱。
七.钒铁出产技能:
钒和铁组成铁合金,首要在炼钢中用作合金增加剂,高钒钒铁还用作有色合金的增加剂。常用的钒铁含钒40%、60%和80%三种,国内外首要选用电炉铝热法和硅热法冶炼钒铁的工艺,先分述如下:
1. 铝热法:
电炉铝热法冶炼钒铁的质料,可所以V2O5或贱价氧化钒混合物(V2O4、V2O3等)或钒铁渣。用铝作复原剂,在碱性炉衬条件下进行。
首要反响:V2O5+ AL(豆或粒状)=V+AL2O3
V2O4(V2O5)+AL= V+AL2O3
铝热法冶炼钒铁反响为放热反响,反响速度快,因而冶炼进程V2O5喷溅丢失严峻,为削减丢失,进步钒的收回率,特意将V2O5加工成片状,一起将铝粒改为铝豆,恰当减缓反响,下降放热量。
以贱价氧化钒为质料时,则冶炼进程反响速度缓慢,反响热量合适,削减进程的喷溅。然后进步钒的收回率,一起吨铁钒节省了铝复原剂40—60公斤,钒铁含钒60—80%,钒的收回率达90—95%。
2. 硅热法:
该法的本质是:片状V2O5用75%的硅铁和少数铝作复原剂,在碱性电弧炉中,经复原,精粹两个阶段炼得合格产品。复原期是把复原剂和V2O5进行硅热复原。当渣中V2O5小于0.35%时,即可作为废渣处理(或作建筑材料用),作为冶炼作业讲,即能够转入精粹期,此刻再参与部分V2O5和CaO,用以脱除合金液中过剩的硅、铝等。当合金成分到达要求即可出渣和出含金,精粹期渣含V2O5达8—12%,此渣可回来冶炼复原期收回。合金液可铸成圆锭后破碎成制品。此法出产的钒铁含钒40—60%,钒收率可达98%。
除此之外,还开发了高钒铁、硅钒铁、硅锰钒铁、碳化钒、碳氮化钒、氮化钒铁以及金属钒等产品,在此不再赘述。
八、几点观点:
1.依据所用的含钒质料有:含钒铁水,钒铁精矿,钒渣、钒铀铁矿,钒磷铁矿,含钒石煤,含钒褐铁矿,含钒石油渣,以及化学石油以及橡胶工业用过的废催化剂等。
2.提取钒的流程遍及都存有:焙烧、浸出与净化、溶液中钒的提取和提取尾液处理四大过程组成,前两过程最为重要:
①焙烧:含钒质料和Na2CO3 NaClNa2SO4等钠盐混合在回转窑、竖炉、平窑、多膛炉或欢腾炉,在800—1000。C下进行氧化和转化,使钒转变为XNa2O•YV2O5以便溶于水。
单个情况下,含钒质料可加石灰或石灰乳(Ca(0H)2),在上述提取各种炉内进行焙烧,它的意图与钠化焙烧正好相反,使钠转化为不溶于水,但溶于碳酸盐溶液,构成钒酸钙,到达与其他杂质别离的意图。
②浸出:焙烧熟料浸出有:水浸、酸浸、碱浸和碳酸化浸出等四种办法,水浸时,钒酸钠进入溶液,酸浸则不同,能够有三种办法:A、含钒物料直接酸浸;B、含钒物料经焙烧后酸浸;C、含钒熟料经水浸之后再进行酸浸,酸浸还能够适用于处理其他物料,为钾钒铀矿、磷钒铁矿、含钒灰烬、废钒催化剂等。常用碱浸出剂有NaOH、Na2CO3或两者混合等,碱浸时还有必要使钒成高价态才行。氧化剂有氧气、空气、富氧空气,、、次、等。
溶液净化:含钒浸出液悬浮物可经过弄清除掉Fe、Mn、Si、Al可用中和沉积除掉,可用钙盐、镁盐沉积除掉P、AS,对高碱度溶液可用电渗析脱钠、收回碱。
③溶液中钒提取:有沉积法、溶剂萃取和离子交换法
沉积:A、铵盐沉积:生成(NH4)2V6O16沉积,生成Na2(NH4)4V10O28.11H2O沉积,生成NH4VO3沉积。
B、水解沉积:加H2SO4,分出赤色钒酸钙沉积,Na2H2-X.V12O31。
C、钙盐或铁盐沉积: 碱性溶液用CaCl2或其他CaO、Na(OH)2沉积出钒酸钙,或用高铁盐沉积出钒酸铁(XFe2O3•YV2O5•2H2O)。
溶剂萃取:钒和铀别离法:用二乙基已基磷酸 磷酸三丁酯及N235
离子交换:合适处理碱性溶液
④尾液处理:五价钒和六价铬离子游离酸、盐都是有毒的,有必要处理好才干扫除,工业上有三种处理办法:
A、 复原中和扫除法
B、 气体中二氧化硫复原法
C、 离子交换法
3、已探明的钒储量,按现在挖掘规划够150年运用,年产钒量已处在供需平衡状况,钒的供需改动随合金钢产量改动而改动
冶金辅助材料矿产--铁钒土
2019-01-04 09:45:23
一、用途
铁钒土即含铁高的耐火粘土和铝土矿。
铁钒土主要用作炼钢熔剂,利于造渣和清除炉壁上的结瘤。也可用作水泥的配料。
二、矿物成分
铁钒土的组成矿物及其化学成分,与耐火粘土、铝土矿的基本相同,唯Fe2O3较高,凡因Fe2O3含量超过允许要求的上述矿产可作铁钒土地用。矿物组成及化学成分详见耐火粘土、铝土矿。
三、一般工业要求品 级化学成分(%)Al2O3Fe2O3Ⅰ级Ⅱ级Ⅲ级≥50≥45≥35≤10≤15≤19可采厚度:≥0.7米,夹石剔除厚度:≥0.5米
四、矿床实例
河北唐山铁钒土矿(与耐火粘土伴生)品级化学成分(%)开采厚度(米)Al2O3+TiO2Fe2O3Ⅰ级Ⅱ级Ⅲ级≥48—56≥45≥45≤10≤15≤190.7(表内)0.5-0.7(表外)五、附录
冶金工业部1982年5月1日YB2417—81号颁布的质量标准如下,供炼钢用铁钒土产品。
产品按化学成分分为下列品级品级化学成分(%)Al2O3+TiO2SiO2Ⅰ级品Ⅱ级品Ⅲ级品≥50≥48≥45≤20≤25≤30产品块度:5—30毫米。
30毫米者均不得超过5%。
我国钴土矿的处理方法
2019-03-04 11:11:26
我国某钴冶炼厂处理块状钴土矿产出氧化钴。选用鼓风炉还原熔炼、硫酸浸出钴铁、净化后用亚硝酸钴钾法别离钴镍的工艺流程。
国内有的厂选用硫酸化焙烧钴土矿,使钴、铜和锰等转变为可溶性的硫酸盐。焙烧矿经湿磨后进行空气拌和浸出。浸出矿浆经二段稠密,四段洗刷和过滤,滤渣抛弃,滤液中和除铁,用Na2CO3中和至pH=6.2~6.5,铜水解沉积后,溶液用H2S溶液沉积钴,含锰母液可送出产电锰。硫化钴渣配硫酸在反转窑内进行硫酸化焙烧,然后加水溶解成硫酸钴溶液,溶液经两次氧化和碳酸钠中和沉钴,一次Co(OH)3经烧结和电炉熔炼成粗钴阳极,送电解精粹,二次Co(OH)3经硫酸溶解后回来一次析钴。电解精粹的阳极液净化选用除铜、N235萃取别离镍和717型阴离子交流树脂除锌。此种工艺中钴的总回收率可达80%,锰的总回收率达90%。
钒钛烧结矿的特点
2019-02-14 10:39:49
(一)钒钛烧结矿的化学成分 钒钛烧结矿除含TiO2和V2O5外,其他化学成分与普通烧结矿比较也有较大差异,依据TiO2含量凹凸,钒钛烧结矿可分为高钛型(攀钢)、中钛型(承钢)和低钛型(马钢)。 与普通烧结矿的化学成分比较,钒钛烧结矿具有“三低”、“三高”的特色。即烧结矿含铁低、FeO和SiO2含量低,TiO2、MgO、Al2O3含量高。 (二)钒钛烧结矿的矿藏组成 钒钛烧结矿的物相组成首要有:钛赤铁矿、钛磁铁矿、铁酸钙、钛榴石、钙钛矿、钛辉石、玻璃质等。 1.钒钛烧结矿的矿藏特色 钛赤铁矿是烧结矿中的首要含铁物相,一般可占烧结矿总量的40%~50%,是赤铁矿-钛铁矿固熔体,属六方晶系,反射光下呈灰白色,强非均质性,不透明,反射率25%,以Fe2O3为晶格,除Ti外,还固溶Mg、Al、Mn等元素。钒钛烧结矿中的钛赤铁矿以粒状、斑状结构为主,少量呈他型和自型柱状。一般出现在孔洞周围或钛磁铁矿晶粒周围构成包边或花边结构。钛赤铁矿的很多存在及其连晶效果,使烧结矿具有杰出的复原性和机械强度。 钛磁铁矿不同于普通烧结矿的磁性矿藏,是磁铁矿-钛铁晶石固溶体,是烧结矿中的首要含铁矿藏,其含量在25%~35%之间,是以Fe3O4为晶格的固熔体,其固溶有Ti、Mg、Mn、V、Al的氧化物。在反光下呈灰白色带褐彩、均质性、反射率为18%~22%,内反射不透明、强磁性、表面可被腐蚀、呈暗褐色。首要呈自形粒状和不规则他形柱状方法。也有从硅酸盐相中分出的自形、半自形八面体(多边形断面)及细微树枝状骸晶,部分钛磁铁矿常被赤铁矿色边。 铁酸钙首要存在于熔剂性钒钛烧结矿中,并随烧结碱度添加而添加,一般占烧结矿总量的3%~20%,在反光下为灰色带蓝彩,非均质性,反射率为16%。首要呈板粒状和针状,多与钛磁铁矿构成熔蚀结构和柱状交错结构。在剩余石灰颗粒边际构成很多的铁酸钙晶体。它具有好的复原性和高的抗压强度。 钛榴石在钒钛烧结矿中属硅酸盐相,一般占烧结矿总量的3%~15%,在熔剂性钒钛烧结矿中常可见到。首要呈粒状、浑圆状和树枝状集合体,单个区域钛榴石连成片。反射光下呈灰色,无内反色,反射率低(12%~13%).透射光下呈黄色、黄褐色,无解理,无双晶纹,属晚结晶的硅酸盐物相,对烧结矿起必定的粘结效果。从化学成分看,钒钛烧结矿中的钛榴石与天然钛榴石挨近。 钙钛矿是熔剂性钒钛烧结矿首要含钛矿藏,一般占烧结矿总量的2%~10%,属甲等轴晶系,反光下为灰白色,反射率为15%~16%,略低于钛磁铁矿固溶体,均质到非均质,内反射色为黄褐色,在透射光下,呈褐、黄、紫、红棕等多种色彩。干与色一级,有时出现反常干与色。钙钛矿在烧结矿中首要呈粒状、纺锤状、骨架状、树枝集合体,涣散于渣相或钛赤铁矿褐钛磁铁矿之间。其熔点很高(1970℃),结晶才能强,是晶出最早的物相。硬度高于钛磁铁矿。 钛辉石属斜方晶系,多呈短柱状,有时块状集合体存在,充填于钙钛矿、钛磁铁矿、钛赤铁矿之间,是钒钛烧结矿硅酸盐粘结相之一。在反射光下为深灰色,反射率稍高于玻璃相,透光下呈黄绿~浅红紫色,有用多色性。[next] 2.影响钒钛烧结矿矿藏组成的要素 烧结矿的矿藏组成,跟着烧结质料、烧结工艺条件等的改变有所区别。 (1)碱度的影响。不同碱度对钒钛烧结矿矿藏组成的影响见图.天然碱度钒钛烧结矿首要矿藏为钛磁铁矿、钛赤铁矿、铁橄榄石和玻璃隐晶质,钛赤铁矿和钛磁铁矿多为自形或半自形粗晶、晶体紧密结合为连晶,是天然碱度钒钛烧结矿的首要连接方法。其次是橄榄石和玻璃质,将连晶粘结,构成细孔均匀的海绵状结构,气孔一般为1~2mm.烧结矿结构细密、强度好、转鼓指数高、制品率高。但因很多磁铁矿被氧化,需求较长时刻,故笔直烧结速度低。 碱度1.0~2.0的熔剂性钒钛烧结矿,其首要矿藏为钛磁铁矿、钛赤铁矿、钙铁橄榄石、钛榴石、钙钛矿、铁酸钙、钛辉石和玻璃质。 碱度大于3.0的烧结矿,钛赤铁矿固熔体削减而钛磁铁矿固溶体添加,烧结矿外观发黑、光泽暗、铁酸钙显着添加。 (2)燃料用量对矿藏组成影响。钒钛烧结矿的矿藏组成随燃料用量的增减而改变,当燃料用量偏低时,烧结矿中钛赤铁矿含量高而玻璃质少,粘结相缺乏,烧结矿强度差。跟着燃料添加,复原气氛增强,烧结温度升高,烧结矿中钛磁铁矿和浮氏体显着添加,硅酸盐粘结相和铁酸钙添加,但钛赤铁矿很多削减,削弱钛赤铁矿连晶效果。当燃料超越必定量时,烧结矿中钛赤铁矿进一步下降,铁酸钙含量也低,而钙钛矿含量显着添加,此刻硅酸相无甚改变。因而,进步含碳量对进步钒钛烧结矿强度并晦气。 (3)TiO2含量对矿藏组成的影响。跟着烧结矿中TiO2含量的添加,钙钛矿量添加,铁酸钙量削减,一起钛辉石添加,玻璃质削减。[next] (三)钒钛烧结矿的冶金功能 1.钒钛烧结矿的转鼓强度 钒钛烧结矿的转鼓强度一般较普通烧结矿低。其原因首要是:(1)烧结矿中SiO2含量低,构成的硅酸盐粘结相少;(2)因为TiO2含量较高,烧结过程中与CaO易构成性脆的钙钛矿;(3)烧结液相量少,粘结才能差。别的,因为矿藏特性所决议,此种烧结矿还具有耐磨不耐摔的特色。 添加配碳量虽可改进钒钛矿的转鼓强度,但当配碳量超越必定配比时,强度反而下降。配碳量的添加可促进烧结液相量增多,有利于转鼓强度的进步,但一起因为配碳量的添加导致复原气氛加强,铁酸盐削减,钙钛矿量添加,因而,应操控恰当的配碳。 2.烧结矿储存功能 钒钛烧结矿有较好的储存功能,其储存天然粉化率比普通烧结矿低得多。原因在于烧结矿冷却过程中,当温度下降到675℃时普通烧结矿中的正硅酸钙(2CaO•SiO2)发作相变(由β-2CaO•SiO2向γ-2CaO改变),体积发作急剧胀大(添加10%),引起烧结矿粉化;而钒钛烧结矿在烧结过程中无2CaO•SiO2生成,因烧结矿中SiO2含量低,即便烧结碱度达1.70,其CaO含量也仅为9.5%~9.1%,且部分CaO与TiO2构成钙钛矿(CaO•TiO2),故游离CaO很少。 3.钒钛烧结矿的复原功能 钒钛烧结矿因为氧化度高、FeO含量低,其复原功能较普通烧结矿好。影响钒钛烧结矿复原性的要素首要有碱度、FeO含量等。 (1)碱度的影响。碱度对钒钛烧结矿复原性的影响规则与普通烧结矿类似,随烧结矿碱度的进步,复原度显着上升。 (2)FeO含量的影响。钒钛烧结矿中FeO首要以钛磁铁矿和钙铁橄榄石方法存在,其复原性较差,但与普通烧结矿比较,其含量较低,比较之下复原性仍较好。跟着FeO含量的添加,钒钛烧结矿复原度呈直线下降,因而,钒钛磁铁精矿烧结时,应操控适合的FeO含量,在确保钒钛烧结矿强度的条件下,使之具有杰出的复原性。 (3)TiO2含量的影响。随钒钛矿中TiO2含量的添加,烧结矿的复原度下降。一般以为因为TiO2含量的添加,势必会导致烧结矿中含铁物相(如钛赤铁矿、铁酸钙盐等)削减,而脉石矿藏(如钙钛矿、钛辉石等)添加,而晦气于复原气体的分散。 4.钒钛烧结矿的低温复原粉化功能 一般以为,烧结矿低温(400~500℃)复原粉化的发生,首要是因为赤铁矿复原为磁铁矿的过程中,晶形的改变所造成的。钛赤铁矿有各种晶型,如粒状、斑状、树枝状、叶片状、骸晶状等。关于不同晶型,其复原粉化功能不同,其间以骸晶状菱形钛赤铁矿复原粉化最为严峻。 钒钛烧结矿的低温复原粉化率RDI-3.15比普通烧结矿高得多。攀钢烧结矿的RDI-3.15一般大于55%~60%,且当普通烧结矿中参加部分钒钛物料时,烧结矿的复原粉化率也会显着上升。 钒钛烧结矿低温复原粉化率高的原因是:(1)烧结矿中含有很多的钛赤铁矿(40%~50%),其间约50%以骸晶状菱形赤铁矿存在,别的还有部分钛赤铁矿以网格状占有于钛铁矿的方位上。复原时,因为晶型改变而引起胀大粉化。(2)烧结矿中SiO2含量低,起粘结效果的硅酸盐相少,加之不起粘结效果的钙钛矿的存在,它不只自身性脆,并且还阻碍钛赤铁矿和钛磁铁矿间的连晶效果,抗胀大粉化的才能下降.(3)钒钛烧结矿的物相组成较普通烧结矿的物相组成杂乱,其不同的热胀大性引起的内应力,在低温复原阶段会导致很多微裂纹的构成,然后也下降了烧结矿强度。 虽然钒钛烧结矿低温复原粉化现象较为严峻,但实践生产中,没有因烧结矿的低温复原粉化率高而引起高炉上部块状带透气恶化而成为约束冶炼强化的环节。对小高炉冶炼钒钛烧结矿的解剖查询,所测得的烧结矿粒度组成也未发现反常。 进步烧结矿中FeO含量,能够削减再生赤铁矿的数量,下下降温复原粉化率,但FeO过高会引起烧结矿复原性的恶化。为此,攀钢在制品烧结矿上喷洒卤化物水溶液,使烧结矿低温复原粉化现象得到大幅度改进。 5.钒钛烧结矿的软熔滴落功能 烧结矿的矿藏组成决议了其软熔滴落功能,因为钒钛烧结矿高熔点矿藏多,致使其软化温度高,一起又因高熔点矿藏熔点不同大,因而其熔滴温度区间宽,且滴落过程中渣铁分离差,渣中带铁多。影响钒钛烧结矿软熔滴落功能的首要要素有烧结矿的碱度、TiO2含量等。 碱度对钒钛烧结矿软熔滴落功能的影响研讨。随碱度进步,烧结矿软化开端温度(Ta)、软化终了温度(Ts)(熔化开端温度)、开端熔滴温度(Tm)上升,软化温度区间(ΔTs-a)和熔滴温度区间(Tc)变窄,压差陡升,温度(TΔp)上升,最高压差(ΔPmax)减小,熔滴带厚度(H)变薄。 TiO2含量对钒钛烧结矿软熔滴落功能的影响的的研讨。随烧结矿中TiO2含量添加,开端滴落温度下降,压差陡升温度下降,最高压差减小,软熔温度区间变宽,滴落时刻延伸。
硅藻土矿的选矿与加工(二)
2019-02-18 15:19:33
2.内蒙古化德硅藻土工业公司 内蒙古化德县具有丰厚的优质硅藻土资源。其SiO2 81%~89%,Al2O3 3%~8%,Fe2O3 1.2%~2.2%,松懈密度0.33%~0.40%。化德硅藻土工业公司于1995年建成一座年产3 000t硅藻土助滤剂加工厂,其工艺流程见下图。产品首要牌号有100#-A,100#-B,700#-A,700#-B等。 3.云南昆明耐火材料厂 原矿为产自云南西部腾冲区域的硅藻土,质量较好,首要是舟形藻,其次是桅杆藻、月形藻、圆筛藻等。昆明耐火材料厂为提纯该硅藻土,于90年代初建成了年产3kt精土的硅藻土出产线,工艺流程见下图。原矿SiO274.62%,Fe2O31.69%,Al2O313.76%,CaO1.46%,MgO1.59%。经该工艺提纯的硅藻土,SiO287.21%,Fe2O30.57%,Al2O35.6%,CaO0.36%,MgO0.14%。尾矿废渣用于出产保温材料。 (三) 首要深加工制品种类、用处 因为硅藻土的特殊结构结构,因而使其具有许多特殊的技能物理功能,如较大空地度,较强的吸附功能,质轻、隔音、耐磨、耐热并具有必定强度,被广泛应用于轻工、化工、建材、石油、医药卫生等部分。 1.硅藻土助滤剂 首要用于酒类、油脂、涂料、肥料、酸碱、药品、水等液体的过滤。 2.硅藻土保温制品 (1)硅藻土质隔热材料(包含保温砖、保温板、保温管、保温混凝土等)广泛应用于冶金、建材、机械、动力等工业部分以及锅炉、蒸馏器、热处理炉、干燥器的保温。 (2)微孔硅酸钙保温材料广泛用于工业及民用建筑的绝热保温。 3.填料 用作颜料、油漆、纸张、沥青、塑料、橡胶等填充料和补强填料。 4.催化剂载体 用于石油氢化效果过程中镍催化剂、制作硫酸中钒催化剂、石油磷酸催化剂等的载体。 5.抛光剂 焙烧后的硅藻土可用于抛光汽车车壳、大理石、宝玉石及金银手饰等。 6.密度调节剂 作为杰出的载体、稀释剂,涣散硝酸铵,削减结块,也是安稳胶体的添加剂。
硅藻土矿的选矿与加工(一)
2019-02-18 15:19:33
(一) 选矿加工办法 硅藻土选矿的意图是要除去其间泥砂、碎屑及铁、铝等杂质,使硅藻富集。一般是选用重力选矿办法,分为干式和湿式两种。干式分选是选用空气别离机等除去脉石,或选用旋转式枯燥机除去有机物、易挥发物和水分,首要用于高档次矿石;湿法分选是选用水力旋流器等除去密度较大的脉石杂质,首要用于低档次矿石。 硅藻土提纯也常选用化学选矿办法,即向矿浆中参加硫酸、及辅佐药剂,除去铁、铝等杂质。 硅藻土选矿加工流程一般为:原矿→一段磨矿及枯燥→二段磨矿及枯燥→预分级→旋风器别离→粉状产品(可作为终究产品)→入回转窑煅烧(或加熔剂煅烧)→磨矿冷却→分选分级→填料级或助滤剂级产品。 因为许多范畴都是使用硅藻土硅壳结构的多孔性,因此在磨矿时要仔细挑选破碎磨矿设备,最大或许地维护骨骸的完好结构和共同形状,防止次生破碎。 破碎磨矿设备:常用雷蒙磨和气流粉碎机,湿式加工也选用拌和擦拭机。 煅烧枯燥设备:常选用回转窑和旋转式枯燥机等。 (二) 选矿实践 1.吉林省长白县硅藻土工业公司 长白硅藻土工业公司从美国威特克公司引进了一条年产1.5万t硅藻土助滤剂的生产线,于1992年建成投产,其工艺流程(下图)是将硅藻土烘干后,与助熔剂粉末直接混合,然后进入回转窑煅烧,烧成后的半成品,经分级加工后成为终究产品。该公司处理的硅藻土原矿含SiO289.0%,Al2O32.57%,Fe2O31.20%,CaO0.24%,其他杂质6.99%。产品为硅藻助滤剂100~1 200号。除天然枯燥品外,一切煅烧品硅藻土化学成分:SiO289.7%~91.1%,Al2O34.7%~4.8%,Fe2O31.3%~1.4%,CaO0.44%,烧失量0.2%~0.5%。
从某石煤钒矿中提取钒的试验
2019-02-19 10:03:20
石煤是我国特有的能够作为独自矿床挖掘的钒矿资源,其矿石类型首要是炭质、硅质岩,钒简直悉数赋存于含钒水云母(伊利石)、高岭石等黏土矿藏中,与铝、钾、铁以类质同象方式存在于矿藏晶格中,直接提取难度很大。西北某石煤钒矿属硅质岩夹炭质泥岩型,钒以类质同象方式存在于水云母中。实验选用氧化焙烧-硫酸浸出-复原-溶剂萃取-铵盐沉积工艺研讨了从该矿石中提取五氧化二钒,断定了最佳提取条件。
一、矿石与试剂
矿石首要化学成分为:1.07% V2O5,78.60% SiO2,2.60% Fe2O3,3.13% Al2O3,0.97% CaO,0.68% K2O,0.47% P2O5,0.95% S,1.40% C,烧失量3.94%。
试剂:硫酸,,,均为分析纯;铁屑,P2O4(二 (2-乙基己基)磷酸,TBP磷酸三丁脂),磺化火油,均为工业级。
二、实验办法
经过焙烧,先将V(Ⅲ)氧化为V(Ⅳ)或V(V)后用酸溶解,然后用对四价钒具有高挑选性的P2O4进行萃取,再用硫酸水溶液反萃取,反萃取液中的V(Ⅳ)氧化成V(V)后,再用铵盐沉积法沉积红钒,沉积的红钒经洗刷、烘干、热解,得到五氧化二钒产品。工艺流程如图1所示。 三、实验成果评论
(一)浸出探究实验、
矿石粒度0.089mm,温度95℃,直接酸浸实验成果(见表1)标明:在强化的浸出条件下,五氧化二钒浸出率较低。矿石造球后焙烧,然后用硫酸浸出(质料粒度0.124mm,造球Φ10mm;浸出温度90℃,浸出粒度-0.71mm,液固体积质量比1.2,浸出2h)实验成果(见表2)标明:以氧化焙烧-酸浸工艺处理该矿石,五氧化二钒浸出率比直接酸浸时有明显进步。
表1 直接酸浸探究实验成果序号浸出时刻/h液固体积质量比硫酸用量/%V2O5浸出率/%1
2
3
4
5
66
6
6
6
10
101.2
1.2
1.2
1.2
1.2
1.212
15
20
30
30
4024.75
31.81
40.20
65.13
67.15
71.05
表2 造球-焙烧-浸出探究实验成果序号焙烧温度/℃焙烧时刻/h硫酸用量/%V2O5浸出率/%1
2
3
4850
850
850
9002
2
2
210
15
20
2565.14
77.50
83.50
87.83
(二)焙烧实验
原矿磨细至-0.074 mm占90%,制球Φ10~20 mm,枯燥后焙烧。浸出温度90℃,浸出矿样粒度-0.71mm,硫酸用量25%,浸出时刻2h。
1、焙烧温度的影响
焙烧时刻2h,焙烧温度对五氧化二钒浸出率的影响实验成果如图2所示。能够看出:随焙烧温度升高,五氧化二钒浸出率升高,但温度升到900℃后,浸出率趋于稳定,这可能是因为烧结使钒被包裹或生成了捆绑钒的方钠石类与霞石类矿藏,使钒难于浸出的原因;但较低的焙烧温度缺乏以彻底氧化贱价钒,使得钒浸出率偏低。实验断定焙烧温度以900℃为宜。 2、焙烧时刻的影响
焙烧温度900℃,焙烧时刻对五氧化二钒浸出率的影响实验成果如图3所示。能够看出:焙烧1h,五氧化二钒浸出率仅为84.61%,钒浸出不彻底,这可能是焙烧时刻缺乏、矿藏结构未能彻底损坏而使得贱价钒氧化不充分;焙烧1.5h,钒浸出率达92.43%,再延伸焙烧时刻,浸出率改变不大。断定焙烧时刻为1.5h。 (三)浸出条件的断定
断定焙烧温度900℃,焙烧时刻1.5 h;焙砂破碎至-0.71mm,液固体积质量比1.2。
1、硫酸用量的影响
浸出温度90℃,时刻2h,硫酸用量对钒浸出率的影响实验成果如图4所示。能够看出:矿石焙烧后,仍需较高的酸度才干取得抱负的浸出率,这可能是矿石中耗酸物质较多的原因。浸出液pH升高,现已浸出的五价钒发作水解而沉积,使五氧化二钒的浸出率下降。实验选定酸参加量为20%。 2、浸出温度的影响
浸出时刻1h,硫酸用量20%,浸出温度对五氧化二钒浸出率的影响实验成果如图5所示。
由图5看出,温度对五氧化二钒浸出率的影响不明显。为下降能耗和削减温度对设备的更高要求,实验选定在常温下浸出。
3、浸出时刻的影响
常温下,硫酸用量20%,浸出时刻对五氧化二钒浸出率的影响实验成果如图6所示。 从图6看出:随浸出时刻的添加,五氧化二钒浸出率略有进步;浸出2h后,浸出率趋于稳定。实验断定浸出时刻以2h为宜。
(四)萃取-反萃取-铵盐沉钒
1、萃取-反萃取
浸出液经中和、铁屑复原后制得萃原液,V2O5的中和、复原回收率为97.52%。萃原液V2O5质量浓度为5~6g/L,pH值为2.2~2.45。混合时刻单级萃取实验成果见表3;质料pH值单级萃取实验成果如表4;萃取剂浓度单级萃取实验成果如表5。
表3 混合时刻单级萃取实验成果混合时刻/min萃取率/%3
5
7
1071.94
74.66
74.32
74.48
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;萃取剂V(P2O4),V (TBP ),V(火油)=15︰5︰80;弄清时刻7min;料液pH=2.2。
表4 质料pH值单级萃取成果质料pH值萃取率/%1.50
2.20
2.30
2.5025.85
74.66
76.50
81.29
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;萃取剂V(P2O4),V (TBP ),V(火油)=15︰5︰80;混合时刻5min;弄清时刻7 min。
表5 萃取剂浓度单级萃取成果V(P2O4)︰V (TBP )︰V(火油)萃取率/%10︰5︰85
15︰10︰75
20︰15︰6566.15
85.74
85.86
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;混合时刻5min;弄清时刻7min;料液pH值2.38。
由表3看出:萃取反响很快,两相触摸时刻在5min以内即达萃取平衡。实验断定萃取混合时刻为5min,弄清时刻挑选7min。
由表4看出,随料液pH升高,五氧化二钒萃取率升高,但当pH值到达2.5时,开端呈现少数絮状物,可能是水相中的杂质如铁、铝沉积所造成的。pH操控在2.3~2.5之间比较适合。
从表5看出,单级萃取时,萃取剂最佳组成为15%P2O4+10%TBP+75%火油。
在最佳条件下进行5级逆流萃取,成果见表6。
表6 5级逆流萃取实验成果萃取级数萃余液中ρ(V2O5)/(g·L-1)V2O5萃取率/%1
2
3
4
51.21
0.75
0.26
0.10
0.0776.69
85.55
94.99
98.07
98.48
萃取条件:萃原液V2O5质量浓度5.19g/L,萃取剂为75%磺化火油+15%P2O4+10%TBP,比较(Va/Vo)=1︰1,1,混合时刻5min,弄清时刻7min。
5级逆流萃取后,V2O5萃取率达98.48%,负载有机相V2O5质量浓度为5.28g/L,萃取剂经处理后可循环运用。萃取后的负载有机相用1.5moL/L硫酸溶液5级逆流反萃取,成果见表7。
表7 5级逆流反萃取实验成果反萃取级数贫有机相中ρ(V2O5)/(g·L-1)V2O5反萃取率/%1
2
3
4
51.00
0.16
0.01
0.003
0.00181.06
96.97
99.81
99.94
99.98
实验条件:Va/Vo=8︰1,混合时刻10min,弄清时刻10min。
5级逆流反萃取后,贫有机相中V2O5质量浓度为0.001g/L,V2O5反萃取率99.98%,反萃取液中V2O5质量浓度在45g/L以上。
2、产品五氧化二钒的制备
选用铵盐沉积法沉积红钒。实验条件为:反萃取液中V2O5质量浓度47.08g/L,参加质量浓度200g/L的溶液,60℃下拌和1h,操控氧化复原电位在-900MV以上;以调pH至2.1,在92℃左右拌和2h,沉积得红钒;红钒经洗刷、烘干、热解,得棕黄色粉状产品。沉钒过程中,V2O5沉积率为97.50%,V2O5煅烧回收率98.50%。终究产品成分分析成果为:98.78% V2O5,0.11% Si,0.30% Fe,0.0093% As,0.05% P,0.003%S,(0.026+0.041)%(Na2O+K2O),产品质量到达GB3283-1987冶金98标准。
四、定论
(一)对西北某石煤钒矿选用造球-氧化焙烧-浸出-中和-复原-萃取-氧化沉钒-煅烧工艺提取V2O5。原矿磨细至0.074mm占90%以上,造球后在900℃条件下氧化焙烧1.5 h,焙砂破碎至 0.84mm,常温下用硫酸溶液浸出1h,钒基本上彻底浸出。
(二)浸出液经中和、复原处理后,选用15% P2O4+10%TBP+75%磺化火油系统萃取、1.5moL/L硫酸溶液反萃取,反萃取液用按盐沉积红钒,红钒在550℃下锻烧,得到合格产品。
(三)工艺中五氧化二钒浸出率为88.66%,中和复原回收率97.52%,萃取率98.48%,反萃取率99.98%,沉积率97.50%,煅烧回收率98.5%,五氧化二钒总回收率81.76%。
(四)选用该工艺,五氧化二钒回收率较传统钠化焙烧工艺有大幅进步,且契合环保要求,有利于完成工业化。
陕西某钒矿提钒新工艺研究
2019-02-18 15:19:33
陕西某钒矿提钒新工艺研讨
李洁 海 马晶
西北有色地质研讨院
摘 要 传统的钠化焙烧提钒工艺本钱较低,可制得纯度达98%以上的五氧化二钒;新工艺则具有无污染的长处,在实验目标附近的情况下,出产本钱不高,有杰出的经济效益,环境效益和社会效益。
关键词 超细磨矿 焙烧 钒
陕西某钒矿系吸附涣散状况存在的钒矿,不宜用机械选矿办法富集。在该区域的同类矿石中,提钒办法大致有两类,一是传统的钠化焙烧提钒工艺,该工艺技能老练、操作简略,建厂出资和出产本钱相对较低,但由于选用工业食盐作钠化剂,焙烧时发作很多的、氯化氢等有毒气体,对周围环境形成了严重破坏;二是酸浸-萃取提钒工艺,该工艺可削减环境污染,但出产本钱和建厂出资过大,致使出产厂商不堪重负。本研讨标明,选用超细磨矿-无增加剂焙烧-助浸提钒工艺,可获得较好的实验目标,且不形成环境污染,在现在超细磨矿技能日趋完善、本钱不断下降的情况下,新工艺为该类矿石的开发利用展示了新的远景。
1 矿石性质
矿石类型为泥岩与炭硅质岩的混合矿石,原矿含V2O51.60%,矿石中首要金属矿藏为褐铁矿、黄铁矿、铁钒锐钛矿、钒铁矿等。首要非金属矿藏为石英、泥质和炭质,一起还有少数碳酸盐矿藏和磷灰石。钒的赋存状况较杂乱,除在钒铁矿、钒铁锐钛矿中散布以外,经电子探针分析标明,矿石中占很大份额的石英和褐铁矿中普遍存在涣散状况的钒。原矿多元素分析成果见表1。
表1 原矿多元素分析成果
成份V2O5TiO2P2O5Na2OK2OFe2O3SiO2Al2O3含量(%)1.600.270.640.121.666.8673.863.22成份MgOCaOCoNiAsSTCMo含量(%)2.421.940.0020.0160.0060.520.440.016
2 提钒工艺
2.1 实验想象
矿石中的贱价钒经焙烧可氧化成V2O5,如其能与矿石自身所含K、Na元素生成可溶性盐,在浸出作业可再参加有利该盐类溶解的助浸剂,则可使矿石中的钒有用转化,后经二段沉钒作业即可得到含V2O598%以上的精钒。
2.2首要因素对焙烧转浸率的影响
2.2.1磨矿细度对焙烧转浸率的影响:
磨矿细度对焙烧转浸率的影响见表2。[next]
表2 磨矿细度对焙烧转浸率的影响实验成果
磨矿细度(%)V2O5转浸率(%)-76μm含量-40μm含量-30μm含量-10μm含量91.8///63.75/87//65.00//88/69.38//93.06075.00
实验成果标明,磨矿细度越细,焙烧转浸率越高。
2.2.2焙烧温度对转浸率的影响
焙烧温度对转浸率的影响成果见表3
表3 焙烧温度对转浸率的影响
焙烧温度(℃)转浸率(%)75013.7580076.8885078.13
实验成果标明,当750℃时,转浸率很低。而温度升至800℃时转浸率急升至76.88%,800℃今后趋于稳定。
2.2.3 焙烧时刻对转浸率的影响
焙烧时刻对转浸率的影响成果见表4
表4 焙烧时刻对转浸率的影响
焙烧时刻(小时)转浸率(%)165.63276.88377.50479.38
实验成果标明,跟着焙烧时刻的增加,转浸率呈上升的趋势,但2小时以上时趋于稳定。
2.3 新工艺与钠化焙烧法转浸率的比较
焙烧、浸出作业新工艺与钠化焙烧法异同点见表5。
表5 钠化法与新工艺异同点
相同点相异点V2O5转浸率(%)焙烧温度800℃
焙烧时刻 2小时钠化法增加10%NaCl磨细度-76µm90%水浸浸出78.71新工艺磨矿细度-10µm60%
助浸浸出76.88[next]
2.4 其他作业
原矿磨矿焙烧后,加温拌和助浸浸出,浸出液经二段沉钒,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上。
3 成果评论
新工艺与钠化焙烧法比较,实验目标挨近,在焙烧浸出段的首要区别是钠化焙烧加钠化剂氯化钠,新工艺选用超细磨矿,另外在浸出段进行助浸浸出,它的首要长处是无污染。
材料标明焙烧机理为:
焙烧钠化法的机理:
2NaCl+O2+H2O(g)+V2O3=2NaVO3+HCl↑
4NaCl+3O2+2V2O3=4NaVO3+2Cl2↑
其中有氯化氢和放出污染环境。
而新工艺在焙烧时发作的仅是贱价钒的氧化反响。
V2O3 + O2= V2O5
2V2O4 + O2= 2V2O5
故不形成空气污染。
从出产本钱上讲,钠化焙烧所需氯化钠的本钱,能够部分乃至悉数抵销新工艺中超细磨矿的本钱,跟着超细磨矿技能的进一步开展,磨矿本钱还有或许进一步下降。
4 定论
(1)本实验选用超细磨矿—无增加剂焙烧—助浸提钒新工艺可获得钒焙烧转浸率75%以上,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上的实验目标。
(2)新工艺为无污染工艺,出产本钱挨近钠化焙烧,且跟着超细磨技能的不断开展,还有或许进一步下降。
参考文献
1 戴文灿等 《石煤提钒归纳利用新工艺的研讨》
2 邹晓勇等 《含钒石煤无盐焙烧出产五氧化二钒工艺的研讨》
提高石煤钒矿中钒浸出率的技术
2019-01-18 13:27:13
有效提高石煤钒矿的综合利用率,降低成本,钒的浸出率是关键。为了提高钒的浸出率,科研工作者做了大量的工作,所采用的方法有钠化焙烧-浸出、氧化焙烧-浸出、钙化焙烧-浸出等焙烧-浸出法、氧压浸出法及直接高酸浸出法。其中焙烧-浸出法投资大,由于工艺复杂,处理成本高,也不太容易大工业化应用,更为致命的是,由于矿石性质的复杂性,焙烧过程中会产生大量的废气,给周围环境造成严重的破坏;氧压浸出法目前尚处在实验室阶段,处理成本也较高,工业化尚待时日;直接酸法浸出法是目前较为先进的工艺,但是,石煤钒矿中钒的赋存状态较为复杂,在直接酸浸中,钒的浸出率高低就成为工艺应用的关键。陕西五洲矿业公司中村钒矿属吸附型的钒矿,以四价钒为主,相对较易浸出,直接采用硫酸浸出,浸出率可达80%。为了进一步提高浸出率,降低成本,我们对该矿石进行了深入的研究,通过添加助浸剂,使浸出率大幅度提高,浸出率可达93%以上。
一、矿石性质
矿石矿物组成以非金属矿物为主,金属矿物较少。金属矿物以褐铁矿为主,次为黄铁矿、钒铁矿、铁钒锐钛矿等;非金属矿物以石英、泥质为主,次为方解石、石墨、碳质等,副矿物为磷灰石。通过岩矿鉴定、电子探针等手段对钒的赋存状态研究认为,钒主要以吸附状态存在,在碳硅泥岩建造的泥硅质岩与碳硅质岩界面附近,电子探针分析V2O5含量可达9.42%~13.31%;钒有少量的独立矿物钒铁矿(V205989%)、钒铁锐钦矿(V205 26.11%),铁质结核中铁矿物含V205可达5%左右。依据矿石矿物成分、结构、构造,主要矿石类型为碳硅质岩夹互泥岩型钒矿石,局部为(碳质)泥岩型钒矿石。
(一)碳硅质岩夹互泥岩型钒矿石:由黑色碳硅岩夹互泥岩或互层组成,具有碳硅质岩型与泥岩型矿石的双重矿物成分和结构、构造,黑色碳硅岩组成矿物以石英为主,石英含量65%~95%;其次为戮土矿物(水云母、高岭石)10%、碳质10%、方解石1%、褐铁矿5%~7%、黄铁矿0.5%等。矿石呈隐晶结构。泥岩组成矿物以黏土矿物高岭石、水云母为主,黏土矿物含量≥75%,碳质5%~15%,次为黄铁矿、石英等,隐晶一泥质结构、粉砂质结构。
(二)(碳质)泥岩型钒矿石:主要由泥(页)岩组成,可含个别碳硅质岩细条。组成矿物以黏土矿物高岭石、水云母为主,黏土矿物含量≥75%,碳质泥岩型矿石中碳质5%~15%,次为黄铁矿、石英等,隐晶一泥质结构、粉砂质结构及藻屑结构。
二、试验方法
原矿经破碎到-2mm后缩分为每包500g备用。每次取矿样一包(500g)加入锥型球磨机(XMQ-67型)中,加入350mL自来水进行磨细,磨至-0.2mm95%,将矿浆过滤后,在105℃以下烘干,均分成每包l00g备用。每个浸出试验取1包(100g)矿粉,置于500mL玻璃圆底烧瓶中,加人助浸剂和浸液(一定浓度的硫酸),配可调速磁力机械搅拌装置和可调温度控制装置,并用100℃温度计测量物料温度。在相应的条件下,浸出完成后,用9mm布氏漏斗配合水抽对浸出体系进行抽滤和洗涤,浸出液标至一定体积,浸出渣105℃下烘干、称重;浸出液与浸出渣分别按国标进行分析化验。
三、试验结果与讨论
(一)硫酸用工对钒浸出率的影响 首先进行的是硫酸用量试验,试验结果见图1。其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h从图1所示结果可见,钒的浸出率随硫酸用量的增大而升高,当硫酸用量为8%时,钒的浸出率仅为53.71,当硫酸用量为15%时,钒的浸出率为74.82%,当硫酸用量达20%时,钒的浸出率为84.86%,虽然获得了较为理想的浸出效果,但是,随着硫酸用量的增大,浸出液中的游离酸浓度也随之升高;当硫酸用量达20%时,游离硫酸浓度高达2.20mol/L(H-浓度为4.40mol/L),而这么高的游离酸浓度会给后续的提钒处理工序带来较大的困难,增加生产成本;为此,我们研究以助浸剂A配合硫酸混合浸出以期获得满意的效果。
(二)助漫剂用量对钒浸出率的影响 图2和图3分别为硫酸用量10%和12%下助浸剂A的用量对浸出率的影响。从图2和图3可以总结出两点:(1)助浸剂的作用非常大,可大幅度提高钒的浸出率。当硫酸用量为10%时,不加助浸剂时钒的浸出率仅58.25%,加入2%的助浸剂时,钒的浸出率达到77%;当硫酸用量为12%时,不加助浸剂时钒的浸出率为63.25%,加入2.5%的助浸剂时,钒的浸出率达到88.38%。图2 硫酸用量为10%时助浸剂用量对钒浸出率的影响 其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h(2)助浸剂的最佳用量随着硫酸用量的增大而增大,当硫酸用量为10%时,助浸剂的最佳用量2%;当硫酸用量为12%时,助浸剂的最佳用量2.5%,这可能与助浸剂需要消耗酸有戈,助浸剂A之所以能有效地提高钒的浸出率,估计与其能破坏硅酸盐结构,使钒从矿石中释放出来,从而能被硫酸作用而进入水相的结果。图3 硫酸用量为12%时助浸剂用量对钒浸出率的影响 其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h其它试验条件:液固比1︰1,硫酸10%,助浸剂A2.5%,浸出时间8h
(三)浸出温度对钒浸出率的影响图4为浸出温度对浸出率的影响。从试验结果来看,提高浸出温度对钒的浸出非常有利;但考虑到这是常压浸出,如果温度超过90℃,浸出体系产生蒸汽挥发,既会恶化操作环境,也使得能耗增大,因此,综合相关因素,浸出温度以90℃为宜。
(四)浸出时间对钒浸出率的影响浸出时间对钒浸出率的影响见图5。由图可见,随着时间的增长,浸出率也随之增高;浸出时间为4h时,浸出率为74.45%;浸出时间为8h时,浸出率为77.45%;浸出时间为20h时,浸出率达到84.79%。四、工业试验结果通过实验室的系统研究,获得了理想的试验结果,在此基础上,我们在现场进行了工业试验,试验结果见表1。 表1 工业试验结果%浸出率助浸剂A用量原矿品位V205浸出渣品位V20500.990.24680.1520.8940.11293.05工业试验的条件为:磨矿细度-0.2mm95%;浸出液固比为1︰1;浸出硫酸用量10%;浸出温度90℃;浸出时间24h。工业试验结果验证了实验室试验的结果,在同等条件下,添加2%的助浸剂A,钒的浸出率从80.15%提高到93.05%,大幅度提高了钒的浸出率,降低了生产成本,提高了资源利用率。
五、结论
(一)所采用的助浸剂A具有特效作用,可破坏硅酸盐矿石结构,大幅度提高石煤钒矿中钒的浸出率。(二)工业试验中,在同等浸出条件下,添加2%的助浸剂A,钒浸出率从80.15%提高到93.05%。(三)助浸剂A的最佳用量与硫酸的用量有关,硫酸用量越大,助浸剂A的最佳用量就越大。
无污染钒矿选冶试验
2019-02-20 11:03:19
陕西某钒矿系吸附涣散状况存在的钒矿,不宜用机械选矿办法富集。在该区域的同类矿石中,提钒办法大致有两类,一是传统的钠化焙烧提钒工艺,该工艺技能老练、操作简略,建厂出资和出产本钱相对较低,但由于选用工业食盐作钠化剂,焙烧时发作很多的、氯化氢等有毒气体,对周围环境形成了严重破坏;二是酸浸-萃取提钒工艺,该工艺可削减环境污染,但出产本钱和建厂出资过大,致使出产厂商不堪重负。本研讨标明,选用超细磨矿-无增加剂焙烧-助浸提钒工艺,可获得较好的实验目标,且不形成环境污染,在现在超细磨矿技能日趋完善、本钱不断下降的情况下,新工艺为该类矿石的开发利用展示了新的远景。
一、矿石性质
矿石类型为泥岩与炭硅质岩的混合矿石,原矿含V2O51.60%,矿石中首要金属矿藏为褐铁矿、黄铁矿、铁钒锐钛矿、钒铁矿等。首要非金属矿藏为石英、泥质和炭质,一起还有少数碳酸盐矿藏和磷灰石。钒的赋存状况较杂乱,除在钒铁矿、钒铁锐钛矿中散布以外,经电子探针分析标明,矿石中占很大份额的石英和褐铁矿中普遍存在涣散状况的钒。原矿多元素分析成果见表1。
表1 原矿多元素分析成果 成份V2O5TiO2P2O5Na2OK2OFe2O3SiO2Al2O3含量(%)1.600.270.640.121.666.8673.863.22成份MgOCaOCoNiAsSTCMo含量(%)2.421.940.0020.0160.0060.520.440.016
二、提钒工艺
(一) 实验想象
矿石中的贱价钒经焙烧可氧化成V2O5,如其能与矿石自身所含K、Na元素生成可溶性盐,在浸出作业可再参加有利该盐类溶解的助浸剂,则可使矿石中的钒有用转化,后经二段沉钒作业即可得到含V2O598%以上的精钒。
(二)首要因素对焙烧转浸率的影响
1、磨矿细度对焙烧转浸率的影响:
磨矿细度对焙烧转浸率的影响见表2。
表2 磨矿细度对焙烧转浸率的影响实验成果 磨矿细度(%)V2O5转浸率(%)-76μm含量-40μm含量-30μm含量-10μm含量91.8///63.75/87//65.00//88/69.38//93.06075.00
实验成果标明,磨矿细度越细,焙烧转浸率越高。
2、焙烧温度对转浸率的影响 焙烧温度对转浸率的影响成果见表3表3 焙烧温度对转浸率的影响 焙烧温度(℃)转浸率(%)75013.7580076.8885078.13
实验成果标明,当750℃时,转浸率很低。而温度升至800℃时转浸率急升至76.88%,800℃今后趋于稳定。
3、焙烧时刻对转浸率的影响
焙烧时刻对转浸率的影响成果见表4
表4 焙烧时刻对转浸率的影响 焙烧时刻(小时)转浸率(%)165.63276.88377.50479.38
实验成果标明,跟着焙烧时刻的增加,转浸率呈上升的趋势,但2小时以上时趋于稳定。
(三)新工艺与钠化焙烧法转浸率的比较
焙烧、浸出作业新工艺与钠化焙烧法异同点见表5。
表5 钠化法与新工艺异同点 相同点相异点V2O5转浸率(%)焙烧温度800℃
焙烧时刻 2小时钠化法增加10%NaCl磨细度-76µm90%水浸浸出78.71新工艺磨矿细度-10µm60%
助浸浸出76.88
(四)其他作业
原矿磨矿焙烧后,加温拌和助浸浸出,浸出液经二段沉钒,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上。
三、成果评论
新工艺与钠化焙烧法比较,实验目标挨近,在焙烧浸出段的首要区别是钠化焙烧加钠化剂氯化钠,新工艺选用超细磨矿,另外在浸出段进行助浸浸出,它的首要长处是无污染。
材料标明焙烧机理为:
焙烧钠化法的机理:
2NaCl+O2+H2O(g)+V2O3=2NaVO3+HCl↑
4NaCl+3O2+2V2O3=4NaVO3+2Cl2↑
其中有氯化氢和放出污染环境。
而新工艺在焙烧时发作的仅是贱价钒的氧化反响。
V2O3 + O2= V2O5
2V2O4 + O2= 2V2O5
故不形成空气污染。
从出产本钱上讲,钠化焙烧所需氯化钠的本钱,能够部分乃至悉数抵销新工艺中超细磨矿的本钱,跟着超细磨矿技能的进一步开展,磨矿本钱还有或许进一步下降。
四、定论
(一)本实验选用超细磨矿—无增加剂焙烧—助浸提钒新工艺可获得钒焙烧转浸率75%以上,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上的实验目标。
(二)新工艺为无污染工艺,出产本钱挨近钠化焙烧,且跟着超细磨技能的不断开展,还有或许进一步下降。
褐铁矿铁钒土硫酸加压浸出中钴的技术
2019-01-30 10:26:27
最近几年,从铁钒土矿石中提取镍和钴的湿法技术相比于能源密集型和空气污染严重的火法技术因生产成本低、环保而日益受到重视。在铁和铝同时溶解并沉淀情况下,镍和钴的回收率均超过90%。采用加压浸出法进行试验,试验设备为可注酸钛高压釜和样品回收装置。试验条件:酸占矿石质量的30%,温度范围230~270℃。褐铁矿铁矾土矿样及浸出过程中的固体产品特性用透射电子显微镜研究。结果表明:镍主要与针铁矿物相有关,而钴仅以富镍的锰结构存在;浸出过程中,针铁矿溶解释放镍,而铁以致密赤铁矿形式在溶液中原地再沉淀;钴溶解快速并保留在水相中,随后锰溶解,但溶解速率比钴溶解速率低。浸出结束时,得到贫钴的锰颗粒。试验范围内,浸出过程中温度升高对钴的溶解速率影响不大,但矿浆搅拌速率的升高会导致溶解速率升高。固体物质的TEM照片和各自的矿物学分析结果表明:膜扩散是可能的速率控制步骤,收缩核心模型可用于解释钴 的溶解动力学。
硅藻土与矿物土(一)
2019-02-18 15:19:33
硅藻土是一种很通用的吸附剂和助滤剂,广泛地运用在食物工业、石油工业和化学工业中。加硅藻土过滤是制作高质量产品的一个很重要环节。例如,啤酒、葡萄酒和果酒,植物油,以及多种石油产品,都要运用硅藻土过滤,以取得明晰通明的液体。许多高纯度的结晶状食物(例如葡萄糖)和化工产品,在结晶之前也要将溶液用硅藻土过滤以得到清液。 过滤是一种很通用的物理处理办法,用以除掉液体中的不溶性物质。由于液体中的固体物质经常是一些粒子微细、不定形、粘软、简单阻塞滤布孔眼的物质,如独自进行过滤,常会呈现过滤困难、滤液不清,不能构成滤渣层(只在滤布表面上构成一些浆状物)等问题,实际上不能运用。在溶液中参加助滤剂,或许在滤布的表面上预先涂上一层助滤剂,可以明显改进这种情况,过滤速度较快,滤液清亮,滤渣比较严密和可以从滤布上掉落。各种工业上最常用的助滤剂就是硅藻土。 在某些运用硅藻土过滤的场合,也一起参加活性炭,以一起吸附除掉溶液中的有色物质和其他对产品质量有不良影响的物质。国内的高档饮料厂,所用的蔗糖是先溶解成50%~55%浓度,参加活性炭和加硅藻土(用量对糖比各为0.2%~0.3%),拌和10~15分钟后进行精密的过滤,以到达彻底清亮的要求,然后再将清糖液用于制作汽水和其他饮料。 硅藻土是天然构成的矿物质。它首要是由古代的硅藻及其他单细胞细小生物的遗骸的沉积物的硅质部分组成,经过加工成为产品。首要成分为SiO2.nH2O,色彩呈白色、灰白、黄色、灰色等。它的内部有许多孔隙,质轻而软,硬度1~1.5,密度一般为1.9~2.3g/cm3,枯燥后为0.4~0.7g/cm3,孔隙度可达90%左右,易研成粉末。硅藻土具有很强的吸附才能,有杰出的过滤性和化学稳定性。 我国山东、吉林、浙江、云南、四川、江西等省有丰厚的硅藻土矿,并有多个工厂出产(其间部分是按国外品牌和技能出产)。由于质料和加工办法的不同,硅藻土有多种不同的产品和产品牌号;同一出产厂也常有几种不同功能的产品。 硅藻土的根本产品是将硅藻土矿经过选矿后,磨碎和枯燥(一般两次),经过预分选和旋流别离器别离,得到微细的粉状产品。不同等级产品的质量指标如下: 这些产品的水分低于10%,pH值5~8,比表面积15~17m2/g。 硅藻土的精制品还要经过焙烧或加助熔剂焙烧处理。焙烧品是将质料精选后,经700~900℃的高温焙烧;助熔焙烧品是将精选的质料参加适量的助熔剂,经900~1200℃的高温焙烧,两者随后都经过破坏和筛分。焙烧品呈桔黄色、粉红色至红褐色,助熔焙烧品呈粉白色。精制品中SiO2高于87%,Al2O3低于3.5%,Fe2O3低于1.5%,CaO低于0.35%,MgO低于0.35%,有机物低于2%,水可溶物低于0.3%,可溶物低于1.8%,铅、砷低于4mg/kg。助熔焙烧品的pH值较高,约为10。 硅藻土内部有许多微孔,显微镜可见。原土的孔体积为0.4~0.9mL/g,精制品的孔体积为1.0~1.4mL/g,比表面积达20~70m2/g。因而,它有杰出的吸附功能,特别是长于吸附截留溶液中的悬浮微粒。将溶液加硅藻土过滤能得到清亮的滤液。 硅藻土的真密度为2~2.5g/mL,堆密度为0.3~0.5g/mL。它的微孔尺度因产品和制作办法而异。煅烧品的孔径较小,如3~8μm,助熔煅烧品的孔径较大,如11~16μm。 不同的硅藻土由于其孔径不同,对液体的浸透率有较大不同。浸透率是硅藻土功能的重要参数,单位为达西(Darcy)。煅烧品为0.03~0.35,助熔煅烧品为0.9~5.5。前一类硅藻土首要用于处理低粘度的液体,后一类则用于高粘度的物料。 硅藻土在国外的糖厂用得适当遍及,特别是糖浆等高粘度物料的过滤。将它参加于糖液中,或使过滤机在过滤糖液前先经过硅藻土与水的混合物,在滤布上构成硅藻土的“预涂层”,再过滤糖液,将溶液中的悬浮物阻留在硅藻土层之上。这些糖液的过滤假如不加硅藻土,常难以在过滤机中构成滤泥层。
硅藻土与矿物土(二)
2019-02-18 15:19:33
2、各种矿产土 天然存在的矿产土,有不少种类具有吸附才能(或在通过化学处理活化今后)。如漂白土 (亦称富勒氏土,fuller's earth);蒙脱土(montmorillonite,亦称班脱土bentonite),产品常称为膨润土,或简称白土;以及凹凸棒土(简称凹土, attapulgite)等。我国亦有丰厚的资源,并有多种产品直销。 蒙脱土的化学组成通式为:Al2(Si4O10)(OH)2•xH2O,或Al2O3.4SiO2•xH2O,其间(SiO2/Al2O3)比率约为4:1。蒙脱土含SiO2(50%~70%)、Al2O3(15%~20%),还含有少数的铁、钙、镁、钠、钾的氧化物。不同产地的成份可有很大不同。蒙脱土的化学结构中有许多的孔隙,能吸附许多水分。天然的蒙脱土含水约50%~60%,在枯燥后内部构成许多孔隙,优秀者可达其体积的60%~70%,比表面积约为120~140m2/g。它具有杰出的吸附功用,能吸附本身分量12%~15%的有机杂质。它还有较强的阳离子交流才能,这与它的化学成分有关。 新挖掘的蒙脱土适当软,有塑性。呈白色,或带浅黄、浅红、绿、紫等色;是质地细密的鳞片状微晶集合体。具蜡状或油脂光泽。将它通过分选、破碎、枯燥、磨粉和筛分等处理而成为产品。 将蒙脱土用或硫酸处理,可使它活化而将它的吸附才能进步3~5倍。这种产品称为活性白土或酸性白土。将蒙脱土与水谐和成浆状,在反响器中参加(HCl为土量的28%~30%)或硫酸,加热反响2~3小时,将土中的有机物和钙、镁、钠、钾等成分溶去,然后别离除掉反响物中的残酸及溶解物,用水洗刷至挨近中性(产品中的游离酸含量应小于0.2%),再枯燥至水分低于8%,破坏至200目筛通过90%以上,即为活性白土。 活性白土是白色或米色粉末或颗粒。首要成分是Al2O3.4SiO2.nH2O。表观密度0.55~0.75g/cm3,相对密度2.3~2.5。不溶于水,有油腻感。它的表面有许多不规则的孔穴,比表面积很大,具有杰出的吸附功用,可除掉动、植物油和矿产油中的不良气味和有色物质,它还有离子交流才能和挑选吸附性。活性白土已广泛应用在食物、酿制和化学工业中,将各种油类和有机物脱色精制。 活性白土的质量指标按其用处而分为几个等级。用于食用油加工的质量要求较高。 凹凸棒土是一种以硅酸镁为首要成分、并含有铝、铁等元素的粘土矿,最早发现于美国的凹凸堡而得名。美国的产值较大,20世纪40年代已开端应用在石油化工等职业。我国江苏、安徽等省亦有矿产和产品。 它呈白色、浅灰色或浅褐色,带土状光泽,硬度2~3,密度2.05~2.3g/cm3,具有层链状的结构,单斜晶系,表面多沟槽,内部多孔道,有很大的表面积,可让阳离子、水分子和必定巨细的有机物分子进入,可交流阳离子,并有较强的吸附脱色才能。 国内曾有几个单位进行过开始试验,阐明活性白土和凹凸棒土都对糖液有必定的脱色效果。因为这类物质的来历丰厚、报价较低,并且某些种类(包含通过加工精制和活化的)有很好的脱色力,将它们应用于糖液的脱色精制是很值得进一步研讨的。3、吸附功用 硅藻土的首要功用是吸附除掉溶液中的微细粒子,进步过滤速度和得到明晰的滤液。运用其他的土类吸附剂也有相同要求。 Bennett曾研讨多种这类固体吸附剂对蔗汁中悬浮微粒的效果,包含硅藻土、皂土、酸性白土,高岭土、富勒土、蒙脱土、Lanxite等矿产土以及普通木炭和酸洗木炭等。成果标明,有几种物体能吸附蔗汁中的悬浮微粒,又能交流吸附溶液中的钙离子,这两方面的功用具有正份额联系。一些试验成果示于下图。它的纵坐标为这些吸附剂吸附微粒的才能,以每克可吸附的微粒个数标明;横坐标标明它们对溶液中钙离子的离子交流容量。 多种不相同本的试验成果阐明晰,这两个数值之间有很规则的份额联系。由此可知,这些吸附剂对悬浮微粒的吸附,是首要通过吸附钙离子起效果,其实质是钙离子在吸附剂与悬浮微粒之间起架桥效果,将它们连结起来。无疑,完成这种吸附效果需求构成许多的钙离子桥。依据上述试验数据算出,为吸附一个悬浮微粒,吸附剂所需的交流Ca2+ 容量为8×108个。不过,钙离子在微粒之间起架桥效果的仅仅其间的很小部分。 他的研讨还标明,一些本来吸附才能较差的吸附剂,假如用浓NaCl溶液浸一段时间再洗净,可明显进步它们吸附Ca2+的才能 (因Na+置换了吸附剂中本来所含的一部分其他阳离子),此刻它吸附蔗汁悬浮微粒的功用亦按份额进步,符合该图的规则。这种规则是应当注重的。因而,糖厂选用这类吸附剂(包含助滤剂),应挑选对钙离子有较高的交流吸附功用者,或通过用盐水浸渍处理来进步它的功用。
姓稀名土,其实我不“土”!
2019-03-06 10:10:51
姓稀名土,其实我不“土”!
我姓稀名土,其实我不“土”,曾称稀土金属,或称稀土元素,是元素周期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。
依据我的物理特征,有人俗称我为“砂包土”——花岗岩、花岗伟晶岩、混合岩、火成岩及砂岩等风化壳产品就有我的存在。因其天然丰度小,又以氧化物或含氧酸盐矿藏共生存在,全称故叫“稀土”,以离子方法存在又被称为离子型稀土。近些年在自然界中也发现我的兄弟许多,有高岭土、瓷土、粘土、滑石土、硅藻土、膨润土等等,也会含有制作被称为“灵活”的精细制导兵器、雷达和夜视镜等各种兵器装备不行短少的元素。
在我国长江以南八个省首要是以重稀土钇组—钆、铽、镝、钬、铒、铥、镱、镥和钇、钪十种元素离子相方法存在;长江以北首要是轻稀土铈组—镧、铈、镨、钕、钷、钐和铕七种元素以矿藏相方法存在;
我的宗族发源地60%在我国南边区域,在几十万——几亿年来我常受冰天雪地、风刮雨淋,到处漂流,首要会集在丘陵小山包地带,特别在南边区域温湿环境,导致我更是无家可归,成为“孤儿”。在地球上美国、英国和日本等发达国家早已知道到我这“孤儿”,由于他们知道我的实在身份,从上个世纪八十年代初,他们从西方世界来到我国,带我漂洋过海,可我恋恋不舍含泪离开了母亲——我国,在他们各个高尖端科学领域中让我发挥了应有的效果,然后再用我来做制服我国母亲的兵器。
在改革开放以来,我挨揍贱卖,更是一路下来浪费受栽赃,让我死无葬身之地。为了经济箭步增加,建设项目用地未征先动现象十分遍及,开展到现在特别严重。
我虽是“土”,但现在祖国的父亲也知道到我这个“孤儿”,组成六大集团厂商来抚育我长大成才,而有些当地对建设项目没有得到批文,就先斩后奏了,可抚育我的厂商有必要拿到有关部门批文后才干来找我,可我却早已被打入十八层了,再也无翻身之时机,真是悲痛!
最终,我想向我国母亲央求,别再让我四处流浪流浪了,我深爱我巨大的母亲——我国。不管我在哪里,请你必定来找我,别再让人把我出卖、蹂躏我,很想要你把我贴上标签我是稀土,并把我带回家。也期望更多的人知道,我姓稀名土,其实我不“土”。
关于三稀资源的几点知道
三稀资源是稀土、稀有和稀散资源的总称,是未来经济结构调整、产业结构晋级的要害,它们以其共同的功能和效果,成为原子能、航空航天、半导体、电子技能、特种钢材、超级合金以及火箭、军工等许多关乎国计民生和国防安全方面所必需的金属材料,具有重要的战略位置。
01、稀土非土
稀土元素包含铱、镧、铈、镨、钕、鉅、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪共17种元素。因其自身典型的金属元素特色而不同于“高岭土”、“膨润土”、“硅藻土”等带土字的非金属矿产资源,也不同于铝土矿、铁矾土等带土字的金属矿产或共、伴生金属含量较高的非金属矿产。
稀土之所以带土字,首要是由于稀土元素的英文(rareearth)带土字。不过,尽管稀土不是土,但能够来自于“泥土”,也能够改进土壤的功能,然后进步作物的产值。比方,赣南的脐橙全国出名,与其所成长的土地富含稀土亲近有关;云南曲靖有一种“羊毛土”,实际上也是富含稀土的凝灰岩风化构成的产品。02、稀有常有
稀有金属包含锂、铍、铌、钽、锆、、铪、、等9种元素,这些元素均能够构成独立的矿床,也可组合在一起构成多矿种的稀有金属矿床。
稀有金属矿床在我国具有优势,就其现在勘查开发现状而言,首要不是“有没有”的问题,而是怎么立异成矿理论和勘查点评技能办法,一起打破采、选、冶技能,以及深加工技能瓶颈。03、稀散不散
稀散金属首要包含镓、锗、铟、镉、、铼、硒和碲 8 个元素,也称为涣散元素。长期以来对这 8 个元素的知道就是“散而不聚” 。这些元素在地壳中的均匀丰度显着低于稀土、稀有金属和“大金属”,甚至要低几个数量级,但并不是肯定不能富集。比方,我国境内独立的锗矿除了云南临沧锗矿之外,还有许多含于煤矿中的锗矿也能够独自挖掘,但没有体系点评。碲矿除了四川的大水沟之外,坐落大渡河成矿带上的许多金矿均含碲,但也没有体系点评过碲的资源量。实际上,整个西南三江都具有“南锗北碲”的特色等。国外一般从金矿中收回伴生的碲,但在北美西部许多金矿甚至于铁矿中伴生碲的价值已超过了“主元素”,如泰德莉娜铁矿中碲的价值高于铁,墨西哥索诺拉热液型银铀矿中碲的含义也超过了银和铀。铼矿一般伴生在钼矿中,但美国阿拉斯加的艾奇利克和加利福尼亚的帕斯山都是独立的铼矿。 总归,三稀元素的物理、化学特色决议了其工业使用的宽广远景;三稀元素的地球化学特色决议了其资源点评和挖掘开发的共同性;三稀资源的特殊性,决议了其在“转方法调结构,进步世界竞争力”方面的共同位置。
钒矿元素赋存状态与提取方法
2019-02-25 10:50:24
一般以为,碳质页岩与石煤中的钒主要是呈涣散状况,无法经过物理选矿办法选出独立相。现在,主要是选用平窑钠法焙烧法从石煤中提取钒。因为生产供应商多为乡镇厂商,生产规划小,不正规,钒的转化率和总回收率低,烟气中所含的氯及氯化氢等有害成分难处理,对环境构成的污染严峻,许多不正规的小厂商多被撤销,故其总的生产规划一向不大,产值也不高,约占全国钒产值的5%左右,且多为化工产品。可是最近,贵州101地质队在镇远县发现一个钒矿石量近8000万吨、五氧化二钒金属量60多万吨的多层独立钒矿床,这是迄今贵州发现的最大的独立钒矿床。贵州101地质队是在进行1:5万铅、锌、银化探反常查验时发现这个矿的。经过进一步的地质勘查作业证明,该钒矿床坐落一级结构单元扬子准地台西南缘与江南造山带的过渡带,矿层呈层状产出于黑色的硅质岩与炭质页岩互层地层中,共3层,为独立钒矿床,并伴生具有归纳利用价值的铀、铂、钯等稀有金属。该独立钒矿的发现,改变了以往大多数人以为钒以伴生状况存在,并只要单层的知道,对进一步正确点评和寻觅该类型钒矿有着重要的含义。2.钒主要以类质同像赋存于钛铁矿-磁铁矿系列中,并构成规划很大的钒钛磁铁矿矿床。但因为钒在钛铁矿-磁铁矿系列中过于涣散,无法经过物理选矿取得钒的独立相,而只能取得含钒的铁精矿,精矿中含钒量跟着铁档次的进步而进步。含钒铁精矿经烧结与冶炼,钒进入铁水。再选用雾化吹钒工艺,生产出钒渣。然后由水浸法提取钒,然后完成钒与铁的别离。
非金属矿 :硅藻土的特性及应用
2019-03-07 09:03:45
硅藻土硅藻土是一种由硅藻硅酸盐遗骸构成的质轻多孔硅质生物沉积岩。化学成分硅藻土的化学成分首要是无定型的SiO2,以SiO2·nH2O的方式存在,SiO2一般占80%以上,最高可达94%。含有少数的Al2O3、Fe2O3、CaO、MgO、K2O、Na2O、P2O5和有机质,单个的还有Cr、Ba等金属杂质,各地硅藻土矿的成分不同,含量也不同。物理性质硅藻土色彩为白色、灰白色、灰色、浅灰色、浅灰褐色、浅黄色等;密度1.9~2.3g/cm3;堆密度0.34~0.65g/cm3;熔点1650℃~1750℃;比表面积19~65cm2/g;孔体积0.45~0.98cm3/g;吸水率是本身体积的2~4倍。化学安稳性高,不溶于,易溶于碱,具有相对不行压缩性、质软、隔音、耐磨、耐热等许多优异功用。开发与运用硅藻土因其共同的理化性质,现已被广泛用作助滤剂、功用填料、催化剂载体、农药和肥料载体、保温隔热材料、吸附剂以及漂白材料等。食物医药工业硅藻土用作食物工业的助滤剂硅藻土因为其很强的吸附才能而在食物工业中用作助滤剂起到除菌、除杂质、除异味的效果。如在酿酒过程中运用硅藻土过滤能够不断更新滤床,过滤速度快,产量大;表面积大,吸附才能强,能滤除0.1~1.0um的微粒,下降酒损1.4%左右,改进出产操作条件。硅藻土过滤器能更好的进步游泳池循环水处理出水水质,并能够在游泳池运转办理中节水、节电。其次硅藻土在食用油、医药口服液等方面也得到广泛的运用。环保职业硅藻土因为其化学性质安稳,吸附才能强,过滤功用杰出,不溶于任何强酸,在废水处理中得到广泛的运用。运用硅藻土絮凝沉淀法对废物渗滤液进行预处理,能够开始下降渗滤液中的CODCr和BOD5,去除SS等污染物,然后可改进其生化性、下降负荷,为后续生化处理正常运转发明杰出条件。建造职业硅藻土所具有的体轻、质软、多孔、耐酸、化学性质安稳的特色可大大改进沥青混合料的功用。硅藻土改性沥青用于沥青混凝土路面,不只成本低、施工简洁、原材料直销有保证,并且可进步路面的耐久性、耐磨性、热安稳性、抗压强度和抗滑性,削减路面的泛油、挤浆、车辙等病害,有利于进步路面的运用寿命,节约公路的修理与维护费用。建筑职业近年来跟着我国土地资源的日渐严重,高层建筑日益增多,为了减轻建筑物的分量,很多轻质墙体材料便应运而生。以硅藻土为质料的烧结砖具有密度小、强度高、保温、隔音、隔热等功用而备受喜爱。硅藻土既是制备轻质保温板、硅酸钙保温材料、硅藻土质隔热砖、硅藻土质不定形隔热材料、保温管的优秀质料,也是防水防渗的质料之一。别的硅藻土除了具有不燃、隔音、防水、分量轻以及隔热等特色外,还有除湿、除臭、净化室内空气等环保效果。农业硅藻土用作虫剂,具有无毒、无味、虫效果好、不污染环境、保证粮食贮藏质量等许多长处,遭到许多害虫防治专家喜爱。不定型活性硅藻土粒用作土壤改良剂,是植物所需肥料、水份的杰出载体并能根据土壤湿度,有用调理水的吸收和开释功用,能够兼有保湿、透气、枯燥的功用,对植物根部成长与水土保持有很大效果。涂料职业硅藻土能够制成内墙涂料,其特色是墙面不反光,室内光线柔软,日本人将涂有硅藻土的墙纸称之为“可呼吸的墙面”。硅藻土用于外墙涂料的运用也在开展,其前景宽广。此外,硅藻土在树脂、橡胶、造纸、混凝土、水泥填料和各种装修保温隔热涂料范畴也有广泛运用。化工职业硅藻土是很重要的一种催化剂载体,它广泛地运用在氧化、复原、加氢、脱氢、水合、聚合、转化、组成、烷基化、脱硫等各类反响中。从运用面看,用于有机化学反响较多;但从消耗量上计算,则首要用于制造钒催化剂载体、镍催化剂载体和TiO2载体。储量与散布硅藻土是重要非金属矿产资源,我国储量极为可观,在吉林、云南、浙江、四川、内蒙古、山东、广东、河北、海南、黑龙江等10多个省(自治区)发现硅藻土矿床计70余处,已探明总储量4.0亿多吨,前景储量超越20亿吨。在吉林长白山区域(临江市和长白县)、内蒙古、广东徐闻、云南腾冲4处发现了优质硅藻土。其间,吉林省探明储量最多,约2.1亿吨,约占全国一半,前景储量超越10亿吨。吉林长白山区域探明储量6000多万吨,前景储量超越6亿吨,是现在发现的我国最大的优质硅藻土资源蕴藏地,也是现在世界上储量达上千万吨的优质硅藻土产地之一。云南省探明储量0.82亿吨,约占全国探明储量的20%,前景储量超越6亿吨。浙江省探明储量0.43亿吨,约占全国探明储量的10%,前景储量2亿吨以上。吉林、云南、浙江三省的探明储量约占我国探明储量的80%;其他省、自治区占20%左右。最优产地吉林、云南。常见问题硅藻泥的运用方法?硅藻泥的首要原材料是历经亿万年构成的硅藻矿藏——硅藻土,首要成分为蛋白石,富含多种有利矿藏质,质地轻软,具有极强的物理吸附功用和离子交换功用;并缓慢继续开释负氧离子,能有用分化甲醛、、氡气等有害致癌物质。运用方法:1、拌和。在拌和容器中参加施工用水量90%的清水,然后倒入硅藻泥干粉浸泡几分钟,再用电动拌和机拌和约10分钟,拌和一起增加10%的清水调理施工粘稠度,充沛拌和均匀后方可运用;2、涂改两遍。第一遍涂平约1毫米完结后约50分钟(根据现场气候状况而定,以表面不粘手为宜,有露底的状况用料补平),涂改第二遍(厚度约1.5毫米)。总厚度1.5毫米~3.0毫米之间;3、肌理图画制造。涂改第二遍完结,根据实践环境枯燥状况,把握枯燥时刻,根据工法制造肌理图画;4、收光。制造完肌理图画后,用收光抹子沿图画纹理压实收光。
中国钒矿资源的区域分布与石煤中钒的提取工艺
2019-02-25 14:01:58
钒是一种过渡金属元素,在天然界中散布极为涣散,故也称为稀散元素。钒的使用非常广泛,在钢铁、有色金属、化工、合金、超导材料、轿车等工业范畴都是不可或缺的重要元素。钢铁、有色金属以及合金中参加必定量的钒,能够改动其微观结构,大大提高钢的耐磨性、红硬性,减轻材料分量,延伸使用寿命;在化工工业中制作钒催化剂,报价便宜,功能安稳,抗中毒功能强;一起,钒化合物多彩的色彩能够用来制作颜料、油漆等;在超导材料中,钒与硅、镓化合物均有较高的超导改变临界温度的特性。因而,钒矿资源的归纳开发使用具有非常重要的战略意义和工业需求。
一、我国钒矿资源及其区域散布
(一)我国钒矿资源的储量及其区域散布
依据矿产储量统计表,到2006年末,我国有18个省和自治区有钒矿资源,产地123处,保有资源储量约3400万t(以V2O5计,下同),累计查明资源储量约3600万t。首要散布在湖南、湖北、安徽、陕西、四川、贵州、河北等省,其间,四川、陕西、湖南、安徽和湖北等5省的保有资源储量别离为1855.9,454.4,384.8,234.2和143.3万t,别离占全国保有资源储量的54. 4%,13. 3%,11.3%,6.87%和4.20%;累计查明资源储量别离为1 941.4,455.1,385.4,277.8和143.3万t,别离占全国累计查明资源储量的53.9%,12. 6%,10.7%,7.71%和3. 98%。这5省钒矿保有资源储量占全国钒矿资源的90.1%,累计查明资源储量占全国的88. 9%。
我国大型钒矿(≥100万tV2O5)数量不多,首要散布在陕西、湖南、四川和甘肃等少量区域的9处矿区点,储量为1689.4万t,占总储量的49.6%;中型钒矿(10~100万tV2O5)广泛散布在四川、陕西、湖南、湖北等11个省,共41处矿区点,储量为1 535.6万t,占总储量的45.0%;小型钒矿(≤10万tV2O5)数量最多,有73处矿区点,但储量仅184.3万t。大、中型钒矿储量即占全国储量的94.6%,小型钒矿储量仅占全国储量的5.4%。
(二)我国钒矿资源的共、伴生特征及区域散布
天然界中独自的含钒富矿较少,大多为共生和伴生矿。据统计,独自钒矿产地仅30处,算计储量665.1万t,占全国总储量的19.5%;共生、伴生钒矿产地93处,储量2744.2万t,占总储量的80.5%。全国钒矿档次1.0%的算计储量2884.6万t,占总储量的94.6%,其间,档次在0.6%~1.0%的储量为890.3万t,占总储量的29.2%。依据材料,钒矿资源中V2O5均匀档次以湖北、陕西、湖南和浙江等4省档次的较高,别离为0.89%,0.82%,0.80%和0.78%,最高档次到达1%以上,陕西商洛市商南县矿区档次超越1.5%;这些钒矿资源已具有很高的工业使用价值,为金属钒的提取供给了丰厚的资源储藏。
钒矿石首要有钒铁矿石、石煤、钒铀矿、钒酸盐矿、磷灰岩、绿硫钒矿、沥青石、原油和铝土矿。我国钒矿资源首要由钒铁矿石和石煤矿组成,具挖掘价值的钒矿以石煤为主。钒铁矿石首要是钒钛磁铁矿。依据矿产一般工业要求,钒铁矿中V2O5质量分数为0.15%~0.2%时即可进行归纳收回。我国铁矿石中V2O5质量分数达0.15%以上的保有资源储量为2215.6万t,占总储量的72.7%,首要散布在四川攀枝花、河北承德、陕西汉中、湖北郧阳和襄阳、广东兴宁以及山西代县等地,其间,攀枝花是首要散布地,已探明矿石储量为100亿t,V2O5储量为1578万t。钒钛磁铁矿现在首要用于炼钛,钒金属首要在冶炼进程中从钢渣中提取。其他方式的含钒资源在国内散布并不广泛,相关报道不多。
据统计,我国石煤中V2O5的储量约1128万t,占总钒矿资源储量的37.0%,首要散布在贵州、陕西、湖南、江西、河南、湖北、安徽和浙江等地,其间,散布较会集的区域首要是湖南、湖北、浙江和贵州,这4省石煤钒矿资源占全国石煤钒矿保有资源储量(以V2O5计)的53.5%。
二、石煤提钒的惯例工艺
现在,作为钒提取质料的首要是钒钛磁铁矿和石煤。钒钛磁铁矿首要用于冶炼钛,副产钒。含钒石煤是我国的一种共同的钒矿资源,因为档次相对较低,对其挖掘和归纳使用还远远不够,但含钒石煤是我国钒矿资源使用的一个重要开展方向。
(一)石煤中钒的矿藏学特征及存在形状
石煤是存在于陈旧地层中,在浅海环境下由藻类、菌类等低一级生物作用而构成的一种煤炭资源。与一般煤炭比较,石煤具有高灰、高硫、低碳、低热值等特色,既是一种动力,又是一种潜在的多金属矿产资源,首要以V金属为主。有些石煤中伴生有Ag、Cu、Mo、Na、Ni、U、Zn等工业价值较高的金属元素;在某些层位中,一种或几种伴生元素到达工业独自挖掘档次或鸿沟档次,可作某种矿藏资源独自挖掘。
石煤中钒的存在方式多样,一般分为3种,即钒云母类,含钒针铁矿、赤铁矿和碳酸盐类,含钒电气石和高岭土类。大都石煤中钒存在于钒云母中,与Si、Al、K共(伴)生;含钒针铁矿、赤铁矿中与钒共(伴)生元素多为Fe;碳酸盐类矿藏中多含Al、Ba、Ca、Cu、Fe、K、Mg、Na、P、Pb、Si及Zn等元素,钒在这些矿藏中的价态多样。在钒云母中,钒通常以V(Ⅲ)和V(Ⅳ)存在,V(Ⅲ)占大都。三价钒能以类质同相方式替代三价铝等进入硅酸盐矿藏晶格中,一起,四价钒也能够类质同相方式存在于硅氧四面体结构中。在含钒赤铁矿和钒高岭土中,钒首要以吸附形状存在,首要是V(Ⅳ)和V(Ⅴ)。
钒矿冶炼办法的挑选关键是由钒在该类矿石中的赋存状况决议的。假如石煤中的钒首要以吸附状况存在,则可用酸或碱溶液直接浸出,使钒以各种钒酸根离子方式溶解在溶液中,也可参加氧化性或还原性物质辅佐浸出;假如石煤中的钒首要以类质同相方式存在于硅酸盐矿藏晶格中,那么此类矿石难于浸出,要将三价或四价钒浸出来,首要有必要损坏晶体结构,使赋存在晶体结构中的钒开释出来。因而,查清矿石中钒的赋存状况(包含钒的各种化合物和矿藏存在方式、价态及其散布状况)是钒冶炼至关重要的前提条件。因为我国石煤多属难浸钒矿,因而许多研讨者便致力于研讨如何用经济而简洁的办法开释硅酸盐晶体中的钒。现在,提取钒工艺首要有火法-湿法联用工艺和湿法工艺。
(二)火法-湿法联用工艺
火法-湿法联用工艺是现在工业上从石煤中提取钒使用较多的技能,首要有钠化焙烧-水浸工艺、钙化低钠焙烧-碱浸工艺、空白焙烧-碱浸工艺(直接焙烧)和加酸焙烧冰浸工艺等。
钠化焙烧-水浸工艺是工业上使用最多的工艺。该工艺技能老练,基本原理是以NaCl或Na2CO3为增加剂,经过焙烧将多价态的钒转化为水溶性的钠盐,如Na2O·yV2O5,NaVO3,再对钠化焙烧产品直接水浸,得到含钒浸出液,再参加氯化铵进行中性沉钒,沉淀物经焙烧得粗V2O5。焙烧进程反响如下:选用钠化焙烧-水浸工艺,钒的收回率较低,仅40%~60%,且在钠化焙烧进程中发生Cl2、HCl、SO2等有害气体,对环境污染较大。
钙化低钠焙烧-碱浸工艺是在传统的钠化焙烧进程中参加增加剂CaO,使石煤中的钒氧化后与CaO结合生成钒酸钙,再用Na2CO3溶液浸出,钙生成溶解度更小的CaCO3,钒则以游离态进入溶液,终究钒浸出率可达67.6%。钙化低钠焙烧-碱浸工艺的反响机制如下:钙化焙烧后选用硫酸浸出,可得到85%以上的钒浸出率。钙化低钠焙烧-碱浸工艺的钒收回率依然不高,仅仅NaCl的参加量有所削减,依然对大气有污染。
空白焙烧-碱浸工艺(直接焙烧)是指使用空气中的氧气作氧化动力,直接损坏钒矿藏晶体结构,使钒氧化成V(Ⅴ),转化成可溶性的钒酸盐和偏钒酸盐;焙烧后的产品用NaOH溶液浸出。空白焙烧-碱浸工艺避免了钠化焙烧发生的酸性气体污染,节省了增加剂,但浸出时刻有必要确保在3h以上才能使钒的浸出率到达75%以上。
钠化焙烧和空白焙烧工艺的钒浸出率均不高,所以有研讨者探讨了加酸焙烧-水浸工艺的可行性。该工艺是在焙烧时参加10%的硫酸,焙烧3h,天然冷却后再用水浸出2h,终究钒的浸出率达95%以上。针对硫酸焙烧工艺,有研讨者提出了低温硫酸焙烧-水浸工艺。在250℃下焙烧后,以液固体积质量比1.2mL/g用水在100℃下拌和浸出2h,钒浸出率达78. 2%。
火法-湿法联合工艺中,钠化焙烧-水浸、钙化低钠焙烧-碱浸和空白焙烧-碱浸等相对比较老练,但钒收回率较低,并且存在较严峻的环境污染问题,尤其是发生的Cl2、HCl、SO2等有害气体,很多排放的高浓度氮废水等是现在钒冶炼工业中比较扎手的问题。加酸焙烧-水浸工艺的钒浸出率比较高,是一种值得进一步研讨的工艺。
(三)全湿法工艺
全湿法提取石煤中钒的工艺现在研讨不多,且均环绕酸浸而打开。酸浸办法首要有直接酸浸、参加助浸剂酸浸和加压酸浸3类。
直接酸浸是H+进入硅酸盐矿藏晶格中置换Al3+,使离子半径发生变化,然后开释出V3+,V3+进一步氧化为V4+后用硫酸浸出。直接酸浸后,V2O5收回率在70%~85%。直接酸浸基本原理如下:直接酸浸只依托H+作用损坏晶体结构。因为钒在石煤中的存在形状安稳性较高,故直接进行酸浸有时作用并不抱负,浸出时刻长,浸出功率较低。增加必定试剂即参加助浸剂能够促进钒的浸出,取得较高的钒浸出率。如用浸出石煤时,参加必定量的亚铁盐,可使大都钒溶解进入溶液,钒收回率可达85%以上。
直接酸浸的另一种改进是加压酸浸。加压条件改进了钒浸出动力学,大大缩短反响时刻,钒浸出率可达90%以上。但此办法对设备腐蚀大,设备要求较高。
近年来,也有其它一些试剂用于从石煤中直接浸出钒。其间,亚熔盐浸出是针对焙烧进程中发生环境污染、能耗高、钒转化率低一级问题而开发的新办法。复合钠制剂亚熔盐包含钠制剂和氯盐,氯盐与矿藏中的氧化物,如V2O5、Fe2O3、SiO2等反响发生Cl2,Cl2具有更高的活性,能够损坏矿藏晶体结构,将其间的V(Ⅲ)和V(Ⅳ)氧化为V(Ⅴ)。亚熔盐法的钒浸出率可达90%以上。亚熔盐浸出法相对直接酸浸缩短了反响时刻,可取得较高的钒收回率,一起浸出液不含酸,相对来说较简略进行后处理,是值得进一步完善和开发的新工艺。
(四)生物浸出技能
生物浸出技能对环境友好、工艺简略,近年来开展比较敏捷,已测验用于从石煤中提取钒。
难浸石煤中的钒以硅酸盐方式存在。研讨标明,硅酸盐在生物浸出进程中的溶解会增大反响系统的pH,然后影响生物浸出作用;钒对细菌的毒害效应在某种程度上也首要受pH的影响而不是受金属元素自身毒害作用的影响,阐明在生物浸出时操控pH非常重要。培育耐钒菌种时,在参加有机物的培育基中,以V2O5、VOSO4、Na3VO4和NaVO3为驯化物,以磷酸缓冲液缓冲,操控pH在8.0~8.9范围内,温度维持在24~37℃之间,终究可得到比较好的驯化作用。Katarina等研讨了选用Acidithiobacillusferrooridans和Acidithiobacillusthiooxidans菌株将废催化剂和石油飞灰中的五价钒还原成四价钒进行废料解毒并收回钒,在30℃下,培育基中参加FeSO4·7H2O和单质S,两菌株对V2O5和NaVO3的耐受极限别离为0.003mol/L和0.01 mol/L,其对生成的四价钒最高钒耐受浓度可达4mol/L。Pradhan等人研讨了选用硫氧化细菌和铁氧化细菌选用两段浸出法浸出粹进程中的废催化剂。第1阶段,pH操控在2~3之间,催化剂质量浓度15g/L,V、Mo、Ni浸出率别离为32. 3%、58. 0%和88.3%;第2阶段,pH操控在0. 9~1.0之间,催化剂质量浓度50g/L,金属终究浸出率别离为94.8%V、46. 3%Mo和88.3%Ni。在生物浸出进程并不只限于选用传统细菌,使用真菌-黑曲霉也能够浸出废裂化催化剂中的重金属V、Ni、Fe、Al、Sb。嗜热培育基中参加蔗糖,在30℃水浴中,拌和速度120r/min,V、Ni、Fe、Al、Sb浸出率别离为36%、9%、23%、30%、64%。尽管浸出率并不高,但比较化学办法浸出作用要好的多。可见,将生物浸出法用于从石煤中浸出钒是可行的,但这一技能尚处于开始探究阶段,还需要深入研讨和开发。
三、展望
因为石煤存在发热量低、成分杂乱、有价金属档次低一级问题使得其开发使用存在必定难度。我国大都石煤中存在钒,钒首要以类质同相方式存在于硅酸盐矿藏中,难于浸出,所以加强石煤的矿藏学及相关的化学反响研讨,对开发适宜的提钒办法、合理开发使用石煤非常重要。
现在,从石煤中提取钒的工艺相对来说还比较落后,在我国依然处于实验室研制阶段。已具规划的钠化焙烧-水浸工艺存在比较严峻的大气和水污染,没有到达绿色工艺的要求;此外,石煤中还有Mo等其它使用价值很高的金属并没有得到合理的使用,如不加收回不只给环境带来沉重负担,并且也形成资源的糟蹋。因而,开发新的环保、高效提取工艺是石煤归纳使用迫切需要处理的关键问题。
因为石煤中有价金属档次低,选用成本低、工艺简略、环境友好的生物浸出技能不失为一个较好的挑选。但是,钒对菌种毒害性较大,较少的量即有较大的致死性,因而,选用生物浸出法的关键在于驯化菌种,如菌种驯化成功,生物浸出技能将是一个颇具开展前景的绿色工艺。
某高磷钒矿浸出试验研究
2019-01-21 18:04:47
我国钒矿资源极为丰富,但大部分品位低,多数没有得到充分开发利用。钒主要以三价和五价形式存在于矿石中,其中三价钒几乎主要存在于含铁矿物或含铝矿物中,没有独立矿物;五价钒一般形成独立矿物-钒酸盐,常与铀和磷矿物共生。当矿石中的钒以三价状态赋存于硅酸盐类矿物中时,通常采用加添加剂在高温下焙烧来破坏钒矿物的结构,将三价钒氧化为五价钒后进行浸出。但高温焙烧污染大、能耗高、投资大。
西北地区某钒矿的V2O5平均品位0.75%,矿物组成复杂,磷含量较高,采用传统的焙烧工艺进行氧化焙烧,钒转化率较低,所以该资源始终未能得到很好的开发。试验研究了对原矿直接进行酸浸,确定了可行的工艺条件。
一、矿石类型及物质组成
(一)矿石类型
矿石组成十分复杂。钒吸附于泥质岩和胶状褐铁矿中,没有相应的独立矿物存在,钒的载体物质多以泥质内碎屑形式存在。脉石矿物主要有方解石、石英和泥质,围岩为碳酸盐岩。磷灰石多以胶磷矿内碎屑胶结物形式存在,为胶体脱水形成的微晶磷灰石。
(二)矿石物质组成
原矿的多元素化学分析结果见表1,原矿的X射线衍射分析结果见表2。
表1 原矿多元素化学分析结果 %表2 钒矿石X射线衍射分析结果 %二、试验原理
用氧化性酸破坏泥质岩和胶状褐铁矿的矿石结构,氢离子进入矿物晶格中置换相应金属离子,使矿物结构发生变化,将钒释放出来,并被氧化成四价钒。四价钒易溶于酸并生成钒氧基离子(VO)2+,反应式为:三、试验设备及方法
(一)试验设备
试验设备主要有HH-2型电热恒温水浴锅,JJ-1型精密增力电动搅拌器,2X2-2型旋片式真空泵等。
(二)试验方法
取一定浓度的硫酸溶液于四口瓶中,置于水浴锅中加热至一定温度;称取一定质量的原矿加入到放有酸液的四口瓶中,继续加热搅拌;反应一段时间后停止搅拌,过滤,洗涤。滤渣、滤液分别计量、分析。
四、试验结果及讨论
(一)原矿直接酸浸正交试验
原矿直接用硫酸浸出,钒浸出率主要受浸出剂浓度、浸出温度、液固体积质量比、浸出时间、矿石粒度的影响。选定此5因素,每因素3水平,安排L27(313)正交试验。因素及水平见表3,试验结果见表4和图1~4。
表3 试验因素及水平
表4 正交试验结果图1 H2SO4质量浓度对钒浸出率的影响图2 液固体积质量比对钒浸出率的影响图3 浸出时间对钒浸出率的影响图4 浸出温度对钒浸出率的影响图5 矿石粒度对钒浸出率的影响
可以看出,对原矿直接进行酸浸,各因素影响顺序为:浸出温度>液固体积质量比>硫酸质量浓度>浸出时间>原矿粒度;较优工艺参数为:浸出温度90℃,液固体积质量比3∶1,H2SO4质量浓度250 g/L,浸出时间6h,矿石粒度小于0.175mm。温度和液固体积质量比是影响钒浸出的主要因素:温度升高,有利于浸出反应的进行,但温度过高,对操作不利,以不高于90℃为宜;液固体积质量比较大时可获得较高的浸出率,但也会降低浸出液中钒的质量浓度,影响后续的净化富集,以2∶1较为适宜;H2SO4质量浓度增大,钒浸出率提高,但酸度过大会降低溶液pH值,影响后续工序,经济上也不合算,所以,H2SO4质量浓度确定为250g/L。
(二)验证试验
根据原矿直接酸浸正交试验结果,在最适宜条件下进行验证试验,结果钒浸出率达90.72%~92.56%,平均值为91.81%,有较好的结果。
五、结论
对高磷钒矿采用直接硫酸浸出法浸出钒是可行的。直接酸浸最佳工艺条件为:浸出温度90℃,液固体积质量比2∶1,H2SO4质量浓度250g/L,浸出时间6h,矿石粒度小于0.175mm,此条件下,钒浸出率达90.72%~92.56%。
铝钒土粉磨机转子速度是如何进行调节的?
2019-01-18 09:30:18
铝钒土粉磨机要适用于冶金、建材、化工、矿山等矿产物料的粉磨加工,可粉磨石英、长石、方解石、滑石、重晶石、萤石、稀土、大理石、陶瓷、铝矾土、锰矿、铜矿、磷矿石、氧化铁戏、锆英砂、矿渣、水泥熟料、活性碳、白云石、花岗岩、石榴子石、氧化铁黄、复合肥、粉煤灰、烟煤、焦煤、褐煤、菱美砂、氧化铬绿、金矿、红泥、粘土、高岭土、焦碳、煤矸石、瓷土、蓝晶石、氟石、膨润土、麦饭石流纹岩、浑绿岩、浑绿岩、叶腊石、页岩、紫砂石、迭岩石、玄武石、石膏、碳化硅、保温材料等莫氏硬度在9.3级以下,湿度在6%以下的各种非易燃易爆矿产物料的加工。
该机主要有主机、细度分析机、鼓风机、成品旋风集粉器、布袋除尘器及联接风管组成。根据用户需要可配备破碎机、提升机、储料仓、电磁振动给料机及电器控制柜等附助设备。在主机中,磨辊总成通过横担悬挂在磨辊吊架上,磨辊吊架与主轴及铲刀架固定联接,压力弹簧压在磨辊轴承室的悬臂外端面上,以横担轴为支点迫使磨辊紧紧压在磨环内圆表面上,当电动机通过传动装置带动主轴转动时,装在铲刀架上的铲刀与磨辊同步旋转,磨辊在磨环内圆滚动的同时绕自身轴自转。电动机通过传动装置带动分析机叶轮旋转,叶轮转速越高,分选出的粉子越细。
铝钒土粉磨机主要特点:
1、与其它磨机相比同等动力条件下产量提高20~30%,磨辊对物料的碾压力在高压弹簧的作用下提高1000-1500kg。
2、莫氏硬度小于6.0级的矿产物料均可加工粉碎。
3、成品粒度范围广,粒度最粗可达0.595毫米(30目)粒径一般可达0.033毫米(425目)。少部分物料最细可达到0.013毫米(1000目)。
4、除尘效果完全达到国家粉尘排放标准。
5、分析机调整方便。
6、研磨装置采用重叠式多级密封,密封性能好。
铝钒土粉磨机的工作过程:大块物料经破碎后由提升机送至储料斗,再由振动给料机连续均匀地送入主机磨室内,进入磨室的物料被铲刀铲起并送入磨辊与磨环之间被碾压搓碎,鼓风机将空气从机座周围吹入磨室,将被粉碎料带入分析机内,大颗粒物料落回重磨,合格细粉则随气流进入成品旋风集粉器,细粉与空气分离后从卸料口排出即为成品。而空气从上端返回风机内,重复上述循环。
在磨室内因被磨物料中有一定的含水量,研磨时产生热量导致水气蒸发,以及整机各管道连接不严密使外界气体被吸入,使循环气流风量增加,为保证磨机在负压状态下工作,所增加的气流量通过风机与主机间的余气管排入布袋除尘器,被净化后排入大气。
铝板密度
2017-06-06 17:50:08
有关铝板密度详细介绍 该系列铝板的密度为273 成形性、溶接性、耐蚀性均良好广泛应用在运输液体产品的槽、罐,以薄板加工的各种压力容器与管道 一般器物、散热片、化妆板等。 5052 铝板 5052 铝板 密度表( 1g/cm3=1000kg/m3=1 吨/立方米) 材料名称 密度 ( g/六角黄铜棒 W=000736 对边距离的平方 铜板 W=00089 厚t宽黄铜板 W=00085 厚t宽铝板(纯铝) 6063-T5 密度:270g/cm3 5052铝板密度268g/cm35052的主要合金元素为镁,具有良好的成形加工性能、抗蚀性、焊接性,中等强度,用于制造飞机油箱、油管、以及交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品等。纯铝 2.7 TC7 4.4 ;防锈铝 LF2、LF43 2.68 TC8 4.48 ;;LF3 2.67 TC9 4.52 ;LF5、LF10、LF11 2.65 TC10 4.53 ;LF6 2.64 纯镍、阳极镍、电真空镍 8.85 ;LF21 2.73 镍铜、镍镁、镍硅合金 8.85 ;硬铝 LY1、LY2、LY4、LY6 2.76 镍铬合金 8.72 ;LY3 2.73 锌锭(Zn0.1、Zn1、Zn2、Zn3) 7.15 ;LY7、LY8、LY10、LY11、LY14 2.8 铸锌 6.86 ;LY9、LY12 2.78 4-1铸造锌铝合金 6.9 ;LY16、LY17 2.84 4-0.5铸造锌铝合金 6.75 ;锻铝 LD2、LD30 2.7 铅和铅锑合金 11.37; LD4 2.65 铅阳极板 11.33 ;LD5 2.75 铝板,顾名思义是指用铝材或铝合金材料制成的板型材料。或者说是由扁铝胚经加热、轧延及拉直或固溶时效热等过程制造而成的板型铝制品。铝板的用途 1.照明灯饰2、太阳能反射片3、建筑外观4、室内装潢:天花板,墙面等5、家具、橱柜6、电梯7、标牌、铭牌、箱包8、汽车内外装饰9.室内装饰品:如相框10、家用电器:冰箱、微波炉、音响设备等11.航空航天以及军事方面,比如中国目前的大飞机制造,神舟飞船系列,卫星等方面。 更多有关铝板密度信息请详见于上海
有色
网
红铜密度
2017-06-06 17:50:06
红铜密度是8.9 g /cm*3 ,红铜由于近几年的加工工艺和制造水平的不断提高,使红铜密度不断地提高,纯度不断加大,现在的高端制造工艺甚至可以把红铜加工到100%纯度的红铜。红铜即纯铜,又名紫铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力加工,大量用于制造电线、电缆、电刷、电火花专用电蚀铜等要求导电性良好的产品。即赤铜。由硫化物或氧化物铜矿石冶炼得来的纯铜,可用以铸钱及制作器物。 明 宋应星 《天工开物·铜》:“凡铜供世用,出山与出炉,止有赤铜。以炉甘石或倭铅参和,转色为黄铜;以砒霜等药制炼为白铜;矾、硝等药制炼为青铜;广锡参和为响铜;倭铅和写﹝泻﹞为铸铜。初质则一味红铜而已。” 郭沫若 《中国史稿》第一编第三章第二节:“他们冶炼的红铜成分很纯,除天然的微量(0.1 -0.2%)杂质外,没有人工加入锡或铅使成合金。红铜的硬度虽较差,但直接经过捶打就能制成各种工具和装饰品。”红铜特性:红铜密度高纯度,组织细密,含氧量极低。无气孔、沙眼、疏松,导电性能极佳,电蚀出的模具表面精度高,经热处理工艺,电极无方向性,适合精打,细打,具有良好的热电道性、加工性、延展性、防蚀性及耐候性等。红铜密度如果高的话,用途也相当广泛:可应用于电器、蒸溜建筑及化学工业,尤其端子印刷电器路板,电线遮蔽用铜带、气垫,汇流排端子。电磁开关、笔筒、屋根板等。红铜的密度:8.96g/(cm) 红铜的比重:8.89g/(mm) Cu≥99.95% O<003 电导率≥57ms/m 硬度≥85.2HV红铜 因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能 ,因此也归入铜合金。中国红铜加工材按成分可分为:普通红铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。红铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。红铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,红铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20世纪70年代,红铜的
产量
超过了其他各类铜合金的总
产量
。红铜密度也得以不断地提高。红铜中的微量杂质对铜的导电、导热性能有严重影响。其中钛、磷、铁、硅等显著降低电导率,而镉、锌等则影响很小。氧、硫、硒、碲等在铜中的固溶度很小,可与铜生成脆性化合物,对导电性影响不大,但能降低加工塑性。普通红铜在含氢或一氧化碳的还原性气氛中加热时,氢或一氧化碳易与晶界的氧化亚铜(Cu2O)作用,产生高压水蒸气或二氧化碳气体,可使铜破裂。这种现象常称为铜的“氢病”。氧对铜的焊接性有害。铋或铅与铜生成低熔点共晶,使铜产生热脆;而脆性的铋呈薄膜状分布在晶界时,又使铜产生冷脆。磷能显著降低铜的导电性,但可提高铜液的流动性,改善焊接性。适量的铅、碲、硫等能改善可切削性。红铜退火板材的室温抗拉强度为22~25公斤力/毫米2,伸长率为45~50%,布氏硬度(HB)为35~45。红铜具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。常用的铜合金分为黄铜﹑青铜﹑白铜3大类。纯净的红铜是紫红色的
金属
,俗称“红铜”、“红铜”或“赤铜”,其红铜密度也可以通过高级的加工制造工序任意制定。 红铜富有延展性。象一滴水那么大小的纯铜,可拉成长达两公里的细丝,或压延成比床还大的几乎透明的箔。红铜最可贵的性质是导电性能非常好,在所有的
金属
中仅次于银。但铜比银便宜得多,因此成了电气工业的“主角”,红铜密度的可塑造性更使其成为工业生产中不可或缺的材料源!
硅粉密度
2017-06-06 17:50:01
硅粉密度是投资者想知道的信息,因为了解它可以帮助操作。微硅粉初始密度只有150-200 kg/m3国内、国际市场上所需硅粉的细度规格如下: 规格(2mm-10mm) 筛余量(重量) 500um-180um(30目-80目) +500um≤3% -180um≤10% 425um-150um(40目-100目) +425um≤5% -150um≤15% 250um-140um(60目-110目) +250um≤3% -140um≤10% 125um-74um(120目-200目) +125um≤3% -74um≤10% -74um(-200目) +74um≤5% -45um(325目) +45um≤5% 5um-1um(2500目-12500目) +5um≤5% 由于金属硅是一种质硬易碎的物料,在粉磨过程中筛余物不能有效的控制,过粉磨现象严重,造成产品浪费大,生产成本高,产品粒径不达标,致使产品没有竞争力。配合比 对于硅粉混凝土的配合比设计,主要是根据设计要求, 确定硅粉的掺入方法,硅粉的最佳掺量,减水剂的最优掺量及砂石料调整,而其它则按普通混凝土设计方法进行。 a) 硅粉的掺入方法:硅粉在混凝土中一般有两种方法: 一是内掺,二是外掺,都要与减水剂配合使用。内掺法往往用硅粉代替水泥,又分等量代替和部分等量代替两种,等量代替为硅粉掺量代替相等的水泥,部分代替为1 kg 硅粉代替1~3 kg 水泥,作为研究一般掺量为5 %~30 % ,水灰比一般保持不变:而外掺法指的是硅粉像外加剂那样掺在混凝土中,而水泥用量不减少,掺量一般为5 %~10 % ,一般外掺法而得的混凝土的力学性能要高得多,但增加了混凝土中胶凝材料用量。 b) 硅粉的最优掺量往往控制在8 %~10 %。它是根据所用硅粉、水泥种类和骨料性质而定,并考虑它对性能改善程度及施工方便与否和技术经济指标等。 c) 减水剂的最佳掺量:在混凝土中使用硅粉,如不掺减水剂,想保持相同的流动度,则必然要增加用水量、水灰比增加,掺硅粉的混凝土强度也不上去,这也是过去硅粉在混凝土中未推广使用的原因。硅粉与减水剂联合使用掺用硅粉水灰比不变,即用水量不增加,也能达到与未掺硅粉的混凝土具有相同的流动度且硅粉混凝土强度等性能得到大幅度提高,一般国内较多采用萘系高效减水剂,如建1、H、DH3、FDN、NF、N2B 等,其掺量一般为胶材用量的1 %以内,有时为了减小水灰比,拌制超高强混凝土,减水剂掺量达2 %~ 3 %。 d) 砂石料用量调整:内掺硅粉一般对砂石用量不必调整。外掺硅粉要扣掉与硅粉体积相等的砂石体积。硅粉(也叫微硅粉)(学名“硅灰”, Microsilica 或 Silica Fume ),硅粉又叫硅灰。是工业电炉在高温熔炼工业硅及硅铁的过程中,随废气逸出的烟尘经特殊的捕集装置收集处理而成。在逸出的烟尘中,SiO2含量约占烟尘总量的90%,颗粒度非常小,平均粒度几乎是纳米级别,故称为硅粉。 硅粉的研究始于斯堪的纳维亚国家,尽管20世纪50年代人们对硅粉作用就有所认识和初步的研究,但应用于实际工程中是从70年代开始的,首先是挪威和瑞典等国家在港口码头、北海油田及地下矿井中部分采用了硅粉混凝土,1982 年,挪威在伏诺维斯坝上正式采用了硅粉混凝土筑坝, 20世纪80 年代初加拿大在魁北克建立了硅粉混凝土,并对大体积硅粉混凝土进行试验研究,拌制高标号混凝土1 万立方米,1983年美国用硅粉混凝土修补了奥里夫尼河上的卡查坝消力池,效果良好。世界上其它国家也都加紧研究和应用。而我国对硅粉的研究历史不长,仅仅10多年时间,1985年水电部东勘院科研所和水电部第十工程局首次在四川渔子溪二级电站中试用了硅粉混凝土,在厂房混凝土中掺硅粉3 %~7 %,以提高早期强度,加快模板周转,达到预期效果,另外,在引水隧洞喷射混凝土中,掺硅粉715 %,以减少混凝土的回弹量,南科院在大伙房水库工程、龙羊峡泄水建筑物和葛洲坝泄水闸修补等工程中都采用了硅粉混凝土,效果较好,水科院对硅粉混凝土的耐久性能及硅粉水泥水藻灌浆材料进行了一些研究,并在二滩水电站基础固结灌浆中,潘家大坝溢流面修复工程、安康及四川秋达电站导流泄洪洞修补等工程中使用了硅粉混凝土,硅粉水泥灌浆。所有这些,说明硅粉混凝土作为一种高性能混凝土在工程中的应用日显重要,所以对其性能特别是其强度与耐久性的研究也倍受关注。如果你想更多的了解关于硅粉密度的信息,你可以登陆上海有色网进行查询和关注。
黄铜密度
2017-06-06 17:50:03
黄铜密度440 黄铜 8.4-8.85 序号 材料名称 密度(g/cm 3 ) 441 黄铜 8.4-8.85 442 铸造黄铜 8.62 443 铸造黄铜 8.62 444 铸造黄铜 8.62 445 锡青铜 8.7-8.9 446 锡青铜 8.7-8.9 447 锡青铜 8.7-8.9 448 轧制磷青铜 8.8 449 冷拉青铜 8.8 450 轧制磷青铜 8.8 序号 材料名称 密度(g/cm 3 ) 451 冷拉青铜 8.8 452 镍铜合金 8.8 453 轧制磷青铜 8.8 454 冷拉青铜 8.8 455 镍铜合金 8.8 456 镍铜合金 8.8 457 纯铜 8.9 紫铜 458 纯铜 8.9 紫铜以上就是黄铜密度,更多信息请详见上海
有色金属
网
白铜密度
2017-06-06 17:50:03
白铜密度白铜的密度: 白铜是铜镍合金的雅称,密度在铜和镍之间 8.9--8.88白铜是以镍为主要添加元素的铜基合金,呈银白色,有
金属
光泽,故名白铜。铜镍之间彼此可无限固溶,从而形成连续固溶体,即不论彼此的比例多少,而恒为α--单相合金。当把镍熔入红铜里D200,含量超过16%以上时,产生的合金色泽就变得相对近白如银,镍含量越高,颜色越白,但是,毕竟与铜融合,只要镍含量比例不超过70%,肉眼都会看到铜的黄色。何况通常白铜中镍的含量一般为25%。白铜的用途 在铜合金中,白铜因耐蚀性优异,且易于塑型、加工和焊接,广泛用于造船、石油、化工、建筑、电力、精密仪表、医疗器械、乐器制作等部门作耐蚀的结构件。某些白铜还有特殊的电学性能,可制作电阻元件、热电偶材料和补偿导线。非工业用白铜主要用来制作装饰工艺品。纯铜加镍能显著提高强度、耐蚀性、硬度、电阻和热电性,并降低电阻率温度系数。因此白铜较其他铜合金的机械性能、物理性能都异常良好,延展性好、硬度高、色泽美观、耐腐蚀 白铜山水墨盒、富有深冲性能,被广泛使用于造船、石油化工、电器、仪表、医疗器械、日用品、工艺品等领域,并还是重要的电阻及热电偶合金。白铜的缺点是主要添加元素——镍属于稀缺的战略物资,
价格
比较昂贵。 镍白铜(有叫洋白铜),用途:晶体振荡元件外壳,晶体壳体,电位器用滑动片,医疗机械,建筑材料等。更多白铜密度信息请详见上海
有色金属
网
磷铜密度
2017-06-06 17:50:02
磷铜密度:铜材 8.9 63-3铅黄铜 8.5 一号铜、二号铜 8.9 60-3铅黄铜 8.5 三号铜、四号铜 8.89 59-1铅黄铜 8.5 加磷二号铜 8.89 59-1A铅黄铜 8.5 一号、二号无氧铜 8.9 90-1锡黄铜 8.8 磷脱氧铜 8.89 70-1锡黄铜 8.54 62-1锡黄铜 8.54 1.9铍青铜 8.23 60-1锡黄铜 8.45 1-3硅青铜 8.6 77-2铝黄铜 8.6 3-1硅青铜 8.4 77-2A铝黄铜 8.6 3.5-3-1.5硅青铜 8.8 77-2B铝黄铜 8.6 3.5-3-1.5硅铁青铜 8.8 67-2.5铝黄铜 8.5 1.5锰青铜 8.8 60-1-1铝黄铜 8.4 5锰青铜 8.6 59-3-2铝黄铜 8.4 1.0镉青铜 8.8 66-6-3-2铝黄铜 8.5 0.5铬青铜 8.9 58-2锰黄铜 8.5 0.2锆青铜 8.9 57-3-1锰黄铜 8.5 0.4锆青铜 8.9 55-3-1锰黄铜 8.5 0.6白铜 8.9 59-1-1铁黄铜 8.5 5白铜 8.9 58-1-1铁黄铜 8.5 19白铜 8.9 80-3硅黄铜 8.6 30白铜 8.9 65-5镍黄铜 8.65 3-12锰白铜 8.4 4-3锡青铜 8.8 40-1.5锰白铜 8.9 4-4-2.5锡青铜 8.75 40-0.5锰白铜 8.9 4-4-4锡青铜 8.9 30-1-1铁白铜 8.9 6.5-0.1锡青铜 8.8 5-1铁白铜 8.9 6.5-0.4锡青铜 8.8 15-20锌白铜 8.6 7-0.2锡青铜 8.8 13-3铝白铜 8.5 4-0.3锡青铜 8.9 6-1.5铝白铜 8.7 5铝青铜 8.2 四号镍 8.9 7铝青铜 7.8 六号镍 8.85 9-2铝青铜 7.6 七号镍 8.85 9-4铝青铜 7.5 八号镍 8.85 10-3-1.5铝青铜 7.5 一号阳极镍 8.85 10-4-4铝青铜 7.7 二号阳极镍
从钴土矿中提取有价金属的试验研究
2018-12-10 14:19:22
从钴土矿中提取有价金属的试验研究.pdf
铜材密度
2017-06-06 17:50:10
铜材密度用物质密度表(1g/cm3=1000kg/m3=1吨/立方米) 材料名称 密度(g/cm3) 材料名称 密度(g/cm3) 水 1.00 玻璃 2.60 冰 0.92 铅 11.40 银 10.50 酒精 0.79 水银(汞) 13.60 汽油 0.75 灰口铸铁 6.60-7.40 软木 0.25 白口铸铁 7.40-7.70 锌 7.10 可锻铸铁 7.20-7.40 纯铜材 8.90 铜 8.90 59、62、65、68黄铜 8.50 铁 7.86 80、85、90黄铜 8.70 铸钢 7.80 96黄铜 8.80 工业纯铁 7.87 59-1、63-3铅黄铜 8.50 普通碳素钢 7.85 74-3铅黄铜 8.70 优质碳素钢 7.85 90-1锡黄铜 8.80 碳素工具钢 7.85 70-1锡黄铜 8.54 易切钢 7.85 60-1和62-1锡黄铜 8.50 锰钢 7.81 以纯铜或铜合金制成各种形状包括棒、线、板、带、条、管、箔等统称铜材。铜材的加工有轧制、挤制及拉制等方法,铜材中板材和条材有热轧的和冷轧的;而带材和箔材都是冷轧的;管材和棒材则分为挤制品和拉制品;线材都是拉制的。 一、纯铜 纯铜是一种植物的花红色
金属
,表面形成氧化铜膜后呈紫色,故工业纯铜常称紫铜或电解铜。密度为8~9g/cm?,熔点1083℃.纯铜导电性很好,大量用于制造电线、电缆、电刷等;导热性好,常用来制造须防磁性干扰的磁学仪器、仪表,如罗经、航空仪表等;塑性极好,易于热压和冷力加工,可制成管、棒、线、条、带、板、箔、等铜材。纯铜产物有冶炼品及加工品两种。 二、铜合金 1.黄铜 黄铜是铜及锌的合金。最简略的黄铜是铜、锌二元合金,称为简略黄铜或普通黄铜。转变黄铜中锌的含量可以获得不同机械性能的黄铜。黄铜中锌的含量越高,其强度也较高,塑性较低。工业中采用的黄铜含锌量不跨越45%,含锌量再高将会产脆生性,是合金性能变坏。为了改善黄铜的某种性能,在一元黄铜的基础上加入其他合金元素的黄铜称为特殊黄铜。常用的合金元素有硅、铝、锡、铅、锰、铁与镍等。在黄铜中加铝能提高黄铜的屈服强度和抗腐蚀性,稍减低塑性。含铝小于4%的黄铜具有良好的加工、锻造等综合性能。在黄铜中加入1%的锡能光鲜明显改善黄铜的抗海水和海洋大气腐蚀的能力,是以成为“水师黄铜”。锡还能改善黄铜的切削加工性能。黄铜加铅的首重要的条目的是改善切削加工性和提高耐磨性,铅对黄铜的强度影响不大。锰黄铜具有良好的机械性能、热稳定性和抗蚀性;在锰黄铜中加铝,还可以改善它的性能,获得表面光洁的铸件。黄铜可分为锻造和压力加工两类产物。 2.青铜器 青铜器是汗青上应用最早的一种合金,原指铜锡合金,因颜色呈石墨色,故称青铜器。为了改善合金的工艺性能和机械性能,大部分青铜器内还加入其他合金元素,如铅、锌、磷等。 3.白铜 以镍为首要添加元素的铜基合金呈雪白色,称为白铜。铜镍二元合金称普通白铜,加锰、铁、锌和铝等元素的铜镍合金称为复杂白铜,纯铜加镍能光鲜明显提高强度、耐蚀性、电阻和热电性。工业用白铜根据性能独特之处和用途不同分为结构用白铜和电工用白铜两种,分别餍足各种耐蚀和特殊的电、热性能。 4.铜材 以纯铜或铜合金制成各种形状包孕棒、线、板、带、条、管、箔等统称铜材。铜材的加工有轧制、挤制及拉制等方法,铜材中板料和条材有热轧的和冷轧的;而带材和箔材都是冷轧的;管材和棒材则分为挤制品和拉制品;线材都是拉制品。 纯铜和合金铜。H62H59H65H68是合金铜中黄铜,62.59.65.68是铜含量。 铜具体有那些种别啊,好比1#铜,2#铜等等,他们是怎么区别的呢??铜又称电解铜,1#铜里铜含量为99.95%,我没接触过2#铜,我接触的另有F铜,F铜里铜含量为99.9%,另有净化铜,净化铜里铜的含量为98.5%。黄铜—铜锌合金 青铜器—铜锡合金(除锌镍外,加入其他元素的合金也称青铜器) 白铜—铜、钴、镍合金磷铜—就是P14,其中赤磷含量为14,其它为铜含量 紫铜即纯铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力加工,大量用于制造电线、电缆、电刷、电火花专用电蚀铜等要求导电性良好的产物。密度(为7.83g/ cm3}熔点为1083度,无磁性.有良好的导电,导热性能及抗蚀,有韧性 黄铜的密度(为8.93g/ cm3)多用与机械轴衬内衬,耐磨 “黄铜”密度大于紫铜” 黄铜:铜锌合金紫铜:铜锡合金 紫铜因呈紫红色而得名。它不肯定是是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能,是以也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T一、T2、T3、T4)、无氧铜(TU一、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器具材料。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,紫铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20百年70年代,紫铜的
产量
跨越了其他各类铜合金的总
产量
。 更多有关铜材密度信息请详见于上海
有色
网
铝线密度
2017-06-06 17:50:04
铝线密度的计算方法:铝线密度(KG/M)=截面积(M2)×1(米)×2800另一种计算方法是:1.将截面转换成面域,查询型材截面面积;2.将截面面积乘以0.0027,其结果为型材线密度(Kg/m);3.型材表面处理为氧化时,乘以1.05,电泳或氟碳喷涂乘以1.08,粉未喷涂乘以1.10。以上是2种铝线密度的计算方法。
紫铜密度
2017-06-06 17:50:07
紫铜密度随着科学技术及工业加工的不断进步,已经不再是一个固定值,以往的传统
紫铜就是工业纯铜,其熔点为1083℃,无同素异构转变,紫铜密度为8.9,为镁的五倍。比普通钢还重约15%。其具有玫瑰红色,表面形成氧化膜后呈紫色,故一般称为紫铜。紫铜就是铜单质,因其颜色为紫红色而得名。各种性质见铜。紫铜就是工业纯铜,其熔点为1083℃,无同素异构转变,相对密度为8.9,为镁的五倍。比普通钢还重约15%。其具有玫瑰红色,表面形成氧化膜后呈紫色,故一般称为紫铜。它是含有一定氧的铜,因而又称含氧铜。1.紫铜的性质紫铜因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能,因此也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,紫铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20世纪70年代,紫铜的
产量
超过了其他各类铜合金的总
产量
。紫铜密度由于其可变性,紫铜中的微量杂质对铜的导电、导热性能有严重影响。其中钛、磷、铁、硅等显著降低电导率,而镉、锌等则影响很小。氧、硫、硒、碲等在铜中的固溶度很小,可与铜生成脆性化合物,对导电性影响不大,但能降低加工塑性。普通紫铜在含氢或一氧化碳的还原性气氛中加热时,氢或一氧化碳易与晶界的氧化亚铜(Cu2O)作用,产生高压水蒸气或二氧化碳气体,可使铜破裂。这种现象常称为铜的“氢病”。氧对铜的焊接性有害。铋或铅与铜生成低熔点共晶,使铜产生热脆;而脆性的铋呈薄膜状分布在晶界时,又使铜产生冷脆。磷能显著降低铜的导电性,但可提高铜液的流动性,改善焊接性。适量的铅、碲、硫等能改善可切削性。紫铜退火板材的室温抗拉强度为22~25公斤力/毫米2,伸长率为45~50%,布氏硬度(HB)为35~45。紫铜除了可变的工业相对紫铜密度之外,还具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。常用的铜合金分为黄铜﹑青铜﹑白铜3大类。纯净的铜是紫红色的
金属
,俗称“紫铜”、“红铜”或“赤铜”。 紫铜富有延展性。象一滴水那么大小的纯铜,可拉成长达两公里的细丝,或压延成比床还大的几乎透明的箔。紫铜最可贵的性质是导电性能非常好,在所有的
金属
中仅次于银。但铜比银便宜得多,因此成了电气工业的“主角”。2.紫铜的用途紫铜的用途比纯铁广泛得多,每年有50%的铜被电解提纯为纯铜,用于电气工业。这里所说的紫铜,确实要非常纯,含铜达99.95%以上才行。极少量的杂质,特别是磷、砷、铝等,会大大降低铜的导电率。铜中含氧(炼铜时容易混入少量氧)对导电率影响很大,用于电气工业的铜一般都必须是无氧铜。另外,铅、锑、铋等杂质会使铜的结晶不能结合在一起,造成热脆,也会影响纯铜的加工。这种纯度很高的纯铜,一般用电解法精制:把不纯铜(即粗铜)作阳极,纯铜作阴极,以硫酸铜溶液为电解液。当电流通过后,阳极上不纯的铜逐渐熔解,纯铜便逐渐沉淀在阴极上。这样精制而得的铜;纯度可达99.99%。紫铜是比较纯净的一种铜,一般可近似认为是纯铜,导电性、塑造性都较好,但强度、硬度较差一些。因此可以根据工业加工技术水平调整紫铜的紫铜密度,以适应不同的工业生产要求。
含氟助浸剂对钒矿的硫酸浸出和萃钒的影响
2019-02-21 11:21:37
含钒石煤是我国一种重要的钒资源,从含钒石煤中提钒的办法可大致分为两类;一类是针对特定区域的石煤矿选用传统的焙烧技能进行钠化、钙化、无盐和复合添加剂焙烧,此类办法因在焙烧进程中很多发作S02、HC1、Cl2等有毒气体而导致环境污染而逐步被陶汰;别的一类是选用直接湿法浸出的办法,如陕西中村钒矿选用“硫酸直接浸出-溶剂萃取-盐沉钒-干炎热解”湿法生产工艺提钒,但长期以来,只用硫酸直接浸出中村钒矿,其浸出率不到80%。为了进步钒的回收率,本文在上述工艺基础上,要点研讨了参加含氟助浸剂对硫酸浸出中村钒矿的钒浸出及后续工序如萃取等的影响,并取得了较好成果。
一、试验部分
(一)质料与试剂
含钒石煤(矿山供给)首要成分:0.9% V2O5、1.2%Fe203。该钒矿属吸附型的钒矿,以四价钒为主。
首要矿石类型为炭硅质岩夹泥岩型钒矿石,部分为(炭质)泥石型钒矿石。
试剂:硫酸(98%,工业级);石灰(优质,工业级);含氟助浸剂(克己)。
萃取剂:10% P204+5%TBP+85%磺化媒油。
(二)试验进程
1、浸出试验。浸出试验在2m3珐琅反响釜中进行,顺次向反响釜中投入500kg石煤钒矿(粒度为-0.018mm粒级占95%)、500kg水、100kg浓硫酸,敞开机械拌和,投入10kg含氧助浸剂,一起加热升温至90℃下反响24h。浸出完成后,用离心机对浸出系统进行过滤和洗刷(洗刷用水500kg),滤液与洗液兼并统称为浸出液,测出其总体积,并取样化验。取样结束后,接着用碱中和调浸出液pH至2~2.5,时刻60min,离心机过滤,滤液经复原后作下一阶段萃取料液(即萃原液),并取样分析。一切样品均在广州有色金属研讨院分析测试中心通过ICP分析(下同)。
2、萃取试验。萃取试验所用设备为有机玻璃质的混合弄清槽(混合室有用容积为1L,混合室与弄清室容积比为1︰3,双叶浆式拌和,转速为800r/min)。
萃取工艺条件为:室温,比较(O/A)为1︰1,10级逆流萃取,混相时刻12 min。其间有机相(0)为10%P204+5%TBP+85%磺化媒油;水相(A)为浸出液经石灰乳中和后的滤液(即萃原液,其间A1为不含氟助浸剂,A2为含氟助浸剂)。
萃取操作为:先在萃取槽混合室和弄清室别离参加一半有机相(0),一半水相(A),并用两个20L下口玻璃瓶作高位槽。其间一个装有机相(0),另一个装水相(A1或A2),发动拌和,在有机相加料口按流量40mL/min接连进有机相,而在水相加料口按流量40mL/min接连进水相(A1或A2),必定时刻后在排萃余液口取萃余液分析。
二、试验成果与评论
(一)含氟助浸剂对钒浸出率的影响
含氟助浸剂对硫酸浸出钒的影响如表1所示。表1 含氟助浸剂对硫酸浸出钒的影响试验条件浸出液萃原液体积/Lρ(V2O5)/
(mg·L-1)ρ(Fe2O3)/
(mg·L-1)V2O5量/gV2O5浸出率/%ρ(V2O5)/
(mg·L-1)ρ(Fe2O3)/
(mg·L-1)ρ(F)/
(mg·L-1)不加含氟助浸剂
加含氟助浸剂980
9803673
42705073
51023599
418580
933342
38864616
4608/
4450
从表1可知,未加含氟助浸剂时钒的浸出率为80%,而加含氟助浸剂时钒的浸出率为93%。含氟助浸剂能有用进步钒的浸出率。究其原因,这首要是含钒石煤的物质组成比较复杂,钒的赋存状况和赋存价态改动多样,在同一矿体中一般有3种以上的钒矿存在,未加含氟助浸剂仅仅浸出易浸钒(Ⅳ)的部分,但参加含氟助浸剂后,较难浸部分钒也被浸出。因为较难浸部分钒矿结构安稳、细密,参加含氟助浸剂后能够损坏其安稳结构,使矿粒疏松多孔,空气中氧气或浸出液中Fe (Ⅲ)易进入孔隙使不溶于酸的三价钒氧化成可溶于酸的四价钒,让钒释放出来。
(二)含氟助浸剂对萃取率的影响
含氟助浸剂对萃取率的影响如表2所示。
表2 10级逆流萃取萃原液对萃取的影响编号萃余液/(mg·L-1)萃取率/%补白V2O5Fe2O3FV2O5Fe2O3F1927.0//72.26//A1,10h2272.3//91.85//A1,15h3100.2//97.00//A1,20h433.5//99.0//A1,25h533.04099/99.111.2/A1,30h61081//72.18//A2,10h7315.2//91.89//A2,15h8113.6//97.10//A2,20h938.5//99.0//A2,25h1037.04050429099.212.13.6A2,30h
从表2可知,当萃取槽接连进料25h,萃取到达了平衡,此刻含氟系统与不含氟系统钒萃取率别离为99.2%和99.1%,铁的萃取率别离为12.1%和11.2%;一起发现在未到达平衡时各时段钒的萃取率根本共同,因而阐明含氟助浸剂对钒的萃取及别离根本无影响。究其原因,这首要与萃取剂特性有关,P204是归于酸性萃取剂,酸性萃取剂HA只萃取阳离子,萃取作用与阳离子价数及离子半径有关。在硫酸系统中(pH为2),萃原液中的钒以(VO) S04方式存在。VO2+在水相中安稳,VO2+与F-只生成离子型化合物,不会构成络离子,因而虽然系统中有F一存在,但它不改动钒的价态及离子半径,与因而含氟助浸对钒的萃取不受影响。而对P204萃取铁而言,因为萃原液中的铁都是Fe2+,Fe2+与F-也不会构成络离子,因而,二种情况下P204萃取铁的作用也根本共同。
(三)含氮萃余液的处理及循环使用
含氟萃余液的首要成份是Fe2+、H+、SO42-、F-,其间ρ(Fe2+)=4.5g/L,ρ(SO42-)=80g/L,ρ(F-)=4.2g/L,酸度为pH=2。选用石灰乳米中和卒余液,中和进程中主安发作如下反响:
Ca(OH)2+H2SO4=CaSO4+2H20
Ca(OH)2+FeS04=Fe(OH)21↓+CaS04
Ca(OH) 2+2HF=CaF2+2H20
跟着Ca(OH)2不断参加,当pH升至7~8时,萃余液中Fe都会沉降下来(实测上清液Fe浓度为80mg/L),反响生成很多的CaS04也会不断沉积。而ksp(CaF2)=1.46×10-10,ksp(CaS04)=5.0×10-6,生成CaF2更简单沉积,实测上清液F浓度为0.2g/L,因而用石灰乳中和萃余液的上清液回来浸出槽,F不会累积下来。一起,试验还标明,上清液回来浸出槽,不会影响侵出作用。
三、结语
(一)含氟助浸剂能有用进步钒的浸出率,硫酸直接浸出钒的浸出率为80%,而参加2%含氟助浸剂后钒的浸出率可达93%。
(二)选用10级逆流萃取,加与不加含氟助浸剂,钒的萃取率均可达99%以上,含氟助浸剂对钒的萃取及萃取别离影响不大。
(三)含氟助浸剂的萃余液通过石灰乳中和至pH为7~8后,上清液回来浸出槽不会引起F的堆集。