五氧化二钒钙法焙烧提五钒技术特点
2019-01-18 09:30:29
1.工艺原理 ** 根据矿物的高温反应研究结果,含钒页岩(石煤)中的钒焙烧后,石煤中的钒主要以硅钒酸钙和钙钛钒氧化物的形式存在。 ** 硅钒酸钙的分子式为:(Ca5.97,Fe0.03,Mg0.02)6.02【(Si1.02O4)(V0.96,Ti0.04O4)2】,该矿物的化学性质不稳定,在很弱的酸性介质中能迅速溶解。 2. 石煤钙化步进式焙烧提钒技术优点** 用钙盐(石灰、石灰石)替代食盐,完全消除了钠法焙烧技术的含HCl,Cl2等有毒有害气体气体的废气污染问题。** 对焙烧炉的选型和设计做了显著的技术革新,焙烧过程实现机械化,温度控制精度在10度左右,生产效益高,劳动卫生条件好。 由我公司主持研发的步进式钒矿焙烧炉已经成功的在河南某厂运行近三年,日处理矿石200T,是全国同行业唯一工业化规模运行的新型环保型钒矿焙烧炉。 ** 焙烧料为低酸浸出(配酸浓度1-2%,硫酸),生产成本低,液体含杂质较少,利于工艺水循环利用。 ** 浸出渣采用机械过滤和洗涤,提高了收率,减少了矿渣在堆放过程中造成的地表水和地下水污染。 ** 采用浸出液除杂新技术,产品质量可以稳定的达到国标要求,并有效的降低了废水中污染性物质的浓度。 ** 强化废水处理和循环过程,废水循环利用率高,废水实现零排放。研发的废水处理和回收工艺及技术,在贵州省环保局通过专家评审,属于全国同行业首创。
湿法提取五氧化二钒的工艺研究
2019-03-06 09:01:40
Study on Extraction of Vanadium Pentoxide from Chlorite
Specialty :Applied Chemistry
ABSTRACT A technology for recovering V2O5 from chlorite and the optimum process conditions are described in this article. The mineral of chlorite carried in Shan’xi is roasted and leached after preparing in the experiment; then this paper makes sure the conditions of leaching for exaltation, and studies on the rate of leach to leach times ,temperature, roasting process and so on ,and extraction of V2O5 from chlorite containing Vanadium is investigated. Finally, this paper makes sure the optimum technology recovering V2O5 from chlorite with the properties of the mineral and the rate of vanadium conversion. In this article, the recovering of V2O5 by roasting with Na2CO3-water leaching is the optimum technology. This paper also uses the extract and the counter-extract. This method pollutes slightly, the craft operation is simple, and the production craft is stable, process conditions is good and easy to realize the automatic control.
KEY WORDS: Chlorite, Vnadiumpentoxide, Roasting, Leaching, extract, sink vanadium, pollute slightly
目 录英文摘要
1前语
1.1钒与钒化合物
1.2提钒工艺简述
1.3国内外的研讨情况及展开趋势
1.4提取五氧化二钒的新技能
1.5本课题的选题含义
2实验部分与检测办法
2.1实验试剂
2.2实验仪器及设备
2.3实验办法
2.4 检测办法
3湿法提钒研讨
3.1直接酸浸工艺研讨
3.2钠化焙烧-酸浸工艺研讨
3.3钠化焙烧-水浸工艺研讨
3.4钠化焙烧-碱浸工艺研讨
3.5定论
4浸出物萃取与沉钒研讨
4.1萃取进程
4.2反萃取进程
4.3沉钒及灼烧
5定论与展望
5.1 定论
5.2 缺乏与展望
参考文献
1 前语1.1 钒与钒化合物[1]
1801年,A.M.DelRio在墨西哥发现了23号元素,1830年,N.G..Sefstrom将其命名为Vanadium,钒。
钒是ds区过渡族元素,在地壳中的丰度为136ppm,坐落悉数已知元素中的第19位。产值最丰厚的国家有南非、前苏联、我国和美国。
钒是一种重要的战略物资,人类在160年前就已发现钒元素,但直到20世纪初才被广泛运用于工业出产上。纯金属钒呈银灰色,纯度>99.9%时,具有杰出的可塑性和可锻性。钒的产品品种繁复,既有高纯金属钒、钒铝合金、钒碳化物及钒碳氮化物等冶金产品,也有五氧化二钒、、、钒酸钠、氢氧化钒及氯化钒等化工产品。其间,五氧化二钒是钒的重要氧化物,也是金属钒、硫化钒或氮化钒等氧化后的终究产品。
钒首要用于钢铁工业,在钢中起脱氧、脱氮作用,然后改进钢的功用,钒的高价氧化物是化学工业和石油工业中的重要催化剂。此外,在电子、玻璃、印刷、电影、照相和陶瓷等工业,钒的化合物亦得到广泛运用。
五氧化二钒的半导体性质的发现和其在光学工业中作为抗静电涂层的运用为它的研讨拓荒了新。近年来,对作为功用材料的V2O5的研讨现已受到了广泛的注重,它的溶胶-凝胶制备技能也取得了鼓舞人心的前进。具有层状结构的V2O5凝胶膜显现出风趣的电子、离子、电化学性质,此外,V2O5还具有光电导性质。例如,V2O5可作普通离子吸收基质材料、湿敏传感器、微电池、电致变色显现材料等。能够预见,跟着现代高科技的展开,V2O5的运用规模将会逐步扩展,需求量也会逐步增加,因而,展开五氧化二钒提取与制备研讨有重要含义。
1.2提钒工艺[3]
1.2.1酸浸碱溶提钒法
运用酸使含钒固废中的钒以VO2+ ,VO2+的形状浸出,加碱中和,在弱碱性条件下用氧化剂使钒成为五价离子(如VO3 -),并使钒与铁的水合氧化物等杂质一同沉积,再用酸碱浸制得粗钒,粗钒经碱溶生成五价钒的钠盐,并除掉杂质硅,后用铵盐二次沉钒得,经焙烧得到高纯V2O5,该工艺已运用低钒钢渣提钒。
1.2.2钠化焙烧提钒法
钠化焙烧提钒是含钒质料提钒运用较多的工艺,研讨也较为透彻,我国陈厚生教授对该工艺技能奉献较大。其根本原理是:以食盐或苏打为增加剂,经过焙烧将多价态的钒转化为水溶性五价钒的钠盐,如Na2O. yV2O5 和NaVO3,再对钠化焙烧产品直接水浸,可得到含钒及少数铝杂质的浸取液,然后参加铵盐(酸性铵盐沉积法)制得沉积,经焙烧得到粗 V2O5,再经碱溶、除杂并用铵盐二次沉钒得,焙烧后可得到纯度大于98%的V2O5。也可用硫酸浸渍焙烧产品,此刻发作反响:2NaVO3+H2SO4 =Na2 SO4+H2O+ V2Os,别离得到粗V2O5,后经碱溶、除杂并用铵盐二次沉钒得,经焙烧可得高纯V2O5。该工艺已用于石煤和低钒钢渣提钒。
1.2.3直接焙烧提钒法
一般包括焙烧、浸出、沉钒、制和锻烧几个进程。焙烧时不加任何增加剂,靠空气中的氧在高温下将贱价钒直接转化为酸可溶的V2O5。然后用硫酸将焙烧产品中的V2O5以五价钒离子形状浸出,再对浸出液净化,除掉Fe等杂质,并用水解沉积法或铵盐沉积法沉积红钒,再将红钒溶解于热的烧碱水溶液中,操控恰当浓度和pH值,使溶液中的钒首要以VO3(OH)2-形状存在,弄清后取上清液选用铵盐沉积法制,再锻烧即得高纯V2O5。该法已用于含钒石煤的提钒。 1.2.4钙化焙烧提钒法
将石灰、石灰石或其它含钙化合物作溶剂增加到含钒固废中造球、焙烧,使钒氧化成不溶于水的钒的钙盐,如 Ca ( VO3 ) 2、Ca3 ( VO4) 4 、Ca2V2O7,再用酸将其浸出,并操控合理的pH,使之生成VO2+ ,V10O28 6-等离子,一同净化浸出液,除掉Fe等杂质。然后选用铵盐法沉钒、制并锻烧得高纯V2O5。钙化焙烧法已运用于石煤提钒中。
1.2.5溶剂萃取提钒法
用焙烧、酸浸、碱浸等手法将含钒固废中的钒转变为水溶性或酸溶性的含钒离子团,如HV10O285-、V O3 (OH) 2-、V2O74-、 V4O122-、VO3-、 V O2+(溶液pH值不同,离子团也不同),后用萃取剂(如N-263 、7402)萃取,并发作阴或阳离子交流,如:选用N-263在pH=5时萃取[HV10O28 ]5-,发作反响: [HV10O28 ]5-+5R3N+CH3C1-(O)——(R3 N+CH3)5[HV10O28 ]5-(O)+5C1-((O)表明有机相),因为其它金属离子大都不能进入有机相中,然后完成了钒与金属杂质离子的别离。经萃取的有机溶液,再用反萃剂(如NH4CI、)反萃,使钒再从有机相转入水相,然后调整pH值,使钒以或的形状沉积,再锻烧沉积物即得高纯V2O5。
因为含钒离子、萃取剂及反萃剂的品种都许多,所以相应提钒工艺也多,但工艺道路大体附近,一般为:制含钒离子-萃取-反萃-沉钒-脱得V2O5。此法已成功运用于石煤、低钒钢渣、废钒催化剂提钒。
1.2.6离子交流提钒法
选用焙烧、酸浸、碱浸等工艺将含钒固废中的钒转化成水溶性的含钒离子,如:VO3-、V4O124-(因溶液pH值不同离子也不同),再依据物料的不同选用不同的离子交流剂(如717树脂),并调整溶液pH值,在离子交流柱上发作吸附反响,如选用717树脂对VO3-进行离子交流吸附时发作反响:VO3-+R -N(CH3) 3C1 ——R-N(CH3) 3 VO3-+ C1-(R表明烃基)。此刻因为VO3-对717树脂的亲和力大于杂质离子对树脂的亲和力,所以能除掉磷、铁、铝、硅等杂质。上述吸附于离子交流柱上的钒能够用NaCI溶液洗脱,反响为:R-V (CH3) 3VO3-+ C1-——VO3-+ R-N (CH3)3C1。经吸附,钒被固定于离子交流柱上,并完成了杂质别离。再经脱附,钒转入洗脱液中,后再用铵盐沉积法沉钒、制,再锻烧得V2O5。
此法在国外起步较早,但直到1991年,加拿大Fort McMurray公司才树立离子交流厂提钒。我国20世纪70年代初进行了一系列离子交流提钒的实验,到90年代初,用717离子交流树脂法对石煤提钒土艺已在湖北通城、丹江口等地运用于出产。现在,离子交流法也成功地用于废钒催化剂的提钒。
1.3 国内外的研讨情况及展开趋势[12]
我国从钒矿和石煤中提取钒绝大多数选用钠盐焙烧-水浸-酸沉积-碱溶-铵盐沉积-热解工艺流程。该工艺在出产中暴露出的首要缺陷是在焙烧进程中发作很多氯化氢、等有毒气体,废水中含有很多盐份,对环境有严峻污染,钒的转化率也低,为处理这两个问题,不少专家做了很多研讨工作,提出了原矿氧化焙烧-碱浸、钙盐焙烧-碳铵浸、原矿酸浸或欢腾炉脱碳酸浸、细菌浸出、钠盐焙烧-水浸渣再酸浸等工艺流程,取得了较好的成果。
在国外提取钒一般选用酸浸或钠盐焙烧-酸浸-溶剂萃取工艺流程,如美国矿业局从华达州的分化岩石中提取钒选用的是钠盐焙烧-溶剂萃取-铵盐沉积工艺流程;英国曼斯菲尔德公司从炼铜的炉渣中提取钒选用的是在回转炉内高温下加盐和硫酸焙烧-水浸-沉积工艺;波兰从含五氧化二钒的石煤中收回钒选用的是硫酸化焙烧-水浸工艺。
核工业北京化工冶金研讨院从20世纪80年代处开端研讨从石煤中提取钒。先后提出了“钠化焙烧-废气制酸-酸浸-溶剂萃取制取精钒”、“氧化焙烧-酸浸-溶剂萃取制取精钒”和“原煤破磨-两段逆流酸浸-溶剂萃取-沉钒-热解制精钒”3个工艺流程,其间第三个工艺流程已于1996年在我国西北地区建成了年产660t五氧化二钒的出产厂。
1.4提取五氧化二钒的新技能[3]
现有含钒固废提钒工艺虽多,特色也不同,但根本都是由传统提钒工艺移植过来(除钢渣回来法外),针对性不强,很不习惯含钒固废的资源特性(低档次、大宗量、成份杂)。运用时本钱高、污染大、难以大宗量处理,致使推行一向受到限制。因而,寻求短流程、大规模、低本钱、低污染的固废提钒与残渣归纳运用的新工艺,是含钒固废提钒新技能未来的展开方向。
近30年,针对含有价组分的矿冶二次资源的特性(低档次、大宗量),国内外出现一些绿色别离和资源有用运用新技能,其原理与办法都具遍及适用性,有的已用于含钒固废提钒土艺的研讨。能够预见,跟着这些技能的逐步完善,有望给含钒固废提钒工艺或办法带来突破性发展。
1.4.1挑选性分出技能
东北大学隋智通教授提出,挑选性分出技能已成功用十硼渣、钛渣体系。基木原理是针对固废内有价元素档次低、且散布于各矿藏相内的资源特色,发明适合的物理化学条件,促进有价元素在化学位梯度的驱动下,挑选性地搬运于规划的矿藏相内富集,一同合理操控相关要素,使富集相挑选性长大,再经磨矿后分出富集相,别离后的残渣用于建筑材料等。该技能具有“短流程、低本钱、大规模、小污染”的特色,现在已用于低钒钢渣提钒的研讨。
1.4.2微生物浸出技能
自上世纪70年代以来,国际上开端广泛将微生物用于冶金土业,现已能用微生物浸出低档次矿石中的铜、金、铀、铬、镍、银、钒、钼、锗等有价元素。其原理是运用微生物自身的生理机能(如氧化特性)或代谢产品(如有机酸、无机酸和Fe3+)的作用来氧化、溶浸矿藏中的意图组分,再选用络合、吸附等办法将浸出的意图组分富集、别离后提取。 该技能的长处是固定资产投入较低、效率高、本钱低、污染少、能耗少,特别适用于低档次矿藏质料有价组分的提取。缺陷首要是进程的反响速度慢和细菌对矿藏有挑选性。所以,如找到并培养出适合的钒细菌,将其用于含钒固废中钒的浸出,在技能上应是可行的。
1.4.3矿浆电解技能
矿浆电解技能是北京矿冶研讨总院历经20余年的研讨,开宣布的一种新的湿法冶金办法,现在已成功地从多金属复合矿石中收回锡 ,锑、铅、银等有价元素。基木原理为将湿法冶金所包括的浸出、溶液净化、电积3个工序合而为一,运用电积进程的阳极氧化反响来浸出矿藏,其实质是用矿石的浸出反响来替代电积的阳极反响,使一般电积进程阳极反响很多耗能转变为某种金属的有用浸出;一同槽电压下降,电解电能下降,整个流程大为简化。这样,在阳极区可运用矿藏的电氧化次序完成金属的挑选性分出,在阴极区可运用分出电位的不同完成金属别离。
该工艺保留了传统湿法冶金的长处,其首要特色是流程短、操作简洁、出产本钱低价、归纳收回和别离效率高,能一同提取多种低档次杂乱难选的金属和元素。此法很适合低档次、大宗量含钒固废中钒的提取。 1.5本课题的选题含义
钒在地壳中的均匀含量为0.015% ,比铜、镍、锌、锡、钴、铅等都多,但因为自然界中的钒首要以三价形状存在,而三价钒的离子半径与三价铝、三价铁的离子半径很挨近,因而,三价钒几乎不生本钱身的矿藏,而是以类质同象部分替代三价铁和三价铝存在于一些铁及铝的矿藏中,如石煤、钒钛磁铁矿、硅铝酸盐和绿泥石中等,这也是钒在自然界高度涣散的首要原因。 我国是钒矿资源十分丰厚的国家,从钒矿或石煤中提取钒的传统工艺多为平窖钠化焙烧,它的长处是出产流程比较安稳,可操作性强、出资少,缺陷是焙烧时,发作含体等有害成分,环境污染严峻,为国家明令禁止。一同这种传统工艺钒转换率低、收回率低,构成资源糟蹋严峻。 现在,我国已着重于湿法冶金提钒。因而,为了呼应国家的召唤,咱们是从绿泥石中经过湿法提取五氧化二钒,现在还很少有人从绿泥石中提取,大部分是从石煤中提取。从绿泥石中提取五氧化二钒不只质料来历便利而且本钱低,是咱们值得研讨的课题。钒土矿在我国只散布在四川 、河北等地,相对资源有限,而我省绿泥石资源丰厚。 本研讨经过对原矿石性质的研讨,试探性的选用与现行不同的工艺提钒。终究,依据矿石的性质及其特色而且结合实验的成果而选定最佳的工艺。
2实验部分与检测办法
2.1 实验试剂
(1)亚 分析纯 天津市红岩化学试剂厂
(2)基 分析纯 天津市化学试剂一厂
(3)脲素 分析纯 天津市东丽区泰兰德化学试剂厂
(4)硫酸亚铁铵 分析纯 天津市耀华化工厂
(5)磷酸 化学纯 =1.666g/cm3 纯度≥85% 西安化学试剂厂
(6)浓硫酸 纯度=95%~98% 莱阳市双双化工有限公司
(7)浓硝酸 分析纯 纯度≥99.8% 安徽特酒总厂出品
(8)十六烷基三甲基氯化铵 分析纯 上海三浦化工有限公司
(9)氯化铵 分析纯 天津市化学试剂六厂
(10) 天津易发化学试剂厂
(11)硫酸亚铁 分析纯 天津开发区海光化学制药厂
(12) 分析纯 天津市百世化工有限公司
(13)五氧化二钒(标样)化学纯 纯度≥99.0% 成都化学试剂厂
(14)正辛醇 西安化学试剂厂
(15)航空火油﹑去离子水
(16)碳酸钠 天津市天力化学试剂有限公司
2.2实验仪器及设备
(1)马弗炉 (2)真空干燥箱 DZ-2BC型 天津市泰斯特仪器有限公司
(3)电动拌和器
(4)循环式多用真空泵 SHB-B95型 郑州长城科工贸有限公司
(5)电子天平 e=10d BS 224S Max 220g d=0.1㎎ 北京赛多利斯仪器体系有限公司
(6)托盘天平 类型HCTP12B1 标准号WS2-90-74 北京宣武天平厂
(7) 250mL分液漏斗、布氏漏斗、定量滤纸、定性滤纸、广泛pH试纸、铁架台、铁圈、夹子、试管刷、洗瓶、石棉网、玻璃棒﹑胶头滴管、坩埚、 酸式滴定管、容量瓶、量筒 锥形瓶、烧杯。
2.3实验办法
2.3.1实验办法一
称取必定量的原矿石,然后将其损坏,再按必定的液固比的与不同配比的溶液混合,将配好的溶液放入恒温干燥箱中按设定的温度和时刻进行浸取,得到的浸取液经过抽滤后,分析滤液中钒含量,核算转浸率。
2.3.2实验办法二 称取必定量的原矿石,然后将其损坏,置于坩埚中,在马弗炉中按设定的温度和时刻进行一段脱碳焙烧,脱碳后的矿石按必定的份额与钠盐研磨均匀后再在马弗炉中按设定的温度和时刻进行二段焙烧,焙烧后的熟料再按必定的液固比与不同配比的溶液混合,用电动拌和器按设定的温度和时刻进行拌和,终究抽滤后,分析滤液中钒含量,核算转浸率。
2.4检测办法
2.4.1原矿石的检测
本矿石送西北有色金属研讨院进行检测。
1)原矿的光谱半定量分析
表2-1 光谱半定量分析成果元素CuPbCrNiMoVCo含量(10-6)202013005005300010元素GaYbYZrSrMnTi含量(10-6)2101002002002003000元素PFeCaMgSiAlNa含量(10-6)2135-101050.02 2)原矿部分元素分析
表2-2 原矿部分元素分析成果成分V2O5K2ONa2OMgOCaOSiO2FeC含量(%)1.100.080.0513.905.2325.482.4426.03 3) X衍射分析
表2-3 X衍射分析成果矿藏称号绿泥石滑石闪石石英含量(%)607210矿藏称号石墨黄铁矿三方氧钒矿(不断定)
二水钒矿(不断定)未检出含量(%)8454
2.4.2浸出液中钒的分析办法
取25ml溶液于 500ml 锥形瓶中,参加20ml的硫磷混酸和20%硫酸亚铁铵溶液1ml,摇匀,滴加KmnO4溶液至摇摆后溶液所出现的微赤色不消失并过量1-2滴,充沛摇摆后,放置5-10分钟,参加10ml的尿素溶液,滴加亚溶液至赤色刚好消失并过量1-2滴,充沛摇摆后,放置1分钟,再参加3滴0.2% N-基指示剂,用硫酸亚铁铵标准溶液滴定至紫赤色变为亮绿色即为结尾。然后依据滴定用的硫酸亚铁铵体积和浓度及所取溶液的体积来核算钒的浸出率。
2.4.3 实验成果的测定办法
1)试剂
i)所需试剂
4%(m/m)硫酸亚铁铵溶液;硫酸溶液:1+1;3%(m/m)溶液;
10%(m/m)脲素溶液;1%(m/m)亚溶液;0.2% N-基指示剂;
硫酸(GB626-89);硝酸(GB622-89);磷酸(GB/T1282-77);
硫酸亚铁铵标准溶液为0.01moL/L。
ii)试剂的制造
① 4%(m/m)硫酸亚铁铵溶液:称取2g固体硫酸亚铁铵,溶于50 mL去离子水中。
② 硫酸溶液(1+1):V浓硫酸:V水=1:1制造60mL溶液。
③ 3%(m/m)溶液:称取1.5g固体,溶于50 mL去离子水中。
④ 10%(m/m)脲素溶液:称取5g固体脲素,溶于50 mL去离子水中。
⑤ 1%(m/m)亚溶液:称取1g固体亚,溶于100 mL去离子水中。
⑥ 0.2% N-基指示剂:称取0.2g固体N-基,加20 mL50g.L-1的 Na2CO3溶液,用水稀释至100ml。
⑦ 硫酸(GB626-89):浓度为95%~98%。
⑧ 硝酸(GB622-89):浓度为65%~68%。
⑨ 磷酸(GB/T1282-77):浓度为85%。
⑩ 0.01moL/L硫酸亚铁铵标准溶液:称取1.6907g固体硫酸亚铁铵,溶于500mLH2SO4(5+95)配成的溶液中。
2) 操作进程
i) 称量已在105 ℃烘干且恒重的样品0.5g(精确至0.0002g),放入250mL锥形瓶中,用水湿润摇散,顺次参加磷酸10mL,硫酸5mL,硝酸2mL混合后置于电炉上加热至试样溶解彻底并冒白烟,取下冷却后沿瓶壁加20mL水,持续加热至冒白烟(防止暴沸,不断摇摆),冷却后加水至80mL,参加硫酸(1+1)20mL充沛摇摆使可溶盐溶解,冷却后将试样移入250mL容量瓶中,再用水稀释至刻度,摇匀。
ii) 移取100.00mL试样溶液到500mL锥形瓶中,加4%硫酸亚铁铵溶液2~3mL以复原溶液中或许存在的氧化物质。在室温下逐滴参加3%溶液至淡赤色(5 min内不褪色)。然后参加10%脲素10mL,滴加1%亚溶液至淡赤色褪去,再过量2~3滴。充沛摇匀后放置10min,使过剩的亚悉数被脲素分化(摇摆时根本无气泡发作)。
iii) 参加6滴0.2% N-基指示剂,在亮光处用硫酸亚铁铵标准溶液(0.01moL/L)滴定由暗桃赤色至亮绿色为结尾。
iv) 五氧化二钒含量的核算,五氧化二钒含量X,以质量百分数表明(%),按下式核算:
X = % ..........(1.1)
式中 C——硫酸亚铁铵标准溶液的摩尔浓度,moL/L;
V——试样溶液测守时所耗硫酸亚铁铵标准溶液体积,mL;
m——试样的质量,g;
V1——试样溶液的总体积,mL;
V2——测守时所取部分试样溶液的总体积,mL;3 湿法提钒研讨
3.1直接酸浸工艺研讨
3.1.1实验办法
依照第二章的实验办法一,称取50g原矿石,用硫酸溶液浸取。
3.1.2浸出液中钒的分析办法
依照第二章的分析办法进行。
3.1.3成果与评论
原矿石中钒首要以三价的方式与其它矿藏伴生,为了使钒能够浸出来,有必要损坏矿石的结构,使离子半径发作变化。然后使钒开释出来,并氧化成四价酸溶解,用硫酸浸取提钒,使钒以VOSO4方式进入溶液通式可表明为:
(V2O3).X+2H2SO4.1/2O2=V2O2 (SO4)+ 2H2O+ XOV2O2 (OH) 4+ 2 H2SO4=V2O2 (SO4)+ 2H2O注:X为矿石结构。
生成物为蓝色溶液。1) 酸度与温度对钒转浸率的影响用酸浸取矿石来损坏矿石的结构,需求在必定的温度和酸度下,才干使钒开释出来,并氧化成四价被酸溶解。假如用浓硫酸浸取,浸取液中或许有五价的钒存在。因为浓硫酸具有强的氧化性。进步酸度是为了使氢离子的浓度进步,然后有利于损坏矿石的结构,这样才干更好的使钒离子开释。进步温度首要考虑的是动力学方面的要素,浸取进程的温度较低,化学反响速度和分散速度都较慢,因而很难到达平衡状况。酸度与温度对钒的转浸率的影响如下表3-1所示。
由实验得,跟着酸度和温度的进步,钒的转浸率是有逐步上升的趋势。因为本矿石的耗酸量太大,本次实验仅仅断定酸浸进程的根本趋势。
表3-1 酸度与温度对钒转浸率的影响V酸:V水 / mL浸取温度 / ℃转浸率1:37014.531:38015.651:39015.901:47013.231:48014.561:49014.851:57012.671:58013.201:59013.80
注:其它浸条件为:浸出时刻24h,浸出液固比1.5:1
2) 酸度与时刻对钒转浸率的影响
酸浸取的进程不只需求必定的酸度和温度,还要考虑时刻对其浸出率的影响。浸取的时刻越长,钒的浸出率越高,致使到达平衡状况。浸取时刻对钒的转浸率的影响首要也的考虑的是动力学方面的要素。酸度与时刻对钒的转浸率的影响成果如下表3-2所示。
表3-2 酸度与时刻对钒转浸率的影响V酸:V水 / mL浸取时刻 / h转浸率1:31814.631:32015.701:32416.201:41813.251:42014.801:42415.251:51812.801:52013.501:52414.20
注:其它浸条件为:浸出温度80℃,浸出液固比1.5:1
3) 酸度与液固比对钒浸出率的影响
液固比对钒浸出率的影响首要是影响氢离子的浓度,所以在酸度必定的情况下宜挑选较小的液固比。因为本矿石耗酸量大,当液固比太低时浸出也很简略饱满,且难过滤。影响成果如下表3-3所示。
表3-3 酸度与液固比对钒浸出率的影响V酸:V水 / mL液固比转浸率1:31:115.531:3 1:1.514.651:3 1:213.901:4 1:114.201:4 1:1.513.561:4 1:212.851:5 1:114.251:5 1:1.513.201:5 1:212.80
注:其它浸条件为:浸出时刻24h,浸出温度80℃
3.1.4总结
经过对不同的液固比,不同的硫酸浓度,不同的浸取时刻和温度研讨,终究分析滤液中的钒含量,经过核算发现转浸率都不高,最高能到达16%左右,而且耗酸量也挺大的。假如酸的浓度太大,后处理进程也是很杂乱,且引入很多的杂质离子。这也验证了上述对矿石性质的研讨成果,不宜用酸浸的定论。
3.2钠化焙烧-酸浸工艺研讨
3.2.1实验办法
依照第二章的实验办法二,称取50g原矿石,用硫酸溶液浸取。
3.2.2浸出液中钒的分析办法
依照第二章的分析办法进行。
3.2.3成果与评论1)一段脱碳焙烧条件断定
矿石中含很多的碳,焙烧烧失量十分的大,为防止碳在焙烧进程中构成复原气氛影响钒的氧化,因而增加一段脱碳焙烧;为了最大或许地消除碳对钒氧化的影响,对不同的脱碳条件下的烧失量进行了调查,调查成果见表3-4。
表3-4 碳烧失量的调查成果脱碳条件烧失量(%) 600℃ 3小时1700℃ 2小时8700℃ 3小时10700℃ 4小时13800℃ 3小时16 2)二段焙烧条件的断定
含钒原矿石与增加剂混合于氧化性气氛下高温焙烧,其意图就是损坏钒矿藏的安排结构,将三价或四价钒氧化为五价钒,并与增加剂或矿石自身分化出来的氧化物生成偏钒酸盐。本实验选用的是碳酸钠作为增加剂,其或许的反响如下:
V2O3+ O2= V2O5 2V2O4+ O2= 2V2O5
V2O5+ NaCO3= NaVO3+ CO2
V2O5+ V2O3+ NaCO3+ O2= Na4V2O7+ CO2
V2O5+ V2O3+ NaCO3+ O2=Na3VO4+ CO2
i) 碳酸钠参加量对钒浸出率的影响
碳酸钠参加量对钠化焙烧进程中钒转浸率有很大的影响,在其它焙烧条件(焙烧时刻为2小时,焙烧温度800℃)必定的情况下,不同碳酸钠参加量对钒的转浸率如图3-1所示。能够看出,随碳酸钠参加量的增大,钒转浸率逐步升高,当参加碳酸钠为矿石量的2%时转浸率最高,持续增大碳酸钠的量,钒转浸率反而逐步减小,其原因或许有:(a)碳酸钠熔化而构成烧结现象。(b)钠化焙烧进程中碳酸钠的增加量远远大于理论用量时,碳酸钠的增加可使焙烧后所得熟料碱性增强,在浸出液酸度必守时,可使浸出液的酸度下降,然后导致钒的浸出率减小。而碳酸钠缺乏时则不能损坏原矿藏结构。因而把碳酸钠的参加量为矿石的2% 作为最佳的增加量。
图3-1 碳酸钠参加量对钒浸出率的影响
ii) 温度对钒转浸率的影响
在其它焙烧条件(碳酸钠的参加量为矿石的2%,焙烧时刻为2小时)必定的情况下,不同焙烧温度对钒转浸率的影响见图3-2。钒的转浸率随温度上升显着进步,或许是因为钒的氧化速度、成盐反响速度随温度升高而加速,反响的平衡常数随温度的升高也增加。而到温度超越850℃时,转浸率又下降,这或许是因为炉料表面烧结,构成杂乱的硅酸盐等不溶性物质。因而,适合的温度为800℃左右。
图3-2 温度对钒转浸率的影响
iii)焙烧时刻对钒转浸率的影响
在其它焙烧条件(碳酸钠的参加量为矿石的2%,焙烧时刻为2小时,焙烧温度800℃)必定的情况下,不同焙烧时刻对钒浸出率的影响见图3-3。能够看出,焙烧时刻对钒转浸率也有较大的影响,当焙烧时刻缺乏时,矿藏结构未能彻底损坏,导致氧化不充沛而使钒难以浸出。随焙烧时刻的增加,钒转浸率逐步增大,焙烧2小时,钒的转浸率最高,再增加焙烧时刻,钒的转浸率并没有显着的增加,且消耗更多的动力。所以,选定焙烧时刻为2小时。图3-3焙烧时刻对钒转浸率的影响 4)浸出工艺条件对钒浸出率的影响
在焙烧熟猜中除含有钒酸钠外,还含有镁、钙、铁、锰等金属的钒酸盐。酸浸进程中,它们都会进入溶液中生成钒氧基化合物,酸浸进程中或许发作的化学反响可表明为:
NaVO3+H2SO4=(VO2)SO4+ Na2SO4+H2O
Ca2V2O7+ H2SO4= (VO2) SO4+ Ca2SO4+ H2O
能够看出,浸出后的溶液除含有钒(VO2+)外,还有很多杂质离子。
i)液固比对钒浸出率的影响
液固比对钒浸出率有必定影响,当液固比太低时浸出液易饱满,且难过滤,不能到达最佳浸出作用;太高时浸出液浓度太低,使富集进程难度加大。实验证明液固比为1.5:1为最佳。
ii)浸出时刻对钒浸出率的影响
在液固比必定的条件下,浸出时刻对钒浸出率的影响如图3-4。图3-4 浸出时刻对钒浸出率的影响
由实验得,当浸出时刻到达1小时,钒的转浸率为19.5%左右,持续增加时刻,钒转浸率不再明显增加。因而,最适合的浸出时刻为1小时。
iii) 酸度对钒浸出率的影响
钒浓度跟着酸度的增加,逐步增大,但当酸的浓度太高,钒浓度增加的一同会引入很多的碱性杂质和其它搅扰离子,比方铬和钛等金属离子。依据原矿石的性质有60%的绿泥石能够溶于酸,所以,要进步钒的浸出率会消耗很多的酸。因而,以上的工艺条件的评论都是把酸度操控在2mol左右。
3.2.4总结
经过对不同的焙烧温度和时刻,不同的增加剂的用量,不同的拌和时刻的研讨,终究分析滤液中的钒含量,经过核算发现转浸率也不高。这种工艺尽管比上一种工艺的浸出率高,最高能到达20%左右,但仍然存在耗酸量大的弊端且能耗也大。相同验证了上述对矿石性质的研讨成果。
3.3钠化焙烧-水浸工艺研讨
3.3.1实验办法
依照第二章的实验办法二,称取50g原矿石,用水溶液浸取。
3.3.2浸出液中钒的分析办法
依照第二章的分析办法进行。
3.3.3成果与评论
1)一段脱碳焙烧条件断定
一段脱碳焙烧条件的断定与钠化焙烧后用酸浸工艺相同。
2)二段焙烧条件的断定
浸出时液固比为1.5:1的条件下进行以下实验:
i)碳酸钠参加量对钒浸出率的影响
图3-5 碳酸钠参加量对钒浸出率的影响
由实验得,碳酸钠参加量对钒浸出率的影响成果同上一章。当碳酸钠的增加量为原矿石的2%时到达最佳。
ii) 温度对钒转浸率的影响图3-6 温度对钒转浸率的影响
由实验得,温度对钒转浸率的影响成果同上一章。当焙烧温度到达 800℃时,钒的转浸率到达最佳。
iii)焙烧时刻对钒转浸率的影响图3-7 焙烧时刻对钒转浸率的影响
由实验得,时刻对钒转浸率的影响成果同上一章,当焙烧时刻为2小时,钒的转浸率根本到达最佳。
3)浸出工艺条件对钒浸出率的影响
在水浸进程中,焙烧熟猜中的NaVO3、Mg(VO3)2等能够溶于水,而Ca ( V O3 )2、FeVO4等难溶于水,这样就会影响钒的转浸率,但不会引入很多的杂质离子。浸出时刻对钒浸出率的影响如图3-8 :图3-8 浸出时刻对钒浸出率的影响
由实验得,当浸出时刻到达1小时,钒的转浸率为13.5%左右,持续增加时刻,钒转浸率不再明显增加。因而,最适合的浸出时刻为1小时。
3.3.4 总结
经过核算发现转浸率相同也不高,它的转浸率略低与前两种工艺,最高能到达15%左右,但它的长处是后处理进程比前两种工艺都简略,因为不会引入更多的杂质离子。所以,这种工艺仍是优于前两种工艺。
3.4钠化焙烧-碱浸工艺研讨
3.4.1实验办法
依照第二章的实验办法一,称取50g原矿石,用碳酸钠和溶液浸取。
3.4.2浸出液中钒的分析办法
依照第二章的分析办法进行。
3.4.3成果与评论
1)一段脱碳焙烧条件断定
必定脱碳焙烧条件的断定与钠化焙烧后用酸浸工艺相同。
2)二段焙烧条件的断定
浸出时液固比为1.5:1的条件下进行以下实验:
i) 碳酸钠参加量对钒浸出率的影响
图3-9 碳酸钠参加量对钒浸出率的影响
由实验得,碳酸钠参加量对钒浸出率的影响成果同上。当碳酸钠的增加量为原矿石的2%时到达最佳。
ii)温度对钒转浸率的影响
图3-10 温度对钒转浸率的影响
由实验得,温度对钒转浸率的影响成果同上。当焙烧温度到达 800℃时,钒的转浸率到达最佳。
iii)焙烧时刻对钒转浸率的影响
图3-11 焙烧时刻对钒转浸率的影响
由实验得,时刻对钒转浸率的影响成果同上,当焙烧时刻为2小时,钒的转浸率根本到达最佳。
3)浸出工艺条件对钒浸出率的影响
对焙烧熟料萃取碱浸取,使钒以Na4VO(CO3)3方式溶解。因为原矿石中有必定的钙含量,所以选用碱浸取能够使钒酸钙盐溶解,能够时钒的转浸率有必定的进步。或许的化学反响表明为:
Ca(VO3)2+Na2CO3=CaCO3+NaVO3
i)碱的浓度对钒浸出的影响
在其它浸出条件(碳酸钠的增加量为原矿石的1%,液固比1.5:1,浸出时刻1小时)必定的情况下,浸出碱的浓度对钒浸出率的影响见下图3-12。图3-12 碱的浓度对钒浸出的影响
由实验得,当碱的浓度逐步进步,钒的浸出率也随之逐步增大,当到达1.5mol左右,钒的浸出率进步不是很明显。所以,选定碱度1.5mol为最佳。
ii)碳酸钠的参加量对钒浸出率的影响
在其它浸出条件(液固比1.5:1,浸出时刻1小时,碱的浓度为1.5mol )必定的情况下,碳酸钠的参加量对钒浸出率的影响见下图3-13。图3-13 碳酸钠的参加量对钒浸出率的影响
由实验得,浸出是碳酸钠的参加量为原矿石的1%时,钒的转浸率根本达最佳。
iii)浸出时刻对钒浸出率的影响图3-14 浸出时刻对钒浸出率的影响
由实验得,当浸出时刻到达1小时,钒的转浸率为24.5%左右,持续增加时刻,钒转浸率不再明显增加。因而,最适合的浸出时刻为1小时。
3.4.4总结
经过核算发现转浸率相同也不高,他的转浸率尽管比前面三种工艺都高,但也最高只能到达25%左右,但仍然存在耗碱量大的弊端且能耗也大。这种工艺的浸出率比以上几种工艺都高,原因之一或许是因为原矿石中有必定的钙的含量,焙烧进程将其氧化为钒酸盐,浸出时,碳酸钠能够溶解一部分。
3.5定论
归纳以上几种工艺道路,本实验终究选定用钠化焙烧后用水浸的提钒工艺。
第四章节的提钒工艺道路是依照钠化焙烧水浸来处理的。
4 浸出物萃取与沉钒研讨
4.1萃取进程
4.1.1根本原理[4]
经过钠化焙烧-水浸后,水溶液中钒首要以VO3-、V4O124-离子的形状存在。因为钒的浸出率不高,终究还要采纳萃取-反萃取的办法来使钒的浓度能够得到富集。所以,浸出液中参加必定量的酸来调理溶液的pH,使其到达最好的萃取作用。
在 pH=5的溶液中,五价钒的的存在形状是〔H2VO4〕-。因为钒具有较强的络合才能,会发作杂乱的质子化与聚合反响,生成十聚酸氢根络阴离子:
10〔H2VO4〕_+ 5H+=〔HV10O28〕5_+ 12H2O
本次实验选用季铵型萃取剂十六烷基三甲基氯化铵C16H33N+(CH3)3Cl-进行萃取。萃取反响为:
〔HV10O28〕5_+5 C16H33N+(CH3)Cl-(o)= C16H33N+(CH3)3.〔HV10O28〕5_(o)+ 5Cl-
即发作了水相和有机相之间的阴离子交流,并在有机相构成缔合离子对或离子缔合体。式中下角(o)表明有机相,为加下角者为水相。
有机相以火油为稀释剂。因为萃取剂是表面活性物质,易发作乳化,故需参加相调理剂。本实验挑选正辛醇作为相调理剂。有机相中正辛醇浓度约2%。萃取时相体积比有机相/水相=1/3。有机相中十六烷基三甲基氯化铵的浓度为16%。
4.1.2实验办法
将抽滤好的浸出液转入烧杯中,然后用必定浓度的硫酸调理含钒溶液的 pH为5左右,终究与配好的有机相混合后转入分液漏斗中摇匀,静置分层进行萃取。有机相以火油为稀释剂,正辛醇浓度约2%,十六烷基三甲基氯化铵的浓度为16%,萃取时相体积比有机相/水相=1/3。
4.1.3成果与评论
25℃下,不同pH时的萃取成果见下图十五。有图可见在pH=4-5区间,萃取率q较高。pH变小时,晦气于萃取,在很低的pH下,钒的存在形状终究乃至变为VO2+,pH >5时,相同对萃取晦气。图4-1 pH对萃取率的影响
4.2反萃取进程
4.2.1根本原理[4]
萃取后的有机相中参加氯化铵即可发作反萃取进程:
C16H33N+(CH3)3·〔HV10O28〕5-(o)+ 5NH4Cl﹦C16H33N+(CH3)3Cl-(o)+(NH4)5〔HV10O28〕 反萃取时用20%的NH4Cl溶液,V(o):V﹦3:1,2 min即可树立反萃平衡。反萃液两相别离后得到的有机溶剂可循环运用。
4.2.2实验办法
将得到的萃取液再转入烧杯中,然后与配好的20%的NH4Cl溶液混合,终究将混合液再转入分液漏斗中摇匀,静置分层进行反萃取。反萃取时相体积比有机相/水相=3/1。
4.3沉钒及焙烧
4.4.1沉钒[4]
取基层水相,参加少数4moL/L的NaOH溶液,调理pH≈8.0,参加过量2倍体积的20%NH4Cl溶液,有黄色絮状沉积生成,放置一段时刻。即转变成,并沉积下来:
(NH4)5〔HV10O28〕+5NH4Cl+5NaOH=10NH4VO3↓+5Na++ 5Cl-+3H2O
实验成果沉积率达99.8%。
4.4.2过滤
过滤上述放置一段时刻后的溶液,滤纸上留有桔黄色固体沉积。
4.4.3灼烧
在室温下安稳,加热则易脱分化:
2NH4VO3 V2O5+2NH3↑+H2O↑(520℃)
把滤纸连同沉积一同,放在坩埚里,马弗炉520℃灼烧1.5h后,即得桔黄色五氧化二钒制品。图4-2 五氧化二钒样品
4.4.4成果与评论
经过选用——硫酸亚铁铵滴定法来测定制品中五氧化二钒的含量。依据第二章公式一来核算制品中五氧化二钒的含量并核算提取率。
制品五氧化二钒的纯度X==98.3%
最成功提取率 = 100%= 100% =0.13%5 定论与展望
5.1定论
(1)归纳几种工艺道路,本实验终究选定用钠化焙烧后用水浸的工艺。
(2)选用钠化焙烧-水浸-萃取-反萃取-沉钒工艺可从含钒绿泥石中制得纯, 度为98%的V2O5产品。
(3)钠化焙烧的最佳工艺条件为:碳酸钠的增加量为矿石的2%,焙烧温度为800℃,焙烧时刻为2小时,在此工艺条件下,钒的转浸率能够到达15%左右。
(4)熟料浸出的最佳工艺条件为:液固比为1.5:1,反响时刻为1小时。
(5)因为钒的浸出率不高,选用萃取-反萃取的办法来使钒得以富集,这需求几组实验才, 能使钒得以沉积。
(6)本实验所选用的增加剂在焙烧进程中不含发作有毒有, , 害气体,不会因而构成大气污染。
(7)矿石中首要脉石矿藏绿泥石含量高达60%,元素CaO、MgO的含量分别为5. 23%和13.90%,不宜选用酸浸出提钒。
(8)我国钒资源极其丰厚,是全球钒资源储量, 大国。但钒土矿在我国只散布在四川 、河北等地,相对资源有限,报价较贵,每吨200元,而我省绿泥石资源丰厚,绿泥石矿藏5元/吨。所以,从它里边提取钒是有含义的。 5.2缺乏与展望
(1)因为实验条件有限,磨矿的颗粒巨细与焙烧的氧化气氛很难操控,然后导致钒的转浸率比较低。
(2)因为矿石自身的性质决议现行的工艺对钒的提取仍是有必定的困难,以上实验也证明了这一点,依据对几种工艺的评论发现钒的浸出率都不高,寻求短流程、大规模、低本钱、低污染的固废提钒与残渣归纳运用的新工艺是提钒新技能的未来。
参考文献
[1 ] 任学佑 . 稀有金属钒的运用现状及市场前景[J ]. 稀有金属 2003,12(3): 52~54.
[2] 邹晓勇,彭喧嚣,欧阳玉祝,等.高硅低钙饥矿的钙化焙烧进程.程工程学报,2001, 22(3): 115~117.
[3] 刘安华,李辽沙,佘亮.含钒固废提钒技能及展望 矿产归纳运用,2003.
[4] 阶腾甲.从废钒触媒中提取五氧化二钒的研讨湿法冶金,1992.
[5] 蒋馥华,张萍.溶剂萃取法从废钒催化剂制备高纯五氧化二钒硫酸工业 1996.
[6] 戴文灿,朱柒金,陈庆邦,等.石煤提钒归纳运用新工艺的研讨有色金属(选矿部分),2000.
[7] 邹晓勇,欧阳玉祝,彭喧嚣,等.含钒石煤无盐焙烧酸浸出产五氧化二钒工艺的研讨.化学国际,2004.
[8] 陆芝华,周邦娜,余仲兴,等.石煤氧化焙烧一稀碱溶液浸出提钒工艺研讨.稀有金属,1994.
[9] 张中豪,工彦恒.硅质钒矿氧化钙化焙烧提钒新工艺.化学国际,2000.
[10] 工永双,李国良,童庆云.用溶剂萃取法从炭质页岩中收回钒钼稀有金属,I 995.[11] 郑彭年.离子交流用于石煤提钒的评论.工程规划与研讨,1992.
[12] 鲁兆伶.用酸法从石煤中提取五氧化二钒的实验研讨与工业实践[J].湿法冶金 ,2006.
[13] 张萍,蒋馥华.苛化泥为焙烧增加剂从石煤提取五氧化二 稀有金属,2000 .
[14] Ren Juemin. Handbook for Development and Utilization of Industry Mineral Resources M. Wuhan: Wuhan University of Technology Press, 1993. 63 – 76.
[15] LI Xiaojian. Design and Application so Acid Leaching - extraction Processing in BoneCoalExtracting Vanadium IndustryJ.Hunan Nonferrous Metals, 2000 , 3 :21 - 23.
[16] Goddard J B Salt Roasting of V anadium O res C ExtrM ET allM et P roc Symp. 1981.[17] Cai Jinqiang, Ba Ling. Several Kind of New Craftsof Extracting Vanadium from Bone Coal.J. Conservation and Utilization of Mineral Resources, 1993.
[18] Li Liaosha,Yang J unhe ,Lou Taiping ,et al. Study on The Oxida- Lion of Ti-Bearing Slag. Sixth International Conference on Molten Slags,Fluxes,and Sults,in StockholrrrHelsinki Jun 12一I 6 , 2000.
[19] 李浩然,冯雅丽 .微生物冶金的新发展.冶金信息泞刊,1999(3).
[20] 龚文琪,魏鹏,雷绍民.微生物技能与21世纪矿产资源开发我国非金属矿工业导刊,2000(5) .
[21] 邱定善.清洁高效的提取冶金一矿浆电解.我国工程科学,1999(1).
[22] 刘贞敏,钒触媒中五氧化二钒含量的测定办法 [J] ,河北化工,2006,29(3):1.