钒矿元素赋存状态与提取方法
2019-02-25 10:50:24
一般以为,碳质页岩与石煤中的钒主要是呈涣散状况,无法经过物理选矿办法选出独立相。现在,主要是选用平窑钠法焙烧法从石煤中提取钒。因为生产供应商多为乡镇厂商,生产规划小,不正规,钒的转化率和总回收率低,烟气中所含的氯及氯化氢等有害成分难处理,对环境构成的污染严峻,许多不正规的小厂商多被撤销,故其总的生产规划一向不大,产值也不高,约占全国钒产值的5%左右,且多为化工产品。可是最近,贵州101地质队在镇远县发现一个钒矿石量近8000万吨、五氧化二钒金属量60多万吨的多层独立钒矿床,这是迄今贵州发现的最大的独立钒矿床。贵州101地质队是在进行1:5万铅、锌、银化探反常查验时发现这个矿的。经过进一步的地质勘查作业证明,该钒矿床坐落一级结构单元扬子准地台西南缘与江南造山带的过渡带,矿层呈层状产出于黑色的硅质岩与炭质页岩互层地层中,共3层,为独立钒矿床,并伴生具有归纳利用价值的铀、铂、钯等稀有金属。该独立钒矿的发现,改变了以往大多数人以为钒以伴生状况存在,并只要单层的知道,对进一步正确点评和寻觅该类型钒矿有着重要的含义。2.钒主要以类质同像赋存于钛铁矿-磁铁矿系列中,并构成规划很大的钒钛磁铁矿矿床。但因为钒在钛铁矿-磁铁矿系列中过于涣散,无法经过物理选矿取得钒的独立相,而只能取得含钒的铁精矿,精矿中含钒量跟着铁档次的进步而进步。含钒铁精矿经烧结与冶炼,钒进入铁水。再选用雾化吹钒工艺,生产出钒渣。然后由水浸法提取钒,然后完成钒与铁的别离。
钒矿提钒工艺技术
2019-02-25 09:35:32
概 况
钒在地壳中的含量大约是地壳分量的0.02%,散布较广,但涣散。含钒矿藏已发现的就有70多种,其间的绿硫钒矿、钒云母矿和钒铅锌矿等含钒氧化物高达8-20%,钒钛磁铁矿含钒档次低,一般含v2o5为0.2-1.4%,但它的储量最多,国际储量在400亿吨以上,是提取钒的首要质料。
全球的钒铁磁铁矿和钒资源恰当丰厚,已查明国际钒铁磁铁矿的储量为400亿吨以上,且会集在少数几个国家,有前苏联、美国、我国和南非,首要赋存于钒钛磁铁矿、磷块岩矿、含铀砂岩和粉砂岩型矿床中。此外还有许多钒赋存于铝土矿和含碳质的原油、煤、油页岩和沥青沙中。
据美国矿藏局统计资料标明,按现在挖掘规划,已探明的钒资源可继续挖掘150年,且会集散布在南非洲、亚洲、北美洲等区域,(南非占47.0%,前苏联占24.6%,美国占13.1%,我国占9.8%,其他国家总和占小于6%)。
钒具有杰出的可塑性和可锻性,常温下可制成片、拉成丝和加工成箔。但少数的杂质,特别是空隙元素(如碳、氢、氧、氮)会显着影响钒的物理性质。如钒含氢0.01%时引起脆变,可塑性下降;含碳2.7%时其熔点升高到2458。K。钒的熔点高,硬度大,电阻率高,呈弱顺磁性,线胀系数小,钒的弹性模量密度和钢附近,可用作结构材料。
钒是重要的战略物资之一,首要用于冶金工业,作为合金元素增加剂,改进钢材的结构、功能,进步强度和耐性,次之与钛制成具有高温高强度合金,再次之是化学工业,以钒的氧化物形状,用作出产催化剂、触媒等等。
国外钒的提取基本上是从副产品中收回的,如南非、芬兰、前苏联等国家是从钒钛磁铁矿炼铁中收回,美国大部分钒是钾钒铀矿及磷铁矿中收回,加拿大是从焚烧石油焦搜集的尘中收回,少数国家还从石煤中提取钒。总归,国际上钒首要是从钒钛磁铁矿中收回的,现在从钒钛磁铁矿收回的钒,每年约为7万吨左右,约占总产量的%。
钒的产品分为初级产品、二级产品和三级产品。初级产品包含含钒矿藏,精矿、钒渣、作废的粹的废催化剂,作废触媒和其他残渣。二级产品包含v2o5,也可所以一种可用的工业产品,即出产硫酸的触媒和粹用的催化剂。三级产品包含钒铁、钒铝合金、钼钒铝合金、硅锰钒铁合金及钒化合物,其间钒铁是最为重要钒材料,它占钒消费量的85%。各国钒铁标准可分为50-60%和70-85%的二类。
我国钒工业起步于20世纪50年代,1958年康复并扩建锦州铁合金厂提钒车间,以承德大庙含钒铁矿精矿为提钒质料,1960年今后我国的其他提钒厂相继建成投产,70年代攀枝花钢铁公司建成投产,从此我国的钒工业便进入一个新的历史时期,至80年代中已成为国际首要产钒国家之一,能出产各种钒制品,钒的推广运用也取得较快的开展。
从含钒质料提取纯钒化合物的技能,视质料不同而有所差异。钒钛磁铁矿、钒铁精矿、含钒石煤、石油渣、钒铀矿、钒磷铁矿等等,现分述收回技能。
一、 钒钛磁铁矿提钒技能:
钒钛磁铁矿提钒能够概括为火法和湿法两大类。火法流程能够处理含钒档次低的质料,能够经过火法富集,然后处理收回,也称之为简接法;湿法流程具有流程短、收回率高的长处,但要求处理的质料含钒档次相对较高,也称之为直接法。
1.火法工艺流程
将选出的钒铁精矿参与高炉或电炉炼铁,矿石中的钒大部分进入铁水中,将含钒铁水送入转炉吹炼成钢,钒高度富集在表面渣中,即钒渣,钒渣再经破碎、焙烧、浸出、过滤即得到V2O5。这是前苏联、挪威和南非等国所选用的办法。我国也选用相似的办法收回钒。
2、湿法工艺流程
选用含钒铁精矿加芒硝制团、焙烧、水浸,使钒酸钠进入溶液,再加硫酸使之转化为V2O5沉积,过滤后直接得到V2O5,水浸后的球团用于炼铁质料。
南非海威尔德公司是西方国家一起运用以上两流程(即生铁—钒渣流程和焙烧浸出流程)的典型比如。
生铁—钒渣流程
含钒铁精矿
料仓配料
回转窑预复原
含钛炉渣 炼铁
暂存堆积未处理 含钒铁水
板坯 氧气 吹炼 出售
钢水 顶吹炼钢 半钢 钒渣
钢坯 出产V2O5
焙烧浸出流程
含钒铁精矿
H2O 芒硝(碱或Na2SO4)NaCl
配料制团
钠化氧化焙烧1000℃
水浸
过滤 铵盐
球团 溶液
炼铁 过滤 H2SO4
废液废液 V2O5
含钒铁精矿或钒渣的浸出首要化学反响为
(1)4FeO.V2O3+4Na2CO3+5O2=8NaVO3+2Fe2O3+4CO2
(2)4FeO.V2O3+8NaCl+5O2=2Fe2O3+8NaVO3+4Cl2
(3) 4FeO.V2O3 +8NH4Cl +5O2=2Fe2O3+8NH4VO3+4Cl2
(4)2NaVO3+H2SO4=V2O5 + Na2SO4+H2O
(5)2NH4VO3+H2SO4=V2O5 + (NH4)2SO4+H2O
3、生铁—钒渣流程主体设备
① 首要视炼铁的主体设备,曾经苏联炼铁主体设备是高炉,挪威、南非等国则是电炉。
② 吹炼:不同国家选用的设备也不相共同
a.底吹转炉提钒:前苏联丘索夫联合公司是将含钒铁水装入底吹转炉吹炼,在炼半钢进程氧化表面构成含钒渣,钒渣经破碎、焙烧、水浸收回V2O5,然后炼成钒铁。从精矿到钒铁、钒的总收回率为60%左右。
b.顶吹转炉双联提钒:前苏联下塔吉尔钢厂则用顶吹转炉将含钒铁水吹成半钢和钒渣。就铁水到钒渣钒的收回率达92%—94%。我国的承钢、马钢和攀钢也用该法出产钒渣,钒的收回率为80%—88%。
c.高炉铁水雾化法提钒,该法实际上是将含钒铁水倾入中间缸,然后进雾化器,经雾化反响之后,使钒由V2O3氧化成V2O5、 V2O4、V2O3的混合物流入半钢缸,半钢面上构成钒渣。该法由我国攀钢首要实验成功并投入出产运用的,并且是我国钒渣出产的首要办法,钒的氧化率达85~90%,收回率为73.6%,半钢收回率为93.9%。该法的首要长处是:炉龄长(最高炉龄已达12000炉)、处理才干大(可达366吨/时)、可半接连化出产、设备简略、操作简略。
d.曹式炉提钒:我国马钢曾用槽式炉吹炼提钒,槽式炉才干为70T/h,实验的首要技能目标,钒的氧化率达88.5~95.2%,钒的收回率为81.3~90.49%,半钢率90.20~94.1%,出产目标不如实验目标。该法的长处是能接连出产、设备简略、出产本钱低,缺陷、钒渣含铁高、钒收回率还欠低。因而现在已停止运用,需求进一步完善,仍不失可供挑选的好办法之一。
4、焙烧浸出流程设备
湿法流程即焙烧浸出流程的中心首要是使钒氧化然后转化构成水可溶性的钒酸盐,选用何种焙烧设备,完成其意图。
a. 南特殊特腊厂,所运用钒钛磁铁矿成分: Fe 50~60%,V2O5 2.5% ,TiO2 8~20%, Al2O31~9%, Cr2O31%,选用回转窑焙烧完成氧化和转化。
b. 前苏联和澳大利亚阿格纽克拉夫有限公司都选用欢腾炉焙烧使97~98%的钒转化可溶性钒而被浸出。
c. 芬生奥坦馬基,运用原矿成分Fe40%,TiO215.5%,VO26%(V2O5:0.71%)原矿制团,在竖炉焙烧和转化,转化率达80~90%。
二、钾钒铀矿和磷铁矿收回钒技能
1、 美国钒的出产供应商处理的质料的以钾钒铀矿石、铀钼钒矿和磷铁矿石为主,钾钒铀矿的化学式为:K2(VO2)2(V2O8)" 3H2O或K2O" 2UO2"V2O5"3H2O。最近澳大利亚西部伊利里的钙结石乐岩中发现大型钾钒铀矿,我国陕西、湖南区域也发现钒铀共生矿。国际上最大的矿冶公司——美国联合碳化物公司从钾钒铀矿石出产钒的工艺流程是焙烧、浸出、沉积、复原和再浸出。该法钒铀浸出率别离为70~80%和90~95%,其流程如下:
钾钒铀矿
6~9%NaCl 钠化氧化焙烧 (多膛炉850℃ φ5m.8层)
1~2%Na2CO3
急冷
浸出
H2SO4 浸出液中和煮沸
PH:3
NaOH或NH3 沉积PH7 钒滤液
滤饼 沉积
Na2CO3 或NaCl 复原熔化 钒化含物
H2O 浸出 钒溶液
含铀沉积物收回铀
酸法和碱法浸出含钒溶液,可用离子交换法、溶剂萃取法、或挑选性沉积法进行别离提纯。该公司年产V2O8454吨,V2O51360吨。
2、 钒铁矿的处理与钾钒铀矿有所不同,钒铁矿运用真空揉捏和焙烧炉,先将矿粉与盐混合,送揉捏机揉捏成条、堵截,焙烧浸出提纯沉积后得V2O5。
3、 钒磷铁矿的处理
钒磷铁矿电炉出产单质磷和磷肥的副产品(含钒磷铁)用来作提钒质料,美国的克尔麦吉(KerrMeGee)化学公司所用的含钒磷铁含钒3.26%~5.2%,磷24.7%~26.6%,铁59.9%~68.5%,铬3.4%~5.7%,镍0.84%~1.0%。
先将含钒磷铁磨至粒度小于0.42mm,配入1.4倍纯碱和0.1倍的食盐在回转窑中770~800℃下焙烧,钒便转变成水溶性的钠盐,焙砂在沸水中浸出,钒、铬、磷均溶入浸出液,过滤后滤液结晶折出磷酸钠晶体,粗磷酸钠可再行纯化直至产品合格。磷酸钠结晶母液含磷>0.98g/L,可参与适量CaCl2,使其以磷酸钙(CaPO4)沉积,然后水解收回钒,随后往母液中参与以沉积。此工艺的钒、铬和磷的收回率别离能够到达85%、65%和94%。
三、含钒褐铁矿收回钒技能
含钒褐铁矿五氧化二钒含量为0.5~2.5%,Fe20~40%,SiO230~65%.
矿石首要由针铁矿、赤铁矿和脉石组成。脉石以石英为主,其次是泥质还有少数的绢云母。钒在褐铁矿中没有呈独立矿藏存在,而是以离子型吸附状况存在于铁和泥质中。处理的准则流程是:破碎球磨 焙烧 浸出 沉积Nu4VO3 或V2O5。
研讨标明褐铁矿V2O5含量不同,钒的转化率受矿石组分的影响,其间首要影响要素是矿石CaO的含量,跟着的CaO的含量增加,影响钒的转化,焙烧温度的进步能进步钒的转化率。不同含钒矿石,最高转化率的温度是有差异的。
四、含钒石油渣提钒技能
一般讲,原油和石油砂都含有钒,虽然有些国家至今仍未把油含钒列为钒资源,但这些原油确是钒的潜在资源,全球的石油中钒的含量改动很大,委内瑞拉、墨西哥、加拿大和美国原油含钒为220~400ppm,是全球石油含钒量较高的少数几个国家。
美国、日本、德国、加拿大和俄罗斯等国家从石油渣,石油灰中提钒,提钒的终究产品首要是V2O5,但也能够直接炼成钒铁。提取的办法许多,首要依据质料成分或性质上的差异,挑选不同的工艺。
1、 从石油会集收回钒技能
委内瑞拉的原油经过裂化处理得到石油焦含0.4%V,石油焦用作蒸气锅炉的燃料,焚烧后烟尘用电收尘器收尘,尘含V2O5达15%,作为收回钒的质料。收回办法是将搜集烟尘直接酸浸,经过滤滤液加次(NaClO4)将钒氧化成五价,滤液由兰色变黄色后,加NH3调PH由0.3至1.7,使钒以铵盐方式沉出,然后枯燥锻烧得V2O5或V2O5熔化铸片。流程图:
石油焦尘埃 酸
浸出
滤液 残渣NaClO4氧化 沉积 调PH 洗刷
滤块 残渣 洗液
抛弃
烘干
锻烧 V2O5
首要化学反响:酸浸工序: V2O5+6HCl 2VOCl2+3H2O+Cl2 或V2O5+2H2SO4 VOSO4+2H2O
NaClO4氧化: VOCl2+NaClO4 NaVO3+2NaCl+Cl2VOSO4+NaClO4 NaVO3+NaSO4+Cl2
沉积锻烧 NaVO3+NH4Cl NH4VO3+NaCl2NH4VO3 V2O5+2NH3+H2O
2、 从炼油渣中收回钒技能
美国Amax和CRIVentures公司就是处理炼油渣、归纳收回钒、钼、钴、镍和铝。他们处理的工艺:炼油渣与烧碱混合磨矿进行加压浸出,在高温和加压下氧化,硫转化硫化物,碳氢化合物大部分分化,钒、钼溶入溶液,经过滤别离,从溶液收回钒钼。或石油渣加Na2CO3或NaCl配料后,在硫化物和硫酸盐存鄙人进行电炉熔炼,取得钒渣和镍锍。钒渣首要惯例处理办法制取工业V2O5。美国是20世纪80年代末开端用石油渣,石油灰为质料出产钒的,现在仍然是该质料出产钒的最大出产国。
五、石煤提炼钒技能
在普查磷矿时意外地发现了石煤含有钒,进而发现石煤中还有铀、铜和镍等金属和非金属60多种,就当时的技能水平而言,具有挖掘和商业价值的只要钒。我国的石煤资源非常丰厚,估计石煤中钒的总储存量为钒钛磁铁矿中钒总储存量的七倍。但石煤中含钒档次各矿相差甚大。现在条件下石煤含钒超越0.8%,才有挖掘价值。美国内华达州含钒页岩分为风化页岩(V2O30.93%)和碳质页岩(V2O50.84%)。我国石煤资源会集在南边各省,现有钒的厂20多家,年产量为2500~3000吨,本钱2.5~30万元/吨。
石煤提钒选用加食盐焙烧、浸出、萃取、沉积的出产工艺。含钒碳质页岩是用于烧锅炉或液态化床发电的脱碳焚烧,在焚烧进程中钒富集在烟灰中,富集钒烟灰加NaCl或Na2Co3进行化焙烧,使钒转变为水溶性的NaVO3和Na2V2O5.
4FeOV2O3+4Na2CO3+5O2=4Na2OV2O5+2Fe2O3+4Co2
NaCl+1/2O2= Na2O+Cl2
Na2O+V2O3=2NaVO3
用热水浸出钠化焙烧产品,钒酸钠和偏钒酸钠便溶于热水而与大部分不溶杂质别离,含钒浸出液经提纯和别离,产出钒的纯化合物。
美国内华达对含钒页岩提钒流程:
页岩
↓
破碎、枯燥
↓
焙烧
↓ H2O
残渣←弱酸浸出 H2SO4
NH3 ↓
浸出液除硅 PH值由2.5调至5
↙ ↘
硅渣 含钒溶液 PH5调回PH3
↓
萃取(三级)
萃取有机相 萃取废液
↓
再生萃取 ←二级反萃 ←NaCO3 溶液
有机相 ↓
含钒溶液
↓
NH4Cl →钒酸铵沉积
↓
过炉、洗刷、枯燥→废液
↓
制品
阐明:除硅需将溶液调至PH值5,但萃取别离又需将溶液PH从头调回至PH3,用的萃取剂是混合十三胺(DITDA),偏钒酸胺煅烧脱后能够得到V2O5。
在我国,已建有从含钒石煤中提取钒的工厂,各厂依据其资源特色开发出具有必定特色的提钒工艺流程,他们的准则流程是:
石煤提钒的准则流程
石煤破碎、磨矿
↓
加水→配料←NaCl
↓
成球
↓
平窑焙烧
↓
水浸
↙ ↘ ↙H2SO4或HCL
浸出渣 浸出液
↙ ↘
粗钒 废水
↓
NAOH → 碱熔
↓ NH4CL
水溶
↙ ↘
废水↓
热分化
↓
五氧化二钒
石煤提钒的新工艺有:1.石煤加食盐,欢腾焙烧—酸浸—离子交换法。2.石煤无盐焙烧—酸浸—溶剂萃取法。3.酸浸—中间盐提钒
新工艺的所谓新,会集在二个环节上,首要是焙烧所选用的炉型,由平窑焙烧转而运用欢腾炉,回转窑,竖炉等,成果是竖炉的操作条件不简略操控,转化率不稳定,劳动条件差,未能在工业上取得大规划运用。回转窑广泛运用于钒渣的钠化氧化焙烧,但石煤含硅(SiO2)较高(65%--68%),在焙烧进程中简略呈现粘窑、结圈、影向回转窑正常操作和钒的转化率,故不宜作为石煤焙烧设备,作为石煤焙烧设备最好是欢腾炉。
其次的环境是溶液的处理,除已有的化学沉积法外引证了离子交换法和溶剂萃取技能,因为新技能的引证,能够带来技能目标的进步,削减废水的处理,视操作的差异,或许影响加工本钱。
六、废催化剂和触媒的提钒技能:
钒的化合物具有杰出的催化功能,即它自身不参与化学反响,但在它的参与下,可加快反响的进行。用钒化合物与其载体作成的能改动某些化学反响速率,而自身又不参与反响的化学试剂,称之为催化剂。钒催化剂(V2O5•NH4VO3)替代铂用于出产硫酸,使SO2转化为SO3。在石油工业中,钒首要用做裂解催化剂(VS),以及脱硫剂。在橡胶工业中,用乙烯和的交联合成橡胶的催化剂(VCl4)。化学工业上的氧化成马来酐,蔡氧化成酞酐的钒催化剂(NH4VO3)等等。特别是化学工业和石油工业运用过的废钒催化剂数量较大,是很好的钒二次资源,不只能够从中收回许多的钒,并且一起收回镍、钼等价金属。
1. 石油裂解用废催化剂(VS)的收回技能
废硫化钒催化剂经焙烧得到产品,能够选用高温浸法,钒废质料在参与压煮器中,473。K温度下用1—14MOL/L浓度的压煮4小时,钒酸铵便溶于中,经过炉别离后,将钒酸铵滤液的温度降至323。K,便分出钒酸铵结晶,结晶浆液经过滤、水洗、枯燥后,在473--873。K温度下煅烧,便得到V2O3,结晶的母液回来浸出循环运用。
除以上办法外,也能够用碱浸出从这种钒废猜中收回钒,用NaOH或Na2Co3溶液在363--378。K温度下浸出1-6个小时,然后过滤别离,在浸液中通入和二氧化碳,坚持298--308。K温度,按1MOL钒参与1.5—5MOL量,并将溶液PH调至6—9。经处理,坚持308。K,便能够沉积出钒硫铵。滤液送解吸器,用蒸气驱逐液体中的NH3和CO2,然后回来浸出,钒硫铵处理同前。
2. 从原油脱硫用的废催化剂的收回技能:
废催化剂在1073。K温度下进行氧化焙烧,先制得含钒10.88%,钼5.49%,钴2.03%,镍1.94%,铝35.48%的焙烧料,然后按150g焙烧猜中参与300ml含溶液NaOH15%的溶液,在333。K温度下拌和浸出3小时,浸出料液在323。K温度下过滤,浸出液由323。K降至278。K,便分出含钒结晶体,母液回来运用,结晶体经水洗、枯燥、煅烧后得到V2O3。
除此之外,焙烧料也可用酸浸流程,催化剂除钒外,其他有价元素Mo、Ni、Co等都转入流液,除杂后钒用萃取别离法收回。
美国AMR是一家从石油裂变废催化剂提钒大公司,其处理的废催化剂的量占全美的50%,年处理废催化剂16000吨,能够归纳收回1500吨V2O3,1000多吨Mo,400—600吨Ni,110—180吨Co,还有部分Al2O3.
3、从《制酸废触媒(V2O5,NH4VO3)》收回钒技能
硫酸工业上用矾触媒进程中,因为SO2气体中的AS2O5和触媒中V2O5构成络合物,在触媒的正常操作温度480摄氏度下该络合物随气体蒸发掉。蒸发量占V2O5总量的40—50%,除此以外还有K2SO4和SiO2。新废触媒成分如下:
成分称号 V2O5 K2SO4 SiO2
新触媒成分 9---------10% 20-------------22% 20%
废触媒成分 5---------6% 10------------12% 80%
因而废触媒中的三中首要成分都是名贵资源。废触媒的处理,工业上能够选用①直接酸浸工艺②化焙烧水浸工艺:
直接酸浸工艺:为了下降溶液杂质和游离酸,削减酸碱耗费。用两段逆流浸出,一段为弱酸浸,二段为高酸浸。高酸浸出液参与到新加废触媒进行弱酸浸出。二段浸出成果钒浸出率可达88.5-91.1%,浸出渣含V2O5能够降到0.59%,当进步二段浸出酸浓度到80—100G/T,渣含V2O5可降到0.3%。溶液的净化选用N235或P204萃取,碱反萃取,用NH4Cl沉,煅烧得到V2O5。
考虑到直接酸浸液除钒外,还含有许多Fe离子为溶液处理带来费事。经过预焙烧使钒氧化成高价钒,一起使其转型,削减了提钒的困难。因为废触媒自身含有10%硫酸钾组分,因而氧化焙烧水浸流程可分为不加钠盐和加钠盐两种。前者焙烧温度900摄氏度到达最佳转化率(~80%)。再高或再低温度的焙烧,钒的转化率都不抱负,后者增加5%的Na2CO3在800摄氏度下焙烧2小时,钒的转化率可达92%,是比较抱负的。
焙砂进行两段浸出,即先水浸后酸浸或碱浸,它的特色是先将钾盐、钠盐和近80%钒水浸进入低酸溶液。这种溶液杂质少,易处理,可收回运用钾盐。酸浸或碱浸意图在于不容于水的钒盐尽或许多地溶解,以进步钒的收回率。
溶液中的钒用N235萃取别离,碱返萃,NH4CL沉积,煅烧得V2O5。
总归,流程的挑选,要视供应商的现状,以为钠化氧化焙烧水浸提钒工艺较好。物料过滤功能好,浸出液中钒呈高价,杂质少,下步钒别离、净化进程简略,也能够直接用NH4CL沉积,省去萃取进程,下降产品加工本钱。
七.钒铁出产技能:
钒和铁组成铁合金,首要在炼钢中用作合金增加剂,高钒钒铁还用作有色合金的增加剂。常用的钒铁含钒40%、60%和80%三种,国内外首要选用电炉铝热法和硅热法冶炼钒铁的工艺,先分述如下:
1. 铝热法:
电炉铝热法冶炼钒铁的质料,可所以V2O5或贱价氧化钒混合物(V2O4、V2O3等)或钒铁渣。用铝作复原剂,在碱性炉衬条件下进行。
首要反响:V2O5+ AL(豆或粒状)=V+AL2O3
V2O4(V2O5)+AL= V+AL2O3
铝热法冶炼钒铁反响为放热反响,反响速度快,因而冶炼进程V2O5喷溅丢失严峻,为削减丢失,进步钒的收回率,特意将V2O5加工成片状,一起将铝粒改为铝豆,恰当减缓反响,下降放热量。
以贱价氧化钒为质料时,则冶炼进程反响速度缓慢,反响热量合适,削减进程的喷溅。然后进步钒的收回率,一起吨铁钒节省了铝复原剂40—60公斤,钒铁含钒60—80%,钒的收回率达90—95%。
2. 硅热法:
该法的本质是:片状V2O5用75%的硅铁和少数铝作复原剂,在碱性电弧炉中,经复原,精粹两个阶段炼得合格产品。复原期是把复原剂和V2O5进行硅热复原。当渣中V2O5小于0.35%时,即可作为废渣处理(或作建筑材料用),作为冶炼作业讲,即能够转入精粹期,此刻再参与部分V2O5和CaO,用以脱除合金液中过剩的硅、铝等。当合金成分到达要求即可出渣和出含金,精粹期渣含V2O5达8—12%,此渣可回来冶炼复原期收回。合金液可铸成圆锭后破碎成制品。此法出产的钒铁含钒40—60%,钒收率可达98%。
除此之外,还开发了高钒铁、硅钒铁、硅锰钒铁、碳化钒、碳氮化钒、氮化钒铁以及金属钒等产品,在此不再赘述。
八、几点观点:
1.依据所用的含钒质料有:含钒铁水,钒铁精矿,钒渣、钒铀铁矿,钒磷铁矿,含钒石煤,含钒褐铁矿,含钒石油渣,以及化学石油以及橡胶工业用过的废催化剂等。
2.提取钒的流程遍及都存有:焙烧、浸出与净化、溶液中钒的提取和提取尾液处理四大过程组成,前两过程最为重要:
①焙烧:含钒质料和Na2CO3 NaClNa2SO4等钠盐混合在回转窑、竖炉、平窑、多膛炉或欢腾炉,在800—1000。C下进行氧化和转化,使钒转变为XNa2O•YV2O5以便溶于水。
单个情况下,含钒质料可加石灰或石灰乳(Ca(0H)2),在上述提取各种炉内进行焙烧,它的意图与钠化焙烧正好相反,使钠转化为不溶于水,但溶于碳酸盐溶液,构成钒酸钙,到达与其他杂质别离的意图。
②浸出:焙烧熟料浸出有:水浸、酸浸、碱浸和碳酸化浸出等四种办法,水浸时,钒酸钠进入溶液,酸浸则不同,能够有三种办法:A、含钒物料直接酸浸;B、含钒物料经焙烧后酸浸;C、含钒熟料经水浸之后再进行酸浸,酸浸还能够适用于处理其他物料,为钾钒铀矿、磷钒铁矿、含钒灰烬、废钒催化剂等。常用碱浸出剂有NaOH、Na2CO3或两者混合等,碱浸时还有必要使钒成高价态才行。氧化剂有氧气、空气、富氧空气,、、次、等。
溶液净化:含钒浸出液悬浮物可经过弄清除掉Fe、Mn、Si、Al可用中和沉积除掉,可用钙盐、镁盐沉积除掉P、AS,对高碱度溶液可用电渗析脱钠、收回碱。
③溶液中钒提取:有沉积法、溶剂萃取和离子交换法
沉积:A、铵盐沉积:生成(NH4)2V6O16沉积,生成Na2(NH4)4V10O28.11H2O沉积,生成NH4VO3沉积。
B、水解沉积:加H2SO4,分出赤色钒酸钙沉积,Na2H2-X.V12O31。
C、钙盐或铁盐沉积: 碱性溶液用CaCl2或其他CaO、Na(OH)2沉积出钒酸钙,或用高铁盐沉积出钒酸铁(XFe2O3•YV2O5•2H2O)。
溶剂萃取:钒和铀别离法:用二乙基已基磷酸 磷酸三丁酯及N235
离子交换:合适处理碱性溶液
④尾液处理:五价钒和六价铬离子游离酸、盐都是有毒的,有必要处理好才干扫除,工业上有三种处理办法:
A、 复原中和扫除法
B、 气体中二氧化硫复原法
C、 离子交换法
3、已探明的钒储量,按现在挖掘规划够150年运用,年产钒量已处在供需平衡状况,钒的供需改动随合金钢产量改动而改动
钒钛烧结矿的特点
2019-02-14 10:39:49
(一)钒钛烧结矿的化学成分 钒钛烧结矿除含TiO2和V2O5外,其他化学成分与普通烧结矿比较也有较大差异,依据TiO2含量凹凸,钒钛烧结矿可分为高钛型(攀钢)、中钛型(承钢)和低钛型(马钢)。 与普通烧结矿的化学成分比较,钒钛烧结矿具有“三低”、“三高”的特色。即烧结矿含铁低、FeO和SiO2含量低,TiO2、MgO、Al2O3含量高。 (二)钒钛烧结矿的矿藏组成 钒钛烧结矿的物相组成首要有:钛赤铁矿、钛磁铁矿、铁酸钙、钛榴石、钙钛矿、钛辉石、玻璃质等。 1.钒钛烧结矿的矿藏特色 钛赤铁矿是烧结矿中的首要含铁物相,一般可占烧结矿总量的40%~50%,是赤铁矿-钛铁矿固熔体,属六方晶系,反射光下呈灰白色,强非均质性,不透明,反射率25%,以Fe2O3为晶格,除Ti外,还固溶Mg、Al、Mn等元素。钒钛烧结矿中的钛赤铁矿以粒状、斑状结构为主,少量呈他型和自型柱状。一般出现在孔洞周围或钛磁铁矿晶粒周围构成包边或花边结构。钛赤铁矿的很多存在及其连晶效果,使烧结矿具有杰出的复原性和机械强度。 钛磁铁矿不同于普通烧结矿的磁性矿藏,是磁铁矿-钛铁晶石固溶体,是烧结矿中的首要含铁矿藏,其含量在25%~35%之间,是以Fe3O4为晶格的固熔体,其固溶有Ti、Mg、Mn、V、Al的氧化物。在反光下呈灰白色带褐彩、均质性、反射率为18%~22%,内反射不透明、强磁性、表面可被腐蚀、呈暗褐色。首要呈自形粒状和不规则他形柱状方法。也有从硅酸盐相中分出的自形、半自形八面体(多边形断面)及细微树枝状骸晶,部分钛磁铁矿常被赤铁矿色边。 铁酸钙首要存在于熔剂性钒钛烧结矿中,并随烧结碱度添加而添加,一般占烧结矿总量的3%~20%,在反光下为灰色带蓝彩,非均质性,反射率为16%。首要呈板粒状和针状,多与钛磁铁矿构成熔蚀结构和柱状交错结构。在剩余石灰颗粒边际构成很多的铁酸钙晶体。它具有好的复原性和高的抗压强度。 钛榴石在钒钛烧结矿中属硅酸盐相,一般占烧结矿总量的3%~15%,在熔剂性钒钛烧结矿中常可见到。首要呈粒状、浑圆状和树枝状集合体,单个区域钛榴石连成片。反射光下呈灰色,无内反色,反射率低(12%~13%).透射光下呈黄色、黄褐色,无解理,无双晶纹,属晚结晶的硅酸盐物相,对烧结矿起必定的粘结效果。从化学成分看,钒钛烧结矿中的钛榴石与天然钛榴石挨近。 钙钛矿是熔剂性钒钛烧结矿首要含钛矿藏,一般占烧结矿总量的2%~10%,属甲等轴晶系,反光下为灰白色,反射率为15%~16%,略低于钛磁铁矿固溶体,均质到非均质,内反射色为黄褐色,在透射光下,呈褐、黄、紫、红棕等多种色彩。干与色一级,有时出现反常干与色。钙钛矿在烧结矿中首要呈粒状、纺锤状、骨架状、树枝集合体,涣散于渣相或钛赤铁矿褐钛磁铁矿之间。其熔点很高(1970℃),结晶才能强,是晶出最早的物相。硬度高于钛磁铁矿。 钛辉石属斜方晶系,多呈短柱状,有时块状集合体存在,充填于钙钛矿、钛磁铁矿、钛赤铁矿之间,是钒钛烧结矿硅酸盐粘结相之一。在反射光下为深灰色,反射率稍高于玻璃相,透光下呈黄绿~浅红紫色,有用多色性。[next] 2.影响钒钛烧结矿矿藏组成的要素 烧结矿的矿藏组成,跟着烧结质料、烧结工艺条件等的改变有所区别。 (1)碱度的影响。不同碱度对钒钛烧结矿矿藏组成的影响见图.天然碱度钒钛烧结矿首要矿藏为钛磁铁矿、钛赤铁矿、铁橄榄石和玻璃隐晶质,钛赤铁矿和钛磁铁矿多为自形或半自形粗晶、晶体紧密结合为连晶,是天然碱度钒钛烧结矿的首要连接方法。其次是橄榄石和玻璃质,将连晶粘结,构成细孔均匀的海绵状结构,气孔一般为1~2mm.烧结矿结构细密、强度好、转鼓指数高、制品率高。但因很多磁铁矿被氧化,需求较长时刻,故笔直烧结速度低。 碱度1.0~2.0的熔剂性钒钛烧结矿,其首要矿藏为钛磁铁矿、钛赤铁矿、钙铁橄榄石、钛榴石、钙钛矿、铁酸钙、钛辉石和玻璃质。 碱度大于3.0的烧结矿,钛赤铁矿固熔体削减而钛磁铁矿固溶体添加,烧结矿外观发黑、光泽暗、铁酸钙显着添加。 (2)燃料用量对矿藏组成影响。钒钛烧结矿的矿藏组成随燃料用量的增减而改变,当燃料用量偏低时,烧结矿中钛赤铁矿含量高而玻璃质少,粘结相缺乏,烧结矿强度差。跟着燃料添加,复原气氛增强,烧结温度升高,烧结矿中钛磁铁矿和浮氏体显着添加,硅酸盐粘结相和铁酸钙添加,但钛赤铁矿很多削减,削弱钛赤铁矿连晶效果。当燃料超越必定量时,烧结矿中钛赤铁矿进一步下降,铁酸钙含量也低,而钙钛矿含量显着添加,此刻硅酸相无甚改变。因而,进步含碳量对进步钒钛烧结矿强度并晦气。 (3)TiO2含量对矿藏组成的影响。跟着烧结矿中TiO2含量的添加,钙钛矿量添加,铁酸钙量削减,一起钛辉石添加,玻璃质削减。[next] (三)钒钛烧结矿的冶金功能 1.钒钛烧结矿的转鼓强度 钒钛烧结矿的转鼓强度一般较普通烧结矿低。其原因首要是:(1)烧结矿中SiO2含量低,构成的硅酸盐粘结相少;(2)因为TiO2含量较高,烧结过程中与CaO易构成性脆的钙钛矿;(3)烧结液相量少,粘结才能差。别的,因为矿藏特性所决议,此种烧结矿还具有耐磨不耐摔的特色。 添加配碳量虽可改进钒钛矿的转鼓强度,但当配碳量超越必定配比时,强度反而下降。配碳量的添加可促进烧结液相量增多,有利于转鼓强度的进步,但一起因为配碳量的添加导致复原气氛加强,铁酸盐削减,钙钛矿量添加,因而,应操控恰当的配碳。 2.烧结矿储存功能 钒钛烧结矿有较好的储存功能,其储存天然粉化率比普通烧结矿低得多。原因在于烧结矿冷却过程中,当温度下降到675℃时普通烧结矿中的正硅酸钙(2CaO•SiO2)发作相变(由β-2CaO•SiO2向γ-2CaO改变),体积发作急剧胀大(添加10%),引起烧结矿粉化;而钒钛烧结矿在烧结过程中无2CaO•SiO2生成,因烧结矿中SiO2含量低,即便烧结碱度达1.70,其CaO含量也仅为9.5%~9.1%,且部分CaO与TiO2构成钙钛矿(CaO•TiO2),故游离CaO很少。 3.钒钛烧结矿的复原功能 钒钛烧结矿因为氧化度高、FeO含量低,其复原功能较普通烧结矿好。影响钒钛烧结矿复原性的要素首要有碱度、FeO含量等。 (1)碱度的影响。碱度对钒钛烧结矿复原性的影响规则与普通烧结矿类似,随烧结矿碱度的进步,复原度显着上升。 (2)FeO含量的影响。钒钛烧结矿中FeO首要以钛磁铁矿和钙铁橄榄石方法存在,其复原性较差,但与普通烧结矿比较,其含量较低,比较之下复原性仍较好。跟着FeO含量的添加,钒钛烧结矿复原度呈直线下降,因而,钒钛磁铁精矿烧结时,应操控适合的FeO含量,在确保钒钛烧结矿强度的条件下,使之具有杰出的复原性。 (3)TiO2含量的影响。随钒钛矿中TiO2含量的添加,烧结矿的复原度下降。一般以为因为TiO2含量的添加,势必会导致烧结矿中含铁物相(如钛赤铁矿、铁酸钙盐等)削减,而脉石矿藏(如钙钛矿、钛辉石等)添加,而晦气于复原气体的分散。 4.钒钛烧结矿的低温复原粉化功能 一般以为,烧结矿低温(400~500℃)复原粉化的发生,首要是因为赤铁矿复原为磁铁矿的过程中,晶形的改变所造成的。钛赤铁矿有各种晶型,如粒状、斑状、树枝状、叶片状、骸晶状等。关于不同晶型,其复原粉化功能不同,其间以骸晶状菱形钛赤铁矿复原粉化最为严峻。 钒钛烧结矿的低温复原粉化率RDI-3.15比普通烧结矿高得多。攀钢烧结矿的RDI-3.15一般大于55%~60%,且当普通烧结矿中参加部分钒钛物料时,烧结矿的复原粉化率也会显着上升。 钒钛烧结矿低温复原粉化率高的原因是:(1)烧结矿中含有很多的钛赤铁矿(40%~50%),其间约50%以骸晶状菱形赤铁矿存在,别的还有部分钛赤铁矿以网格状占有于钛铁矿的方位上。复原时,因为晶型改变而引起胀大粉化。(2)烧结矿中SiO2含量低,起粘结效果的硅酸盐相少,加之不起粘结效果的钙钛矿的存在,它不只自身性脆,并且还阻碍钛赤铁矿和钛磁铁矿间的连晶效果,抗胀大粉化的才能下降.(3)钒钛烧结矿的物相组成较普通烧结矿的物相组成杂乱,其不同的热胀大性引起的内应力,在低温复原阶段会导致很多微裂纹的构成,然后也下降了烧结矿强度。 虽然钒钛烧结矿低温复原粉化现象较为严峻,但实践生产中,没有因烧结矿的低温复原粉化率高而引起高炉上部块状带透气恶化而成为约束冶炼强化的环节。对小高炉冶炼钒钛烧结矿的解剖查询,所测得的烧结矿粒度组成也未发现反常。 进步烧结矿中FeO含量,能够削减再生赤铁矿的数量,下下降温复原粉化率,但FeO过高会引起烧结矿复原性的恶化。为此,攀钢在制品烧结矿上喷洒卤化物水溶液,使烧结矿低温复原粉化现象得到大幅度改进。 5.钒钛烧结矿的软熔滴落功能 烧结矿的矿藏组成决议了其软熔滴落功能,因为钒钛烧结矿高熔点矿藏多,致使其软化温度高,一起又因高熔点矿藏熔点不同大,因而其熔滴温度区间宽,且滴落过程中渣铁分离差,渣中带铁多。影响钒钛烧结矿软熔滴落功能的首要要素有烧结矿的碱度、TiO2含量等。 碱度对钒钛烧结矿软熔滴落功能的影响研讨。随碱度进步,烧结矿软化开端温度(Ta)、软化终了温度(Ts)(熔化开端温度)、开端熔滴温度(Tm)上升,软化温度区间(ΔTs-a)和熔滴温度区间(Tc)变窄,压差陡升,温度(TΔp)上升,最高压差(ΔPmax)减小,熔滴带厚度(H)变薄。 TiO2含量对钒钛烧结矿软熔滴落功能的影响的的研讨。随烧结矿中TiO2含量添加,开端滴落温度下降,压差陡升温度下降,最高压差减小,软熔温度区间变宽,滴落时刻延伸。
铅的冶炼方法
2018-12-19 09:49:16
冶炼方法:炼铅原料主要为硫化铅精矿和少量块矿.铅的冶炼方法有火法和湿法两种,目前世界上以火法为主,湿法炼铅尚处于试验研究阶段.火法炼铅基本上采用烧结焙烧——鼓风炉熔炼流程,占铅总产量的85—90%;其次为反应熔炼法,其设备可用膛式炉,短窑,电炉或旋涡炉;沉淀熔炼很少采用.铅的精炼主要采用火法精炼,其次为电解精炼,但我国由于习惯原因未广泛采 用电解法.炼锌的原料主要是硫化锌精矿和少量氧化锌产品.火法炼锌采用竖罐蒸馏,平罐蒸馏或电炉;湿法炼锌在近20年以来得到迅速发展,现时锌总产量的70—80%为湿法所生产.火法炼锌所得粗锌采用蒸馏法精炼或直接应用;而湿法炼锌所得电解锌,质量较高,无需精炼.对难于分选的硫化铅锌混合精矿,一般采用同时产出铅和锌的密闭鼓风炉熔炼法处理.对于极难分选的氧化铅锌混合矿,经长期研究形成了我国独特的处理方法,即用氧化铅锌混合矿原矿或其富集产物,经烧结或制团后在鼓风炉熔化,以便获得粗铅和含铅锌的熔融炉渣,炉渣进一步在烟化炉烟化,得到氧化锌产物,并用湿法炼锌得到电解锌.此外,也可以用回转窑直接烟化获得氧化锌产物.
沉钒方法的比较
2019-01-24 14:01:24
沉钒方法的比较如表所示。
表 沉钒方法的比较项 目水解沉淀酸性铵盐沉钒弱酸性铵盐沉钒碱性铵盐沉钒钒酸钙法钒酸铁法沉钒pH值1.5~32~34~68~95~11<7酸 耗很大大小很小铵 耗无小大很大初始钒浓度可大可小可大可小大大可大可小可大可小三废问题废液废液、废气废液、废气废液、废气废液废液生产周期短短长长短短沉钒收率/%~98>98>38>9897~99.599~100产品含V2O5/%>85>99>99>99低低
钼铁的冶炼方法
2019-01-04 11:57:12
冶炼钼铁的原料主要为辉钼矿(MoS2)。冶炼前通常把钼精矿用多膛炉进行氧化焙烧,获得含硫小于0.07%的焙烧钼矿。钼铁[2]冶炼一般采用炉外法。炉子是一个放置在砂基上的圆筒,内砌粘土砖衬,用含硅75%的硅铁和少量铝粒作还原剂。炉料一次加入炉筒后,用上部点火法冶炼。在料面上用引发剂(硝石、铝屑或镁屑),点火后即激烈反应,然后镇静、放渣、拆除炉筒。钼铁锭先在砂窝中冷却,再送冷却间冲水冷却,最后进行破碎,精整。金属回收率为92~99%。在炼钢工业中近年广泛采用氧化钼压块代替钼铁。
钼铁通常采用金属热法熔炼。钼铁是法定检验商品。主要产地有吉林、河北、江苏、河南、辽宁等,主要输往美国、荷兰、德国等。
铜的冶炼方法
2019-03-07 09:03:45
最首要的铜矿床有两种:一为原生的斑岩铜矿床,约占悉数铜资源的66%,美国、智利、秘鲁等国最多;一为水成岩中次生的层状铜矿床,约占悉数铜资源的25%,闻名的赞比亚-扎伊尔铜矿带即属此类。已发现的铜矿藏约160多种。原生硫化矿中以黄铜矿(CuFeS2)最多,其次为斑铜矿(Cu5FeS4),次生氧化矿中首要有孔雀石[CuCO3·Cu(OH)2]、蓝铜矿[2CuCO3·Cu(OH)2]等。70年代末全世界具有挖掘价值的铜矿金属储量约5亿吨,海底锰结核的铜储量估量约4亿吨。1979年世界各国(我国在外)为了充分使用资源,各国都十分重视杂铜的收回。1980年工业发达国家(不包含苏联)的杂铜收回量约占总产铜量的15%。同年美国收回杂铜58万吨,占全国铜消费量的31%。
我国铜矿散布较广,已探明的铜矿床多为斑岩铜矿、含铜黄铁矿、矽卡岩铜矿.铜是优秀的导电和导热体,仅次于银。常温下铜的电导率为银的94%,热导率为银的73.2%。铜在枯燥空气中不氧化,在含有二氧化碳的湿空气中表面构成一层铜绿;与碱溶液反响很慢,但易与构成络合物。铜的标准电极电势为+0.337伏,铜不能置换酸溶液中的氢,但溶于有氧化作用的酸中。二价铜的电化当量为0.0003294克/库仑。
铜和铜合金如青铜、黄铜、白铜等,广泛用于制作电工器材、机械、建筑材料和运输工具等。
铜有多种化合物,首要用于化工、医药、农药等方面。与金属铜的用量比较,用于化合物的铜量很少,只占铜消费量的1%左右。
美国1979年铜消费量的份额为:电气工业58%,建筑工业18%,机械制作业9%,运输工具9%,其他6%。伦敦商场铜的平均报价为:1978年67美分/磅,1979年93美分/磅(1磅=0.4536公斤)。
炼铜质料以硫化矿为主,档次一般为1%左右,坑内采矿的鸿沟档次为0.4%,露天采矿可降至0.3%,采出的矿石须先经选矿得到含铜20~30%的精矿,再行冶炼。炼铜的办法分火法和湿法,以火法为主。火法出产的铜占世界总产铜量80%以上。
火 法 炼 铜 首要质料是硫化铜精矿,一般包含焙烧、熔炼、吹炼、精粹等工序 焙烧分半氧化焙烧和全氧化焙烧(“死焙烧”),别离脱除精矿中部分或悉数的硫,一起除掉部分砷、锑等易蒸腾的杂质。此进程为放热反响,一般不需另加燃料。造锍熔炼一般选用半氧化焙烧,以坚持构成冰铜时所需硫量;复原熔炼选用全氧化焙烧;此外,硫化铜精矿湿法冶金中的焙烧,是把铜转化为可溶性硫酸盐,称硫酸化焙烧。焙烧用的流态化焙烧炉(欢腾炉)熔炼 首要是造锍熔炼,其意图是使铜精矿或焙烧矿中的部分铁氧化,并与脉石、熔剂等造渣除掉,产出含铜较高的冰铜(xCu2S·yFeS)。冰铜中铜、铁、硫的总量常占80~90%,炉猜中的贵金属,简直悉数进入冰铜。冰铜含量取决于精矿档次和焙烧熔炼进程的脱硫率,世界冰铜档次一般含铜40~55%。出产高档次冰铜,可更多地使用硫化物反响热,还可缩短下一工序的吹炼时刻。熔炼炉渣含铜与冰铜档次有关,弃渣含铜一般在 0.4~0.5%。熔炼进程首要反响为: 2CuFeS2─→Cu2S+2FeS+S Cu2O+FeS─→Cu2S+FeO2FeS+3O2+SiO2─→2FeO·SiO2+2SO2 2FeO+SiO2─→2FeO·SiO2造锍熔炼的传统设备为鼓风炉、反射炉、电炉等,新建的现代化大型炼铜厂多选用闪速炉。
鼓风炉熔炼鼓风炉是竖式炉,我国很早就用它直接炼铜。传统的办法为烧结块鼓风炉熔炼。硫化铜精矿先经烧结焙烧脱去部分硫,制成烧结块,与熔剂、焦炭等按批料呈层状参加炉内,熔炼产出冰铜和弃渣,此法烟气含SO2低,不易经济地收回硫。为消除烟害,收回精矿中的硫,20世纪50年代,开展了精矿鼓风炉熔炼法,行将硫化铜精矿混捏成膏状,再配以部分块料、熔剂、焦炭等分批从炉顶中心加料口参加炉内,构成料封,削减漏气,进步SO2浓度。混捏料在炉内经热烟气枯燥、焙烧构成烧结料柱,块状物料也呈柱状环绕在烧结料柱的周围,以坚持透气性,使熔炼作业正常进行。我国沈阳冶炼厂、富春江冶炼厂等选用此法。
反射炉熔炼适于处理浮选的粉状精矿。反射炉熔炼进程脱硫率低,仅20~30%,适于处理含铜档次较高的精矿。如质料含铜低、含硫高,熔炼前要先进行焙烧。反射炉出产规模可大型化,对质料、燃料的适应性强,长时间来一直是炼铜的首要设备,至80年代初,全世界保有的反射炉才能仍居炼铜设备的首位。但反射炉烟气量大,且含SO2仅1%左右,收回困难。反射炉的热效率仅25~30%,熔炼进程的反响热使用较少,所需热量首要靠外加燃料供应。70年代以来,世界各国都在研讨改善反射炉熔炼,有的选用氧气喷撒设备将精矿喷入炉内,加强密封,以进步SO2浓度。我国白银公司榜首冶炼厂将铜精矿加到反射炉中的溶体内,鼓风熔炼,进步了熔炼强度,烟气可用于制取硫酸。
反射炉为长方形,用优质耐火材料砌筑。燃烧器设在炉头部,烟气从炉尾排出,炉料由炉顶或侧墙上部参加,冰铜从侧墙底部的冰铜口放出,炉渣从侧墙或端墙下的放渣口排出。炉头温度1500~1550℃,炉尾温度1250~1300℃,出炉烟气1200℃左右。熔炼焙烧矿时,燃料率10~15%,床能率3~6吨/(米2·日)。铜精矿直接入炉,燃料率16~25%,床能率为2~4吨/(米2·日),称生精矿熔炼。我国大冶冶炼厂选用270平方米反射炉熔炼生精矿。
电炉熔炼炼铜选用电阻电弧炉即矿热电炉,对物料的适应性十分广泛,一般多用于电价低价的区域和处理含难熔脉石较多的精矿。电炉熔炼的烟气量较少,若操控恰当,烟气中SO2浓度可达5%左右,有利于硫的收回。
铜熔炼电炉多为长方形,少数为圆形。大型电炉一般长30~35米,宽8~10米,高4~5米,选用六根直径为1.2~1.8米的自焙电极,由三台单相变压器供电。电炉视在功率3000~50000千伏安,单位炉床面积功率100千瓦/米2左右,床能率3~6吨/(米2·日),炉料电耗400~500千瓦·时/吨,电极糊耗费约2~3公斤/吨。我国云南冶炼厂选用30000千伏安电炉熔炼含镁高的铜精矿。
闪速熔炼是将硫化铜精矿和熔剂的混合料枯燥至含水0.3%以下,与热风(或氧气、或富氧空气)混合,喷入炉内敏捷氧化和熔化,生成冰铜和炉渣。其长处是熔炼强度高,可较充分地使用硫化物氧化反响热,下降熔炼进程的能耗。烟气中SO2浓度可超越8%。闪速熔炼可在较大范围内调理冰铜档次,一般操控在50%左右,这样对下一步吹炼有利。但炉渣含铜较高,须进一步处理。
闪速炉有奥托昆普 (Outokumpu)型和世界镍公司(International NickelCo.)型两种。70年代末世界上已有几十个工厂选用奥托昆普型闪速炉,我国贵溪冶炼厂也选用此种炉型。
冰铜吹炼使用硫化亚铁比硫化亚铜易于氧化的特色,在卧式转炉中,往熔融的冰铜中鼓入空气,使硫化亚铁氧化成氧化亚铁,并与参加的石英熔剂造渣除掉,一起部分脱除其他杂质,然后持续鼓风,使硫化亚铜中的硫氧化进入烟气,得到含铜98~99%的粗铜,贵金属也进入粗铜中。
一个吹炼周期分为两个阶段:榜首阶段,将FeS氧化成FeO,造渣除掉,得到白冰铜(Cu2S)。冶炼温度1150~1250℃。首要反响是:2FeS+3O2─→2FeO+2SO2 2FeO+SiO2─→2FeO·SiO2 第二阶段,冶炼温度1200~1280℃将白冰铜按以下反响吹炼成粗铜:2Cu2S+3O2─→2Cu2O+2SO2 Cu2S+2Cu2O─→6Cu+SO2冰铜吹炼是放热反响,可自热进行,一般还须参加部分冷料吸收其过剩热量。吹炼后的炉渣含铜较高,一般为2~5%,回来熔炼炉或以选矿、电炉贫化等办法处理。吹炼烟气含SO2浓度较高,一般为8~12%,能够制酸。吹炼一般用卧式转炉,连续操作。表压约1公斤力/厘米2的空气经过沿转炉长度方向安设的一排风眼鼓入熔体,加料、排渣、出铜和排烟都经过炉体上的炉口。
粗铜精粹分火法精粹和电解精粹。火法精粹是使用某些杂质对氧的亲和力大于铜,而其氧化物又不熔于铜液等性质,经过氧化造渣或蒸腾除掉。其进程是将液态铜参加精粹炉升温或固态铜料参加炉内熔化,然后向铜液中鼓风氧化,使杂质蒸腾、造渣;扒出炉渣后,用刺进青木或向铜液注入重油、或等办法复原其间的氧化铜。复原进程顶用木炭或焦炭掩盖铜液表面,以防再氧化。精粹后可铸成电解精粹所用的铜阳极或铜锭。精粹炉渣含铜较高,可回来转炉处理。精粹作业在反射炉或反转精粹炉内进行。
火法精粹的产品叫火精铜,一般含铜99.5%以上。火精铜中常含有金、银等贵金属和少数杂质,一般要进行电解精粹。若金、银和有害杂质含量很少,可直接铸成产品铜锭。
电解精粹是以火法精粹的铜为阳极,以电解铜片为阴极,在含硫酸铜的酸性溶液中进行。电解可产出含铜99.95%以上的电铜,而金、银、硒、碲等富集在阳极泥中。电解液一般含铜40~50克/升,温度58~62℃,槽电压0.2~0.3伏,电流密度200~300安/米2,电流效率95~97%,残极率约为15~20%,每吨电铜耗直流电220~300千瓦小时。我国上海冶炼厂铜电解车间电流密度为330安/米2。
电解进程中,大部分铁、镍、锌和一部分砷、锑等进入溶液,使电解液中的杂质逐步堆集,铜含量也不断增高,硫酸浓度则逐步下降。因而,有必要定时引出部分溶液进行净化,并弥补一定量的硫酸。净液进程为:直接浓缩、结晶,分出硫酸铜;结晶母液用电解法脱铜,分出黑铜,一起除掉砷、锑;电摆脱铜后的溶液经蒸腾浓缩或冷却结晶产出粗硫酸镍;母液作为部分弥补硫酸,回来电解液中。此外,还可向引出的电解液中加铜,鼓风氧化,使铜溶解以出产更多的硫酸铜。电摆脱铜时应留意避免剧毒的分出(见水溶液电解)。
火法炼铜的其他办法 已应用于工业出产的办法还有:三菱法(Mitsubishi process)将硫化铜精矿和熔剂喷入熔炼炉的熔体内,熔炼成冰铜和炉渣,然后流至贫化炉产出弃渣,冰铜再流至吹炼炉产出粗铜。此法于1974年投入出产。
诺兰达法(Noranda process)制粒的精矿和熔剂加到一座圆筒型反转炉内,熔炼成高档次冰铜。所产炉渣含铜较高,须经浮选选出铜精矿回来炉内处理。此法于1973年投入出产。
氧气顶吹旋转转炉法用以处理高档次铜精矿。将铜精矿制成粒或压成块参加炉内,由顶部喷吹氧,燃料也由顶部喷入,产出粗铜和炉渣。我国用此法处理高冰镍浮选所得铜精矿。
离析法用于处理难选的结合性氧化铜矿。将含铜1~5%的矿石磨细,加热至750~800℃后,混以2~5%的煤粉和0.2~0.5%的食盐,矿石中的铜生成气态氯化亚铜(Cu3Cl3)并为氢复原成金属铜而附着于炭粒表面,经浮选得到含铜50%左右的铜精矿,然后熔炼成粗铜。此法能耗高,很少选用。
湿 法 炼 铜用溶剂浸出铜矿石或精矿,然后从浸出液中提取铜。首要进程包含浸出(见浸取)、净化、提取等工序。现在世界上湿法炼铜的产值约占总产值的12%。20世纪60年代以来,为了消除SO2污染,对用湿法冶炼硫化铜矿进行了许多研讨,但因经济指标尚不如火法,湿法工艺大多停留在实验和小规模出产阶段。
锑的冶炼方法
2019-03-07 09:03:45
锑的冶炼办法有火法和湿法两种。我国用的矿藏质料,主要是硫化矿(辉锑矿),其次是氧化矿和杂乱锑铅矿(主要是脆硫锑铅矿)。
这些矿石一般要用选矿办法选出富块矿和精矿进行冶炼。(1)火法炼锑 硫化矿经蒸发焙烧或蒸发熔炼,使Sb2S3变成Sb2O3(俗称锑氧),再经还原熔炼和精粹,成为金属锑。还可用沉积熔炼法直接出产粗锑。(2)锑氧出产 有4种办法:①硫化锑块矿的蒸发焙烧;②硫化锑精矿闪速蒸发焙烧;③硫化锑精矿鼓风炉蒸发熔炼;④硫化锑精矿旋涡炉蒸发熔炼。 (3)还原熔炼和火法精粹蒸发焙烧和蒸发熔炼所产锑氧含杂质很少,配入煤和少数纯碱(Na2CO3),在反射炉内还原熔炼成粗锑。如需精粹,可持续参加纯碱,碱熔化后把压缩空气鼓入锑液,进行碱性精粹。(4)电解精粹 选用电解办法进行精粹,能获得纯度较高的锑并能收回粗锑中的贵金属和其他有价值金属。 (5)沉积熔炼此法适于处理富矿,不宜处理含铅的矿石。小规划出产多用坩埚炉,大规划出产用反射炉,有的厂用电炉。 (6)氧化锑矿石熔炼用鼓风炉熔炼成粗锑,鼓风炉习惯规划大,能够处理难熔矿石,对矿石档次要求不严厉,还答应氧化矿石中混有部分硫化矿。熔炼时以铁矿石、石灰石为熔剂,以焦炭为还原剂,产出粗锑。(7)杂乱锑铅矿石熔炼这是一种难冶炼的矿石类型,广西大厂以脆硫锑铅矿为质料,选用欢腾炉焙烧,反射炉还原熔炼,所产粗合金吹炼蒸发锑、锑烟尘还原熔炼精粹出产高铅锑、精铅进行电解产精铅的办法。通过10多年的出产实践,已日趋老练,为杂乱的锑铅矿的处理积累了名贵经历。火法炼锑是国内外传统选用的出产工艺,但由于在冶炼过程中,砷、硫污染环境严峻,因而迫使研讨使用新的湿法工艺。
湿法炼锑用、溶液浸出硫化锑精矿,硫化锑与效果生成溶于水的硫代亚锑酸钠(Na3SbS3);以此溶液配制成阴极液,以溶液为阳极液,进行隔阂电积,得到含锑96%~98%的电锑。我国对湿法炼锑的研讨使用已获得可喜的发展。80年代末,“氯化-水解法处理硫化锑精矿制取锑白新工艺实验”,已在几家厂商构成规划出产,“从浸取液中直接提取锑酸钠新工艺”研讨,也已使用于出产。氯(盐)氧化法制取锑酸钠,已在出产中选用。其特点是:质料习惯性强,含铅等杂质较高的锑矿也能处理,能归纳收回质猜中的锑和硫,基本上处理了硫烟污染问题。 (8)锑白出产锑白(Sb2O3)是锑的主要用途之一。中国用精锑出产锑白一般用反射炉。将精锑投入反射炉熔化,向锑液中鼓入一次空气,向液面上鼓入二次空气,使锑蒸气彻底氧化。氧化锑出炉后与很多冷空气集合,敏捷冷却,进入收尘体系,即得优质锑白。(9)生锑 生锑即工业用纯洁Sb2O3,是由高档次辉锑矿熔析而得,呈针状结晶,又称针锑。将硫化锑块矿破碎至粒度为20~30mm,在反射炉中增加1%~2%的纯碱助熔剂,于900~1000℃下,熔融分出,扒出残渣,出炉铸锭,即得含锑71%~73%的生锑。
钨矿的冶炼方法
2019-03-07 09:03:45
用高钼钨矿制备高纯仲钨酸铵的办法包含:(1)将钨矿或钨细泥球磨,碱煮浸出,过滤,浓缩钨酸钠结晶;(2)水溶过滤钨酸钠,硫化;(3)离子交换除钼;(4)钨酸钠交后液除硫;(5)离子交换除杂质,用与氯化铵溶液解吸钨,制备钨酸铵溶液;(6)发结晶得到仲钨酸铵。本发明的技术进步作用表现在使用是非钨混合矿要比黑钨精矿的报价低1500-2000元/吨,钨细泥价更低,约5000-7000元/吨,经济效益显着,假如处理钨细泥,经济效益更好,本发明为我国很多的是非钨混合矿及钨细泥等高钼矿藏供给了一种先进的冶炼新工艺。
锌的冶炼方法
2019-01-25 15:49:20
在锌的冶炼方法中,有火法与湿法两种生产工艺。火法炼锌应用较早,其中有横罐炼锌、竖罐炼锌、电热法炼锌、鼓风炉炼锌等方法。湿法炼锌兴起得较晚,第一个半工业性湿法炼锌试验开始于18世纪90年代,直到第一次世界大战中期,湿法炼锌才正式开始工业生产。 在湿法炼锌的发展中,广大的技术人员,首先攻克的是中性浸出、净化、电解几个过程,到了20世纪60年代后将发展的重点又转移到中性浸出渣及有价金属的综合回收上。因中性浸出渣的量大,渣含锌高(20%~30%),怎样回收其中的锌成为一个重要问题,在人们不断努力下,又发展出火、湿两种处理中性浸出渣的方法。火法是用高温烟化挥发,以Zn0烟尘的形式,返回浸出回收其中的锌;湿法是高温高酸浸出,使锌进入溶液,同时大量的铁也随之进入溶液,随后使用黄钾铁矾法、针铁矿法或赤铁矿法除铁,使含锌液再返回到中性浸出,回收其中的锌。多年的实践证明,用中性浸出、高温高酸处理浸出渣、除铁、净化、电解的湿法炼锌,在锌的回收率、综合回收有价金属,节能及环保上较火法有一定的优点。至今湿法炼锌已成为生产锌的主要方法,在世界锌的总产量中,大约有80%是用湿法生产。我国与世界上锌冶炼的发展一样,除早期建立的厂家使用火法外,新建设的多数厂家均使用湿法炼锌工艺。 典型湿法炼锌工艺流程有:中性浸出、净化、电解等工序,中性浸出渣处理有回转窑烟化或高温高酸浸出除铁工艺。对湿法炼锌流程可总结归纳如下图所示。 在图中,特别要指出的是焙烧工序实际上是火法过程,中浸渣的高温烟化挥发也是火法过程,因为它们是湿法炼锌中不可缺少的工序,故包含在湿法炼锌工艺中。目前在湿法生产中仍多使用a流程,但b流程使用者正迅速增加。
锰铁的冶炼方法
2019-01-04 11:57:16
高炉冶炼一般采用1000米3以下的高炉,设备和生产工艺大体与炼铁高炉相同。锰矿石在由炉顶下降的过程中,高价的氧化锰(MnO2,Mn2O3,Mn3O4)随温度升高,被CO逐步还原到MnO。但MnO只能在高温下通过碳直接还原成金属,所以冶炼锰铁需要较高的炉缸温度,为此炼锰铁的高炉采用较高的焦比 (1600公斤/吨左右)和风温(1000℃以上)。为降低锰损耗,炉渣应保持较高的碱度(CaO/SiO2大于1.3)。由于焦比高和间接还原率低,炼锰铁高炉的煤气产率和含CO量比炼铁高炉为高,炉顶温度也较高 (350℃以上)。富氧鼓风可提高炉缸温度,降低焦比,增加产量,且因煤气量减少可降低炉顶温度,对锰铁的冶炼有显著的改进作用。
电炉冶炼 锰铁的还原冶炼有熔剂法(又称低锰渣法)和无熔剂法(高锰渣法)两种。熔剂法原理与高炉冶炼相同,只是以电能代替加热用的焦炭。通过配加石灰形成高碱度炉渣(CaO/SiO2为1.3~1.6)以减少锰的损失。无熔剂法冶炼不加石灰,形成碱度较低(CaO/SiO2小于 1.0)、含锰较高的低铁低磷富锰渣。此法渣量少,可降低电耗,且因渣温较低可减轻锰的蒸发损失,同时副产品富锰渣(含锰25~40%)可作冶炼锰硅合金的原料,取得较高的锰的综合回收率(90%以上)。现代工业生产大多采用无熔剂法冶炼碳素锰铁,并与锰硅合金和中、低碳锰铁的冶炼组成联合生产流程见图。
现代大型锰铁还原电炉容量达40000~75000千伏安,一般为固定封闭式。熔剂法的冶炼电耗一般为2500~3500千瓦•时/吨,无熔剂法的电耗为2000~3000千瓦•时/吨。锰硅合金用封闭或半封闭还原电炉冶炼。一般采用含二氧化硅高、含磷低的锰矿或另外配加硅石为原料。富锰渣含磷低、含二氧化硅高是冶炼锰硅合金的好原料。冶炼电耗一般约3500~5000千瓦•时/吨。入炉原料先作预处理,包括整粒、预热、预还原和粉料烧结等,对电炉操作和技术经济指标起显著改善作用。
电炉精炼中、低碳锰铁一般用1500~6000千伏安电炉进行脱硅精炼,以锰硅、富锰矿和石灰为原料,其反应为:MnSi+2MnO+2CaO─→3Mn+2CaO•SiO2 采用高碱度渣可使炉渣含锰降低,减少由弃渣造成的锰损失。联合生产中采用较低的渣碱度(CaO/SiO2小于1.3)操作,所得含锰较高(20~30%)的渣用于冶炼锰硅合金。炉料预热或装入液态锰硅合金有助于缩短冶炼时间、降低电耗。精炼电耗一般在1000千瓦•时左右。中、低碳锰铁也用热兑法,通过液态锰硅合金和锰矿石、石灰熔体的相互热兑进行生产。
吹氧精炼 用纯氧吹炼液态碳素锰铁或锰硅合金可炼得中、低碳锰铁。此法经过多年试验研究,于1976年进入工业规模生产。
钴冶炼的方法
2019-03-07 10:03:00
钴矿藏多伴生于其他矿藏之中,常以砷化物,硫化物和氧化物存在.首要钴矿有四种类型:镍钴硫化矿和氧化矿,铜钴矿,砷钴矿,含钴黄铁矿.钴冶炼的特点是原料档次低,提取流程长,办法多.首要的提取办法有:
a,从镍锍,铜锍的吹炼渣中提钴,含钴吹炼渣在鼓风炉或电炉中经复原硫化熔炼,取得钴合金或钴锍.经磁选富集后加压酸浸,使钴进入溶液.溶液经净化后参加草酸使钴出产草酸钴沉积,草酸钴经煅烧即可产出精制氧化钴产品.
b,从镍精粹净化渣中提钴.镍电解精粹过程中阳极液净化产出的钴渣是重要的提钴质料.钴渣经复原硫酸浸出使钴呈硫酸钴进入溶液,溶液用黄钠铁矾法除铁,萃取法除铜,锌,锰等杂质和镍钴别离取得纯洁的氯化钴溶液,籍此可出产氧化钴产品,或经电积获取金属钴产品.
c,从含钴黄铁矿中提取钴.含钴黄铁矿经浮选可产出含钴0.3%~0.5%的钴硫精矿.钴硫精矿经硫酸化焙烧,使精矿中的钴,镍,铜等有价元素转变为可溶性的硫酸盐.焙砂用水浸或酸浸使钴,镍,铜等转入溶液.浸出液经净化除杂除掉铁,铜,锌,锰等杂质,再经镍钴别离得到纯洁的钴溶液,电积出产金属钴.
d,从砷钴矿提取钴.砷钴矿经焙烧或熔炼使砷以As2O3蒸发脱除,得到焙砂或钴锍经酸浸使钴进入溶液,溶液经除铁,砷和铜,锌,锰等杂质后进入镍钴别离.净化后的钴溶液再依据市场需要出产金属钴或氧化钴产品.钴大多伴生在其他矿藏中并且成分杂乱,因而钴的冶炼办法繁复,流程杂乱.
钴的冶炼一般分红三个过程:
一是把钴从矿石中转入溶液,或制成粗钴合金或钴锍,再转入溶液;
二是除杂净化;
三是提取金属.
钴的冶炼工艺大体上可分为4大类,即高温熔炼富集后湿法提取钴,硫酸化焙烧后浸出提出钴,复原焙烧浸法和加压浸出法.
加压浸出具有流程短,镍钴浸出率高,过程中不发生有害废气,废水,环境保护好.这种办法在发达国家被广泛选用.实践证明,不论工厂规划多大,单台冶金炉出产总是最经济的.所以改造时将多台炉子改为单台炉子出产.别的一种意向,就是在各种不同工艺之间,相互学习,相互使用,扬长避短,以到达不断进步的意图.
铝的冶炼方法
2018-12-20 11:10:23
冶炼铝可以用热还原法,但是成本太高。工业上冶炼铝应用电解法,主要原理是霍尔-埃鲁铝电解法:以纯净的氧化铝为原料采用电解制铝,因纯净的氧化铝熔点高(约2045℃),很难熔化,所以工业上都用熔化的冰晶石(Na3AlF6)作熔剂,使氧化铝在1000℃左右溶解在液态的冰晶石中,成为冰晶石和氧化铝的熔融体,然后在电解槽中,用碳块作阴阳两极,进行电解。 铝在生产过程中有四个环节构成一个完整的产业链:铝矿石开采-氧化铝制取-电解铝冶炼-铝加工生产。 一般而言,两吨铝矿石生产一吨氧化铝;两吨氧化铝生产一吨电解铝。 (一)氧化铝的生产方法 迄今为止,已经提出了很多从铝矿石或其它含铝原料中提取氧化铝的方法。由于技术和经济方面的原因,有些方法已被淘汰,有些还处于试验研究阶段。已提出的氧化铝生产方法可归纳为四类,即碱法、酸法、酸碱联合法与热法。目前用于大规模工业生产的只有碱法。 铝土矿是世界上最重要的铝矿资源,其次是明矾石、霞石、粘土等。目前世界氧化铝工业,除俄罗斯利用霞石生产部分氧化铝外,几乎世界上所有的氧化铝都是用铝土矿为原料生产的。 铝土矿是一种主要由三水铝石、一水软铝石或一水硬铝石组成的矿石。到目前为止,我国可用于氧化铝生产的铝土矿资源全部为一水硬铝石型铝土矿。 铝土矿中氧化铝的含量变化很大,低的仅约30%,高的可达70%以上。铝土矿中所含的化学成分除氧化铝外,主要杂质是氧化硅、氧化铁和氧化钛。此外,还含有少量或微量的钙和镁的碳酸盐、钾、钠、钒、铬、锌、磷、镓、钪、硫等元素的化合物及有机物等。其中镓在铝土矿中含量虽少,但在氧化铝生产过程中会逐渐在循环母液中积累,从而可以有效地回收,成为生产镓的主要来源。 衡量铝土矿优劣的主要指标之一是铝土矿中氧化铝含量和氧化硅含量的比值,俗称铝硅比。 用碱法生产氧化铝时,是用碱(NaOH或Na2CO3)处理铝矿石,使矿石中的氧化铝转变成铝酸钠溶液。矿石中的铁、钛等杂质和绝大部分的硅则成为不溶解的化合物。将不溶解的残渣(赤泥)与溶液分离,经洗涤后弃去或进行综合处理,以回收其中的有用组分。纯净的铝酸钠溶液即可分解析出氢氧化铝,经分离、洗涤后进行煅烧,便获得氧化铝产品。分解母液则循环使用来处理另一批矿石。碱法生产氧化铝有拜耳法、烧结法以及拜耳--烧结联合法等多种流程。 拜耳法是由奥地利化学家拜耳(K·J·Bayer)于1889~1892年发明的一种从铝土矿中提取氧化铝的方法。一百多年来在工艺技术方面已经有了许多改进,但基本原理并未发生变化。为纪念拜耳这一伟大贡献,该方法一直沿用拜耳法这一名称。 拜耳法包括两个主要过程。首先是在一定条件下氧化铝自铝土矿中的溶出(氧化铝工业习惯使用的术语,即浸出。以下同)过程,然后是氢氧化铝自过饱和的铝酸钠溶中水解析出的过程,这就是拜耳提出的两项专利。拜耳法的实质就是以湿法冶金的方法,从铝土矿中提取氧化铝。在拜耳法氧化铝生产过程中,含硅矿物会引起Al2O3和Na2O的损失。 在拜耳法流程中,铝土矿经破碎后,和石灰、循环母液一起进入湿磨,制成合格矿浆。矿浆经预脱硅之后预热至溶出温度进行溶出。 溶出后的矿浆再经过自蒸发降温后进入稀释及赤泥(溶出后的固相残渣)的沉降分离工序。自蒸发过程产生的二次汽用于矿浆的前期预热。沉降分离后,赤泥经洗涤进入赤泥堆场,而分离出的粗液(含有固体浮游物的铝酸钠溶液,以下同)送往叶滤。粗液通过叶滤除去绝大部分浮游物后称为精液。精液进入分解工序经晶种分解得到氢氧化铝。分解出的氢氧化铝经分级和分离洗涤后,一部分作为晶种返回晶种分解工序,另一部分经焙烧得到氧化铝产品。晶种分解后分离出的分解母液经蒸发返回溶出工序,形成闭路循环。氢氧化铝经焙烧后得到氧化铝。 不同类型的铝土矿所需要的溶出条件差别很大。三水铝石型铝土矿在105℃的条件下就可以较好地溶出,一水软铝石型铝土矿在200℃的溶出温度下就可以有较快的溶出速度,而一水硬铝石型铝土矿必须在高于240℃的温度下进行溶出,其典型的工业溶出温度为260℃。溶出时间不低于60分钟。 拜耳法用于处理高铝硅比的铝土矿,流程简单,产品质量高,其经济效果远比其它方法为好。用于处理易溶出的三水铝石型铝土矿时,优点更是突出。目前,全世界生产的氧化铝和氢氧化铝,90%以上是用拜耳法生产的。由于中国铝土矿资源的特殊性,目前中国大约50%的氧化铝是由拜耳法生产的。将拜耳法和烧结法二者联合起来的流程称之为联合法生产工艺流程。联合法又可分为并联联合法、串联联合法与混联联合法。采用什么方法生产氧化铝,主要是由铝土矿的品位(即矿石的铝硅比)来决定的。从一般技术和经济的观点看,矿石铝硅比为3左右通常选用烧结法;铝硅比高于10的矿石可以采用拜耳法;当铝土矿的品位处于二者之间时,可采用联合法处理,以充分发挥拜耳法和烧结法各自的优点,达到较好的技术经济指标。目前全球氧化铝年产量在5500万吨左右,我国的氧化铝产量约为680万吨。
从某石煤钒矿中提取钒的试验
2019-02-19 10:03:20
石煤是我国特有的能够作为独自矿床挖掘的钒矿资源,其矿石类型首要是炭质、硅质岩,钒简直悉数赋存于含钒水云母(伊利石)、高岭石等黏土矿藏中,与铝、钾、铁以类质同象方式存在于矿藏晶格中,直接提取难度很大。西北某石煤钒矿属硅质岩夹炭质泥岩型,钒以类质同象方式存在于水云母中。实验选用氧化焙烧-硫酸浸出-复原-溶剂萃取-铵盐沉积工艺研讨了从该矿石中提取五氧化二钒,断定了最佳提取条件。
一、矿石与试剂
矿石首要化学成分为:1.07% V2O5,78.60% SiO2,2.60% Fe2O3,3.13% Al2O3,0.97% CaO,0.68% K2O,0.47% P2O5,0.95% S,1.40% C,烧失量3.94%。
试剂:硫酸,,,均为分析纯;铁屑,P2O4(二 (2-乙基己基)磷酸,TBP磷酸三丁脂),磺化火油,均为工业级。
二、实验办法
经过焙烧,先将V(Ⅲ)氧化为V(Ⅳ)或V(V)后用酸溶解,然后用对四价钒具有高挑选性的P2O4进行萃取,再用硫酸水溶液反萃取,反萃取液中的V(Ⅳ)氧化成V(V)后,再用铵盐沉积法沉积红钒,沉积的红钒经洗刷、烘干、热解,得到五氧化二钒产品。工艺流程如图1所示。 三、实验成果评论
(一)浸出探究实验、
矿石粒度0.089mm,温度95℃,直接酸浸实验成果(见表1)标明:在强化的浸出条件下,五氧化二钒浸出率较低。矿石造球后焙烧,然后用硫酸浸出(质料粒度0.124mm,造球Φ10mm;浸出温度90℃,浸出粒度-0.71mm,液固体积质量比1.2,浸出2h)实验成果(见表2)标明:以氧化焙烧-酸浸工艺处理该矿石,五氧化二钒浸出率比直接酸浸时有明显进步。
表1 直接酸浸探究实验成果序号浸出时刻/h液固体积质量比硫酸用量/%V2O5浸出率/%1
2
3
4
5
66
6
6
6
10
101.2
1.2
1.2
1.2
1.2
1.212
15
20
30
30
4024.75
31.81
40.20
65.13
67.15
71.05
表2 造球-焙烧-浸出探究实验成果序号焙烧温度/℃焙烧时刻/h硫酸用量/%V2O5浸出率/%1
2
3
4850
850
850
9002
2
2
210
15
20
2565.14
77.50
83.50
87.83
(二)焙烧实验
原矿磨细至-0.074 mm占90%,制球Φ10~20 mm,枯燥后焙烧。浸出温度90℃,浸出矿样粒度-0.71mm,硫酸用量25%,浸出时刻2h。
1、焙烧温度的影响
焙烧时刻2h,焙烧温度对五氧化二钒浸出率的影响实验成果如图2所示。能够看出:随焙烧温度升高,五氧化二钒浸出率升高,但温度升到900℃后,浸出率趋于稳定,这可能是因为烧结使钒被包裹或生成了捆绑钒的方钠石类与霞石类矿藏,使钒难于浸出的原因;但较低的焙烧温度缺乏以彻底氧化贱价钒,使得钒浸出率偏低。实验断定焙烧温度以900℃为宜。 2、焙烧时刻的影响
焙烧温度900℃,焙烧时刻对五氧化二钒浸出率的影响实验成果如图3所示。能够看出:焙烧1h,五氧化二钒浸出率仅为84.61%,钒浸出不彻底,这可能是焙烧时刻缺乏、矿藏结构未能彻底损坏而使得贱价钒氧化不充分;焙烧1.5h,钒浸出率达92.43%,再延伸焙烧时刻,浸出率改变不大。断定焙烧时刻为1.5h。 (三)浸出条件的断定
断定焙烧温度900℃,焙烧时刻1.5 h;焙砂破碎至-0.71mm,液固体积质量比1.2。
1、硫酸用量的影响
浸出温度90℃,时刻2h,硫酸用量对钒浸出率的影响实验成果如图4所示。能够看出:矿石焙烧后,仍需较高的酸度才干取得抱负的浸出率,这可能是矿石中耗酸物质较多的原因。浸出液pH升高,现已浸出的五价钒发作水解而沉积,使五氧化二钒的浸出率下降。实验选定酸参加量为20%。 2、浸出温度的影响
浸出时刻1h,硫酸用量20%,浸出温度对五氧化二钒浸出率的影响实验成果如图5所示。
由图5看出,温度对五氧化二钒浸出率的影响不明显。为下降能耗和削减温度对设备的更高要求,实验选定在常温下浸出。
3、浸出时刻的影响
常温下,硫酸用量20%,浸出时刻对五氧化二钒浸出率的影响实验成果如图6所示。 从图6看出:随浸出时刻的添加,五氧化二钒浸出率略有进步;浸出2h后,浸出率趋于稳定。实验断定浸出时刻以2h为宜。
(四)萃取-反萃取-铵盐沉钒
1、萃取-反萃取
浸出液经中和、铁屑复原后制得萃原液,V2O5的中和、复原回收率为97.52%。萃原液V2O5质量浓度为5~6g/L,pH值为2.2~2.45。混合时刻单级萃取实验成果见表3;质料pH值单级萃取实验成果如表4;萃取剂浓度单级萃取实验成果如表5。
表3 混合时刻单级萃取实验成果混合时刻/min萃取率/%3
5
7
1071.94
74.66
74.32
74.48
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;萃取剂V(P2O4),V (TBP ),V(火油)=15︰5︰80;弄清时刻7min;料液pH=2.2。
表4 质料pH值单级萃取成果质料pH值萃取率/%1.50
2.20
2.30
2.5025.85
74.66
76.50
81.29
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;萃取剂V(P2O4),V (TBP ),V(火油)=15︰5︰80;混合时刻5min;弄清时刻7 min。
表5 萃取剂浓度单级萃取成果V(P2O4)︰V (TBP )︰V(火油)萃取率/%10︰5︰85
15︰10︰75
20︰15︰6566.15
85.74
85.86
实验条件:萃原液ρV2O5=5.88g/L;比较(Va/Vo)=1;混合时刻5min;弄清时刻7min;料液pH值2.38。
由表3看出:萃取反响很快,两相触摸时刻在5min以内即达萃取平衡。实验断定萃取混合时刻为5min,弄清时刻挑选7min。
由表4看出,随料液pH升高,五氧化二钒萃取率升高,但当pH值到达2.5时,开端呈现少数絮状物,可能是水相中的杂质如铁、铝沉积所造成的。pH操控在2.3~2.5之间比较适合。
从表5看出,单级萃取时,萃取剂最佳组成为15%P2O4+10%TBP+75%火油。
在最佳条件下进行5级逆流萃取,成果见表6。
表6 5级逆流萃取实验成果萃取级数萃余液中ρ(V2O5)/(g·L-1)V2O5萃取率/%1
2
3
4
51.21
0.75
0.26
0.10
0.0776.69
85.55
94.99
98.07
98.48
萃取条件:萃原液V2O5质量浓度5.19g/L,萃取剂为75%磺化火油+15%P2O4+10%TBP,比较(Va/Vo)=1︰1,1,混合时刻5min,弄清时刻7min。
5级逆流萃取后,V2O5萃取率达98.48%,负载有机相V2O5质量浓度为5.28g/L,萃取剂经处理后可循环运用。萃取后的负载有机相用1.5moL/L硫酸溶液5级逆流反萃取,成果见表7。
表7 5级逆流反萃取实验成果反萃取级数贫有机相中ρ(V2O5)/(g·L-1)V2O5反萃取率/%1
2
3
4
51.00
0.16
0.01
0.003
0.00181.06
96.97
99.81
99.94
99.98
实验条件:Va/Vo=8︰1,混合时刻10min,弄清时刻10min。
5级逆流反萃取后,贫有机相中V2O5质量浓度为0.001g/L,V2O5反萃取率99.98%,反萃取液中V2O5质量浓度在45g/L以上。
2、产品五氧化二钒的制备
选用铵盐沉积法沉积红钒。实验条件为:反萃取液中V2O5质量浓度47.08g/L,参加质量浓度200g/L的溶液,60℃下拌和1h,操控氧化复原电位在-900MV以上;以调pH至2.1,在92℃左右拌和2h,沉积得红钒;红钒经洗刷、烘干、热解,得棕黄色粉状产品。沉钒过程中,V2O5沉积率为97.50%,V2O5煅烧回收率98.50%。终究产品成分分析成果为:98.78% V2O5,0.11% Si,0.30% Fe,0.0093% As,0.05% P,0.003%S,(0.026+0.041)%(Na2O+K2O),产品质量到达GB3283-1987冶金98标准。
四、定论
(一)对西北某石煤钒矿选用造球-氧化焙烧-浸出-中和-复原-萃取-氧化沉钒-煅烧工艺提取V2O5。原矿磨细至0.074mm占90%以上,造球后在900℃条件下氧化焙烧1.5 h,焙砂破碎至 0.84mm,常温下用硫酸溶液浸出1h,钒基本上彻底浸出。
(二)浸出液经中和、复原处理后,选用15% P2O4+10%TBP+75%磺化火油系统萃取、1.5moL/L硫酸溶液反萃取,反萃取液用按盐沉积红钒,红钒在550℃下锻烧,得到合格产品。
(三)工艺中五氧化二钒浸出率为88.66%,中和复原回收率97.52%,萃取率98.48%,反萃取率99.98%,沉积率97.50%,煅烧回收率98.5%,五氧化二钒总回收率81.76%。
(四)选用该工艺,五氧化二钒回收率较传统钠化焙烧工艺有大幅进步,且契合环保要求,有利于完成工业化。
提高石煤钒矿中钒浸出率的技术
2019-01-18 13:27:13
有效提高石煤钒矿的综合利用率,降低成本,钒的浸出率是关键。为了提高钒的浸出率,科研工作者做了大量的工作,所采用的方法有钠化焙烧-浸出、氧化焙烧-浸出、钙化焙烧-浸出等焙烧-浸出法、氧压浸出法及直接高酸浸出法。其中焙烧-浸出法投资大,由于工艺复杂,处理成本高,也不太容易大工业化应用,更为致命的是,由于矿石性质的复杂性,焙烧过程中会产生大量的废气,给周围环境造成严重的破坏;氧压浸出法目前尚处在实验室阶段,处理成本也较高,工业化尚待时日;直接酸法浸出法是目前较为先进的工艺,但是,石煤钒矿中钒的赋存状态较为复杂,在直接酸浸中,钒的浸出率高低就成为工艺应用的关键。陕西五洲矿业公司中村钒矿属吸附型的钒矿,以四价钒为主,相对较易浸出,直接采用硫酸浸出,浸出率可达80%。为了进一步提高浸出率,降低成本,我们对该矿石进行了深入的研究,通过添加助浸剂,使浸出率大幅度提高,浸出率可达93%以上。
一、矿石性质
矿石矿物组成以非金属矿物为主,金属矿物较少。金属矿物以褐铁矿为主,次为黄铁矿、钒铁矿、铁钒锐钛矿等;非金属矿物以石英、泥质为主,次为方解石、石墨、碳质等,副矿物为磷灰石。通过岩矿鉴定、电子探针等手段对钒的赋存状态研究认为,钒主要以吸附状态存在,在碳硅泥岩建造的泥硅质岩与碳硅质岩界面附近,电子探针分析V2O5含量可达9.42%~13.31%;钒有少量的独立矿物钒铁矿(V205989%)、钒铁锐钦矿(V205 26.11%),铁质结核中铁矿物含V205可达5%左右。依据矿石矿物成分、结构、构造,主要矿石类型为碳硅质岩夹互泥岩型钒矿石,局部为(碳质)泥岩型钒矿石。
(一)碳硅质岩夹互泥岩型钒矿石:由黑色碳硅岩夹互泥岩或互层组成,具有碳硅质岩型与泥岩型矿石的双重矿物成分和结构、构造,黑色碳硅岩组成矿物以石英为主,石英含量65%~95%;其次为戮土矿物(水云母、高岭石)10%、碳质10%、方解石1%、褐铁矿5%~7%、黄铁矿0.5%等。矿石呈隐晶结构。泥岩组成矿物以黏土矿物高岭石、水云母为主,黏土矿物含量≥75%,碳质5%~15%,次为黄铁矿、石英等,隐晶一泥质结构、粉砂质结构。
(二)(碳质)泥岩型钒矿石:主要由泥(页)岩组成,可含个别碳硅质岩细条。组成矿物以黏土矿物高岭石、水云母为主,黏土矿物含量≥75%,碳质泥岩型矿石中碳质5%~15%,次为黄铁矿、石英等,隐晶一泥质结构、粉砂质结构及藻屑结构。
二、试验方法
原矿经破碎到-2mm后缩分为每包500g备用。每次取矿样一包(500g)加入锥型球磨机(XMQ-67型)中,加入350mL自来水进行磨细,磨至-0.2mm95%,将矿浆过滤后,在105℃以下烘干,均分成每包l00g备用。每个浸出试验取1包(100g)矿粉,置于500mL玻璃圆底烧瓶中,加人助浸剂和浸液(一定浓度的硫酸),配可调速磁力机械搅拌装置和可调温度控制装置,并用100℃温度计测量物料温度。在相应的条件下,浸出完成后,用9mm布氏漏斗配合水抽对浸出体系进行抽滤和洗涤,浸出液标至一定体积,浸出渣105℃下烘干、称重;浸出液与浸出渣分别按国标进行分析化验。
三、试验结果与讨论
(一)硫酸用工对钒浸出率的影响 首先进行的是硫酸用量试验,试验结果见图1。其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h从图1所示结果可见,钒的浸出率随硫酸用量的增大而升高,当硫酸用量为8%时,钒的浸出率仅为53.71,当硫酸用量为15%时,钒的浸出率为74.82%,当硫酸用量达20%时,钒的浸出率为84.86%,虽然获得了较为理想的浸出效果,但是,随着硫酸用量的增大,浸出液中的游离酸浓度也随之升高;当硫酸用量达20%时,游离硫酸浓度高达2.20mol/L(H-浓度为4.40mol/L),而这么高的游离酸浓度会给后续的提钒处理工序带来较大的困难,增加生产成本;为此,我们研究以助浸剂A配合硫酸混合浸出以期获得满意的效果。
(二)助漫剂用量对钒浸出率的影响 图2和图3分别为硫酸用量10%和12%下助浸剂A的用量对浸出率的影响。从图2和图3可以总结出两点:(1)助浸剂的作用非常大,可大幅度提高钒的浸出率。当硫酸用量为10%时,不加助浸剂时钒的浸出率仅58.25%,加入2%的助浸剂时,钒的浸出率达到77%;当硫酸用量为12%时,不加助浸剂时钒的浸出率为63.25%,加入2.5%的助浸剂时,钒的浸出率达到88.38%。图2 硫酸用量为10%时助浸剂用量对钒浸出率的影响 其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h(2)助浸剂的最佳用量随着硫酸用量的增大而增大,当硫酸用量为10%时,助浸剂的最佳用量2%;当硫酸用量为12%时,助浸剂的最佳用量2.5%,这可能与助浸剂需要消耗酸有戈,助浸剂A之所以能有效地提高钒的浸出率,估计与其能破坏硅酸盐结构,使钒从矿石中释放出来,从而能被硫酸作用而进入水相的结果。图3 硫酸用量为12%时助浸剂用量对钒浸出率的影响 其它试验条件:液固比1︰1,浸出温度90℃,浸出时间8h其它试验条件:液固比1︰1,硫酸10%,助浸剂A2.5%,浸出时间8h
(三)浸出温度对钒浸出率的影响图4为浸出温度对浸出率的影响。从试验结果来看,提高浸出温度对钒的浸出非常有利;但考虑到这是常压浸出,如果温度超过90℃,浸出体系产生蒸汽挥发,既会恶化操作环境,也使得能耗增大,因此,综合相关因素,浸出温度以90℃为宜。
(四)浸出时间对钒浸出率的影响浸出时间对钒浸出率的影响见图5。由图可见,随着时间的增长,浸出率也随之增高;浸出时间为4h时,浸出率为74.45%;浸出时间为8h时,浸出率为77.45%;浸出时间为20h时,浸出率达到84.79%。四、工业试验结果通过实验室的系统研究,获得了理想的试验结果,在此基础上,我们在现场进行了工业试验,试验结果见表1。 表1 工业试验结果%浸出率助浸剂A用量原矿品位V205浸出渣品位V20500.990.24680.1520.8940.11293.05工业试验的条件为:磨矿细度-0.2mm95%;浸出液固比为1︰1;浸出硫酸用量10%;浸出温度90℃;浸出时间24h。工业试验结果验证了实验室试验的结果,在同等条件下,添加2%的助浸剂A,钒的浸出率从80.15%提高到93.05%,大幅度提高了钒的浸出率,降低了生产成本,提高了资源利用率。
五、结论
(一)所采用的助浸剂A具有特效作用,可破坏硅酸盐矿石结构,大幅度提高石煤钒矿中钒的浸出率。(二)工业试验中,在同等浸出条件下,添加2%的助浸剂A,钒浸出率从80.15%提高到93.05%。(三)助浸剂A的最佳用量与硫酸的用量有关,硫酸用量越大,助浸剂A的最佳用量就越大。
冶炼厂的贮矿
2019-03-05 12:01:05
重有色冶炼厂需求的质料、熔剂、燃料及辅助材料等,因为受来历、交通运送、气候条件等的影响,一般均很难均衡稳定地运进厂。鉴此,厂内有必要设有各种贮料库房及相应卸车、运送、上料和计量等设备。有的物料应储存在室内,如精矿(在高寒区域还要配各冻住设备);有的物料可储存在露天,如熔剂。
一、精矿库房
精矿是重有色冶炼厂的首要质料。因为精矿来历一般较多,成分纷歧,要分格储存。
精矿储存时刻除与各项外界条件有关外,还受选冶厂工作准则、大检修时刻合作等要素的约束,一般需求储存20~30d的用量。假如外界条件欠好,还须恰当添加。
(一)库房方法
为了削减库房面积和下降厂房高度,一般选用半地下式矿仓。因受水文地质条件约束以及贮、卸料设备的要求,也有选用地上式矿仓的。图1和图2为半地下式矿仓,图3为地上式矿仓。
图1 中间进线半地下式矿仓
图2 一侧进线半地下式矿仓
图3 地上式矿仓
大型厂进料多用火车,厂内的回来品运送多用轿车。小型厂进料一般选用轿车。工厂有专用铁路线通入库房时,进线的方法有两种:
一为中间进线,双侧卸料(图1);一为一侧进线,单侧卸料(图2)。前者卸料便利,后者库房面积的运用率较高。
精矿也有以矿浆形状(含固体65%左右)由铁路运入的,凭借高压水把矿浆由矿车底部卸出储存,经稠密,过滤后,精矿含水11%~13%与其它精矿进行配料。智利的波特雷里洛斯炼铜厂就是如此。也有由选矿厂用管道将精矿送往冶炼厂配料的。
(二)矿仓容积核算
精矿仓几许容积可按下式核算:
V=G/γK (1)
式中:
V-矿仓需求的几许容积,m3;
G-需求储存的矿量,t;
γ-物料的堆积密度,t/m3;
K-矿仓有用容积运用系数,一般取0.8~0.85。
仓格的巨细和数量一般按各种物料独自寄存的准则核算,并添加倒堆、混料及预配料所需的格数。
假如进出料选用桥式抓斗起重机,每个仓格沿厂房长度方向的尺度应较抓斗打开时的最大宽度大1m以上,若厂房柱距为6m时,仓格沿厂房长度方向尺度一般与之相同,也能够恰当加长。仓格沿厂房跨度方向的尺度,则视其跨度巨细核算断定。半地下式矿仓地下深度一般为3~4m,地上上物料堆积高度一般为2~2.5m。
在我国北方高寒区域取暖时期内,精矿在运送进程中易被冻住,需考虑防冻设备。据测定,含水分在7%以下的精矿在-15℃以上的气温下不需防冻。因而,改进选矿厂的过滤及干燥设备,下降精矿水分是防冻的根本办法。
(三)库房的车间装备
1、厂房跨度
精矿库房厂房跨度一般为21~24m,有达30~36m的。跨度较大,能够缩短桥式抓斗起重机大车的行程,削减其往复时刻,以进步装卸功率及库房面积的有用运用率;但若过大,不光添加厂房造价及桥式抓斗起重机的出资,且使储存量较小的物料仓格太窄,不方便操作和运用。断定厂房跨度,一般要考虑下列要素:
(1)运送设备(火车或轿车)的活动空间。
(2)火车或轿车路基占去的方位。
(3)桥式抓斗起重机小车横向移动的极限方位。
(4)矿仓抓取死角。
图4为火车直线建筑挨近限界示意图。
图4 火车直线建筑挨近限界示意图
—-各种建筑物的根本挨近限界
――――适用于电力机车运用的各种建筑物其高度数值依接触网高度而定
注:1、本图是依据车辆最大宽度为3400mm断定的,超越上述宽度时,应另行考虑;
2、曲线地段的建筑挨近限界,应按站场曲线地段的加宽值有关规定加宽。当用轿车运送时,除考虑轿车宽度外,还应考虑时所需的最小面积。
2、厂房长度
厂房长度除与物料的储存量、矿仓宽度和容积等有关外,还与物料的品种多少和仓格数有关。在满意配料需求的前提下,仓格应尽或许削减。
断定厂房长度还要考虑桥式抓斗起重机的检修场所。精矿库房一般需求两台或两台以上桥式抓斗起重机一起运用或互为备用。因而,厂房两头应各有停放1台或1台以上桥式抓斗起重机的方位(1台约需5m左右的厂房长度)供检修用。
3、桥式抓斗起重机的轨面标高
桥式抓斗起重机的轨面标高取决于上料仓渠道的标高,而上料仓渠道的标高又取决于仓下出口给料设备的设备高度和上料仓容积的巨细,此外,为安全起见,起重机的最高起运点至吊钩的极限方位宜有1.5m以上的充裕高度,一般上料仓渠道的标高为4~6m,起重机轨面标高为8~10m,大型厂房有达12m的。
4、厂房的结构要求
(1)精矿库房应设外围结构,以防风吹雨打,丢失精矿。在采暖区宜用封闭式,设门斗卷帘门,以防冬天精矿冻住。在非采暖区可考虑在矿堆以上选用花格墙或半敞开式,以改进通风条件。
(2)地下矿仓应有防水办法,厂房四周要防雨水进入。
(3)厂房一般不设天窗,寄存石灰的仓格上可设部分天窗。假如在通风采光上不能满意要求时,可在桥式抓斗起重机轨面以上开设通长侧窗。
(4)上矿料仓操作渠道和起重机检修渠道荷重一般为6kN/m2,抓斗检修场所可取l0kN/m2,地下矿仓应能接受堆积荷重120kN/m2。
图5为贵冶铜精矿库房(包含熔剂库房)装备图实例。
图5 贵冶铜精矿库房装备图实例
1-桥式抓斗起重机;2-胶带给料机;3,4,5-胶带运送机;
6-泥浆泵;7-胶带运送机;8-胶带给料机;9-胶带运送机
(因故图表不清,需求者可来电免费讨取)
图6为50000t/a铅锌冶炼厂贮矿库房装备图实例。
图6 50000t/a铅锌冶炼厂贮矿库房装备图实例
1-抓斗桥式起重机;2-B=800胶带输送机;3-可逆式B=800胶带输送机;
4,5-B=500胶带输送机;6-B=800胶带秤量给矿机;
7-B=1200胶带秤量给矿机;8、9、10-B=800胶带秤量给矿机;
11、12-胶带输送机;13-螺旋运送机;14-振荡料斗;
15-外部振荡器;16-振荡漏斗;17-Φ2500圆盘给料机
(因故图表不清,需求者可来电免费讨取)
图7为西北冶锌精矿仓装备图实例。
图7 西北冶锌精矿仓装备图实例
1-5t抓斗桥式起重机;2-圆盘给料机;3-电子皮带秤;
4-Φ2000圆盘给料机套筒;5-仓壁振荡器;6-1号胶带运送机;
7-电磁分离器;8-1t手动单轨小车;9-1t链环手拉葫芦;
10-链环式破碎机;11-2号胶带运送机
(因故图表不清,需求者可来电免费讨取)
图8为西北冶铅精矿仓装备图实例。
图8 西北冶铅精矿仓装备图实例
1-抓斗起重机;2-1号胶带运送机;3-电磁分离器;4-电子皮带秤;
5-皮带给矿机;6-双螺旋闸口;7-振荡矿仓;8-仓壁振荡器;
9-链环式破碎机;10-溜子;11-手动单轨小车;12-链环手拉葫芦
(因故图表不清,需求者可来电免费讨取)
图9为来冶锡精矿库房装备图实例。
图9 来冶锡精矿库房装备图实例
1-5t单钩桥式起重机;2-5t抓斗桥式起重机;3-料仓;4-胶带运送机
(因故图表不清,需求者可来电免费讨取)
二、熔剂库房
冶炼厂所需石英石和石灰石等熔剂一般为露天储存,但停放桥式抓斗起重机处和上矿处需求屋盖。也有将熔剂和铜精矿储存在同一库房内的(如贵冶),这需求视熔剂量和总平面布置而定。熔剂的储存时刻一般为20~30d。配入精矿中作熔剂或干燥剂的石灰也宜储存在精矿库房中,储存7~10d的用量。
三、烟尘及回来品库房
回来熔炼炉处理的烟尘及中间产品一般储存在精矿库房的专用仓格中,多用轿车运来,和精矿相同参加配料。其储存量及储存时刻应依据烟尘、回来品的产出率和配料准则等归纳考虑,一般为7~10d。
某些烟尘(如铜转炉烟尘)因富集有稀散金属等,需求独自处理时,一般储存在烟尘处理工序,储存量视具体状况而定。
铜密闭鼓风炉工艺流程中的转炉渣,一般作块料回来鼓风炉处理。此种炉渣大都露天堆积,依据配料需求,储存1~2d的用量。铅鼓风炉炉渣一部分作为熔剂配入炉料,以进步金属回收率,改进冶炼操作条件。此种炉渣大部分露天堆积,储存1~2d的用量。
四、焦炭、原煤库房
铜、铅锌密闭鼓风炉等用焦炭作燃料,其水分应有必定要求,一般储存在地上式室内库房,也有将焦炭库房和熔剂库房合在一起的,以运用同一套上矿运送设备。一般要求焦炭块度为30~100mm,一般不设置破碎筛分设备。焦炭的储存时刻一般为20~30d。
冶炼进程有需用原煤或将原煤制成粉煤作燃料的。原煤储存在室内或室外,视当地气候条件和用煤要求而定。原煤多用铁路或公路运送入厂,其卸车、堆存和运送的东西选用地上行走或桥式抓斗起重机、自卸轿车、前端装载机或电耙、人工或电动运煤车、胶带运送机、斗式提升机等,视室内和室外以及场所装备等状况而定。假如原煤粒度不契合要求时,所设破碎设备应和上煤系一致起考虑。例如,制备粉煤时,一般在上煤胶带运送机前设锤式破碎机。
为避免煤自燃,煤堆答应高度和堆存期限应契合表1的要求。
表1 煤堆答应高度和堆存期限煤种煤堆答应高度堆存期限≤2个月堆存期限>2个月褐煤
烟煤(V燃>20%)
烟煤(V燃≤20%)
无烟煤2~2.5
2.5~3.5
3.5
无约束1.5~2.0
2.0~2.5
2.5
无约束
五、首要设备挑选
(一)上料仓及其给料设备
为了将库房中各种物料转运到配料或其它工序,需设置上料仓。上料仓多选用圆锥形或矩形漏斗形。仓的容积不宜过大,能使物料在工作中起缓冲和均匀给料效果即可。仓壁的倾斜度一般为60°~75°,常用钢板制造。如需带有振荡设备时,则上料仓制成固定与活动两部分,振荡设备悬挂在固定仓下面,固定部分与活动部分间留有振荡空隙,以使下料顺利。仓上面进口设备固定格筛,以减轻物料对上料仓的冲击和避免大块物料进入仓内。为避免物料在格筛上堆积,也有运用格筛振荡器的。
上料仓下面出口处的给料设备一般选用胶带给料机、圆盘给料机、振荡给料机或螺旋给料机等,较大块度的物料一般选用板式给料机。
(二)桥式抓斗起重机
冶炼厂贮料库房中一般选用桥式抓斗起重机来完结卸料和上料等作业,其生产才能可按下式核算:
Q=60Vδk/τ (2)
式中:
Q-抓斗起重机才能;t/h;
V-抓斗容积,m3;
δ-抓斗物料的密度,t/m3;
Φ-抓斗充填系数,块状物料取0.6~0.8,粉状物料取0.8~0.9;
τ-抓斗起重机每一循环作业周期的时刻,min,一般为2~4,个别为1~2;
k-抓斗中物料密度的批改系数,块状物料取1.0,精矿取1.5。
精矿库房规划中,应留意依据精矿及回来品等的数量,考虑卸矿,倒堆、混料、预配料及上矿等悉数作业的负荷,具体核算每一项作业所需的时刻,断定所选用桥式抓斗起重机的才能、数量及抓斗容积,并考虑设备检修等要素,具有0.5~1台的备用才能。
核算桥式抓斗起重机每一循环作业周期依据起重机大车和小车的行走速度和料仓中各种物料的散布状况别离核算。为简化起见,一般依据起重机运转的均匀间隔每一循环作业周期所需的均匀时刻核算。
大车往复一次所需的均匀时刻按下式核算:
式中:
t1-大车往复一次所需的均匀时刻,s;
L-大车行走均匀间隔,m;
W1-大车行走速度,m/min。
小车行走均匀间隔可按起重机跨度的一半考虑。因为操作时小车与大车部分地一起行走,还能够节约一半时刻。
式中:
t2-小车往复一次所需的时刻,s;
Lk-起重机跨度,m;
W2-小车行走速度,m/min。
抓斗升降的均匀间隔可近似定为起重机轨面标高的一半。
式中:
t3-抓斗升降所需时刻,s;
h-起重机轨面标高,m;
W3-抓斗升降速度,m/min。
抓斗抓料及放料所需时刻,可各取9s,故t4=18s。
大车和小车电动机发动所需时刻,每次可定为3s,共需4次,故t5=12s。
抓斗每次操作:抓、升、降、放需求发动电动机4次,每次需时3s,故t6=12s。
抓斗起重机每次循环作业所需时刻;
t=t1+t2+t3+t4+t5+t6
抓斗起重机的台数可按下式核算:
式中:
n-起重机台数,台;
T-库房悉数物料每天需求起重机操作的总时刻,min;
η-起重机的日运用率,可取0.7~0.8。
表2为我国部分冶炼厂精矿库房有关数据。
表2 我国部分冶炼厂精矿库房有关数据项目大冶白银一冶云冶贵冶铜陵二冶中条山沈冶西北冶西北冶金川株冶铅体系韶冶Ⅱ体系来冶云锡一冶生产规模,
万t/a粗铜
5~5.5电铜
4.0阳极铜
6.0阳极铜
9.0电铜
3.0粗铜
2.0粗铜
2.5电锌
10.0精铅
5.0电镍
2.0电铅
6.0电铅+精锌
8.5精锡
>1.2精锡
>1.5日需精矿量,t1000~1100950~10501000~12001160900250300~4006362531200~150028057074100~120精矿储存时刻,d3020~252620207303030~4512~154045507~15矿仓型式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式半地
下式矿仓容积
m31150062106480
(2500)220009200 7300125255865101005940450019001450仓格数,个18 16(11)23 4076413121516精矿进厂设备火车胶带运送机(火车)火车火车火车轿车火车火车火车胶带运送机(火车)火车火车火车轿车上矿方法抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗厂房长度
m180150156
(90)21612684120168841687211412084厂房宽度
m242424
(18)3324182130302421302112地下矿仓深,m3.82.52.5
(2.5)4.04.54.04.52.52.54.03.53.03.03.5起重机轨面标高,m9.01010.2
(10.2)12109.213.810.710.010.08.0510.511.09.0卸矿设备抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗抓斗吊钩
吊车抓斗起重机起重量,t101010
(10)151010105510555 抓斗容积
m32.52.03
(3)32321.51.02.01.01.01.0 起重机台数332
(2)32223232325
注:1、云冶括弧内为该厂1982年增建的另一库房数据;
2、金川电炉熔炼体系精矿库房原生产规模10kt/a。
表3为我国部分冶炼厂熔剂库房有关数据。
表3 我国部分冶炼厂熔剂库房有关数据项目白银一冶沈冶铜陵一冶铜陵二冶大冶云冶西北冶金川株冶铅体系韶关Ⅱ体系来冶生产规模,万t/a电铜
4.0粗铜
2.5粗铜
3~4电铜
3.0粗铜
5~5.5电铜
6.0精铅
5.0电镍
2.0电铅
6.0电铅+精锌8.5精锡
1.2熔剂用量,t/d 250200150180 68.722.534646厂房长度,m90198246010860367872114120厂房宽度,m2424212424241524213021地下矿仓深度,m2.543.51.001.003.03.53.03熔剂储存时刻,d 602725 22~2515202030起重机轨面标高,m9.0128.095129.511.010.08.0510.511起重机台数12111212232起重机起重量,t10105.05.01010510555熔剂进厂设备轿车火车轿车火车火车火车轿车火车火车火车火车抓斗容积,m33.02.02.02.02.03.01.02.01.01.01.0熔剂上料仓给料设备摆式给料机电振板式给料机 板式给料机板式给料机抓斗板式给料机圆盘给料机圆盘给料机
废铜线的冶炼方法
2019-02-25 14:01:58
1.简介:
铜以其杰出的导电和导热才能成为电子和电力工业领域里的首选和首要材料。为了到达所要求的功能标准,运用的简直都是高纯度的铜。这篇文章首要评论了这样做的原因,一同还特别重视了一些底子的冶炼准则。其意图是要针对曩昔十年铜线领域里的相关开展打开进一步的评论。
2.导体要求:
近年来在解说宝贵金属(即铜、银和金)的电子特色上现已获得了巨大的前进。这些元素显现出了很高的导电功能,由于它们的导电电子关于电场的运动简直没有什么抵抗力。铜尤其是一种优秀的导体,由于最外围的电子之间有很大的自由空间,以致于不会发作任何磕碰。而它的电阻率则与这广大的空间成反比。有几种导电金属都比铜轻,可是运送相同多的电流,它们所要求的横截面更大,所以假如要求节省空间的话,这些金属是不行取的。(例如:在一些小型电力马达)。所以当超重成为问题时,人们就开端运用铝。铜具有商业运用所需求的最好的功能特征,因而银就由于它贵重的报价而不被选用。
3.运用:
铜是以其纯洁方式而不是合金方式而具有最广泛用处的稀有金属之一。大约有五十多种不同的锻压合金中铜的最小含量是99.3%,尽管只要一小部分在工业上用作电导体。这些低合金中最常用的是电解韧铜,它由这纯度的金属构成,这种金属可与氧在100-650ppm的范围内结成合金。可是在环境中人们主张不要运用ETP铜,由于当它露出于这些温度时会遭到氢脆裂的影响。在这样的环境下,要么运用无氧铜,要么就运用无氧电子铜。含银铜中电源电压器中的运用适当有限,由于它在温度进步时具有较高的强度和较弱的抵抗力。
4.铜棒和铜线的出产:
二十世纪七十年代曾经,简直一切的铜都是经过分批法出产的,分批法的具体步骤是:将熔化铜浇注并凝结成为叫做“线锭”的特种铸块,然后在略微遭到约束的维护空气将棒再加热,然后在经过热压法在空气中将这一铸造的树形结构分解成棒的方式。接下来,就将其投放在10%的硫酸里来铲除上面的氧化物,经过将一端对接在另一端而构成较长的线圈。现在,实践上一切的铜棒都是经过接连铸造和轧制程序制成的。接连铸造的优点是:较小的杂质微别离、削减了表面的铜氧化物颗粒、在与轧辊触摸的进程中钢含量削减、简直防止了一切的焊缝、下降了整个加工成本。 故意地将氧和铜制成合金,作为溶解氢和的净化剂,然后在熔化中构成H2O和SO2这两种气体。假如氧成分有必定操控的话,那么就会构成小型汽泡,在适宜的条件下,这些汽泡会抵消从液态向固态改动进程中约4%的缩短量。假如所构成的毛孔不十分大的话,它们彻底能够在热压期间被消除去。 大部分接连铸造和轧制的产品都装有非破坏性设备,而这些设备往往都进行在线运用来检测表面比方裂缝和氧化物等缺陷。关于某种高质量的运用,一般要经过机械修整来将表面好多层金属铲除去。 大部分圆形和方形铜产品都是经过用传统的人工多晶拉模或天然单晶拉模进行拉丝而出产的。铜具有杰出的成形性,铜棒能够很简略地制成比较细的铜丝,而不需求任何中间的退火进程。尽管它具有这种比较抱负的特性,可是磁线工业中的一般做法是在拉丝进程中将减面率降到90%左右,之后还要进行退火。除了减面率以外,金相结构也或许会发作变化,然后削弱了铜线的机械特性。磁线经常是经过所谓的“在线进程”来进行出产的,这一进程包含:“慢速”拉丝,接着进行接连退火,一同还要上涂料。终究的铜线产品是经过将退火之间的减面率下降到90%而得到改善的。
5.杂质的效果:
在高导电率构成进程中化学性质是最重要的变量之一。这些成分中最有害的东西能够下降导电率、进步退前方的机械强度、防止再结晶、有时在出产铜棒的热压进程中还会导致热脆。很多的研讨查询标明:很少数量的溶解物都会一次性地进步铜的电阻率。许多杂质都会阶段性地进步其半硬再结晶温度。可是,当杂质与沉积物或氧化物而不是溶解物混合在一同时,对导电率的有害影响就会降到最低。表2标明晰各式各样的单一元素添加到只含有200ppm氧的高纯度ETP铜所发作的影响。一般来说,每百万分之一杂质中的前半部分与相同剂量的后半部分比较影响力更大。可是,需求留意的是,自从树立于1913年的铜电力标准由100%IACS导电率表明以来,商业铜的纯度就得到了极大地改善。现在,大部分商业铜负极的导电率都超越101%IACS。
6.氧成分的影响:
氧是为了改善铸造铜的巩固性经过对燃汽——金属反响的操控而选用的一种合金成分。相同重要的是,氧在与大部分杂质反响的进程中都起到了一个铲除器的效果,而这些杂质当它们溶解在铜基质中时对其特性和退火反响都有巨大的影响效果。相反,当这些杂质与不行溶解的氧化物混合在一同的时分,这些坏效果就被抵消了。从表3能够看出,ETP铜导电率的最大值是200ppm。因而,ETP铜中氧的含量大致在175和450ppm之间。由于涣散杂质简略引起热裂,所以一般都尽量防止低氧值。相反,超于这一最佳约束的氧气值并不常见,由于这对可成形性具有附效果。实践的氧含量应是既要有较好退火进程,还要防止或许呈现的可塑性问题。
7.热机械可调变量的重要性:
除了由金属杂质构成的氧化物之外,氧化物还能够经过改动热力史从铜基质中溶解或沉积出氧化物。这些固体反响或许会影响终究的粒子巨细,由于铜氧化物成分在再结晶的进程中能协助构成巨细一致的粒子。可是,二次再结晶(不正常的粒子生长)一般都与一个两层的颗粒结构有关,而这一颗粒结构是在高温退火进程中由氧化物的溶解构成的。粒子粗化和孪晶的呈现首要是由于溶液温度超越了500摄氏度,且氧的浓度低于600ppm.拉丝之前构成的粗粒子在接下来的低温退火之后并没有被消除去。从高温冷却下来的冷却速率也会影响到高温机械功能,尤其是杂质成分适当地大时。快速淬火会导致固态溶液中高浓度、不均匀的杂质成分。从另一方面讲,慢速冷却会增强杂质和氧之间的相互效果,这又有利于杂质从固态溶液中沉积下来。在退火期间经过拉丝或轧制所作的冷加工关于商业磁线来说是有约束的。在终究冷却之前为了得到比较好的顺应性(即铜线在成形或曲折进程中以最小的回弹性坚持形状的才能),最好要约束一下冷加工的数量。高模数和低屈从强度都是比较抱负的功能,由于它们都是最小回弹性的标志。
8.退火进程:
铜的退火性是个十分杂乱的特性,这一特性是由一系列的其他特色组成,而这些特色又会跟着变形、热进程、金属纯度和氧成分的多少而发作变化。当杂质沉积下来今后,它们对退火进程的影响是比较小的,这与固态溶液中的景象是天壤之别的。退火温度与溶剂(这儿指的是铜)和溶质(这儿指的是杂质)之间原子巨细的差异有必定的联系。溶质元素的化合价也是影响退火性的一个重要参数。可是,由于多种物质之间热动力的相互效果所构成的杂乱情况,退火性并不仅仅简略地与一些或许的参数,如:原子量或溶质的化合价有关。
9.表面影响:
在外界温度下,铜线总是有一个残留的氧化膜,而这一氧化膜是当铜线进入热杆轧制阶段时从高温的、接连铸造的铜杆上构成的。现在在铜业中经过一种电量分析操控检测手法来丈量残留的表面氧化膜的厚度已成为一种比较标准的作法。氧化膜或许会适当地有害,由于它们或许会在拉丝进程中引发许多缺陷、使拉丝膜过度磨损、可焊性变差、珐琅膜和裸导体之间的附着力变弱。 铜杆的缺陷之处往往是源于接连铸造进程和轧制进程,这包含:残渣、铜氧化夹杂物、热裂、裂块、铜杆表面氧化颗粒的构成。大部分金属间化合的夹杂物都比较脆,因而都成为拉丝进程中裂纹发作和延伸的场所。相关于缺陷而言,较细的磁线和成形线是最首要的出产产品。 仅有最大的表面缺陷源于拉丝,往往是以拉模划痕、机械损害、弧口凿或裂片的方式呈现在裸导体的表面。由于拉丝问题而构成的裂片往往与所捕获的氧化物没有太大联系。表面损害一般是由于拉丝机内移动线未对准或拉丝膜炉口内铜精粹的约束力太大则构成的。
10.未来的应战:
人们关于更好表面质量、更大包装类型的需求在不断地上升,而且越来越希望出产出一种“无疵点”并少断折的铜杆(即有很好的可拉性)。满意这些需求的推动力将会是:更好的动力功率、更加剧烈的全球竞赛、更多的家居运用、在地价上涨的情况下所运用的小型电动机,比方轿车中运用的马达。因而人们会越来越情愿运用比较小的计量尺度。跟着电解冶金法的呈现和电解精粹所获得的不断前进,现在商业铜负极的纯度好像现已到达了我们都能够承受的水平,而且现已没有必要进一步约束杂质的数量。可是,在易切削黄铜工业中,铋现已被用来替代铅作为一种合金元素。由于铋关于电力铜导体具有很大的毒性效果,因而人们要求黄铜碎片应与铜碎片彻底地切割开来。铜线工业面对的一个问题是在拉丝进程中,由于研磨或分层而造成了许多表面的疵点。为了处理这一问题,关健是要在以下几个方面有所改善:铜杆的表面质地、拉丝润滑剂、固体颗粒的过滤、单一组成晶体钻石拉丝膜的出产。 一个十分重要的未来应战就是开宣布更多灵敏的传感器,经过用一种非触摸检测手法来检测铜棒、铜杆和铜线上的非破性疵点。这些疵点中的大部分由于太小而用现在的漩涡流检测设备是底子检测不到的。此外,还需求开发一种在线检测设备来轻易地检测大孔隙和其他的内部疵点。 影响线状电力铜导体功能、加工和运转的要素从很大程度上讲是树立在现存的冶炼准则根底之上的。可是,杂质和退火温度及电阻率之间的联系还需求在数量进步一步改善一下。
11.总结:
常用作电线导体的是纯铜,而不是铜合金。与此一同,一般还要加少数的氧气来操控杂质,并改善导电性。终究特性和加工进程与杂质和氧成分都有着十分亲近的联系,而且用一些根本的冶炼原理是彻底能够解说的。 趋势。ASTMB370规格,即工程建筑所使铜条和铜块,以其多种类型和多种厚度,成为规格和购买的根底。铜金属的竞赛性数量以及对铜的决心不断推动了这个健康商场的开展。最近认可的规格是ASTMB882,是一种在建筑中运用的预先生锈铜。长期以来,建筑师和工程师们都希望出产运用这种产品,由于他们急迫地想用铜制房顶和建筑横木来开展这种值得称赞的绿色。
12.低铅和无铅铸造和铸造铜合金:
滤沥到水里的铅对人体健康的影响引起了人们关于现有铜合金及开发一种饮用水用的新合金的从头考虑。铸件的耐压紧密度以及由铅附属物供给的铸造和铸造部件的上等机械加工性都是必需要到达的要求。含合金的铸造和铸造无铅铋有必要具有以下特性:契合ANSI/NSF61的健康要求以及饮水体系成分健康要求。现在人们现已开端用一种酸化钠醋酸洗涤剂来铲除机器上的铅污渍。可是这一职业的某些部分提出了对混合碎屑的顾忌,由于他们以为在这些混合碎屑中,铋的微量会导致在加工进程中金属的热脆。碎屑收回工业学院(ISRI)和黄铜与青铜铸造出产商(BBIM)正在研讨一种碎屑收回严厉的操控程序和切割程序。
13.家用产品:
在家用产品中,人们挑选铜是由于铜具有以下特色:美丽的外形、牢靠的质量、很高的商誉、杰出的规划要素、较好的物质和机械功能以较长的运用寿命。电力照明器件和火炉设备一同成为首要的家用产品领域。
14.效劳:
用来断定铜质料关于应力腐蚀决裂灵敏度的传统办法是硝酸亚实验。(ASTMB154)为了呼应来自ASME锅炉和压力容器编码和美国海岸巡逻队的要求,B-5委员会将应力腐蚀免疫的IS06957铜合金测验转换为ASTM方式。这彻底出于他们关于测验溶液和样品处理的考虑。ASTMB858M,即在铜合金顶用一种蒸汽来断定其关于应力腐蚀决裂的灵敏度的办法现在是官方运用的一种办法。这种测验办法影响了效劳条件的开展,在这些条件下,或许会呈现应力腐蚀决裂,并战胜硝酸亚实验的缺陷。
15.未来展望:
国际经济变得越来越全球化了。跟着二十一世纪的到来,第三国际国家正在树立电讯链路,变成电力的首要顾客,他们在缔造家乡、工厂和商业建筑,这样就需求很多的铜来满意他们的需求。铜被用作工程质料已有一万年的前史了,它对人类的奉献是呈金字塔式的,日积月累。假如没有铜,真不敢幻想未来的国际将会是什么姿态。
钒矿石的选矿方法介绍
2019-01-17 15:33:12
第一,钒钛磁铁矿石。岩浆型钒钛磁铁矿石是我国钛和钒的主要资源。矿石中主要有用矿物有钛磁铁矿和钛铁矿,以中粒嵌布为主;脉石主要是硅酸盐矿物,有的也有碳酸盐矿物和磷灰石等;常伴生钒、硫和钴等成分。钒和钴常呈铁的类质同像分别赋存于钛磁铁矿和黄铁矿中。此类矿石的选矿,一般是先用弱磁选分出钒铁精矿,再用重选、强磁选、浮选、电选联合方法从尾矿中回收钛铁矿和用浮选回收黄铁矿,钒铁精矿所含的钛是选矿无法除去的,可以在冶炼中分离。为了满足高钛渣炼铁必需的渣量,过分提高钒铁精矿的铁品位,有时是不合理的。从磁选尾矿中回收钛的流程,首先要保证得到优质钛精矿。研究了重选、浮选、重选-浮选、重选-强磁选-浮选、重选-强磁选等各种流程。钛铁矿精矿用电选精选,可将二氧化钛品位提高到48%以上,钛铁矿的浮选是在酸性矿浆中进行的,浮选黄铁矿回收钴应在浮选钛铁矿前进行,如果矿石含有碳酸盐矿物,必须预先浮出。
钒铁精矿中钒的提取用冶炼方法有火法和湿法两种,火法提钒是钒铁精矿经高炉冶炼得含钒铁水,再经转炉吹炼钒渣,钒渣进一步用湿法提炼得含钒产品。火法提钒已用于工业生产中,但钒的回收率较低,湿法提钒是铁精矿直接进行钠化焙烧浸出,得到含钒和含铁产品,含铁产品送往炼铁。湿法提钒,资源的综合利用较好,钒的回收率较高,但尚处在工业试验阶段。热液型含钒铁矿石的提钒方法与以上相同。
第二,钛铁矿砂矿。钛砂矿中钛矿物以钛铁矿为主,金红石、白钛石和锐钛矿等较少;常与锆英石和独居石等共生,重砂矿物呈细粒状态;脉石以硅盐矿物为主,生产上采用重选,磁选和电选联合流程。砂矿先经圆锥选矿机、扇形溜槽、螺旋选矿机、跳汰或摇床等预先富集,得到含重砂矿物的粗精矿,再用中、强磁选回收钛铁矿;强磁选回收独居石;摇床除脉石;电选分离锆英石与金红石,得到多种精矿。为了得到合格精矿,一般粗精矿的精选流程作业多,变化大,有时钛铁矿精矿用浮选进一步除磷。
除钒钛磁铁矿石和钛砂矿外,还有少数钛的脉矿。对变质基性岩型金红石矿石用重选-强磁选-电选、浮选和浮选-焙烧磁选等流程试验,得到金红石精矿。对辉长岩型含磷灰石钛铁矿石用浮选-重选流程试验,得到钛铁矿和磷灰石两种精矿。
由于高钛矿物资源有限,研究了从钛铁矿制取入造金红石的各种方法,例如,选择氯化法和还原锈蚀法等。
第三,含钒炭质板岩。沉积型含钒炭质板岩也是我国钒矿资源中重要的一种,目前还处在研究阶段。矿石中钒呈微业嵌布的钒云母等矿物或及附状态存在,用选矿方法不易富集,因而研究了湿法冶金提钒。矿石先经煅烧除去炭质,然后进行钠化焙烧和水浸出。水浸残渣再用酸浸可以进一步提高钒的浸出率,有时原矿选经浮选富集成含钒粗精矿,再焙烧浸出,可以显著降低酸耗。
金属钒生产方法
2018-12-12 09:37:10
工业上常以各种含钒矿石为原料制备钒。如在钒炉渣中加入NaCl,经空气焙烧后,先生成NaVO。
常用冶炼方法
2019-03-07 09:03:45
1、转炉炼钢:一种不需外加热源、首要以液态生铁为质料的炼钢办法。其首要特点是靠转炉内液态生铁的物理热和生铁内各组分,如碳、锰、硅、磷等与送入炉内的氧气进行化学反响所发生的热量作冶炼热源来炼钢。炉料除铁水外,还有造渣料(石灰、石英、萤石等);为了调整温度,还可参加废钢以及少数的冷生铁和矿石等。转炉按炉衬耐火材料性质分为碱性(用镁砂或白云为内衬)和酸性(用硅质材料为内衬);按气体吹入炉内的部分分为底吹顶吹和侧吹;按所选用的气体分为空气转炉和氧气转炉。酸性转炉不能去除生铁中的硫和磷,须用优质生铁,因而使用规模受到限制。碱性转炉适于用高磷生铁炼钢,曾在西欧取得较大开展。空气吹炼的转炉钢,因其含氮量高,且所用的质料有局限性,又不能多配废钢,未在国际规模内得到推行。1952年氧气顶吹转炉面世,现已成为国际上的首要炼钢办法。在氧气顶吹转炉炼钢法的基础上,为吹炼高磷生铁,又呈现了喷吹石灰粉的氧气顶吹转炉炼钢法。随氧气底吹的风嘴技能的开展成功,1967年德国和法国别离建成氧气底吹转炉。1971年美国引入此项技能后又开展了底吹氧气喷石灰粉转炉,用于吹炼含磷生铁。1975年法国和卢森堡又开发成功顶底复合吹炼的转炉炼钢法。 2、氧气顶吹转炉炼钢:用纯氧从转炉顶部吹炼铁水成钢的转炉炼钢办法,或称LD法;在美国一般称BOF法,也称BOP法。它是现代炼钢的首要办法。炉子是一个直立的坩埚状容器,用直立的水冷氧从顶部刺进炉内供氧。炉身可倾动。炉料一般为铁水、废钢和造渣材料;也可参加少数冷生铁和铁矿石。经过氧从熔池上面向下吹入高压的纯氧(含O299.5%以上),氧化去除铁水中的硅、锰、碳和磷等元素,并经过造渣进行脱磷和脱硫。各种元素氧化所发生的热量,加热了熔池的液态金属,使钢水到达现定的化学成分和温度。它首要用于冶炼非合金钢和低合金钢;但经过精粹手法,也可用于冶炼不锈钢等合金钢。
3、氧气底吹转炉炼钢:经过转炉底部的氧气喷嘴把氧气吹入炉内熔池,使铁水冶炼成钢的转炉炼钢办法。其特点是;炉子的高度与直径比较小;炉底较平并能快速拆开和替换;用风嘴、分配器体系和炉身上的供氧体系替代氧气顶吹转炉的氧体系。因为吹炼平稳、喷溅少、烟尘量少、渣中氧化铁含量低,因而氧气底吹转炉的金属收得率比氧气顶吹转炉的高1%~2%;选用粉状造渣料,因为颗粒细、比表面大,增大了反响界面,因而成渣快,有利于脱硫和脱磷。此法特别适用于吹炼中磷生铁,因而在西欧用得最广。
4、接连炼钢:不分炉次地将质料(铁水、废钢)从炉子一端不断地参加,将制品(钢水)从炉子的另一端不断地流出的炼钢办法。接连炼钢工艺的想象早在19世纪就已呈现。因为这种工艺具有设备小、工艺进程简略并且安稳等潜在优越性,几十年来许多国家都作了各式各样办法的很多实验,其间首要有槽式法、喷雾法和泡沫法三类,但迄今为止都没有投入工业化出产。
5、混合炼钢:用一个炉子炼钢、另一个电炉炼复原渣或复原渣与合金,然后在必定的高度下进行冲混的炼钢办法。用此法处理平炉、转炉及电炉所炼钢水,可进步钢的质量。冲混可增加渣、钢间的触摸面积,加快化学反响以及脱氧、脱硫,并有吸赞同聚合气体及夹杂物的效果,然后进步钢的纯结度和质量。
6、复合吹炼转炉炼钢:在顶吹和底吹氧气转炉炼钢法的基础上,归纳两者的长处并战胜两者的缺陷而开展起来的新炼钢办法,即在原有顶吹转炉底部吹入不同气体,以改进熔池拌和。现在,国际上大多数国家用这种炼钢法,并开展了多种类型的复吹转炉炼钢技能,常见的如英国钢公司开发的以空气+N2或Ar2作底吹气体、以N2作冷却气体的熔池拌和复吹转炉炼钢法——BSC——BAP法,德国克勒克纳——马克斯冶金厂开发的用天然维护底、从底部向熔池别离喷入煤和氧的KMS法、日本川崎钢铁公司开发的将占总氧量30%的氧气混合石灰粉一道从炉底吹入熔池的K——BOP法以及新日本钢铁公司开发的将占总氧量10%——20%的氧气从底部吹入,并用或天然气冷却炉底喷嘴的LD——OB法等。
中国钒矿资源的区域分布与石煤中钒的提取工艺
2019-02-25 14:01:58
钒是一种过渡金属元素,在天然界中散布极为涣散,故也称为稀散元素。钒的使用非常广泛,在钢铁、有色金属、化工、合金、超导材料、轿车等工业范畴都是不可或缺的重要元素。钢铁、有色金属以及合金中参加必定量的钒,能够改动其微观结构,大大提高钢的耐磨性、红硬性,减轻材料分量,延伸使用寿命;在化工工业中制作钒催化剂,报价便宜,功能安稳,抗中毒功能强;一起,钒化合物多彩的色彩能够用来制作颜料、油漆等;在超导材料中,钒与硅、镓化合物均有较高的超导改变临界温度的特性。因而,钒矿资源的归纳开发使用具有非常重要的战略意义和工业需求。
一、我国钒矿资源及其区域散布
(一)我国钒矿资源的储量及其区域散布
依据矿产储量统计表,到2006年末,我国有18个省和自治区有钒矿资源,产地123处,保有资源储量约3400万t(以V2O5计,下同),累计查明资源储量约3600万t。首要散布在湖南、湖北、安徽、陕西、四川、贵州、河北等省,其间,四川、陕西、湖南、安徽和湖北等5省的保有资源储量别离为1855.9,454.4,384.8,234.2和143.3万t,别离占全国保有资源储量的54. 4%,13. 3%,11.3%,6.87%和4.20%;累计查明资源储量别离为1 941.4,455.1,385.4,277.8和143.3万t,别离占全国累计查明资源储量的53.9%,12. 6%,10.7%,7.71%和3. 98%。这5省钒矿保有资源储量占全国钒矿资源的90.1%,累计查明资源储量占全国的88. 9%。
我国大型钒矿(≥100万tV2O5)数量不多,首要散布在陕西、湖南、四川和甘肃等少量区域的9处矿区点,储量为1689.4万t,占总储量的49.6%;中型钒矿(10~100万tV2O5)广泛散布在四川、陕西、湖南、湖北等11个省,共41处矿区点,储量为1 535.6万t,占总储量的45.0%;小型钒矿(≤10万tV2O5)数量最多,有73处矿区点,但储量仅184.3万t。大、中型钒矿储量即占全国储量的94.6%,小型钒矿储量仅占全国储量的5.4%。
(二)我国钒矿资源的共、伴生特征及区域散布
天然界中独自的含钒富矿较少,大多为共生和伴生矿。据统计,独自钒矿产地仅30处,算计储量665.1万t,占全国总储量的19.5%;共生、伴生钒矿产地93处,储量2744.2万t,占总储量的80.5%。全国钒矿档次1.0%的算计储量2884.6万t,占总储量的94.6%,其间,档次在0.6%~1.0%的储量为890.3万t,占总储量的29.2%。依据材料,钒矿资源中V2O5均匀档次以湖北、陕西、湖南和浙江等4省档次的较高,别离为0.89%,0.82%,0.80%和0.78%,最高档次到达1%以上,陕西商洛市商南县矿区档次超越1.5%;这些钒矿资源已具有很高的工业使用价值,为金属钒的提取供给了丰厚的资源储藏。
钒矿石首要有钒铁矿石、石煤、钒铀矿、钒酸盐矿、磷灰岩、绿硫钒矿、沥青石、原油和铝土矿。我国钒矿资源首要由钒铁矿石和石煤矿组成,具挖掘价值的钒矿以石煤为主。钒铁矿石首要是钒钛磁铁矿。依据矿产一般工业要求,钒铁矿中V2O5质量分数为0.15%~0.2%时即可进行归纳收回。我国铁矿石中V2O5质量分数达0.15%以上的保有资源储量为2215.6万t,占总储量的72.7%,首要散布在四川攀枝花、河北承德、陕西汉中、湖北郧阳和襄阳、广东兴宁以及山西代县等地,其间,攀枝花是首要散布地,已探明矿石储量为100亿t,V2O5储量为1578万t。钒钛磁铁矿现在首要用于炼钛,钒金属首要在冶炼进程中从钢渣中提取。其他方式的含钒资源在国内散布并不广泛,相关报道不多。
据统计,我国石煤中V2O5的储量约1128万t,占总钒矿资源储量的37.0%,首要散布在贵州、陕西、湖南、江西、河南、湖北、安徽和浙江等地,其间,散布较会集的区域首要是湖南、湖北、浙江和贵州,这4省石煤钒矿资源占全国石煤钒矿保有资源储量(以V2O5计)的53.5%。
二、石煤提钒的惯例工艺
现在,作为钒提取质料的首要是钒钛磁铁矿和石煤。钒钛磁铁矿首要用于冶炼钛,副产钒。含钒石煤是我国的一种共同的钒矿资源,因为档次相对较低,对其挖掘和归纳使用还远远不够,但含钒石煤是我国钒矿资源使用的一个重要开展方向。
(一)石煤中钒的矿藏学特征及存在形状
石煤是存在于陈旧地层中,在浅海环境下由藻类、菌类等低一级生物作用而构成的一种煤炭资源。与一般煤炭比较,石煤具有高灰、高硫、低碳、低热值等特色,既是一种动力,又是一种潜在的多金属矿产资源,首要以V金属为主。有些石煤中伴生有Ag、Cu、Mo、Na、Ni、U、Zn等工业价值较高的金属元素;在某些层位中,一种或几种伴生元素到达工业独自挖掘档次或鸿沟档次,可作某种矿藏资源独自挖掘。
石煤中钒的存在方式多样,一般分为3种,即钒云母类,含钒针铁矿、赤铁矿和碳酸盐类,含钒电气石和高岭土类。大都石煤中钒存在于钒云母中,与Si、Al、K共(伴)生;含钒针铁矿、赤铁矿中与钒共(伴)生元素多为Fe;碳酸盐类矿藏中多含Al、Ba、Ca、Cu、Fe、K、Mg、Na、P、Pb、Si及Zn等元素,钒在这些矿藏中的价态多样。在钒云母中,钒通常以V(Ⅲ)和V(Ⅳ)存在,V(Ⅲ)占大都。三价钒能以类质同相方式替代三价铝等进入硅酸盐矿藏晶格中,一起,四价钒也能够类质同相方式存在于硅氧四面体结构中。在含钒赤铁矿和钒高岭土中,钒首要以吸附形状存在,首要是V(Ⅳ)和V(Ⅴ)。
钒矿冶炼办法的挑选关键是由钒在该类矿石中的赋存状况决议的。假如石煤中的钒首要以吸附状况存在,则可用酸或碱溶液直接浸出,使钒以各种钒酸根离子方式溶解在溶液中,也可参加氧化性或还原性物质辅佐浸出;假如石煤中的钒首要以类质同相方式存在于硅酸盐矿藏晶格中,那么此类矿石难于浸出,要将三价或四价钒浸出来,首要有必要损坏晶体结构,使赋存在晶体结构中的钒开释出来。因而,查清矿石中钒的赋存状况(包含钒的各种化合物和矿藏存在方式、价态及其散布状况)是钒冶炼至关重要的前提条件。因为我国石煤多属难浸钒矿,因而许多研讨者便致力于研讨如何用经济而简洁的办法开释硅酸盐晶体中的钒。现在,提取钒工艺首要有火法-湿法联用工艺和湿法工艺。
(二)火法-湿法联用工艺
火法-湿法联用工艺是现在工业上从石煤中提取钒使用较多的技能,首要有钠化焙烧-水浸工艺、钙化低钠焙烧-碱浸工艺、空白焙烧-碱浸工艺(直接焙烧)和加酸焙烧冰浸工艺等。
钠化焙烧-水浸工艺是工业上使用最多的工艺。该工艺技能老练,基本原理是以NaCl或Na2CO3为增加剂,经过焙烧将多价态的钒转化为水溶性的钠盐,如Na2O·yV2O5,NaVO3,再对钠化焙烧产品直接水浸,得到含钒浸出液,再参加氯化铵进行中性沉钒,沉淀物经焙烧得粗V2O5。焙烧进程反响如下:选用钠化焙烧-水浸工艺,钒的收回率较低,仅40%~60%,且在钠化焙烧进程中发生Cl2、HCl、SO2等有害气体,对环境污染较大。
钙化低钠焙烧-碱浸工艺是在传统的钠化焙烧进程中参加增加剂CaO,使石煤中的钒氧化后与CaO结合生成钒酸钙,再用Na2CO3溶液浸出,钙生成溶解度更小的CaCO3,钒则以游离态进入溶液,终究钒浸出率可达67.6%。钙化低钠焙烧-碱浸工艺的反响机制如下:钙化焙烧后选用硫酸浸出,可得到85%以上的钒浸出率。钙化低钠焙烧-碱浸工艺的钒收回率依然不高,仅仅NaCl的参加量有所削减,依然对大气有污染。
空白焙烧-碱浸工艺(直接焙烧)是指使用空气中的氧气作氧化动力,直接损坏钒矿藏晶体结构,使钒氧化成V(Ⅴ),转化成可溶性的钒酸盐和偏钒酸盐;焙烧后的产品用NaOH溶液浸出。空白焙烧-碱浸工艺避免了钠化焙烧发生的酸性气体污染,节省了增加剂,但浸出时刻有必要确保在3h以上才能使钒的浸出率到达75%以上。
钠化焙烧和空白焙烧工艺的钒浸出率均不高,所以有研讨者探讨了加酸焙烧-水浸工艺的可行性。该工艺是在焙烧时参加10%的硫酸,焙烧3h,天然冷却后再用水浸出2h,终究钒的浸出率达95%以上。针对硫酸焙烧工艺,有研讨者提出了低温硫酸焙烧-水浸工艺。在250℃下焙烧后,以液固体积质量比1.2mL/g用水在100℃下拌和浸出2h,钒浸出率达78. 2%。
火法-湿法联合工艺中,钠化焙烧-水浸、钙化低钠焙烧-碱浸和空白焙烧-碱浸等相对比较老练,但钒收回率较低,并且存在较严峻的环境污染问题,尤其是发生的Cl2、HCl、SO2等有害气体,很多排放的高浓度氮废水等是现在钒冶炼工业中比较扎手的问题。加酸焙烧-水浸工艺的钒浸出率比较高,是一种值得进一步研讨的工艺。
(三)全湿法工艺
全湿法提取石煤中钒的工艺现在研讨不多,且均环绕酸浸而打开。酸浸办法首要有直接酸浸、参加助浸剂酸浸和加压酸浸3类。
直接酸浸是H+进入硅酸盐矿藏晶格中置换Al3+,使离子半径发生变化,然后开释出V3+,V3+进一步氧化为V4+后用硫酸浸出。直接酸浸后,V2O5收回率在70%~85%。直接酸浸基本原理如下:直接酸浸只依托H+作用损坏晶体结构。因为钒在石煤中的存在形状安稳性较高,故直接进行酸浸有时作用并不抱负,浸出时刻长,浸出功率较低。增加必定试剂即参加助浸剂能够促进钒的浸出,取得较高的钒浸出率。如用浸出石煤时,参加必定量的亚铁盐,可使大都钒溶解进入溶液,钒收回率可达85%以上。
直接酸浸的另一种改进是加压酸浸。加压条件改进了钒浸出动力学,大大缩短反响时刻,钒浸出率可达90%以上。但此办法对设备腐蚀大,设备要求较高。
近年来,也有其它一些试剂用于从石煤中直接浸出钒。其间,亚熔盐浸出是针对焙烧进程中发生环境污染、能耗高、钒转化率低一级问题而开发的新办法。复合钠制剂亚熔盐包含钠制剂和氯盐,氯盐与矿藏中的氧化物,如V2O5、Fe2O3、SiO2等反响发生Cl2,Cl2具有更高的活性,能够损坏矿藏晶体结构,将其间的V(Ⅲ)和V(Ⅳ)氧化为V(Ⅴ)。亚熔盐法的钒浸出率可达90%以上。亚熔盐浸出法相对直接酸浸缩短了反响时刻,可取得较高的钒收回率,一起浸出液不含酸,相对来说较简略进行后处理,是值得进一步完善和开发的新工艺。
(四)生物浸出技能
生物浸出技能对环境友好、工艺简略,近年来开展比较敏捷,已测验用于从石煤中提取钒。
难浸石煤中的钒以硅酸盐方式存在。研讨标明,硅酸盐在生物浸出进程中的溶解会增大反响系统的pH,然后影响生物浸出作用;钒对细菌的毒害效应在某种程度上也首要受pH的影响而不是受金属元素自身毒害作用的影响,阐明在生物浸出时操控pH非常重要。培育耐钒菌种时,在参加有机物的培育基中,以V2O5、VOSO4、Na3VO4和NaVO3为驯化物,以磷酸缓冲液缓冲,操控pH在8.0~8.9范围内,温度维持在24~37℃之间,终究可得到比较好的驯化作用。Katarina等研讨了选用Acidithiobacillusferrooridans和Acidithiobacillusthiooxidans菌株将废催化剂和石油飞灰中的五价钒还原成四价钒进行废料解毒并收回钒,在30℃下,培育基中参加FeSO4·7H2O和单质S,两菌株对V2O5和NaVO3的耐受极限别离为0.003mol/L和0.01 mol/L,其对生成的四价钒最高钒耐受浓度可达4mol/L。Pradhan等人研讨了选用硫氧化细菌和铁氧化细菌选用两段浸出法浸出粹进程中的废催化剂。第1阶段,pH操控在2~3之间,催化剂质量浓度15g/L,V、Mo、Ni浸出率别离为32. 3%、58. 0%和88.3%;第2阶段,pH操控在0. 9~1.0之间,催化剂质量浓度50g/L,金属终究浸出率别离为94.8%V、46. 3%Mo和88.3%Ni。在生物浸出进程并不只限于选用传统细菌,使用真菌-黑曲霉也能够浸出废裂化催化剂中的重金属V、Ni、Fe、Al、Sb。嗜热培育基中参加蔗糖,在30℃水浴中,拌和速度120r/min,V、Ni、Fe、Al、Sb浸出率别离为36%、9%、23%、30%、64%。尽管浸出率并不高,但比较化学办法浸出作用要好的多。可见,将生物浸出法用于从石煤中浸出钒是可行的,但这一技能尚处于开始探究阶段,还需要深入研讨和开发。
三、展望
因为石煤存在发热量低、成分杂乱、有价金属档次低一级问题使得其开发使用存在必定难度。我国大都石煤中存在钒,钒首要以类质同相方式存在于硅酸盐矿藏中,难于浸出,所以加强石煤的矿藏学及相关的化学反响研讨,对开发适宜的提钒办法、合理开发使用石煤非常重要。
现在,从石煤中提取钒的工艺相对来说还比较落后,在我国依然处于实验室研制阶段。已具规划的钠化焙烧-水浸工艺存在比较严峻的大气和水污染,没有到达绿色工艺的要求;此外,石煤中还有Mo等其它使用价值很高的金属并没有得到合理的使用,如不加收回不只给环境带来沉重负担,并且也形成资源的糟蹋。因而,开发新的环保、高效提取工艺是石煤归纳使用迫切需要处理的关键问题。
因为石煤中有价金属档次低,选用成本低、工艺简略、环境友好的生物浸出技能不失为一个较好的挑选。但是,钒对菌种毒害性较大,较少的量即有较大的致死性,因而,选用生物浸出法的关键在于驯化菌种,如菌种驯化成功,生物浸出技能将是一个颇具开展前景的绿色工艺。
锰矿石的冶炼方法
2019-01-03 15:20:48
锰矿石冶炼产品主要有高碳锰铁、中低碳锰铁、锰硅合金以及金属锰等,通称为锰质合金或锰系合金。高碳锰铁。我国主要采用高炉生产。50年代尚未形成专门厂家生产高炉锰铁(高碳锰铁),而是一些钢铁厂自炼自销,生产量很小。从1958年后,湘潭锰矿先后建起6.5m3、33m3高炉专炼锰铁,60年代以后,新余、阳泉、马钢三厂、重钢四厂等转产高炉锰铁,进入80年代,高炉锰铁发展更快。高炉锰铁产量由1981年的20万t增至1995年40万t。
电炉生产的产品包括碳素锰铁、中低碳锰铁、锰硅合金、金属锰四类。我国电炉生产最早的是吉林铁合金厂,于1956年建成投产,最大电炉容量为12500kVA;60年代初,湖南、遵义、上海等铁合金厂相继建成投产,这些厂都可生产碳素锰铁、中低碳锰铁和锰硅合金;遵义铁合金厂还用电硅热法生产金属锰。据冶金工业部1995年《全国铁合金主要技术经济指标》记载,1994年全国15家重点铁合金厂中有11家生产锰系合金产品。这些重点铁合金厂经过不断发展、扩大,为满足钢铁工业生产作出了重要贡献。80年代以来,地方中小型铁合金企业发展迅速。据资料统计,地方中小企业铁合金产量占全国比重由1980年的32.39%,上升到1989年的54.01%,到1996年已达69.85%,企业数已达1000家以上。这些中小企业大多数是采用1800kVA的小电炉,设备落后,产品质量比较差。
电炉锰铁与锰硅合金生产所用设备基本相同,都是采用矿热电炉,电炉变压器容量一般为1800~12500kVA。湖南、遵义铁合金厂分别从德国引进3000kVA和31500kVA锰硅电炉,现已投产。
我国电炉高碳锰铁的生产,一般多采用熔剂法生产工艺。锰硅合金的生产,一般都采用有渣法生产工艺。中低碳锰铁的生产,主要有电炉法、吹氧法和摇包法3种。摇包法包括在摇包中直接生产中低碳锰铁和摇包-电炉法生产中低碳锰铁。摇包-电炉法工艺比较先进、生产稳定可*、技术经济效果好,目前上海、遵义等铁合金厂都采用此法。
金属锰生产方法有火法冶炼和湿法冶炼。火法冶炼金属锰,我国始于1959年,由遵义铁合金厂首次用电硅热法试制成功,一直独家生产至今。生产工艺采用三步法,第一步用锰矿石炼成富锰渣;第二步用富锰渣炼制高硅硅锰合金,第三步用富锰渣为原料,高硅硅锰作还原剂及石灰作熔剂,即电硅热法制成金属锰。湿法冶炼主要是电解法,常称电解金属锰。我国于1956年由上海901厂建成第一家电解锰生产厂,到90年代初已有大小电解金属锰厂50余家,年总生产能力达4万余t。生产工艺流程大致分硫酸锰溶液制备、电解、后处理3个生产工序。后处理是电解完成后包括产品纯化、水洗、烘干、剥离、包装等系列操作。最终获得合格电解金属锰产品,含Mn99.70%~99.95%。
钒的选矿方法和步骤 1
2019-02-22 16:55:15
钒钛磁铁矿经选矿富集后,经过高炉炼出含钒生铁,在雾化炉或转炉吹炼过程中提取钒渣。钒渣经破坏后配加钠盐(纯碱、食盐或无水芒硝)进行化焙烧,使钒成为可溶的偏钒酸钠(NaVO3),浸取净化后加硫酸铵沉淀出[(NH4)2V6O16],再经脱熔化,铸成片状五氧化二钒。要求成分为V2O597~99%,P
电硅热法
片状五氧化二钒用75%硅铁和少数铝作复原剂,在碱性电弧炉中,经复原、精粹两个阶段炼得合格产品。复原期将一炉的悉数复原剂与占总量60~70%的片状五氧化二钒装入电炉,在高氧化钙炉渣下,进行硅热复原。当渣中V2O5小于0.35%时,放出炉渣(称为贫渣,可弃去或作建筑材料用),转入精粹期。此刻,再参加片状五氧化二钒和石灰,以脱除合金液中过剩的硅、铝等,俟合金成分到达要求,即可出渣出铁合金。精粹后期放出的炉渣称为富渣(含V2O5达8~12%),鄙人一炉开端加料时,回来使用。合金液一般铸成圆柱形锭,经冷却、脱模、破碎和清渣后即为制品。此法一般用于含钒40~60%的钒铁冶炼。钒的回收率可达98%。炼制每吨钒铁耗电1600千瓦/时左右。
钒的选矿方法和步骤2
2019-01-21 09:41:18
铝热法
用铝作还原剂,在碱性炉衬的炉筒中,采用下部点火法冶炼。先把小部分混合炉料装入反应器中,即行点火。反应开始后再陆续投加其余炉料。通常用于冶炼高钒铁(含钒60~80%),回收率较电硅热法略低,约90~95%钒和钻常呈铁的类质同像分别赋存于钛磁铁矿和黄铁矿中。
此类矿石的选矿,一般是先用弱磁选分出钒铁精矿,再用重选、强磁选、浮选、电选联合选矿方法从尾矿中回收钛铁矿和用浮选回收黄铁矿。钒铁精矿所含的钛是选矿无法除去的,可以在冶炼中分离。为了满足高钛渣炼铁必需的渣量,过分提高钒铁精矿的铁品位,有时是不合理的。从磁选尾矿中回收钛的流程,首先要保证得到优质钛精矿。研究了重选、浮选、重选一浮选、重选一强磁选一浮选、重选一强磁选等各种流程。钛铁矿精矿用电选精选,可将二氧化钛品位提高到48%以上。钛铁矿的浮选是在酸性矿浆中进行的,浮选黄铁矿回收钴应在浮选钛铁矿前进行,如果矿石含有碳酸盐矿物,必须预先浮出。
沉积型含钒炭质板岩也是我国钒矿资源中重要的一种,目前还处在研究阶段。矿石中钒呈微粒嵌布的钒云母等矿物或吸附状态存在,用选矿方法不易富集,因而研究了湿法冶金提钒。矿石先经煅烧除去炭质,然后进行钠化焙烧和水浸出。水浸残渣再,酸浸可以进一步提高钒的浸出率。有时原矿先经浮选富集成含钒粗精矿,再焙烧浸出,可以显著降低酸耗。
锂矿的浮选方法
2019-02-22 11:02:45
锂辉石的浮选有正浮选和反浮选两种计划。正浮选是在酸性介质中进行,所以又称“酸法”。它用油酸及其皂类作捕收剂,将锂辉石浮入泡沫产品中;反浮选是在碱性介质中进行,所以又称“碱法”。它用阳离子作捕收剂,浮出脉石矿藏,槽内产品就是锂辉石精矿。
正浮选的办法是,开端就向矿浆中加进行拌和、擦拭以除掉表面的污染物,脱泥和洗矿后,然后按下面三种办法处理:
(1)先浮云母,后浮锂辉石,最终浮长石。其过程是:
1)在弱酸性介质中,用阳离子浮云母;
2)将浮选尾矿浓缩至50%固体,用油酸类捕收剂及醇类起泡剂谐和后,稀释至17%固体,浮锂辉石;
3)将浮完锂辉石的尾矿用氟氢酸处理后,再加阳离子捕收剂浮选长石。
(2)先浮锂辉石,后浮云母,再浮长石。其过程是:
1)将矿浆浓缩至64%固体,加油酸、硫酸和起泡剂拌和后,稀释至21%固体,浮锂辉石;
2)锂辉石浮选尾矿中的云母,用阳离子捕收剂浮出;
3)云母浮选尾矿加氟氢酸活化长石,并加阳离子捕收剂浮长石。
(3)锂辉石和云母混合浮选,最终浮长石。其过程是:
1)在浓浆中加硫酸谐和,然后加阴离子捕收剂,浮选云母和锂辉石;
2)混合精矿在酸性介质中拌和,将云母和含铁矿藏浮出,槽中产品就是锂辉石;
3)混合浮选后的尾矿,加氟氢酸处理后,用阳离子捕收剂浮长石。
锂辉石的正浮选可举美国布列克-西尔斯选矿厂为例。该厂选用油酸作捕收剂,直接浮选锂辉石,流程见图5-23。原矿含Li20 1.26%,磨矿时加0.3kg/t,磨矿后先脱泥。脱泥后的浓浆(60%~70%固体)中参加1kg/t进行拌和、擦拭。粗选前参加200g/t油酸和250g/t环烷酸及起泡剂。精选I和精选Ⅱ中,均参加水玻璃、栲胶或起泡剂及乳酸,并参加适量的油酸。经过二次精选,得含Li20 4.92%锂精矿,收回率为63.59%。
锂辉石的反浮选在碱性矿浆中进行,以糊精、淀粉等作为锂辉石的抑制剂,松醇油作起泡剂,用胺类阳离子捕收剂浮选石英、长石和云母等脉石矿藏,槽内产品去铁之后,就是锂辉石。
美国金兹山选矿厂反浮选法收回锂辉石。该厂处理的矿石中,有用矿藏为锂辉石、锡石和绿基石,还有少数的铌铁矿、独居石和金红石等。脉石矿藏有云母、石英。选矿厂所用的原矿含锂辉石15%~38%、长石30%~56%、石英22%~72%和云母3%~5%。
浮选时先浮脉石矿藏,并从浮出的脉石矿藏平分选出云母、长石和石英精矿。浮完脉石后的尾矿再浮含铁矿藏,槽内产品就是锂精矿。精矿含锂辉石80%左右,收回率65%~71%左右。
钒钛磁铁矿高炉冶炼的强化
2019-03-04 11:11:26
一、概述
用普通大型高炉冶炼钒钛磁铁矿,尤其是冶炼时炉渣中TO2>22%的高钛型钒钛磁铁矿,曩昔国内外都认为是不可能的。因为技能上的原因,用惯例办法冶炼将会呈现炉渣粘稠,渣铁不分,炉缸堆积等现象,使正常出产难以进行。
我国攀枝花区域蕴藏着丰厚的钒钛磁铁矿,是我国三大铁矿之一。与铁矿共生的钒、钛资源在全国和国际都占有重要位置。
通过60年代中期的大规划工业性科学实验,处理了根本工艺问题,创始了高炉冶炼钒钛矿技能,为攀枝花资源的开发利用奠定了根底。并因而曾获国家发明奖。但因为一些重要的技能难题未能处理,如泡沫渣、铁水粘罐、铁损高以及档次低、渣量大等问题长时间困扰出产,冶炼工艺及操作技能也尚不彻底 泡沫渣、铁水粘罐、粘渣、铁损高、脱硫才能低是老练,使攀钢高炉目标低下。自1970年投产后,历经10年,高炉利用系数才到达不高的规划目标(1-40t/m3·d ),尔后长时间徜徉在1.5~1.6t/m3·d的较低水平,且耗费高,焦比在620kg/t以上,经济效益差,比年亏本。
进入90年代中期,攀钢以钒钛磁铁矿高炉强化冶炼为中心,展开了体系的科技攻关,进行了系列的科学实验和理论研讨,成功地开发了钒钛磁铁矿高炉强化冶炼的新技能,获得严重的打破性发展。使各项目标大幅度进步,在入炉档次低的质料条件下,高炉利用系数到达国内外先进水平,自1998年下半年以来,利用系数(未经折算的实践值)一向保持在2.0t/m3·d以上,1999年一季度均匀利用系数为2.143t/m3·d,入炉焦比降到484kg/t,吨铁喷煤98.54Kg,获得巨大经济效益(表1)。
表1 攀钢炼铁厂1990~1998年度首要技能经济目标
Table1 Maintechnicaleconomicindexfrom21990to1998forIronmakingPlantofPangang二、首要技能难题的打破
泡沫渣、铁水粘罐、粘渣、铁损高、脱硫才能低是钒钛矿高炉冶炼实验中的重要技能难题,也是攀钢高炉投产后长时间困扰出产的首要问题。
(一)泡沫渣问题 冶炼钒钛矿的高炉渣流入渣罐后,发生很多气体,使炉渣成泡沫状欢腾上涨,溢出罐外。而涨落之后,罐内只要小半罐渣,渣罐容积不能充分利用,而高炉则因出不净渣铁,导致炉内压差升高,被逼减风,无法进步冶炼强度。
通过理论研讨和出产实验,弄清了泡沫渣构成机理并找到了消除办法。从热力学分析,渣中TiO2被TiC以及饱满碳和非晶太碳复原发生很多CO气体,是导致欢腾现象的原因(图1)
图1 有关TiC反响的△G与t的联系从动力学分析,当渣中发生的CO气泡的生成速率和气泡的稳定性到达必定程度时,泡沫渣就发生欢腾现象。
Vt≥15.56u-0.3016式中Vt-气泡发生速度
CTi(C,N)-Ti(C,N)在渣中的浓度
u-参数,取值1~8
△ G-形核的活化能
△ Gf-气、渣二相体积自由能改变
△ Gh-复原成CO的化学反响自由能改变。
根据对首要参数的分析,可得出泡沫渣构成的区间(图2)
图2 泡沫渣构成的条件(全钒钛高钛渣)通过调整炉渣成分,操控渣中TiO2在23%~24%,改变了钛渣结构,使渣中TiO2活度下降,并进步炉内高温区的氧势,然后按捺了TiO2的过复原,有用地消除了泡沫渣欢腾现象。
(二)铁水粘罐问题
铁水粘罐是钒钛矿冶炼的特有现象。普通矿冶炼时铁水罐尽管也有粘结的状况,但其粘结物的熔化温度低于出铁温度,下次出铁时可被熔化,罐衬越刷越薄,一般可用300~400次。而钒钛铁水的粘罐物中则因含有V、Ti的氧化物,熔点很高,高于出铁温度,在下次出铁时不能被熔化,越结越厚,铁水罐只能用几十次。严重影响了高炉正常出产。
在研讨弄清了粘罐的机理后,发明晰吹氧化罐和氧燃化罐技能熔化粘罐物,又采纳冷扣罐、喷涂和运用腊石砖砌罐帽,炉前选用焖砂口操作根绝高炉渣过渣进罐,铁水罐加蛭石保温等办法,彻度处理了铁水粘罐问题。
(三)消除粘渣和下降铁损
跟着高炉内复原进程的进行,炉渣中一部分TiO2被复原生成钛的碳、氮化合物。TiC的熔点为3140℃±90℃,TiN 熔点为2950℃±50℃,远高于炉内最高温度,它们通常以几微米但具有极大比表面积的固相质点弥散在炉渣中和包裹在铁珠周 围,使铁珠难以聚合,渣中带铁增多,粘度增大数十倍,构成粘渣和高铁损。因为构成“高温亲液胶体”和“类网状结构”,其粘度已不能用牛顿力学核算。实验标明,在1480℃变稠的炉渣粘度η=2.817e105.34φ,其间
高炉选用低硅、钛操作,操控炉热水平,以按捺TiO2过复原。又选用特殊办法,使变稠的炉渣消稠,并活泼炉缸。强化炉前操作,缩短渣铁在炉内停留时间以及选用合理炉料结构,操控TiO2在适宜规划,然后有用地消除了粘渣,下降了铁损。
(四) 钛渣脱硫才能的改进
因为TiO2在炉渣中呈弱酸性,所以高钛渣的脱硫才能远低于普通高炉渣,Ls仅为5~9,而一般炉渣Ls为20~30。
实验室研讨标明,钛渣的碱度R 可表达为系数α=0.7,β=0.15,γ=0.6。
通过科技攻关,采纳优选适宜的炉温、炉渣碱度,关在冶炼操作中削减其标准偏差,改进钛渣功能,添加流动性,强化冶炼,活泼炉缸以及改进入炉质料质量,进步风温,下降硫负荷,然后改进了钛渣脱硫才能,明显地进步了生铁质量,使铁水均匀含硫由0.075%降至0.054%。
三、优化炉料结构,进步钒钛烧结矿的强度
为改进质料质量,将烧结矿碱度由1.2进步到1.75,避开了钒钛烧结矿低强度区间,削减了粉末,又使高炉配猜中不再加石灰石,促进焦比下降。
为了施行精料政策,改变大渣量对强化冶炼构成的困难,近年来,将进步入炉矿石档次作为优化炉料结构的要点之一。通过适度进步钒钛铁精矿档次,添加烧结中富矿粉用量以及进步熔剂的有用CaO等办法,使入炉矿石档次由1995年的45.47%进步至1998年的46.57%,1999年1季度又进步至47.01%。不只入炉铁量添加,并且因为渣量削减,改进了炉内压差散布,下降了铁损和焦比,使攀钢高炉获得了进步1%档次,添加产值3%以上的效益。
高钛型钒钛磁铁精矿的特色是TiO2、Al2O3高, SiO2低,成球性差,液相量少,是一种特别难烧的矿石。针对上述特色,成功地开发了一系列技能办法,如高负压厚料层操作、配加生石灰和钢渣、富氧焚烧、添加复合粘结剂、选用ISF偏析布料技能、燃料二次分加、烧结矿喷洒卤化物等,使钒钛烧结矿的冷、热强度明显进步,质量改进,产值添加。
四、高炉操作的优化与冶炼的强化
在处理了钒钛矿冶炼的技能难题、出产步入正常的根底上,环绕高炉冶炼,不断优化工艺操作参数和操作准则,发明晰一套完善的工艺技能。包含钒钛矿冶炼合理的热准则与造渣准则,上部调剂的高压操作、无钟炉顶的多环布料与中心加焦技能,中部调剂操控适宜的暖流强度,下部调剂以120~150KJ/s的高鼓风动能以及防止钛渣变稠的特有办法来到达活泼炉缸,强化冶炼的意图。
喷吹煤粉关于冶炼高钛型钒钛矿的攀钢高炉,长时间以来一向是技能领域里的一个禁区。1967年在首钢老2号高炉进行钒钛矿冶炼模仿实验时,曾两次试喷煤粉均告失败。因为一部分未彻底焚烧的煤粉进入炉缸,与高温熔渣触摸,构成渣焦反响,碳与效果的成果,生成高溶点的钛的碳氮化合物。TiO2+3C=TiC+2CO2, △F0t=125500-80.29T;TiO2+3C+1/2N2=TiN+2CO2,△F0t=90100-61.24T。使炉渣变稠,渣铁难分,正常出产无法进行,被逼停喷。
从80年代开端,攀钢高炉再次实验喷吹煤粉。为了确保煤粉的快速彻底焚烧,防止炉渣变稠,研发发明晰氧煤喷。据查新,其时在国内外均属创始。1991年攀钢高炉氧煤混喷技能又列入国家“八五”要点科技攻关项目,进一步完善了喷吹体系,并进行了不同结构氧煤的出产实验(图3),获得较好效果,完成了用最少数氧到达最大喷煤量的意图。现在,喷煤量已到达均匀120kg/t的水平。
此外,攀钢高炉还开发了钒钛矿冶炼的富氧鼓风、炉前操作的强化技能与焖砂口的运用等。
图3 氧煤结构示意图 为了树立高炉冶炼钒钛矿的数学模型,以逐步完成冶炼进程的自动化操控,在攀钢4号高炉开发了核算机专家体系。用美国西屋公司WDPF核算机开发炉况判别和热状况判别两个子体系,热状况又以预告铁水钛含量作为高炉操作炉热水平操控的根据。[Ti]的预告选用自适应和人工神经网络归纳预告体系,当炉况正常时用自适应体系,炉况不顺时用人工神经网络体系预告,在差错±0.03%规划内命中率为86.8%,有必定参阅效果(图4、5、6。)
图4 攀钢4号高炉炉况断定及操作辅导专家体系结构图图5 铁水钛含量归纳预告体系结构图6 神经网络预告钛含量结构五、冶炼钒钛矿的高炉炉体解剖及护炉效果研讨
为了深化探究高炉冶炼钒钛矿的规则,在410厂0.8m3小高炉进行了解剖实验0。该高炉用攀枝花钒钛矿冶炼,炉渣TiO2为27%~28%。
通过解剖看出,整个微观状况仍然明显地存在自上而下的块状带、软熔带、滴落带和风口回旋区。炉内剖面如图7。
图7 0.8m3高炉冶炼钒钛磁铁矿的剖面状况通过解剖实验,了解了高炉内铁、钒、钛等元素的行为,炉内温度的散布状况以及Ti (C ,N)的生成状况(图8),对钒钛矿高炉冶炼的理论研讨和出产实践都有重要参阅效果。
图8 不同高度上t, RFe RTi,η的改变冶炼钒钛矿对高炉的炉缸、炉底有维护效果。这是在攀钢1、2、3号高炉大修停炉查询时观察到的。
冶炼钒钛矿的高炉在炉缸和炉底的砖衬上有一层结构细密的沉积物,经化学物相、岩相、X射线和扫描电镜分析,它是含有很多高熔点贱价钛化合物与特殊形状的金属铁和其它渣相矿藏的一种多相物质。沉积物的上部含有较多的黑钛石,下部含有较多的Ti(C,N)固溶体。因为熔点高,熔化终了温度达1500℃以上,在该区域的温度下不能熔化,然后维护了炉缸炉底的砖衬(图9)。
图9 攀钢2号高炉炉缸炉底腐蚀状况冶炼钒钛矿的高炉、炉缸、炉底腐蚀远较冶炼普通矿的高炉轻缓,用粘土砖砌筑炉底就可保10年以上寿数。在冶炼普通矿的高炉中配加少数含钛物料(TiO27~15Kg/t)也可起到护炉效果。1980年今后在国内高炉逐步推行,已有64座高炉运用攀枝花的钒钛矿护炉,对延伸高炉寿数起了很大效果。
六、体系理论的树立
通过很多的科学实验研讨和出产实践验证,树立了钒钛磁铁矿高炉冶炼的体系理论,归于国际创始。
这一理论包含高炉冶炼钒钛磁铁矿的根本原理,钒钛磁铁矿的复原进程,铁、钒、钛等元素在高炉内的行为,钒、钛氧化物复原反响的热力学和动力学以及高钛渣的各种特性及其机理,高炉冶炼钒钛磁铁矿的规则以及钒钛磁铁精矿的烧结特性等。
在正确理论的辅导下,攀钢高炉冶炼钒钛磁铁矿的出产技能得到迅速发展。
七、结语
攀钢高炉通过科学实验和技能攻关,成功地开发了钒钛磁铁矿强化冶炼的新技能,树立了善的理论与运用技能,使首要出产目标获得严重打破。在入炉矿石档次仅46%的条件下,运用难冶炼的钒钛矿,高炉利用系数到达2.0t/m3·d以上,居国内外同类型高炉前列。因为规划产值添加,耗费下降,质量改进以及钒制品收益添加,每年为攀钢添加经济效益达数亿元。此外,钒钛矿护炉效果在国内高炉推行运用,为延伸高炉寿数起了很大效果,社会效益也非常明显。
陕西某钒矿提钒新工艺研究
2019-02-18 15:19:33
陕西某钒矿提钒新工艺研讨
李洁 海 马晶
西北有色地质研讨院
摘 要 传统的钠化焙烧提钒工艺本钱较低,可制得纯度达98%以上的五氧化二钒;新工艺则具有无污染的长处,在实验目标附近的情况下,出产本钱不高,有杰出的经济效益,环境效益和社会效益。
关键词 超细磨矿 焙烧 钒
陕西某钒矿系吸附涣散状况存在的钒矿,不宜用机械选矿办法富集。在该区域的同类矿石中,提钒办法大致有两类,一是传统的钠化焙烧提钒工艺,该工艺技能老练、操作简略,建厂出资和出产本钱相对较低,但由于选用工业食盐作钠化剂,焙烧时发作很多的、氯化氢等有毒气体,对周围环境形成了严重破坏;二是酸浸-萃取提钒工艺,该工艺可削减环境污染,但出产本钱和建厂出资过大,致使出产厂商不堪重负。本研讨标明,选用超细磨矿-无增加剂焙烧-助浸提钒工艺,可获得较好的实验目标,且不形成环境污染,在现在超细磨矿技能日趋完善、本钱不断下降的情况下,新工艺为该类矿石的开发利用展示了新的远景。
1 矿石性质
矿石类型为泥岩与炭硅质岩的混合矿石,原矿含V2O51.60%,矿石中首要金属矿藏为褐铁矿、黄铁矿、铁钒锐钛矿、钒铁矿等。首要非金属矿藏为石英、泥质和炭质,一起还有少数碳酸盐矿藏和磷灰石。钒的赋存状况较杂乱,除在钒铁矿、钒铁锐钛矿中散布以外,经电子探针分析标明,矿石中占很大份额的石英和褐铁矿中普遍存在涣散状况的钒。原矿多元素分析成果见表1。
表1 原矿多元素分析成果
成份V2O5TiO2P2O5Na2OK2OFe2O3SiO2Al2O3含量(%)1.600.270.640.121.666.8673.863.22成份MgOCaOCoNiAsSTCMo含量(%)2.421.940.0020.0160.0060.520.440.016
2 提钒工艺
2.1 实验想象
矿石中的贱价钒经焙烧可氧化成V2O5,如其能与矿石自身所含K、Na元素生成可溶性盐,在浸出作业可再参加有利该盐类溶解的助浸剂,则可使矿石中的钒有用转化,后经二段沉钒作业即可得到含V2O598%以上的精钒。
2.2首要因素对焙烧转浸率的影响
2.2.1磨矿细度对焙烧转浸率的影响:
磨矿细度对焙烧转浸率的影响见表2。[next]
表2 磨矿细度对焙烧转浸率的影响实验成果
磨矿细度(%)V2O5转浸率(%)-76μm含量-40μm含量-30μm含量-10μm含量91.8///63.75/87//65.00//88/69.38//93.06075.00
实验成果标明,磨矿细度越细,焙烧转浸率越高。
2.2.2焙烧温度对转浸率的影响
焙烧温度对转浸率的影响成果见表3
表3 焙烧温度对转浸率的影响
焙烧温度(℃)转浸率(%)75013.7580076.8885078.13
实验成果标明,当750℃时,转浸率很低。而温度升至800℃时转浸率急升至76.88%,800℃今后趋于稳定。
2.2.3 焙烧时刻对转浸率的影响
焙烧时刻对转浸率的影响成果见表4
表4 焙烧时刻对转浸率的影响
焙烧时刻(小时)转浸率(%)165.63276.88377.50479.38
实验成果标明,跟着焙烧时刻的增加,转浸率呈上升的趋势,但2小时以上时趋于稳定。
2.3 新工艺与钠化焙烧法转浸率的比较
焙烧、浸出作业新工艺与钠化焙烧法异同点见表5。
表5 钠化法与新工艺异同点
相同点相异点V2O5转浸率(%)焙烧温度800℃
焙烧时刻 2小时钠化法增加10%NaCl磨细度-76µm90%水浸浸出78.71新工艺磨矿细度-10µm60%
助浸浸出76.88[next]
2.4 其他作业
原矿磨矿焙烧后,加温拌和助浸浸出,浸出液经二段沉钒,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上。
3 成果评论
新工艺与钠化焙烧法比较,实验目标挨近,在焙烧浸出段的首要区别是钠化焙烧加钠化剂氯化钠,新工艺选用超细磨矿,另外在浸出段进行助浸浸出,它的首要长处是无污染。
材料标明焙烧机理为:
焙烧钠化法的机理:
2NaCl+O2+H2O(g)+V2O3=2NaVO3+HCl↑
4NaCl+3O2+2V2O3=4NaVO3+2Cl2↑
其中有氯化氢和放出污染环境。
而新工艺在焙烧时发作的仅是贱价钒的氧化反响。
V2O3 + O2= V2O5
2V2O4 + O2= 2V2O5
故不形成空气污染。
从出产本钱上讲,钠化焙烧所需氯化钠的本钱,能够部分乃至悉数抵销新工艺中超细磨矿的本钱,跟着超细磨矿技能的进一步开展,磨矿本钱还有或许进一步下降。
4 定论
(1)本实验选用超细磨矿—无增加剂焙烧—助浸提钒新工艺可获得钒焙烧转浸率75%以上,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上的实验目标。
(2)新工艺为无污染工艺,出产本钱挨近钠化焙烧,且跟着超细磨技能的不断开展,还有或许进一步下降。
参考文献
1 戴文灿等 《石煤提钒归纳利用新工艺的研讨》
2 邹晓勇等 《含钒石煤无盐焙烧出产五氧化二钒工艺的研讨》
不锈钢的冶炼方法
2019-03-07 10:03:00
1.AOD精粹法
AOD是一种转炉,经过转炉旁边面的风口喷吹氧气、氮气、氩气、空气和二氧化碳气,并从炉顶氧喷吹氧气、氩气和氮气。这种办法能够使用很多的废钢和高碳铬铁。初始碳含量为3%,冶炼后可降至0.015%。经电炉冶炼的钢水经过钢包送入AOD炉,向熔池喷吹氧气和氩气,下降碳含量,添加铬的氧化。为了保证快速脱碳,下降铬损,节约氩气,吹炼初期应选用低的氩氧比。跟着碳含量的下降,进步氩氧比。添加氧化物(如硅铁)、熔剂(如石灰和萤石),经过加强吹氩拌和,将氧化铬转化为金属,以出产低硫不锈钢。如出产AISI304,典型的消耗量是:氩气约12Nm3/t钢,氮气约10Nm3/t钢,氧气约>6Nm3/t钢,石灰约5kg/t钢,晶石约3kg/t钢,铝约2kg/t钢,复原用硅约8kg/t钢,脱碳金属料约135kg/t,从装料到出钢的时刻一般为60min左右。选用AOD法,铬的收得率约为96%,锰为88%,总的金属收得率为95%。
2.KAWASAKI-BOP和KAWASAKI-OBM-S法
KAWASAKI-BOP转炉类似于从炉顶氧吹氧的BOF氧气转炉,有7个能够吹氧的底部风口,用气冷却风口(气体裂化)。经过转炉的风口还可喷吹石灰粉。Kawasaki-OBM-S转炉是由奥钢联开发的,是BOP法的开展,风口装置于转炉的旁边面或底部,还装有顶部氧。顶部气体选用氧气、氮气和氩气,经过底部风口喷吹氧气、氮气、氩气和烃类气体。天然气和用于风口维护和进步耐火材料的寿数。用这种转炉精粹AISI304,典型消耗量是:氧气29Nm3/t钢,氮气约为13Nm3/t钢,氩气约为16.5Nm3/t钢,用于复原的硅约为11kg/t钢,石灰约为50kg/t钢,白云石20kg/t钢,萤石约为8kg/t钢。 3.CREUSOTLOIREUDDEHOLM(CLU)法
这种转炉法选用蒸汽作为稀释气体,而不是一般所用的氩气。此工艺是由瑞典的Uddeholm和法国的CreusotLoire共同开发的。这种转炉从底部吹氧气、蒸汽、氮气和氩气,一起,从炉顶吹氧气、氮气和氩气。脱碳时,开端吹氧气-蒸汽混合气体。因为蒸汽和熔融金属的吸热反应并且铬损较AOD法大得多,因而,该工艺的功率较低。选用这种转炉,耗氩量下降,但耗硅量却很高,并且钢中氢含量添加。现在的趋势是用更多的氩气来替代蒸汽,以进步这种转炉的功率。用这种转炉出产AISI304,耗氧量约为2Nm3/t钢,氮气约为13.5Nm3/t钢,蒸气为10.4Nm3/t钢,氩气为7Nm3/t钢,复原用硅约为15.5kg/t钢,氢含量为5.9×10-6。
4.金属精粹法(MRP)
这种转炉是由曼内斯曼·德马克开发的,该工艺包含含铬、镍熔融金属的装料,选用氧和惰性气体脱碳。经过转炉底部的风****替地吹气,氧气未经惰性气体稀释,仅仅吹氧后再吹惰性气体,下降分压,加速脱碳率,进步铬的收得率,下降耗硅量和渣中的氧化铬。MRP-L转炉是一种改进型,氧气从炉顶吹入,惰性气体从转炉底部的多孔塞吹入并可替代底部风口。该工艺可选用比AOD法更高的喷吹率,并且风口腐蚀最少。在转炉中的熔融金属的中间碳到达必定水平后,转入脱碳。
钛和钒矿石的选矿方法
2019-01-29 10:09:24
(一)钒钛磁铁矿石
岩浆型钒钛磁铁矿石是我国钛和钒的主要资源。矿石中主要有用矿物有钛磁铁矿和钛铁矿,以中粒嵌布为主;脉石主要是硅酸盐矿物,有的也有碳酸盐矿物和磷灰石等;常伴生钒、硫和钴等成分。钒和钴常呈铁的类质同像分别赋存于钛磁铁矿和黄铁矿中。此类矿石的选矿,一般是先用弱磁选分出钒铁精矿,再用重选、强磁选、浮选、电选联合方法从尾矿中回收钛铁矿和用浮选回收黄铁矿,钒铁精矿所含的钛是选矿无法除去的,可以在冶炼中分离。为了满足高钛渣炼铁必需的渣量,过分提高钒铁精矿的铁品位,有时是不合理的。从磁选尾矿中回收钛的流程,首先要保证得到优质钛精矿。研究了重选、浮选、重选-浮选、重选-强磁选-浮选、重选-强磁选等各种流程。钛铁矿精矿用电选精选,可将二氧化钛品位提高到48%以上,钛铁矿的浮选是在酸性矿浆中进行的,浮选黄铁矿回收钴应在浮选钛铁矿前进行,如果矿石含有碳酸盐矿物,必须预先浮出。
钒铁精矿中钒的提取用冶炼方法有火法和湿法两种,火法提钒是钒铁精矿经高炉冶炼得含钒铁水,再经转炉吹炼钒渣,钒渣进一步用湿法提炼得含钒产品。火法提钒已用于工业生产中,但钒的回收率较低,湿法提钒是铁精矿直接进行钠化焙烧浸出,得到含钒和含铁产品,含铁产品送往炼铁。湿法提钒,资源的综合利用较好,钒的回收率较高,但尚处在工业试验阶段。热液型含钒铁矿石的提钒方法与以上相同。
(二)钛铁矿砂矿
钛砂矿中钛矿物以钛铁矿为主,金红石、白钛石和锐钛矿等较少;常与锆英石和独居石等共生,重砂矿物呈细粒状态;脉石以硅盐矿物为主,生产上采用重选,磁选和电选联合流程。砂矿先经圆锥选矿机、扇形溜槽、螺旋选矿机、跳汰或摇床等预先富集,得到含重砂矿物的粗精矿,再用中、强磁选回收钛铁矿;强磁选回收独居石;摇床除脉石;电选分离锆英石与金红石,得到多种精矿。为了得到合格精矿,一般粗精矿的精选流程作业多,变化大,有时钛铁矿精矿用浮选进一步除磷。
除钒钛磁铁矿石和钛砂矿外,还有少数钛的脉矿。对变质基性岩型金红石矿石用重选-强磁选-电选、浮选和浮选-焙烧磁选等流程试验,得到金红石精矿。对辉长岩型含磷灰石钛铁矿石用浮选-重选流程试验,得到钛铁矿和磷灰石两种精矿。
由于高钛矿物资源有限,研究了从钛铁矿制取入造金红石的各种方法,例如,选择氯化法和还原锈蚀法等。
(三)含钒炭质板岩
沉积型含钒炭质板岩也是我国钒矿资源中重要的一种,目前还处在研究阶段。矿石中钒呈微业嵌布的钒云母等矿物或及附状态存在,用选矿方法不易富集,因而研究了湿法冶金提钒。矿石先经煅烧除去炭质,然后进行钠化焙烧和水浸出。水浸残渣再用酸浸可以进一步提高钒的浸出率,有时原矿选经浮选富集成含钒粗精矿,再焙烧浸出,可以显著降低酸耗。
无污染钒矿选冶试验
2019-02-20 11:03:19
陕西某钒矿系吸附涣散状况存在的钒矿,不宜用机械选矿办法富集。在该区域的同类矿石中,提钒办法大致有两类,一是传统的钠化焙烧提钒工艺,该工艺技能老练、操作简略,建厂出资和出产本钱相对较低,但由于选用工业食盐作钠化剂,焙烧时发作很多的、氯化氢等有毒气体,对周围环境形成了严重破坏;二是酸浸-萃取提钒工艺,该工艺可削减环境污染,但出产本钱和建厂出资过大,致使出产厂商不堪重负。本研讨标明,选用超细磨矿-无增加剂焙烧-助浸提钒工艺,可获得较好的实验目标,且不形成环境污染,在现在超细磨矿技能日趋完善、本钱不断下降的情况下,新工艺为该类矿石的开发利用展示了新的远景。
一、矿石性质
矿石类型为泥岩与炭硅质岩的混合矿石,原矿含V2O51.60%,矿石中首要金属矿藏为褐铁矿、黄铁矿、铁钒锐钛矿、钒铁矿等。首要非金属矿藏为石英、泥质和炭质,一起还有少数碳酸盐矿藏和磷灰石。钒的赋存状况较杂乱,除在钒铁矿、钒铁锐钛矿中散布以外,经电子探针分析标明,矿石中占很大份额的石英和褐铁矿中普遍存在涣散状况的钒。原矿多元素分析成果见表1。
表1 原矿多元素分析成果 成份V2O5TiO2P2O5Na2OK2OFe2O3SiO2Al2O3含量(%)1.600.270.640.121.666.8673.863.22成份MgOCaOCoNiAsSTCMo含量(%)2.421.940.0020.0160.0060.520.440.016
二、提钒工艺
(一) 实验想象
矿石中的贱价钒经焙烧可氧化成V2O5,如其能与矿石自身所含K、Na元素生成可溶性盐,在浸出作业可再参加有利该盐类溶解的助浸剂,则可使矿石中的钒有用转化,后经二段沉钒作业即可得到含V2O598%以上的精钒。
(二)首要因素对焙烧转浸率的影响
1、磨矿细度对焙烧转浸率的影响:
磨矿细度对焙烧转浸率的影响见表2。
表2 磨矿细度对焙烧转浸率的影响实验成果 磨矿细度(%)V2O5转浸率(%)-76μm含量-40μm含量-30μm含量-10μm含量91.8///63.75/87//65.00//88/69.38//93.06075.00
实验成果标明,磨矿细度越细,焙烧转浸率越高。
2、焙烧温度对转浸率的影响 焙烧温度对转浸率的影响成果见表3表3 焙烧温度对转浸率的影响 焙烧温度(℃)转浸率(%)75013.7580076.8885078.13
实验成果标明,当750℃时,转浸率很低。而温度升至800℃时转浸率急升至76.88%,800℃今后趋于稳定。
3、焙烧时刻对转浸率的影响
焙烧时刻对转浸率的影响成果见表4
表4 焙烧时刻对转浸率的影响 焙烧时刻(小时)转浸率(%)165.63276.88377.50479.38
实验成果标明,跟着焙烧时刻的增加,转浸率呈上升的趋势,但2小时以上时趋于稳定。
(三)新工艺与钠化焙烧法转浸率的比较
焙烧、浸出作业新工艺与钠化焙烧法异同点见表5。
表5 钠化法与新工艺异同点 相同点相异点V2O5转浸率(%)焙烧温度800℃
焙烧时刻 2小时钠化法增加10%NaCl磨细度-76µm90%水浸浸出78.71新工艺磨矿细度-10µm60%
助浸浸出76.88
(四)其他作业
原矿磨矿焙烧后,加温拌和助浸浸出,浸出液经二段沉钒,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上。
三、成果评论
新工艺与钠化焙烧法比较,实验目标挨近,在焙烧浸出段的首要区别是钠化焙烧加钠化剂氯化钠,新工艺选用超细磨矿,另外在浸出段进行助浸浸出,它的首要长处是无污染。
材料标明焙烧机理为:
焙烧钠化法的机理:
2NaCl+O2+H2O(g)+V2O3=2NaVO3+HCl↑
4NaCl+3O2+2V2O3=4NaVO3+2Cl2↑
其中有氯化氢和放出污染环境。
而新工艺在焙烧时发作的仅是贱价钒的氧化反响。
V2O3 + O2= V2O5
2V2O4 + O2= 2V2O5
故不形成空气污染。
从出产本钱上讲,钠化焙烧所需氯化钠的本钱,能够部分乃至悉数抵销新工艺中超细磨矿的本钱,跟着超细磨矿技能的进一步开展,磨矿本钱还有或许进一步下降。
四、定论
(一)本实验选用超细磨矿—无增加剂焙烧—助浸提钒新工艺可获得钒焙烧转浸率75%以上,归纳闭路实验可获得72.26%的提钒总回收率,精钒档次到达98%以上的实验目标。
(二)新工艺为无污染工艺,出产本钱挨近钠化焙烧,且跟着超细磨技能的不断开展,还有或许进一步下降。