非晶硅 多晶硅
2017-06-06 17:50:11
非晶硅薄膜既环保又节能,太阳能光伏发电蕴含巨大发展前景,而太阳能光伏板主要分为两类:1) 单晶/多晶硅及 2) 薄膜太阳能电池。以往,中国制造的太阳能光伏板主要是使用多晶硅。 多晶硅在提炼过程中需要使用千多度高热才能完成,生产过程中耗用大量能源,而且造价相对昂贵。此外,多晶硅在生产过程中还会排放超过十种的有毒物质。据统计,2008年,中国便用了3,000万吨煤炭提炼多晶硅,所产生的二氧化碳等空气污染物排放量非常之高,故这才是国家抑制多晶硅的真正原因。 中国占全球光伏组件
产量
39%,是全球最大的生产国,但99%的产品都是出口外国,这代表中国正为国外太阳能发展承担上环境污染的代价,强制减少多晶硅的产能可避免环境进一步恶化。 为降低成本及保护环境,非晶硅薄膜技术的需求正快速上升。生产多晶硅需要较多能源,而且能源回收期长达7年;非晶硅薄膜所采用的硅材料则少于多晶硅的1%,能源回收期亦只需要1.5年,无论对环境的破坏,还是污染物的排放量均符合国家减排节能环保的要求。 非晶硅薄膜被视为一种节能的技术,但究竟有何优势呢?首先在转换效能上,多晶硅因应硅不可改变的物理特性,其最高效能为15%至16%;而非晶硅薄膜可透过沉淀不同化学特性的物质于不同段层,以提升转换效能可由6%提升至12%或更高,于实验室的效率最高更可达17.8%。其次,薄膜吸收较广的阳光波长,在阴天或微弱阳光下运作亦较佳;相反,多晶硅的效能在较暗的情况下就会急速下降。因此,非晶硅薄膜在实际环境下的转换效能较多晶硅高出10%以上。
含钒溶液的钒酸钙、钒酸铁盐沉淀法
2019-01-24 14:01:24
钒酸钙、钒酸铁盐沉淀法主要用于从低浓度含钒溶液中回收钒。
一、钒酸钙法
加入CaCl2、Ca(OH)2、CaO,随溶液pH值的变化而生成不同的沉淀。pH值10.8~117.8~9.35.1~6.1沉淀物正钒酸钙焦钒酸钙偏钒酸该Ca3(VO4)2CaV2O7Ca(VO3)2溶解度小小稍大
通常在强烈搅拌下逐渐加入沉钒剂,加Ca2+后 等杂质也会进入沉淀,硅胶也混入沉淀。最经济有效地沉淀物位焦钒酸钙,沉钒率一般可达97%~99.5%。
二、钒酸铁沉淀法
用铁盐或亚铁盐作沉淀剂,在弱酸性条件下,将含钒溶液倒入硫酸亚铁溶液中,并不断搅拌、加热,便会析出绿色沉淀物。由于二价铁会部分氧化成三价铁,V2O5会部分还原成V2O4,所以沉淀物的组成多变,其中包括Fe(VO3)2、Fe(VO3)3、VO2·xH2O、Fe(OH)3等。若沉淀剂采用FeCl3或Fe2(SO4)3,则析出黄色xFe2O3·yV2O5·zH2O沉淀。本法钒的沉淀率可达99%~100%。
钒酸铁及钒酸钙均可作冶炼钒铁的原料,或作为进一步提纯制取V2O5的原料。
铝基非晶涂层的制备工艺
2019-03-01 10:04:59
铝基非晶合金材料不只具有高的比强度,还具有出色的耐性、超塑性、耐磨性和耐蚀性等利益,是一种具有广大运用前景的新式结构材料。铝基非晶合金材料可以选用急冷法或机械合金化等方法来获得,但这些方法所获得的材料,通常是带材、丝材或许粉末,将这些材料制备成可利用的块状材料,尚需求一些特别的成型技术。当时制备块体铝基非晶合金的方法有温揉捏法、热揉捏法、动能成型法、粉末轧制法、喷发成型法、超高压固结成型法、电火花烧结法等。以上这些制备成型技术均可获得较为纯真的铝基非晶态合金材料,且具有优秀的功用,但是这些方法存在过于繁琐的缺点,不符合成形制备一体化思想,而且出产周期较长,本钱较高。
与传统制备方法比较,热喷涂技术在制备非晶材料方面具有其一同的优势,该技术不只可快速升温熔化材料,一同具有快速冷却凝结材料的特征,有利于构成非晶相涂层;而且选用热喷涂技术,既可以体现热喷涂优质、高效、低本钱的优势,又可以获得具有优质耐磨、防腐等功用的表面防护涂层。因而,选用热喷涂技术制备铝基非晶涂层是铝基非晶合金材料制备的新拓展,具有广大的工业运用前景。
当时,选用热喷涂技术制备非晶态合金的技术主要有等离子喷涂、超音速火焰喷涂和高速电弧喷涂等制备技术。等离子喷涂和超音速火焰喷涂选用的原材料为预制的非晶粉末,而高速电弧喷涂依据材料制备与成形一体化的思路,喷涂富含非晶涂层构成元素的粉芯丝材,在喷涂过程中可完成构成非晶涂层。尽管高速电弧喷涂技术在制备Fe基非晶纳米晶复合涂层方面已经有不少成功的报道,但选用该技术制备铝基非晶涂层仍是一个簇新的研讨领域。
近来,装甲兵工程学院成功运用高速电弧喷涂技术制备出了铝基非晶纳米晶复合涂层。该高速电弧喷涂系统主要是该实验室自行研制的由机器人控制的高速喷和电源系统组成。在喷涂前对基体试样进行喷砂处置。经过优化的较好喷涂技术参数为:喷涂电压为34V,喷涂电流为120A,空气压力为0.7MPa,喷涂距离为200mm。对所获得的涂层查看成果标明,涂层与基体联络出色,涂层组织较为细密,孔隙少;涂层呈现出典型的层状结构,且层与层之间联络非常细密;涂层由非晶相和晶化相一同组成的。Al基非晶涂层的显微硬度值约为HV311,与传统制备方法获得的铝基非晶合金材料的显微硬度值恰当。据评价,此类材料很可能成为将来的防腐换代涂层材料。
装甲兵工程学院的作业标明,在高速电弧喷涂过程中,熔化态液滴在基体表面扁平化过程中具有极高的冷却速率,简略获得非晶涂层或许非晶纳米晶复合涂层,而且涂层的堆积率较高,本钱低,在大面积制备铝基非晶涂层方面将有重要的运用前景。
铋的硅氟酸溶液电解
2019-03-04 11:11:26
铋的电解液由与铋组成,所用阳极是经开始火法精粹的粗铋。开始火法精粹首要包含两个工序:榜首工序是熔析除铜后加硫拌和除铜、铅,然后用洗刷脱硫;第二工序是用惯例的碱性精粹与氧化精粹除砷、锑。
阳极选用立模浇铸,阴极选用铜板,悬挂在电解槽中,在直流电效果下,发作下列反响:铋的溶液电解工艺流程图如图1所示。图1 铋的溶液电解工艺流程
各种杂质在电解中的行为与在氯化溶液中类似,不用造液。电解液含铋在80~100克/升,H2SiF8 330~350克/升,室温,当电流密度40~80安/米2时,槽压0.3伏,阴极分出纯度达99.9%。
日本住友公司国富冶炼厂曾选用电解精粹铋、阳极的典型分析为Bi 98.77%,Pb 0.12%、Ag 0.022%、Cu 0.032%、As 0.03%、Sb 0.026%。选用笔直型阳极浇铸机铸成挂耳型阳极,每块重约为70千克,阳极袋套用聚料。运用18个衬沥青的钢筋混凝土电解槽,尺度为:长×宽×深=3350×760×850毫米。28块阳极,24块阴极,板距离为130毫米。电解液含铋40克/升,游离330~350克/升,每出产一吨铋加胶一克,电解的总电流为850安,总电压4.5伏,选用硅整流器,槽电压0.2伏,电流密度60安∕米2,电流效率93%,残极率约40%,阳极泥率0.5%,分出铋洗刷后脱落熔化铸成5千克锭。电铋质量为:铋高于99.99%,铜与铅均为2ppm,铁与锌均为3ppm,微量银、砷、锑。
喷涂工艺:铝基非晶涂层的制备工艺
2019-03-12 09:00:00
铝基非晶合金材料不只具有高的比强度,还具有出色的耐性、超塑性、耐磨性和耐蚀性等利益,是一种具有广大运用前景的新式结构材料。铝基非晶合金材料可以选用急冷法或机械合金化等方法来获得,但这些方法所获得的材料,通常是带材、丝材或许粉末,将这些材料制备成可利用的块状材料,尚需求一些特别的成型技术。当时制备块体铝基非晶合金的方法有温揉捏法、热揉捏法、动能成型法、粉末轧制法、喷发成型法、超高压固结成型法、电火花烧结法等。以上这些制备成型技术均可获得较为纯真的铝基非晶态合金材料,且具有优秀的功用,但是这些方法存在过于繁琐的缺点,不符合成形制备一体化思想,而且出产周期较长,本钱较高。
与传统制备方法比较,热喷涂技术在制备非晶材料方面具有其一同的优势,该技术不只可快速升温熔化材料,一同具有快速冷却凝结材料的特征,有利于构成非晶相涂层;而且选用热喷涂技术,既可以体现热喷涂优质、高效、低本钱的优势,又可以获得具有优质耐磨、防腐等功用的表面防护涂层。因而,选用热喷涂技术制备铝基非晶涂层是铝基非晶合金材料制备的新拓展,具有广大的工业运用前景。
当时,选用热喷涂技术制备非晶态合金的技术主要有等离子喷涂、超音速火焰喷涂和高速电弧喷涂等制备技术。等离子喷涂和超音速火焰喷涂选用的原材料为预制的非晶粉末,而高速电弧喷涂依据材料制备与成形一体化的思路,喷涂富含非晶涂层构成元素的粉芯丝材,在喷涂过程中可完成构成非晶涂层。尽管高速电弧喷涂技术在制备Fe基非晶纳米晶复合涂层方面已经有不少成功的报道,但选用该技术制备铝基非晶涂层仍是一个簇新的研讨领域。
近来成功运用高速电弧喷涂技术制备出了铝基非晶纳米晶复合涂层。该高速电弧喷涂系统主要是该实验室自行研制的由机器人控制的高速喷和电源系统组成。在喷涂前对基体试样进行喷砂处置。经过优化的最好喷涂技术参数为:喷涂电压为34V,喷涂电流为120A,空气压力为0.7MPa,喷涂距离为200mm。对所获得的涂层查看成果标明,涂层与基体联络出色,涂层组织较为细密,孔隙少;涂层呈现出典型的层状结构,且层与层之间联络非常细密;涂层由非晶相和晶化相一同组成的。Al基非晶涂层的显微硬度值约为HV311,与传统制备方法获得的铝基非晶合金材料的显微硬度值恰当。据评价,此类材料很可能成为将来的防腐换代涂层材料。
作业标明,在高速电弧喷涂过程中,熔化态液滴在基体表面扁平化过程中具有极高的冷却速率,简略获得非晶涂层或许非晶纳米晶复合涂层,而且涂层的堆积率较高,本钱低,在大面积制备铝基非晶涂层方面将有重要的运用前景。
制备铝基非晶涂层的新工艺
2019-03-13 09:04:48
铝基非晶合金材料不只具有高的比强度,还具有杰出的耐性、超塑性、耐磨性和耐蚀性等长处,是一种具有宽广使用远景的新式结构材料。铝基非晶合金材料能够选用急冷法或机械合金化等办法来取得,但这些办法所取得的材料,通常是带材、丝材或许粉末,将这些材料制备成可利用的块状材料,尚需求一些特殊的成型工艺。现在制备块体铝基非晶合金的办法有温揉捏法、热揉捏法、动能成型法、粉末轧制法、喷发成型法、超高压固结成型法、电火花烧结法等。以上这些制备成型工艺均可取得较为纯洁的铝基非晶态合金材料,且具有优异的功能,可是这些办法存在过于繁琐的缺陷,不符合成形制备一体化思维,并且出产周期较长,本钱较高。 与传统制备办法比较,热喷涂技能在制备非晶材料方面具有其一起的优势,该技能不只可快速升温熔化材料,一起具有快速冷却凝结材料的特征,有利于构成非晶相涂层;并且选用热喷涂技能,既能够发挥热喷涂优质、高效、低本钱的优势,又能够取得具有优质耐磨、防腐等功能的表面防护涂层。因而,选用热喷涂技能制备铝基非晶涂层是铝基非晶合金材料制备的新拓宽,具有宽广的工业使用远景。 现在,选用热喷涂技能制备非晶态合金的工艺主要有等离子喷涂、超音速火焰喷涂和高速电弧喷涂等制备工艺。等离子喷涂和超音速火焰喷涂选用的原材料为预制的非晶粉末,而高速电弧喷涂根据材料制备与成形一体化的思路,喷涂含有非晶涂层构成元素的粉芯丝材,在喷涂过程中可完成构成非晶涂层。尽管高速电弧喷涂技能在制备Fe基非晶纳米晶复合涂层方面已经有不少成功的报导,但选用该技能制备铝基非晶涂层仍是一个簇新的研讨范畴。 最近,装甲兵工程学院成功使用高速电弧喷涂技能制备出了铝基非晶纳米晶复合涂层。该高速电弧喷涂体系主要是该实验室自行研发的由机器人操控的高速喷和电源体系组成。在喷涂前对基体试样进行喷砂处理。通过优化的最佳喷涂工艺参数为:喷涂电压为34V,喷涂电流为120A,空气压力为0.7MPa,喷涂间隔为200mm。对所取得的涂层检测结果标明,涂层与基体结合杰出,涂层安排较为细密,孔隙少;涂层呈现出典型的层状结构,且层与层之间结合十分细密;涂层由非晶相和晶化相一起组成的。Al基非晶涂层的显微硬度值约为HV311,与传统制备办法取得的铝基非晶合金材料的显微硬度值适当。据评价,此类材料很可能成为未来的防腐换代涂层材料。 装甲兵工程学院的作业标明,在高速电弧喷涂过程中,熔化态液滴在基体表面扁平化过程中具有极高的冷却速率,简单取得非晶涂层或许非晶纳米晶复合涂层,并且涂层的堆积率较高,本钱低,在大面积制备铝基非晶涂层方面将有重要的使用远景。
铝基块体非晶材料研究取得新进展
2019-01-08 17:01:42
铝基非晶合金以其高的比强度和优异的耐腐蚀性能而备受关注,在航空、航天等领域中轻质构件材料应用极具发展前景。然而,铝基非晶合金体系低的玻璃形成能力是制约其工程化应用的瓶颈。
金属所沈阳材料科学国家(联合)实验室非平衡金属材料研究部王建强研究员课题组与美国约翰霍普金斯大学马恩教授合作,在Al基金属玻璃的结构及玻璃形成能力等方面进行了多年的研究探索。在Al-TM(过渡金属)-RE(稀土)为基础的三元合金系中,分别以TM和RE作为溶质中心的原子团簇结构,通过团簇致密堆垛结构的耦合进行了合金的成分设计,在Al-Ni-Co-Y-La五元合金体系中获得了1mm直径的铝基金属玻璃棒材(铝含量达86 at.%)。这是国际上首次报道通过熔体直接浇铸制备出单一非晶相的铝基块体材料,引起了国内外研究人员的广泛关注(迄今引用超过150次)。在此基础上,近来从成分设计与制备工艺两个方面着手,进一步提升其玻璃形成能力。
理解微合金元素对形成能力的影响机理,有助于设计并优化合金成分。Al-TM-RE非晶合金玻璃形成能力对微组元添加非常敏感,然而其作用机理不清。他们从电子结构层次研究其影响,一方面,通过Al原子和TM原子之间电子轨道杂化效应,微量添加TM(例如Co)可以改变费米面的直径;另一方面,调节Al原子和RE原子之间静态结构,添加微量RE(例如La)原子能够改变伪布里渊区的大小。当二者相互作用即金属玻璃结构中的费米面和伪布里渊区相切时(2KF=KP),费米面处的电子态密度较低,整体金属玻璃结构较稳定,此时的非晶形成能力较强。由此设计出迄今较优的玻璃形成能力合金成分,即Al86Ni6.75Co2.25Y3.25La1.75,模铸可获得直径为1.5mm的完全非晶结构棒材(见Acta Mater, 108 (2016) 143-151)。
以上研究工作得到了国家自然科学基金重点项目与科技部重点研发项目的资助与支持。
非晶硅(a-Si)与低温多晶硅(LTPS)的区别
2018-10-18 09:49:07
一般情况下低温多晶硅的制程温度应低于摄氏 600℃,尤其对LTPS区别于a-Si制造的制造程序“激光退火”(laser anneal)要求更是如此。与a-Si相比,LTPS的电子移动速度要比a-Si快100 倍,这个特点可以解释两个问题:首先,每个LTPS PANEL 都比a-Si PANEL反应速度快;其次,LTPS PANEL 外观尺寸都比a-Si PANEL小。下面是LTPS与a-Si 相比所持有的显著优点:1、把驱动IC的外围电路集成到面板基板上的可行性更强;2、反应速度更快,外观尺寸更小,联结和组件更少;3、面板系统设计更简单;4、面板的稳定性更强;5、解析度更高,激光退火:p-Si 与 a-Si的显著区别是LTPS TFT在制造过程中应用了激光照射。LTPS制造过程中在a-Si层上进行了激光照射以使a-Si结晶。由于封装过程中要在基板上完成多晶硅的转化,LTPS必须利用激光的能量把非结晶硅转化成多晶硅,这个过程叫做激光照射。电子移动性:a-Si TFT的电子移动速率低于1cm2/V.SS,同时驱动IC需要较高的运算速率来驱动电路。这就是为什么a-Si TFT不易将驱动IC集成到基板上。相比之下,p-Si电子的移动速率可以达到100 cm2/V.S,同时也更容易将驱动IC集成到基板上。结果是,首先由于将驱动IC、PCB和联结器集成到基板上而降低了生产成本,其次使产品重量更轻、厚度更薄。解析度:由于p-Si TFT 比传统的a-Si小,所以解析度可以更高。p-Si TFT的驱动IC合成在玻璃基板上有两点好处:首先,与玻璃基板相连接的连接器数量减少,模块的制造成本降低;其次,模块的稳定性将得以戏剧性的升高。
酸法提取五氧化二钒工艺
2019-02-11 14:05:44
一、工艺流程
矿石破碎→球磨→酸浸→固液别离→预处理→萃取反萃取沉钒→红钒热解→五氧化二钒。
石煤钒矿石破碎后湿式球磨至粒度-60目占80%以上,然后用占矿石质量15%的硫酸接连拌和,温度85℃,液固体积质量比(0.85~1):1,钒以四价方式转入溶液。固液别离后,矿渣堆积,溶液预处理后,以P 204+TBP +磺化火油为萃取剂,经7级箱式半逆流萃取,然后用1~1. 5mol/L的硫酸5级反萃取,得到质量浓度80~120 g/L的含钒溶液,加热氧化沉积得红钒(),红钒于550℃下加热分化得五氧化二钒。
二、工艺原理及运用
陕西山阳县境内的石煤钒矿石中的钒一部分在云母中以类质同象方式置换六次配位的三价铝而存在于云母晶格中{云母分子式为K (Al,V)2[AlSi3O10](OH)2},若从云母中浸出钒有必要损坏云母结构,故这部分钒难于浸出。直接用酸损坏云母结构,即在必定温度和酸度下,让氢离子进入云母晶格中置换A13+,使离子半径发生变化,将钒释放出来。钒被氧化成四价后用酸溶解,反应式为:
(V2O3)·x+2H2SO4+1/2O2→
V2O2(SO4)2+4H2O+x,
V2O2(OH)4+2H2SO4→
V2O2(SO4)2+4H2O,
得到的是蓝色的溶液,经过后续处理得五氧化二钒产品。
该工艺在陕西山阳县10余家钒加工厂得到广泛运用,总收率达65%~71%,出产成本控制在5.5~6.8万元/t。出产废水中的Fe2+,Fe3+、A13+等金属离子经过氧化、沉积、过滤、弄清去除,态氮经过调pH、加热、吹脱可除掉90%,废水可循环运用;出产过程中不发生有害气体,对大气无污染。
铋冶炼的综合回收-酸浸法回收锌
2019-01-31 11:06:04
此法用来出产硫酸锌。
一、工艺流程。
如图1。图1 七水硫酸锌出产工艺流程图
二、首要技能条件。
浸出温度:80℃,液固比:4∶1,酸耗为理论量的1.4~1.5倍,残酸为15~20克/升,粒度:-40目,浸出时刻,2小时,锰粉参加量为渣量的1∕10。
一次净化除重金属铅,铜,铋:参加锌粉,分两次加,每次参加量为渣量3~4%,净化温度高于70℃,拌和,pH3~5。
二次净化除铁:参加,第一次参加理论量的40%,第2次参加30%,第三次参加40%,除铁至微量,溶液煮沸,拌和,pH3~5。
蒸腾结晶:净化后溶液蒸腾至密度1.52克/厘米3,冷却结晶,结晶用离心机过滤甩干即可包装。
三、首要设备。
浸出槽一个,净化槽二个,蒸腾浓缩槽一个,皆选用φ1000×1500毫米之珐琅反应釜:球磨机一台;颚式破碎机一台:离心过滤机一台。
四、产品用处。
产品可作印染媒染剂,木材及皮革防腐剂,医药催吐剂,人造纤维辅助材料,避免果树和苗圃病虫害,农肥,还用于电缆和电镀职业,用于出产锌盐和立德粉,用作选矿药剂。
五、产品质量。
一级品含ZnSO4·7H2O≥99%,游离酸不高于0.05%,水不溶物不高于0.02%,氯化物(Cl)不高于0.05%,铁不高于0.005,铅不高于0.01%;二级品含ZnSO4·7H2O98%,游离酸不高于0.1,水不溶物不高于0.05%,氯化物(Cl)不高于0.2,铁不高于0.01,铅不高于0.05%。
石煤氧压直接酸浸提钒新技术
2019-01-21 18:04:33
稀有金属钒是一种重要的战略物资,主要应用于钢铁工业、国防尖端技术、化学工业以及轻纺工业等领域。世界上钒的资源丰富,分布广泛,但无单独可供开采的富矿,而是以低品位与其它矿物共生。目前,世界各国生产钒的原料主要是钒铁磁铁矿在冶炼过程中副产的钒渣,我国的钒资源主要是以钒铁磁铁矿和含钒石煤形式存在。含钒石煤是我国特有的一种钒矿资源,其储量丰富,对钒的提取冶炼具有很大优势,但传统平窑钠化焙烧-水浸工艺的钒回收率,生产成本高,食盐焙烧过程中所放出的Cl2、HCI等有害气体严重污染了环境。国家已经因此强制关闭了数百家采用NaCll为添加剂,且毫无污染治理措施的平窑生产钒产品的小企业。空气焙烧和钙化焙烧工艺虽然避免了Cl2、HCl等有害气体的污染问题,但要根据石煤的矿相结构和化学成分而定,工艺的适应性较差。近几年来,伴随我国钢产量的迅速增长,钒需求量的逐渐上升,从石煤中提钒的研究引起了人们的高度重视。石煤提钒既是石煤综合利用的一个重要发展方向,又是我国钒冶炼产业发展的新方向。因此,新型低耗环保高回收率提钒工艺的研发迫在眉睫。
一、矿石物相分析及化学组成
(一)矿石物相分析
样品来源于贵州某地,分为块状和粉状,分别进行了岩相鉴定和电镜分析,其结果如下。
1、主要物相。脉石为主,次要物相为金属铁、含钒硅铝铁酸钾、石墨。
2、镜下特征。脉石呈大小粒状,多数为石英,粒径为0.05mm左右,少数为含钒硅滋酸钾。金属铁呈大小粒状,一般粒径为0.015~0.02mm之间为主,少数大者可达1mm左右,金属铁里都能见到发白的含钒元素(碳化钒)。石墨呈条状,其含量在10%左右。含钒的硅铝铁酸钾呈细粒状,一般在0.015~0.025mm左右。
(二)矿石的X-衍射分析结果
矿石的X-衍射分析结果如图1所示。图1 石煤的X-衍射分析结果
(三)矿石的化学组成
石煤矿先破碎到2~3 cm直径的小块,然后经破碎机破碎至直径0.5mm的颗粒,最后用球磨机干磨至一200目占100%,进行化学分析,其分析结果见表1。
表1 原矿主要化学成分分析结果 %成分V2O5CSiO2Al2O3MgOCaONa2O含量3.267.6053.0316.621.220.490.59成分K2OFe2O3FeOTFeMnOCrCr6+含量3.362.702.383.840.00190.064痕量成分SP2O5AsTiO2ZnCuMo含量0.700.190.0430.980.0180.0190.087成分NiPbCd烧失量固定碳灰份挥发份含量0.0340.00040.001214.715.6285.299.09
二、石煤提钒理论研究
石煤提钒流程的选择应根据不同地区石煤物质组成、钒的赋存状态和价态等特征进行全面考察。石煤中钒的氧化是钒转化的基础和必要条件。因此在制定提钒方案之前,应对石煤中钒的价态、溶解性、氧化和转化作用作深人研究。
(一)石煤中钒的赋存状态
含钒石煤的物质组成比较复杂,钒的赋存状态变化多样。按钒的赋存状态分类,主要有含钒云母型(碳质岩型)、含钒粘土型(硅质岩型)和介于两种之间的中间类型。试验矿样的钒物相分析结果如表2所示。
表2 原矿样钒物相分析结果钒物相氧化铁及粘土云母类矿物难溶硅铝酸盐TVV2O5含量
占有率0.586
17.982.626
80.550.048
1.473.26
100.00
从表2可见,原矿中的钒主要以吸附状态赋存于云母类矿物中,少量以类质同相形式取代Fe3+进入氧化铁及粘土矿等氧化矿物,并有极少量以类质同相形式取代A3+进入难溶硅铝酸盐相。
(二)石煤中钒的价态
我国南方数省含钒石煤的物质组成比较复杂,钒的赋存状态和赋存价态变化多样,搞清这些间题,对制定石煤提钒的合理工艺流程具有重要的指导意义。钒在石煤中的价态分析的研究结果表明,各地石煤原矿中一般只有V3+和V4+存在,极少发现V2+和V3+。除了个别地方石煤中V4+高于V3+外,绝大部分地区石煤中钒都是以V3+为主。试验矿样的钒价态分析结果如表3所示。
表3 不同价态钒的分配率钒价态V3+V4+V5+TV钒含量
占有率0.627
34.340.527
28.860.672
36.801.826
100.00
从表3可见,3种价态的钒的含量相差不是很大,但以五价形式为主,且三价钒与五价钒的含量相当,与多数文献中所研究的石煤中钒的价态情况有较大差别。结合表2分析可知,V3+部分以类质同相形式取代Fe3+、A13+等进人氧化铁矿、粘土矿等氧化矿物及难溶硅铝酸盐相,部分以吸附状态赋存于云母类矿物中,而V4+和V5+则几乎全部以吸附状态赋存于云母类矿物中。
(三)石煤中不同价态钒的溶解性
1、V3+。石煤中V3+存在于粘土矿物二八面体夹心层中,部分取代A13+。这种硅铝酸盐结构较为稳定,通常石煤中V3+难以被水、酸或碱溶解,除非采用HF破坏粘土矿物晶体结构,因此可以认为V3+基本上不被浸出。只有V3+氧化至高价以后,石煤中的钒才有可能被浸出。
2、V4+。石煤中V4+可以氧化物(VO2)、氧钒离子(VO2+)或亚钒酸盐形式存在。VO2可在伊利石类粘土矿物二八面体晶格中取代部分Al3+,这部分V4+同样不能被水、酸或碱浸出。石煤中游离的VO2+不溶子水,但易溶于酸,生成钒氧基盐VO2+,稳定,呈蓝色。
VO2+H2SO4=VOSO4+H2O
(2)V5+。V5+离子半径太小,不能存在于粘土矿物二八面体之中。石煤中V5+主要以游离态V2O5或结晶态(xM2O·yV2O5)钒酸盐形式存在,易溶于酸。
三、氧压直接酸浸出提钒
石煤氧压直接酸浸出提取钒新技术是由昆明理工大学研发的一种全湿法工艺流程,如图2所示。该法主要针对石煤提钒技术中的不足和缺点,抓住石煤提钒技术中的核心技术和关键技术,研究和开发在压力场或加压条件下,对石煤中的钒进行提取,在强化冶金条件的基础上,大辐提高钒的回收率,同时做到无废气排放,保护环境。图2 石煤氧压直接酸浸出提钒工艺流程
(一)有氧和无氧的对比试验
1、试验条件。时间4h、温度150℃,H2SO4用量25%,液固比1.2∶1,粒度-200目,添加剂(硫酸亚铁)5%。
2、试验结果。在有氧与无氧条件下分别进行3次平行试验,其浸出率结果见表4。
表4 有氧和无氧对比试验的浸出率结果试验条件试验次数平均值123有氧试验
无氧试验77.30
34.0275.27
36.5174.23
35.6975.60
35.41
从表4可见,有氧条件下的浸出率远高于无氧条件下的浸出率,说明氧气在反应器里起了明显的作用。由于原矿中有难以被水、酸所溶的V3+形式存在的钒,在通人氧气后,溶解在水溶液中的O2把Fe2+氧化成Fe3+,然后Fe3+再将V3+氧化成易溶于酸的V4+。因此,与无氧条件相比,通氧条件下钒的浸出率能大幅度提高。
(二)浸出时间对钒浸出率的影响
1、试验基准条件。温度150℃,H2SO4用量25%,液固比1.2∶1,粒度-200目,添加剂用量5%。
2、试验结果。以时间为变量,取5个点(1h、2h、3h、4h、5h)进行试验,试验结果如图3所示。图3 时间对钒浸出率的影响
从图3可见,钒的浸出率随时间的延长而提高,但是达到一定时间后(3h),钒浸出率反而有所降低,但是降低很缓慢。钒浸出率的峰值在3h~4h之间。钒的浸出率有所下降的原因可能是随着时间的延长,在密闭容器中,原矿结团,钒被包裹,其浸出率下降。因此选定浸出时间在3h~4h之间比较符合实际。
(三)浸出温度对钒浸出率的影响
1、试验基准条件。时间4 h,H2SO4用量25%,液固比1.2∶1,粒度-200目,添加剂用里5%。
2、试验结果。以温度为变量,取5个点(120℃、135℃、150℃、165℃、180℃)进行试验,结果如图4所示。图4 温度对钒浸出率的影响
从图4可看出,温度越高,钒的浸出率就越高。主要由于温度越高反应速度越快,相同时间内(4h),浸出的钒量就越大,因此浸出率就高。但是温度不能无限制的升高,其对浸出率的影响必有一极值点,且要综合考虑能耗、生产成本以及工业生产中设备的承受能力。温度的选择,只从浸出率的高低来看,应尽可能地选择高温,但在多段浸出的情况下,浸出率相差不大,则应选择低温,以利于减低能耗,适应工业生产需要。
(四)硫酸用量对钒浸出率的影响
1、试验基准条件。时间4h,温度150℃,液固比1.2∶1,粒度一200目,添加剂用量5%.
2、试验结果。以硫酸用量为变量,取5个点(15%、20%、25%、30%、40%)进行试验,结果如图5所示。图5 硫酸用量对钒浸出率的影响
从图5可看出,硫酸的用量对钒浸出率的影响比较大,钒的浸出率,呈上升趋势,在25%~30%之间钒的浸出率基本上没有多大的提高。说明硫酸浓度越大,则H+浓度就越大,进人云母晶格中的几率就越大,有利于破坏云母的结构,从而钒的浸出率就越高。
(五)液固比对钒浸出率的影响
1、试验基准条件。时间4 h,温度150℃,H2SO4用量25%,粒度-200目,添加剂用量5%。
2、试验结果。以液固比为变量,取5个点(1.1∶1、1.2∶1、1.5∶1、2.0∶1、3.0∶1)进行试验,结果如图6所示。
图6 液固比对钒浸出率的影响
液固比对浸出率的影响和硫酸用量对浸出率的影响有些相似,液固比越低,硫酸的相对浓度就越大,钒的浸出率就越高。从图6可见,第1点1.1∶1的浸出率低于第2点1.2∶1,这可能是由于液固比太小时奋矿浆豁度过高,硫酸活度降低,导致钒的浸气出率降低。”
(六)矿物粒度对钒浸出率的影响
1、试验基准条件。时间4h,温度150℃,液固比1.2∶1,H2SO4用量25%,添加剂用量5%。
2、试验结果。以粒度为变量,取5个点(-150目、-200目、-250目、-300目、-350目)进行试验,结果如图7所示。图7 原料粒度对钒浸出率的影响
从图7可见,当原矿粒度为150目-250目时,钒的浸出率基本保持在77.3%左右;但当原矿粒度小于-250目时钒的浸出率开始有所降低;当原矿粒度小于-300目时钒的浸出率则表现为明显降低。说明粒度过细会使原料在浸出过程中发生结团现象,导致钒浸出率降低。故在本试脸中原矿粒度不宜过低,考虑实际中磨矿问题原矿粒度应控制在150目~250目为宜。
(七)硫酸亚铁用量对钒浸出率的影响
1、试验基准条件。时间4h,温度150℃,H2SO4用量25%,液固比1.2∶1,粒度-200目。
2、试验结果。以添加剂(硫酸亚铁)用量为变量,取5个点(15%、20%、25%、30%、40%)进行试验,结果如图8所示。 图8 FeSO4用量对钒浸出率的影响
从图8可看出,硫酸亚铁的加入使同条件下钒的浸出率有较大提高,且钒浸出率随添加剂用量的增加而逐渐增大,但增大趋势较为缓慢,当其用量超过8%时,基本不再增加。同时由于硫酸亚铁的加入会使浸出液中含有更多的金属铁离子,不利于后序钒萃取工艺,因此,添加剂用量不宜过多。由图8可知,当投入的硫酸亚铁添加剂量为石煤矿量的5%时,钒浸出率与同条件下无添加剂加入时相比,可提高8.07个百分点。因此综合考虑,添加剂用量以5%左右为宜。
(八)两段浸出综合试验
综合以上试验结果,取最佳试验条件进行5组两段浸出试验,考察验证钒的浸出率,结果见表5。
浸出条件如下:
1、一段浸出条件。恒温时间3h,浸出温度150℃,硫酸用量25%,固液比1.2∶1,粒度-200目,添加剂用量3%。
2、二段浸出条件。恒温时间4h,浸出温度150℃,硫酸用量35%,固液比1.2∶1,粒度-200目,添加剂用量5%。
表5 两段浸出试验结果编号12345总浸出率90.8191.7190.9692.9690.99
从表5可看出,5组两段浸出试验钒的总浸出率都达到了90%以上,说明在上述条件下进行石煤氧压直接酸浸出提钒具有一定可行性。
四、结论
(一)通氧条件下钒的浸出率远高于不通氧试验条件下钒的浸出率,证明石煤氧压酸浸提钒是一条切实可行的工艺路线。
(二)氧压酸浸过程中硫酸亚铁添加剂的加入可进一步提高钒的浸出率,当其用量为石煤矿量的5%时,钒浸出率与同条件下无添加剂加入时相比,可提高8.07个百分点。
(三)研究表明,含钒石煤氧压酸浸提钒工艺的最佳工艺参数为浸出时间3~4h,浸出温度150℃,液固质量比1.2∶1,硫酸用量25%~35%,矿石粒度-200目,添加剂用量3%~5%。
(四)试验石煤矿样经两段通氧加压硫酸浸出,钒浸出率可达90%以上。
(五)石煤氧压直接酸浸提钒新技术具有工艺流程短、操作简单、钒浸出率高、环境污染小等优点,是一种具有良好发展前途的环境友好型提钒新技术。氧压酸浸无污染提钒工艺是我国石煤提钒工艺改革的应有趋势。
非高炉炼铁
2019-01-04 17:20:15
非高炉炼铁法是指除高炉炼铁以外的其它还原铁矿石的方法。当前非高炉炼铁法可归纳为两大类:直接还原法和熔融还原法.都是炼铁冶金技术中的新工艺。
直接还原法是指在铁矿石熔化温度下把铁矿石还原成海绵铁的炼铁生产过程,产品叫直接还原铁或海绵铁。由于低温还原,得到的直接还原铁未能充分渗碳,因而含碳较低(
熔融还原法是指一切不用高炉冶炼液态生铁的方法。它是不用焦炭在一个容器中完成高炉炼铁过程的,基本上不改变目前传统钢铁生产的基本原理。
近年来,非高炉炼铁法发展比较快,其原因是:
(1)不用焦炭炼铁。高炉冶炼需要高质量冶金焦,而焦煤从世界储量而言,只占煤总储量的5%,且日渐短缺,价格越来越高。非高炉炼铁可以使用非炼焦煤和其它能源作燃料与还原剂。近几十年来,大量开发了天然气、石油、水、电和原子能等新能源,为非高炉炼铁发展提供了条件。
(2)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好代用品。
(3)省去了炼焦设备,总的基建费用比高炉炼铁法少。虽然非高炉炼铁法的生产效率远赶不上高炉,但对于缺乏焦煤资源的国家和地区,用;r中小型企业生产,前途是光明的.
非高炉所得还原铁的用途可分为以下三类:
(1)炼钢原料.主要是代替电炉废钢,但也可以用于转炉。应以还原度高、杂质少的为佳.
(2)高炉原料。经过预还原的矿石可作为高炉炉料,以增加产量,降低焦比。
(3)铁粉。铁粉可用于粉末冶金或用作电焊条的原料等。
还原度越低,所得的还原铁越容易二次氧化,因此若要贮藏或远距离特别是海上运输,则必须进行钝化处理。常用的钝化处理方法有在控制气氛下形成氧化膜,用化学物质处理,或者进行压块。
非高炉炼铁的发展及特点
非高炉炼铁法在很早以前就为人们采用了。自20世纪初为了获得生产特殊钢的原料和充分利用当地资源而将非高炉炼铁法用于工业生产以来,特别是在瑞典,非高炉炼铁法得到了迅速的发展,诸如韦伯(Wiberg)法和霍冈勒斯(H6gan;s)法直至现在仍继续运用于生产中.二次大战前,大多数地方以煤和电为能源,战后改进的回转炉法及回转炉与电炉相结合的电炉炼铁法,开始投入实际工业生产。从1950—1960年,开始研制以天然气和石油作还原剂的直接炼铁法,到70年代,又进一步发展到工业规模上采用竖炉法和流比床法。 非高炉炼铁法,虽然很早就进行了研究,但工业化生产的规模很小。1972年世界粗钢产量为63000万吨,正在建造中的或者已签订合同的生产能力为年产1400万吨。若将计划中的生产能力也包括在内,可以预计,在不久的将来非高炉炼铁的生产能力将有相当大的增加。
非高炉炼铁与高炉炼铁相比,除了不用焦炭以外,工艺上的显著特点是温度和还原度的关系不同。
在高炉方式中,铁矿石A在高炉内升温、还原、熔化成为铁水B:因为铁水被过度地还原,含碳量达到饱和状态,所以必须在纯氧顶吹转炉内进行氧化、脱碳,使铁水中C变成处于状态E的钢液而出钢,最后经过脱氧去除多余的氧即成为成品钢液F。 在非高炉炼铁方式中,还原是按虚线所示的路线进行的。如在直接还原方式中,矿石A被升温、还原成海绵铁D。在此状态下,还原度和温度都较低,因此还须在电炉中熔化,还原其中未还原的部分,从而得到钢液E。
非高炉炼铁的方法及分类
非高炉炼铁法根据原料和产品用途分类的方法很多,已发表的方法就有百余种。各种分类方法是根据以下不同的观点来进行划分的:
(1)按还原装置进行分类:有固定床法、回转炉法、竖炉法和流化床法等。
(2)按还原剂进行分类:有固体还原剂法、气体还原剂法等。
(3)按生产方式进行分类:有预还原法、直接炼钢法、熔融还原法、原子能炼铁法等。
直接还原法
如前所述,直接还原法种类很多。其产品主要是固态的海绵铁、粒铁及液态生铁。图6—2概括了生产固态海绵铁的各种直接还原法的工艺原理。这种海绵铁在下一步生产工序中用电炉熔炼成钢。
使用固体还原剂法
使用固体还原剂进行直接还原的主要设备是回转窑,利用回转窑还原铁矿石的主要产品是海绵铁。其工作原理是:将固体还原剂(煤)、铁矿石和熔剂(石灰石或白云石)混匀后,由回转窑生产。
铅晶电池价格
2017-06-06 17:49:53
铅晶电池价格不是很高,由于价廉物美所以目前也得到了较为广泛的应用。我们所说的铅晶电池是高导多聚硅酸盐电解质攻克铅酸电池之缺陷,也是是蓄电池之精品。铅晶电池采用新技术、新工艺生产的铅晶电池,使用寿命比一般铅酸电池更长,可达2-5年。冬季气温下降到0度时铅酸电池的放电性能下降,续行里程也因此缩短,而铅晶电池在-20度时仍可正常使用,让您的行程不受影响。铅晶电池大电流放电性能强,让您在上坡时感觉强劲有力,同时您不用担心电池因此而受到损伤,铅晶电池向您保证:绝无损伤。铅晶电池的电解质不同于一般的电解质,它属晶状体,无漏液现象发生,符合绿色环保理念.。目前铅晶电池的成本比铅酸高20%,但是铅晶电池价格比铅酸电池仅高10%。铅晶电池的成功将是电动车一次革命”铅晶电池投入市场短短几年,喜讯不断传来。铅晶电池由于产品上的重大突破,在性能上表现出了许多优于铅酸电池的特性:寿命长,基本上是铅酸电池的一倍以上;耐低温性能好,一般来说,铅酸电池在0摄氏度以下,容量的释放都将明显受到影响,而铅晶电池在零下20摄氏度的情况下,仍然能释放额定容量的80%以上;深放电性能极强,可以放到0伏,重新充放恢复额定容量。所有这些优越特性不仅仅对我国的电动自行车行业的发展起到巨大的推进作用。它还将大大推动除电动自行车之外的行业,如太阳能的光伏电池,以及未来最有发展前景的电动汽车产业的发展对象。像一个父亲看着自己不断成长的孩子,他越来越有前途,甚至连自己的父亲都不知道他还有怎样的潜力。“研究是清苦的,不是所有的研究都会有回报,所以我是幸运的,因为我在5年的寂寞后看到芬芳的希望,铅晶电池正在以它不断绽放的性能和优点向行业证明它的存在,它的价值。”
铋常识
2019-03-14 09:02:01
铋是银白色金属,密度9.8,熔点271.3℃,沸点 1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。 自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。 铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。 铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。 铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
铋知识
2019-03-08 09:05:26
铋是银白色金属,密度9.8,熔点271.3℃,沸点1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。
自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。
铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。
铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。
铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
双龙对晶硅
2017-06-06 17:50:13
江苏新双龙多晶硅项目由江苏新双龙投资担保公司和香港联中合资组建,年产1200吨多晶硅,2007年1月20日在南京江宁横溪镇陶吴工业集中区开工。该项目总投资4000万美元,预计分三期建设,三年完成。项目采用西门子工艺。 多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。 多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。1多晶硅电池也是可以并网发电的。近的就列举上海崇明岛的太阳能发电系统工程为例。只是薄膜发电成本低于多晶硅发电成本而已。但是在发电的形式上各有优缺点。2在提高电池转换率的技术上,薄膜电池的难度一直高于多晶硅电池,这是因为原材料决定的。3薄膜电池大多数用的是稀有
金属
,如铟,碲,镉等4很多薄膜电池的原材料也是有剧毒性的,比如FIST SOLAR的碲化镉薄膜电池就含有剧毒。FIST SOLAR还为他的产品特地提供了回收服务。6.硅矿是世界上和氧气一样多的矿产资源。特别我国的硅储藏量居世界首位。硅俗称石英。多晶硅
价格
的高企,一个原因是先进技术掌握在国外大厂手里,一个原因是太阳能
市场
的兴起。形成了供需不平衡的结果。 更多双龙多晶硅信息请查看上海
有色
网。
石煤提钒水浸渣酸浸液的除杂试验研究
2019-02-11 14:05:44
本实验是在前人提出的石煤焙烧—水浸—树脂交流—解吸—铵盐沉钒—煅烧制五氧化二钒工艺[1]基础上开展工作的。原工艺进程中,水浸能将焙烧样中70%的钒浸出。本文作者经过进一步的研讨发现,将水浸后的渣再用稀酸浸出,可使钒总浸出率进步10个百分点以上。但用稀酸浸出水浸渣中钒的一起,杂质硅、铝、铁、磷等也进入酸浸液。有材料标明,杂质的存在影响后续沉钒,故酸浸液沉钒前有必要进行除杂净化处理。本实验依据酸浸液含钒浓度低、杂质含量高级特色,用掩蔽溶液中的钒,再用铜铁试剂络合杂质离子,然后经过调理溶液pH值使杂质络合物发作沉积而被除掉,到达钒与杂质的有用别离,以便后续作业能顺畅收回钒。
一、酸浸液
对江西某石煤矿样(V2O5档次为0.87%)进行钠化焙烧,焙烧样经过两次水浸后,水浸渣再用稀酸处理,得到实验用酸浸液。酸浸液的钒浓度为0.1~0.3g/L,pH值在1.5~2之间,其首要离子成分分析成果见表1。
表1 酸浸液首要离子成分分析成果 mg/L离子VSiAlCa浓度281.33512.33406.332090.00离子CuFeZnP浓度35.5027.50365.331020.00
二、首要试剂和仪器
首要试剂:,,铜铁试剂。别离将铜铁试剂配成浓度为1g/L的溶液,的配成质量分数为33%的溶液备用。
首要实验仪器:79-1磁力加热拌和器,SHB-Ⅲ循环水真空泵,Model pHs-3C型pH计,全谱直读等离子体发射光谱仪。
三、实验办法
由表1能够看出,酸浸液中除含有低浓度的钒(281.33mg/L)外,还存在很多Zn2+、Al3+、Fe3+、Cu2+等杂质。因为很多杂质的存在,该酸浸液不能直接进入后续处理作业,否则将构成后续沉钒功率大大下降,乃至使沉钒作业不能进行。尽管直接调理酸浸液的pH值能使杂质离子在不同的pH值下别离沉积而除掉,但生成的Al(OH)3、Fe(OH)3、Zn(OH)2等胶体沉积会很多吸附溶液中的钒酸根离子,构成钒很多丢失,有时丢失率达50%以上。依据材料,酸浸液中钒首要以VO43-的方式存在,VO43-中的O2-离子可被过氧化氢(H2O2)中的过氧离子O22-替代,生成黄色的二过氧钒酸根阴离子络合物[VO2(O2)2]3-,然后掩蔽溶液中的钒酸根离子,阻挠钒酸根离子与溶液中的水合金属离子经过氢氧键的“架桥”效果而络合;而铜铁试剂分子羟上的氧和亚硝基特殊结构使其能吸附酸浸液中的杂质金属离子,按捺pH值调整进程中杂质离子生成的胶体颗粒在溶液中的运动,促进它们沉积而除掉,然后到达酸浸液的净化和削减钒丢失率的意图。
实验时,每次取400ml酸浸液,边拌和边参加适量,反响10min后,再参加必定体积的铜铁试剂溶液,持续反响10min后,用溶液酸处理液的pH值,生成杂质沉积,沉积充沛后固液别离,滤液即为酸浸液的净化液。实验流程如图1所示。图1 酸浸液净化除杂实验流程
四、实验成果与评论
(一)pH值对钒丢失率的影响
为断定Zn2+、Al3+、Fe3+、Cu2+等离子适合的pH沉积点,先直接对酸浸液进行了pH值调整实验。用调理酸浸液pH值别离为4、5、6、7和9,酸浸液中钒丢失率的改动如图2所示。图2 pH值对钒丢失率的影响
由图2能够看出,钒丢失率随pH值的改动曲线在pH值为5时呈现一个波峰,在pH值为6~7之间呈现波谷。当pH值小于5时,酸浸液中首要是Fe3+生成氢氧化铁沉积,因为氢氧化亚铁胶体的吸附效果,会使钒有必定丢失;跟着pH值增大,酸浸液中的Al3+开端生成沉积,当pH值为5时,Al3+完全生成Al(OH)3沉积,因为Al(OH)3胶体的吸附效果激烈,使酸浸液中钒的丢失率到达57.90%,构成前述波峰;pH值持续升高到6~7之间进,溶液中钒的丢失率有所下降,呈现波谷,可能是生成的Al(OH)3胶体再溶解,使胶体吸附效果下降;当pH值超越7后,酸浸液中的钒丢失率再次急剧添加,可能是因为锌离子和铜离子生成沉积构成钒丢失,而跟着pH值持续上升,钙离子也开端沉积,且溶液中钙离子浓度较高,使得酸浸液中的钒丢失率也不断增大。因为后续作业要求净化液的pH值为6~8,归纳考虑,挑选沉积杂质时的pH值为6.5。
(二)用量对钒丢失率的影响
是常用的强氧化剂,将其参加含钒酸浸液中,可使酸浸液中的V(Ⅳ)氧化成V(Ⅴ),有利于后续沉钒作业;一起的O22-离子也可与酸浸液中的VO3-离子络合,阻挠VO3-离子在pH值改动时生成沉积。
在酸浸液与铜铁试剂的体积比为8∶1、酸浸液终究pH值调至6.5的条件下,按图1流程进行用量实验,使与酸浸液中钒的物质的量之比别离为5、10、15和20,酸浸液中钒丢失率的改动如图3所示。图3 用量对钒丢失率的影响
由图3能够看出:用量对酸浸液中钒的丢失率影响显着。跟着用量的添加,酸浸液的钒丢失率呈下降趋势,当与酸浸液中钒的物质的量之比为15时,钒丢失率降到最小值,为15.42%;持续添加用量,钒丢失率改动不大,简直呈与横轴平行的直线。与酸浸液中钒的物质的量之比小于15时钒的丢失率较大,可能是没有满足的氧根离子与VO3-离子络合,无法起到络合掩蔽效果。依据实验成果,与酸浸液中钒的物质的量之比取15较适合。
(三)铜铁试剂用量对钒丢失率的影响
铜铁试剂在不同pH值下可与多种金属离子构成络合物和沉积物,广泛用于贵金属的湿法冶金。实验发现,参加铜铁试剂后,可使酸浸液中发作的沉积方式发作改动,由胶体沉积转变为粒度更大的粒状沉积,不光使固液别离进程晚简单进行,还可大幅度下降因为胶体吸附效果构成的酸浸液净化进程中钒的丢失。
在与酸浸液中钒的物质的量之比为15、酸浸液终究pH值调至6.5的条件下,按图1流程进行铜铁试剂用量实验,当铜铁试剂溶液(1g/L)的用量别离为20mL、30mL、40mL、50mL、60mL和80mL时,酸浸液中钒的丢失率改动如图4所示。图4 铜铁试剂对酸浸液钒丢失率的影响
由图4看出:跟着铜铁试剂用量添加,酸浸液的钒丢失率明显下降,当铜铁试剂用量为50mL时,钒的丢失率到达最小值,为15.42%;再添加铜铁试剂参加量,钒的丢失率改动不大。因而,断定铜铁试剂用量为50mL,此刻酸浸液与铜铁试剂的体积比为8。
铜铁试剂在促进杂质离子发作沉降的一起,还可有用削减钒的丢失,可能是因为铜铁试剂破坏了Zn2+、Al3+、Fe3+、Cu2+等离子所构成的胶体颗粒的带电性,然后削弱了它们对VO43+的吸附效果。
(四)归纳实验
依据上述实验成果,在与酸浸液中钒的物质的量之比为15、酸浸液与铜铁试剂的体积比为8、杂质沉降pH值为6.5的条件下,按图1流程对400mL酸浸液进行净化处理,用全谱直读等离子体发射光谱仪检处理前后果酸浸液中首要离子浓度的改动,成果见表2。
表2 净化处理前后酸浸液中首要离子的浓度 mg/L酸浸液VSiAlCa处理前281.33512.33406.332090.00处理后237.67330.1732.501211.67酸浸液CuFeZnP处理前35.5027.50365.331020.00处理后0.000.003.0075.98
由表2能够看出,净化处理后,酸浸液中Zn2+、Al3+、Fe3+、Cu2+等离子均大幅度去除,而酸浸液中残留的P、Si、Ca2+等不会对后续提钒发作晦气影响,此刻酸浸液中的钒也大部分保存,钒丢失率仅15.52%。
五、定论
使用和铜铁试剂的掩蔽、除杂效果,对杂质含量高、钒浓度低的石煤提钒水浸渣酸浸液进行除杂净化处理,在与酸浸液中钒的物质的量之比为15、酸浸液与铜铁试剂(1g/L)的体积比为8、杂质沉降pH值为6.5的条件下,有害杂质去除比较完全,钒丢失率仅为15.52%,为后续提钒发明了良好条件。
铜发晶的价格
2017-06-06 17:50:01
铜发晶的价格,铜发晶(Copper Rutilated Quartz)里的内含物,多是属于氧化钛,看来像一条条的金属线,长在水晶里面。内涵物为金红色发丝,细细密密的发丝,多为针状金红石或钢状金红石的成分。在巴西,晶体干净,发丝颜色均匀,金属光泽强的铜发晶原料已经很难买到,越来越珍贵了。铜发晶内涵物为金色发丝,细细密密的金黄色发丝,与钛金的粗针状钛丝不同,大多为针状金红石或钢状金红石的成分,也可能是黄铜矿,颜色偏金黄。含发状或针状之金色发丝,发丝多圆身,细而多。 具有强大能量,可加强气势,带给人积极旺盛的企图心、冲劲、胆识,加强一个人的信心及果断力,能带给人勇气,可助人投射出权威的能量,有助于领导人命令的贯彻与执行。招主财、偏财;可去病气,对筋骨、神经系统有帮助。 生理作用--含酸性物质,震动力特强,据说对甲状腺疾病、呼吸器官、支气管、心脏甚至伤风感冒有疗效。黄色色光对应太阳轮,可帮助肠胃等消化器官, 对胃,十二指肠,肝,胆,胰脏,甚至皮肤,横隔膜(呼吸系统)都有帮助。 心理作用:招财聚气,也有避邪化煞的作用,发晶通常比未含发丝的水晶能量来得威猛,佩带时要小心脾气不要便得过冲,适合脾气较温和需要魄力气魄的人佩带,平常脾气就不好的人还是避免为宜。 1.铜发晶既有一般水晶的高贵,又带有金属的庄重。它是发晶族群里能量十分强大的水晶,有助于促进血液循环,安抚情绪,增加领袖魅力,加强部署的向心力。 2.品相上乘的铜发晶是现今最珍贵的水晶类宝石之一。晶艺天成的铜发晶发丝稠密整齐,实属发晶中的极品,而深重的颜色,更在富贵中增加了一些古朴和庄重。 3.铜发晶还是摩羯座(12月22日-1月20日)的幸运石,摩羯座的朋友们可不要错过难得的机会。铜发晶非常好的辟邪化煞、吸收病气的晶石,可成为有效的护身符,吸收掉一切负面能量,尤其常要夜间工作,或是出入各种杂气病气很重的场所的人,比方说医疗场所、特种营业场所等,有辟邪化煞、逢凶化吉的效果,可防小人、防是非等。可增加领袖魅力,让部署向心力加强,有助于事业发展壮大。
铋的冶炼
2019-03-07 10:03:00
铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其中所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。
铋的性质
2019-03-07 10:03:00
银白色或微赤色,有金属光泽,性脆,导电和导热性都较差。铋在凝结时体积增大,膨胀率为 3.3%。铋的硒化物和碲化物具有半导体性质。室温下,铋不与氧气或水反响,在空气中安稳,加热到熔点以上时能焚烧,宣布淡蓝色的火焰,生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋粉在内着火。铋不溶于水,不溶于非氧化性的酸(如),使浓硫酸和浓,也仅仅在共热时才稍有反响,但能溶于和浓硝酸。
因为铋的熔点低,因此用炭等能够将它从它的天然矿石中复原出来。所以铋早被古代人们获得,但因为铋性脆而硬,缺少延展性,因此古代人们得到它后,没有找到它的使用,仅仅把它留在合金中。
铜铋合金
2017-06-06 17:50:04
一种低熔点核/壳型锡铋铜合金粉体及其制备方法 一种低熔点核/壳型锡铋铜合金粉体及其制备方法,涉及一种低熔点核/壳型合金粉体。提供一种低熔点核/壳型锡铋铜合金粉体及其制备方法。包括核和壳,核为铜锡基合金核,壳为锡铋基合金壳。按质量百分比,按预先设定的锡铋铜合金粉体的成分,称量锡、铋、铜各
金属
放入真空感应炉内的熔炼装置熔化;将熔化的合金液体倾倒于受液斗,在液体流入雾化室的瞬间,用惰性气体(最好为氩气或氮气等)吹之,即得核/壳型锡铋铜合金粉体。其工艺简单、成本低、效率高、污染少。
铋的用途
2019-03-07 10:03:00
铋首要用于制作易熔合金,熔点规模是47~262℃,最常用的是铋同铅、锡、锑 、铟等金属组成的合金,用于消防设备、主动喷水器、锅炉的安全塞,一旦发作火灾时,一些水管的活塞会“主动”熔化,喷出水来。 在消防和电气工业上,用作主动救活体系和电器保险丝、焊锡。铋合金具有凝结时不缩短的特性,用于铸造印刷铅字和高精度铸型。
铋作为可安全运用的“绿色金属”,除用于医药行业外,也广泛应用于半导体、超导体、阻燃剂、颜料、化妆品、化学试剂、电子陶瓷等范畴,大有替代铅、锑、镉等有毒元素的趋势。
自然铋(Bismuth)
2019-01-21 10:39:06
Bi
【化学组成】成分较纯,偶含微量Fe、S、Te、As、Sb等元素。
【晶体结构】三方晶系;arh=0.475nm,α=57°14′,Z=2;ah=0.456nm,ch=1.187nm,Z=8。砷型结构(图Z-12)。
图Z-12自然铋的晶体结构(砷型结构)
(引自陈武,季寿元,1985)
(a)NaCl型结构,(b)NaCl型结构沿L3方向变形而形成的砷型结构
【形态】单晶少见,常见呈粒状、片状、致密块状或羽毛状集合体。
【物理性质】新鲜断面呈微带浅黄的银白色,在空气中易变成具浅红的锖色;条痕灰色;金属光泽。{0001}完全解理。硬度2~2.5。相对密度9.70~9.83;具弱延展性;熔点271°C。具逆磁性。
【成因及产状】自然铋可形成于高温热液矿床、伟晶矿床中。自然铋在地表条件下易于氧化形成铋华和泡铋矿。
【鉴定特征】浅红的锖色,完全的解理,硬度较低和相对密度较大。
铋的来历
2019-11-14 16:58:18
早在古希腊和罗马时期,就有金属铋的使用,人们用木炭复原辉铋矿制得它,首要用作盒子和箱子的底座。1450年,德国修士B•瓦伦丁曾描绘过铋。直到1556年,德意志的G.阿格里科拉才在《论金属》一书中提出锑和铋是两种独立金属的观点。1737年赫罗特用火法剖析钴矿时曾取得一小块样品,但当时并不知是何物。1753年,英国C. 若弗鲁瓦和T.伯格曼承认铋是一种化学元素,定名为bismuth。1757年法国人日夫鲁瓦(Geoffroy)经剖析研究,确定为新元素。铋的拉丁称号bismuthum和元素符号来自德文weisse masse(白色物质),可是金属铋并非银白色,而是粉红色。
从含钒钢渣中提钒
2019-01-03 15:20:48
含钒钢渣是含钒铁水直接在转炉里按一般碱性单渣法炼钢而得到的钢渣。该种渣成分复杂,又经常波动。含钒钢渣的特点是氧化钙含量高,钒含量较低。研究结果表明,硅酸三钙(Ca3SiO5),其形状受空间限制,自行性差,一般呈不规则粒状填充于其他矿物格架之间,并包裹其他矿物。硅酸三钙相中V2O5的含量较低,约1.47%,但由于该相在渣中占得比例大,仍有17.88%的V2O5夹杂其中。镁--方铁石系方镁石、方锰石构成的固溶体系列,其分子为(Mg0.58,Fe0.36,Mn0.06)1.00O,该矿物中含钒很少。
钙钛氧化物是一种新矿物,分子式为(Ca3.02,Mn0.013.03(Ti1.36,V0.37,Fe0.23,Mg0.01,Si0.09)2.12O7,可简写成Ca3(Ti,V)2O7。该矿物是一种黑色厚薄不等的长板状矿物,并与其他矿物连生,钒置换钛进入晶格中。该矿物中V2O5含量为9.78%,其钒量占渣中总钒量的78%,是提钒的主要对象。含钒钢渣返回高炉处理是我国首创的一种提钒工艺。它是把含钒钢渣再烧结后返回小高炉,练出含钒2~3%的铁水,再兑入氧气底吹转炉内吹炼,得到V2O5含量高于35~40%的高钒渣。此渣在电炉内直接还原,制取含钒大于35%的钒铁合金。含钒钢渣的特点是氧化钙含量高。用传统的钠盐焙烧--水浸提钒工艺,钒浸出率很低。目前研究出的钠盐焙烧--碳酸化浸出工艺较好的解决了氧化钙的危害。
在含钒钢渣中,钒主要赋存在钒钙钛氧化物中,焙烧时钒钙钛氧化物与碳酸钠反应:2Ca3V2O7+Na2CO3+O2=3CaO+2NaVO3+Ca3(VO4)2+CO2硅钒酸钙与碳酸钠也发生类似反应:2[Ca2SiO4·Ca(VO4)2]+Na2CO3+O2 =2Ca2SiO4+2NaVO3+Ca3(VO4)2+5CaO+CO3烧结后水溶性钒约20%,碳酸化浸出的钒约60%。
焙烧主要技术条件:渣碱比100:18,钢渣的磨细度-200目大于60%,制粒后的粒度直径5~10mm,焙烧温度1100℃,物料停留时间3.7小时。技术指标是:生产能力1.58T·m-2·d-1,烟尘率0.5%,熟料转浸率85%。
晶泳铝型材工艺介绍
2019-03-12 09:00:00
晶泳铝型材是一种在我国刚开发的新式表面处理的铝型材,是传统粉末喷涂和电泳铝型材的晋级换代产品,有获国家专利的水性烤漆为铝型材表面涂装,使得这种新式铝材产品具有色彩丰厚、丰满度优异、光泽杰出、附着力和耐候性优胜的长处等。一起该铝型材去除了传统铝型材中含有对人体有害的、醛类物质缺陷,是国家重点引荐运用的环保节能铝型材。
晶泳铝型材适用于制造室内移门、移柜、橱柜、壁柜、吊柜,高级写字楼间隔及酒店、宾馆重型门。是传统粉末喷涂,电泳铝型材代替产品。
产品特色:超卓的耐候性、超卓稳定性及耐久性、质量的极佳一致性、抱负的保光及保色性、色彩缤纷亮丽、对人体安全无害、环境友好。
相对传统的表面处理铝型材,晶泳铝材报价相对较高,表面处理工艺要求更高,更杂乱。跟着商场的普通,竞赛的剧烈,信任晶泳铝材报价将会更亲民。
人造聚晶金刚石
2019-01-25 10:18:59
人造聚晶金刚石(PCD)是在高温高压下将金刚石微粉加溶剂聚合而成的多晶体材料。一般情况下制成以硬质合金为基体的整体圆形片,称为聚晶金刚石复合片。根据金刚石基体的厚度不同,复合片有1.6mm、3.2mm、4.8mm等不同规格。而聚晶金刚石的厚度一般在0.5mm左右。目前,国内生产的PCD直径已经达到19mm,而国外如GE公司最大的复合片直径已经做到58mm,戴比尔斯公司更达到了74mm。 根据制作刀具的需要可用激光或线切割切成不同尺寸和角度的刀头,制成车刀、镗刀、铣刀等。 PCD的硬度比天然金刚石低(HV6000左右),但抗弯强度比天然金刚石高很多。另外,通过调整金刚石微粉的粒度和浓度,使PCD制品的机械物理性能发生改变,以适应不同材质、不同加工环境的需要,为刀具用户提供了多种选择。 PCD刀具比天然金刚石的的抗冲击和抗震性能高出很多。与硬质合金相比,硬度高出3-4倍;耐磨性和寿命高50-100倍;切削速度可提高5-20倍;粗糙度可达到Ra0.05μm。切削效率高、加工精度稳定。 PCD同天然金刚石一样,不适合加工钢和铸铁。这种刀具主要用于加工有色金属及非金属材料,如:铝、铜、锌、金、银、铂及其合金,还有陶瓷、碳纤维、橡胶、塑料等。PCD的另一大功能是加工木材和石材。 PCD刀具特别适合加工高硅铝合金,因此在汽车、航空、电子、船舶工业中得到了广泛的应用。
钒知识
2019-03-08 09:05:26
钒是高熔点稀有金属,密度5.96,熔点1890℃,沸点3380℃,有耐性,在中加热变脆,含氧和氮的钒也有脆性。钒是电的不良导体,其电导率仅为铜的十分之一。室温下,钒不与氧效果,在加热条件下被氧化成VO、V2O3、VO2、V2O5,高温下与大都非金属元素(如氮、碳、硫)发作反响。钒还能与铝、钴、铜、铁、锰、钼、镍、钯、锡、硅构成合金。钒的氧化态为-1、+1、+2、+3、+4、+5,一般+2和+3价钒的氢氧化物呈碱性,+4和+5价钒的氢氧化物呈,+5价钒在不同酸度的水溶液中构成不同组成的钒酸盐。在常温下,钒有较好的抗蚀性,本领、稀硫酸、碱溶液和海水腐蚀,但能被硝酸、或浓硫酸腐蚀。
钒在地壳中常与其他元素伴生,富集成工业矿床的很少。首要涣散于钒钛磁铁矿、铀矿、磷矿、铝钒土及煤炭中。钒的矿藏首要有绿硫钒矿(V2S+nS)、钒云母〔K2(Mg,Fe)(Al,V)4Si12O32•4H2O〕、钒铅矿〔PbCl2•3Pb3VO4〕2〕、钒钾铀矿(K2O•2V2O3•V2O5•3H2O)等。
钒矿的分化办法有:①酸法,用硫酸或处理后得到(VO2)2SO4或VO2Cl。②碱法,用或碳酸钠与矿石熔融后得到NaVO3或Na3VO4。③氯化物焙烧法,用食盐和矿石一同焙烧得到NaVO3。
金属钒的制取:含钒的矿藏经处理后得到五氧化二钒,再将五氧化二钒用碳、硅、铝复原得到金属钒;或用、镁复原的办法制取金属钒。
钒是冶金工业的重要质料。在钢铁中,钒首要是以钒铁的方式参加,首要起脱氧和脱氮的效果,一起可进步钢的强度、耐性、淬透性和回火稳定性。现在,90%的钒用作钢铁增加成分出产高强度低合金钢、高速钢、工具钢、轴承钢、耐热钢、不锈钢和铸铁等。钒还用于钛合金、钴和镍基高温合金的增加剂。
V2O5广泛用作有机和无机氧化反响的催化剂,用于出产硫酸、精粹石油。钒在电子工业中可用作电子管的阴极、栅极、X射线靶、真空管加热灯丝。硅化钒和镓化钒是杰出的金属间化合物超导材料。在玻璃工业,钒可用于制作吸收紫外线的玻璃,以及用于制作护目玻璃和防护屏等。
石煤流态化焙烧-酸浸-离子交换提钒新工艺
2019-02-21 13:56:29
由湖南省煤炭科研所与长沙有色冶金设计院共同开发的流态化焙烧-酸浸-离子交换流程已被湖北某石煤冶炼厂选用(下图)。图 流态化焙烧-酸浸-离子交换法提钒流程
这一新工艺半工业实验取得的首要技能经济指标为:焙烧酸浸转化率67.03%,酸浸回收率大于98%,离子交换吸附率99%以上,淋洗解吸率99%以上,沉积回收率99%以上,从原料到产品钒回收率约65%,离子交换树脂的作业吸附容量高达420mg/g(湿树脂),淋洗液V2O5均匀浓度约100g/L,产品质量契合GB3283-87中冶金99级要求。
石煤无盐焙烧-酸浸-溶剂萃取法提钒新工艺
2019-02-21 13:56:29
湖南省煤炭科研所与湘西双溪煤矿钒厂共同开发出的无盐熔烧-酸浸-溶剂萃取流程见下图。这一工艺已用于双溪煤矿钒厂的工业生产。图 无盐焙烧-萃取法提钒工艺流程
萃取的技能条件为:有机相N 263 15%+仲辛醇3%+磺化火油82%,萃取原液pH约为7,比较O/A=1/2,混合时刻3min,级数为1。
反萃的技能条件为:反萃水相NH3·H2O+NH4Cl,比较O/A=2,混合时刻3min,级数为1。
这一工艺取得的首要技能指标为(%):焙烧转浸率大于55,酸浸回收率约98,灼烧回收率约98,总回收率约50。
因为在焙烧时不加任何添加剂,该工艺的生产成本较传统工艺下降20%~25%。一起,避免了加盐焙烧时烟气的污染,含钒废水量也大大削减。