黄铁矾的水解沉淀
2019-02-18 15:19:33
黄铁矾习惯上也统称为黄钾铁矾,在酸性溶液中具有很小的溶解度。矾是指两种或两种以上金属的硫酸盐所组成的复盐,它比其对应的单盐更易从溶液中结晶分出,还能构成较大的晶粒,有利于固液别离。黄铁矾是一组Fe(Ⅲ)的碱式硫酸盐的复盐,其分子式一般可写成M2O·3Fe2O3·4SO3·6H2O或MFe3(SO)2(OH)6,式中M+为下列一价阳离子(或称矾离子)之一:H3O+、Na+、K+、NH4+、Ag+、Rb+和 Pb2+等。在黄铁矾的化学组成中,高铁离子与硫酸根离子的比值(Fe3+∶SO42-=1.5)远大于1∕2,因此归于碱式盐而不是正盐。与正盐比较,它是在溶液酸度较低和SO3百分含量较小的条件下构成的,并可看成是氢氧化物向正盐过渡的中间产品。在正盐中,高铁离子的键合物是SO42-离子中的O2-离子,在氢氧化物中则为OH-离子。溶液酸度增大就会向正盐改变,酸度下降则分出氢氧化物。
自然界巳知有6种黄铁矾,别离为:黄钾铁矾,草黄铁矾,黄铵铁矾,银铁矾,黄钠铁矾和铅铁矾。它们都是在酸性环境中构成的,多为黄铁矿氧化成褐铁矿的中间产品,多发作在硫化矿氧化带发育的开始阶段。一价阳离子M+的品种对黄铁矾的沉积有影响。在160~200℃规模内别离参加Na2SO4,Na2CO3,NH4OH或K2SO4作为沉积黄铁矾的一价阳离子源进行比较,发现沉积后溶液中残留的铁浓度很不相同,残留铁浓度按此次序递减,但到180℃以上这种不同变小。几种黄铁矾中草黄铁矾最不安稳,尽管没有碱金属存在时能够见到草黄铁矾H3OFe3(SO4)2(OH)6生成,但即便少数碱金属的参加便会使之转化为碱金属黄铁矾,水合质子 H3O+被碱金属离子替代的程度随温度上升而添加。钾的铁矾安稳性最高,NH4+离子半径比K+大,Na+、Li+等离子的半径尽管比K+小,但它们的水合分子数多,其水合离子的半径大,因此它们的铁矾的安稳性都不及钾的铁矾。不过考虑到钾盐较贵,工业上铵一般是沉积黄铁矾首选的一价阳离子源。
黄铁矾一旦构成,就很安稳,不溶于酸,因此黄铁矾的沉积反响可用于从硫酸盐溶液中除铁,然后下降给定酸度下铁的溶解度。沉积反响可用下式标明:
(1)
如上式所见,黄铁矾沉积进程中有游离酸发作,需求随反响进程处以中和以坚持沉积要求的溶液pH值。因此,沉积黄铁矾运用的中和剂不只用以中和初始酸,也用以中和高铁水解发作的酸。不过如前所述,中和不宜运用强碱如,即便很稀的强碱液也很难操控pH值。在电解锌厂的实践中是用锌焙砂(首要含ZnO)作中和剂。
文献汇集了各种黄铁矾的自由能数据,从黄铁矾离解成它的组成成分的平衡常数能够核算在给定条件下铁的溶解度。黄钾铁矾沉积构成的速度随温度而异。在25℃下黄铁矾的构成速度缓慢,从pH值0.82~1.72规模的溶液中沉积彻底或许需耗时6个月。进步温度可改进沉积速度,80℃以上时沉积速度变得较快,100℃时可在数小时内沉积彻底。温度100℃以上沉积速度明显加速,不过就黄铁矾的安稳性而言,沉积温度有一个上限。尽管此温度上限会因溶液的组成而异,但180~200℃似为黄铁矾安稳性的上限。
诚如上述,除pH值和温度外,黄铁矾的构成及其安稳性还与一价阳离子浓度、铁浓度以及有无晶种或杂质存在等许多要素密切相关。假如把黄铁矾看作一种难溶电解质,其离解反响式可写为:
(2)
相应地,溶度积写为
(3)
能够看出,参加碱金属硫酸盐可促进黄铁矾的构成。不过上式中以一价阳离子M+的浓度方次最低,对溶液中铁的沉积影响最小,黄铁矾能够从含K+低至0.02mol∕L的溶液中沉积,但一般来说,铁沉积的程度随一价阳离子M+对Fe3+之浓度比添加而进步,且试验证明,抱负状况的M+浓度应满意分子式MFe3(SO4)2(OH)6所规则的原子比。从含Fe3+0.025至3mol∕L的溶液都彻底能够沉积黄铁矾,沉积的下限是10-3mol∕L。只需溶液中有过量的M+离子存在,沉积的黄铁矾的数量和成分与初始溶液中的Fe3+浓度无关。另一方面,OH-离子的浓度方次最高,因此溶液酸度对铁矾分出影响最大。在工厂实际操作条件(沉积温度~100℃)下,黄铵铁矾沉积时溶液中残留的Fe3+浓度与初始H2SO4浓度存在以下联系:
[Fe3+]/[H2SO4]=0.01
上式标明,初始H2SO4浓度越高,黄铁矾沉积残留的Fe3+浓度也越高。并且到达平衡所需求的时刻也越长。
黄铁矾沉积基本上是一个成核与成长的进程,其沉积数量和速度与晶种的运用很有联系。在均相系统中发作沉积反响发作固体表面或许需求一个诱导期,晶种的存在可望消除这种诱导期并加速铁矾沉积的速度。尽管因为反响设备的尺度然后壁效应、所用试剂的纯度等许多要素都或许影响新相成核进程,因此文献对晶种的效果的报导颇有收支,有的乃至以为晶种效果不大,但一般的观念都必定晶种对黄铁矾构成的促进效果。晶种的参加可大大添加黄铁矾的沉积速度并按捺诱导期,沉积的初始速度随晶种参加量呈线性添加。参加晶种还可使黄铁矾在更低的pH值及温度下沉积。
铅、银及其他二价金属如Cu、Ni、Co等在黄铁矾沉积中的行为也不容忽视。在酸度不高的条件下铅可按下式构成铅铁矾:
(4)
铅铁矾的生成量与铁浓度及酸度有关。铁浓度越高,能构成铅铁矾的酸度也越高。这类铁矾还会与其他黄铁矾如草黄铁矾和碱金属的黄铁矾构成固溶体。假如溶液中的铅浓度本来有收回价值,则铅铁矾的生成会构成铅的丢失。为避免铅铁矾的生成,提出过3种办法,(1)将酸度进步到能阻挠铅铁矾能构成的浓度,在95℃下铅铁矾能溶于1mol∕L硫酸;(2)在180~190℃规模内沉积铁,在此温度规模内铅铁矾不安稳;(3)在有足够高的碱金属离子浓度下有用地沉积铁,这样会构成比铅铁矾更安稳的碱金属黄铁矾。例如,在Fe3+为0.1mol∕L,H2SO4为0.1mol∕L、PhS为4.5kg/m3的矿浆中,在150℃、K2SO4或Na2SO4或(NH4)2SO4为0.3mol∕L下就能够有用避免铅铁矾的构成。而碱金属离子浓度较低时则会发作碱金属与铅的混合黄铁矾。
贵金属如银也易沉积为银铁矾或含银铅铁矾
(5)
当从含100×10-4%以下Ag的溶液中沉积黄钠铁矾时,有95%以上的银被结合到铁矾中。而二价金属如Zn2+,Cu2+,Ni2+则只在很小程度上结合到碱金属黄铁矾中,这使得黄铁矾法能够很方便地用于从这些金属的溶液(尤其是硫酸盐溶液)中除铁而不构成金属丢失。金属结合到碱金属黄铁矾中的次序是:Fe3+>Cu2+>Zn2+>Co2+>Ni2+。但这些金属结合到铅铁矾中的量要大得多。三价金属如Ga和In比较简单结合到黄铁矾类化合物中。
还有一种观念以为,二价金属离子替代的是黄铁矾结构中的Fe3+而不是碱金属离子。二价金属结合到黄铁矾中的总的趋势是随其离子浓度、pH及碱金属离子浓度添加而加强,并随Fe3+浓度削减而下降。
湿法炼锌黄铁矾法
2019-01-07 17:38:37
黄铁矾法作为有效的除铁方法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,当时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独立地开发了这项技术并几乎同时申请了专利。此后黄铁矾法迅速得到广泛应用,成为电解锌生产中主要的除铁技术,目前世界上至少有16家大型电解锌厂采用了此技术。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且维持这一pH值,并在95℃左右加入一价阳离子从酸性硫酸盐溶液中沉淀黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾沉淀后,溶液中铁的浓度一般降到1~5kg∕m3。
湿法炼锌中黄铁矾法典型的操作分3个基本步骤:中性浸出、热酸浸出和黄铁矾沉淀。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解沉积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液造成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾沉淀段处理,先用锌焙砂调整酸度,再加入硫酸铵或硫酸钠沉淀碱金属黄铁矾。沉铁后液返回中性浸出,黄铁矾渣则弃去。需要指出,沉淀黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,以免损失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸相当稳定,实践上黄铁矾渣弃去前可在类似热酸浸出的条件下进行酸洗,溶解回收渣中残存的铁酸锌,而黄铁矾本身不致溶解。
黄铁矾法的3个基本步骤的具体操作条件及顺序在不同厂家不尽相同,但目的是相同的;最大限度地回收锌而不考虑少量的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的沉淀可以合而为一,即所谓转化法,其总反应如下:
(1)
该合并步骤的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣返回循环。若精矿中含有较大量的Pb和Ag,则采用另外的流程,得到含Pb∕Ag的渣、黄铁矾沉淀和中性Zn电解液。这类流程中包含有一个预中和作业。在通常的黄铁矾流程中是用焙砂降低热酸浸出液的酸度,从而迅速而有效地沉淀黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而损失。在热酸浸出和黄铁矾沉淀作业之间引入一个预中和作业可以降低黄铁矾中的金属损失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣返回热酸浸出段溶解其中的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后加入所需要的中和剂进行黄铁矾沉淀。
图1为集成的黄铁矾法流程示意图。它的设计中结合了各种黄铁矾法方案中的大多数改进环节。图1 集成黄铁矾法
除应用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取中用作除铁工艺,尤其是在硫酸盐体系中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是采用黄钾铁矾沉铁。由于硫酸化焙烧本身提供了K+离子,沉淀黄钾铁矾时无需外加高成本的硫酸钾。
黄铁矾法的优点是沉淀容易过滤,Zn,Cd和Cu在沉淀中的损失最少,可以同时控制硫酸根和碱金属离子,容易与各种湿法冶金流程结合。但它也有其自身的缺陷,例如:1)所用试剂成本较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需要充分洗涤以除去吸附的有害环境或可供利用的金属;4)需要在控制条件下存放以免分解放出有害组分污染环境。通过热分解或水热分解将黄铁矾转化为赤铁矿供生产铁并将硫酸钠/硫酸铵循环至黄铁矾沉淀作业,可望克服这些缺点。
铁矾渣直接还原-磁选-反浮选工艺探索
2019-01-17 10:51:29
铁矾渣是湿法炼锌厂产生的工业废渣,成分复杂,除含有大量的硫酸根和铁离子外,还含有丰富的铅、锌、银等有价金属元素,具有综合回收价值[1]。另外含有的铜、镉、砷等重金属元素在长期堆放过程中不断溶出,污染地下水和土壤。因此,开展铁钒渣的综合利用研究[2-5]可以减少环境污染、提高资源综合利用率意义重大。薛佩毅[3]等对黄钾铁矾渣采用中低温焙烧?NH4Cl浸出?碱浸工艺,同时回收有价金属和铁,但工艺生产效率低。路殿坤[4]等将铁矾渣在900℃还原焙烧后磁选,磁选精矿铁品位为58%,含硫2.5%~3%,但磁选精矿中锌含量仍较高,不能作为原料返回高炉冶炼。史玉娟[5]等利用黄钾铁矾渣和赤泥的反应制备石膏、芒硝和赤铁矿砂的方案,但是不能回收铅、锌等有价元素。本文采用配碳球团直接还原—磁选—反浮选工艺综合回收铁矾渣中铁、铅、锌。此工艺生产效率高,分离效果好,工艺简单。
1 试验
1.1 试验原燃料
以某铅锌厂湿法炼锌工艺固废铁矾渣为研究对象,试验用吉林森工无烟煤为还原剂,分析纯氢氧化钙为熔剂。铁钒渣和无烟煤的分析结果见文献[6]。
1.2 试验方法和流程
铁矾渣含水量较大(35%左右),因此,先在110℃鼓风干燥箱内充分干燥,然后按照一定比例将铁矾渣、消石灰、煤粉、黏结剂和水在混料机中混合均匀,再用造球机造球,将冷固结含碳球团烘干后称重装入刚玉坩埚放入硅钼棒加热井式炉内进行还原试验。直接还原结束后将金属化球团进行磨样,采用化学容量法、ICP法测定还原球团中全铁、金属铁和铅、锌含量,计算金属化率和铅、锌挥发率。金属化球团磨样后经Φ50mm磁选管、磁场强度47.76~238.8kA/m (60~300 mT,1 mT=796 A/m)的条件下进行磁选,分别计算磁选铁精矿品位和铁的回收率。最后在3L单槽浮选机内对磁选铁精矿进行浮硅抑铁的反浮选,脱除硅质脉石提高铁精矿品位。
2 试验结果与讨论
2.1 直接还原过程金属化率的变化
高金属化率球团的制备是磁选回收铁精矿的基础。试验条件:还原温度1 300℃、配碳比1.4、碱度2.5(铁钒渣原始碱度为0.31,通过加入氢氧化钙调节),试验结果如图1所示。
从图1可见,随着还原时间的增加,金属化率逐渐增加,还原10 min时金属化率为86.3%,还原30min时金属化率达到98.47%,之后趋于稳定。前期试验发现,自然碱度下球团熔点较低,在1 100~1 200℃间,还原温度不可以设定得太高,还原金属化率最高仅为90.60%,提高碱度后熔点提高,有利于高温下碳的气化反应进行,促进直接还原发生。
2.2直接还原过程铅、锌挥发率的变化
试验条件:还原温度1 300℃、配碳比1.4、碱度2.5,还原时间对铅锌挥发率的影响如图2所示。图2表明,随着还原时间的延长,铅、锌挥发率逐渐增加,还原10min时铅、锌挥发率较低,分别为41.5%和53.2%,还原30min时,铅、锌挥发率分别达到86.26%和98.54%,分别提高了44.76%和45.34%,之后锌挥发率趋于稳定,铅挥发率略有提高,还原40min时,铅挥发率为90.1%。可见含碳球团直接还原可使铅、锌得到有效挥发,最终可以从烟尘中回收铅、锌。
2.3 磁选试验
直接还原试验得到金属化率为98.47%的金属化球团,经振动磨磨细后进行磁选试验。磁选设备为DTCXG-ZN50型磁选管,磁场强度0~450mT,磁选管直径50 mm,磁极间距52mm,磁选结果如图3所示。由图3可以看出,随着磁场强度的增加,铁的回收率逐渐增加,最后稳定在80%左右。铁精矿品位随着磁场强度增加呈下降趋势,50mT时铁精矿品位50.31%,但是收得率仅为33.93%,大部分的海绵铁随着渣相进入到尾矿。整体观察,磁场强度变化对铁精矿品位影响不大,对回收率影响比较大。综合考虑,适宜的磁场强度为200mT。此时铁精矿Ⅰ品位达到46.66%,并不能作为商用铁矿粉出售,低于普通铁精矿等级划分标准五级(54.0~
2.4 反浮选试验
反浮选试验在XFD Ⅲ型单槽浮选机中进行,功率250 W,容积3 L,叶轮直径70 mm,主轴转速1 400 r/min。称取500g品位为46.66%的磁选铁精矿Ⅰ加水至3 L,调浆2 min;淀粉作为铁的抑制剂,添加比例为200 g/t,搅拌3min;碳酸钠作为pH调整剂(亦为强化分散剂[7]),添加比例为1 250 g/t,并搅拌3 min;之后添加阳离子捕收剂十二胺(分析纯)300 g/t并搅拌2min;最后在鼓气量为600 L/h的条件下反浮选6min,试验结果表明,反浮选铁精矿Ⅱ的品位提高至60.30%,铁回收率为83.15%,说明此工艺路线可行。
3 结论
(1)在配碳比为1.4、碱度为2.5、1 300 ℃还原30min的条件下,配碳球团直接还原金属化率达到98.47%,铅、锌挥发率分别为86.26%和98.54%。经磨矿磁选,得到品位46.66%的铁精矿Ⅰ,再经反浮选工艺可获得品位60.30%的铁精矿Ⅱ。
(2)铁矾渣含碳球团直接还原—磁选—反浮选工艺路线综合回收铅、锌和高品位铁精矿是可行的。
复制搜索 启动快捷搜索设置
湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(一)
2019-01-25 15:49:24
A 黄铁矾法除铁原理 a 黄铁矾沉淀组成及热力学稳定性 黄铁矾的分子式通常可以写成A20·3Fe203·4S03·6H20或AFe3(S04)2(OH)6,或A2[ Fe6( SO4)4(OH)12,式中A代表一价阳离子,即可以是K+、Na+、NH4+、Rb+、Ag+、—Pb2+或H3+O等,例如: 黄钾铁矾:KFe3(S04)2(OH)6,其化学组成:K20 9.41%,Fe203 47.83%,S03 31.97%,H20 10.79%。黄钠铁矾:NaFe3(S04)2(OH)6,其化学组成:Na20 6.4%;Fe203 49.42%;S03 33.04%,H20 11.14%。黄铵铁矾:NH4 Fe3(S04)2(OH)6,其化学组成:(NH4)2O 5.43%,Fe203 49.93%,S03 33.37%,H20 11.27%。 这些化合物通常称黄钾铁矾或黄铁矾。在自然界里,有些矿物具有类似的组成,相同的结构和结晶形态,即所谓类质同晶。所谓矾,是一系列类质同晶矿物的总称,而黄钾铁矾是矾中的一种。 波北兹涅克和麦尔文研究了Fe203-S03-H20三元系在某些温度下的平衡情况,如下图所示。所有碱式盐、酸式盐及正盐都位于三元系相图内部,这是由于它们都含有结晶水的缘故。无水硫酸高铁位于Fe203-S03二元系线上,但它在50℃和75℃的条件下不是平衡相,即不会从溶液中以这种成分析出,因而没有在图上出现。按照平衡固相来分类,图大致可分成以下三类区域: 平衡固相是氧化铁的水化物。这是一个非常狭小的区域,位于图中最左端的三角形1中。在这个区域内,从液相析出的固相是一水氧化铁或三水氧化铁。由于后者是介稳相而不是平衡相,因而未在图上标出。液相线基本上不和Fe203-S03二元系边线相交,因而氧化铁的水化物在水中的洛解度非常小。三角形1远离组分S03,表示系统酸度非常低,高铁以氢氧化铁和针铁矿的形态从铸旅由析出需要符合这种条件。黄铁矾除铁必须偏离这个区域,即必须使溶液保持一定酸度。[next] 平衡固相是碱式盐或碱式盐和氧化铁水合物的混合物。三角形2-7都属于这样的区域,它们由液相和固相很合组成。可以看出,三角形2的平衡固相是氧化铁的水合物和含结晶水的硫酸高铁碱式盐(3Fe203·4S03·9H20),在3-7中,平衡固相则为一种或两种不同的碱式盐。 平衡固相是正盐、酸式盐或它们的混合物。三角区域9-13就属于这样的区域,体系中S03%的增加将使平衡液相线即母液的含铁量急剧下降。这些区域的特点是平衡液相线含有很高的S03%。与黄铁矾沉铁直接有关的是区域2-3,与它们相应的稳定平衡固相是碱式盐草黄铁矾3 Fe203·4S03·9H20,也可以写成[H(H20)]20·3 Fe203·4S03·6H20,不论在成分或物理化学性质方面都和黄钾铁矾非常相近。所以当溶液中存在K+、Na+、NH4+时,平衡固相将由更为稳定的黄铁矾所代替。随溶液酸度减小,黄铁矾趋于不稳定,并将转变为含水氧化铁。为使高铁以铁矾析出,必须使溶液保持一定酸度。 从硫酸铁溶液中沉淀铁矾的反应如下: 3Fe2(S04)3+6H2O ==== 6Fe(OH)S04+3H2S04 4Fe(OH)S04+4H20 ==== 2Fe2(OH) 4 S04+2H2S04 2Fe(OH)S04+2Fe2(OH)4S04+2NH40H ====(NH4)2 Fe6(S04)4(OH)12 2Fe(OH)S04+2Fe2(OH)4S04+Na2S04+2H20 ==== Na2Fe6(S04)4(OH)12+H2SO4 2Fe(OH)S04+2Fe2(OH)4S04+4H20 ====(H30)2 Fe6(S04)4(OH)12 黄铁矾形成时,有硫酸产生。必须将酸中和,反应才能继续进行。在锌冶炼中通常采用焙砂作中和剂。在其他情况下可用Fe203 、Na2C03等作中和剂。 黄铁矾结晶的形成需要的是Fe3+,在实际的工业滤液中均含有比例不等的Fe2+,因此氧化Fe2+成为Fe3+是结晶前的首要步骤。氧化剂有KMn04, Mn02 , C12 , NaC1O3和过氧硫化物等。在湿法炼锌工业实践中,多用02或空气为氧化剂。沉矾速度是人们关注的重要问题,长沙矿冶研究院马荣骏等做出了系统的动力学方面的工作。 b 一价阳离子对结晶的影响 黄铁矾的生成条件是,溶液中必须有Na+,K+或NH4+等离子。通常使用的化合物有NH40H,(NH4)2S04,NH4HC03,Na0H,Na2S04及KC1等。一价离子加入量必须满足化学式AFe3(OH)6所规定的原子比,即Fe/A必须等于或大于3方能取得好的除铁效果。不同种类和数量的一价阳离子除铁效果如下图。由图可知,钾离子效果最好,钠和铵离子效果接近。[next]
c 溶液酸度对沉淀的影响 溶液pH值对黄铁矾的稳定性和沉淀率有重要影响。黄铁矾在形成过程中产生大量酸,酸度增高将降低铁的沉淀量和速率。沉淀母液中Fe3+浓度与硫酸浓度的关系,理论上为CFe3+ /CH2SO4=0.004,但工厂操作时上述比值常取0.01。有人研究了温度-pH值关系,如上图右所示。图中阴影部分是黄铁矾稳定存在的区域。表明在低pH值下,必须在较高温度下黄铁矾才能稳定存在:20℃时,pH值范围是2~3;100℃时,pH值范围是1~2.3 ;而在200℃时,pH值则为0~1.2。实际上,pH<2.5,溶液电位大于0.60V和Fe3+浓度大于0.001 mol/dm3,黄铁矾即可以稳定存在。下图示出了电位与pH值关系图。表明黄铁矾在pH =0.5 ~2.5范围内是稳定的。[next]
d 反应温度对沉淀的影响 黄铁矾在室温下形成的速度非常缓慢。如在25℃时由K2S04-Fe2(S04)3溶液中沉淀钾铁矾,在水相pH值为0.82~1.72范围内,需要1~6个月。如将温度升到100℃,数小时后沉淀则已近于完全;温度若达到180~200℃,黄钾铁矾则开始破坏。 沉矾的操作温度要求高于85℃,温度对沉淀结果的影响如上图右所示。温度低不仅沉淀缓慢而且过滤困难。黄铁矾在酸性介质中的溶解度随温度升高而急剧下降。
湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(三)
2019-01-25 15:49:24
低污染的黄铁矾法基本原理是在“沉矾”之前,先通过低温预中和调整溶液的组成,在沉矾过程中不需添加中和剂就能满意地除铁。主要流程可由下两图表示。上图左示出低沮预中和流程。预中和既可采用焙砂,也可采用中性浸出后的浓密底流。如果热浸出液中铁含盆较高,则铁矾沉淀后对浓密上清液的返回可能有益处;下图右表示用中性浸出液作稀释剂的流程。
[next]
因为在低污染黄铁矾法中所产生的铁矾只含少量的有价金属。减少了铅、锌、银、金、锡、铜等有价金属的损失。下表一示出低污染黄铁矾法及常规铁矾法金属回收率对比;下表二示出两种沉淀法铁矾渣组成。这些数据显示出新方法的优越性。该法是由世界第二大炼锌厂,年产200kt锌的澳大利亚电锌有限公司发展的处理锌渣的方法,并在日产500t锌的中间工厂进行了试验。生产流程如下图所示。澳大利亚电锌公司已决定在生产厂改造中引人低污染黄铁矾法。表一 不同铁矾法金属回收率元素金属回收率/%常规黄铁矾法低污染黄铁矾法Zn94~9798~99Cd94~9798~99Pb~75>95Ag~75>95Au~75>95Cu~90>95表二 不同铁矾渣组成元素常规黄铁矾法低污染黄铁矾法Fe25%~30%32.40%Zn2~60.25Cd0.05~0.20.001Pb0.2~2.00.05Ag10~15g/t4g/tAu0.6g/tCo0.01%0.00%Cu0.1~0.30.016[next] 我国长沙矿冶研究院马荣骏等于20世纪80年代开展了低污染黄钾铁矾法的研究,也得到了较好的结果。我国赤峰冶炼厂已采用低污染黄钾铁矾法进行工业性生产,取得了良好的经济效益和社会效益。
湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(四)
2019-02-14 10:39:49
c 转化法除铁及其使用 奥托昆普转化法是奥托昆普公司拟定的。办法的特点是铁酸锌的浸出及铁沉积进程合并在一个阶段完成。自1973年2月以来,已经在科科拉电锌厂付诸实践。 在浸出和沉铁一起进行,所构成的铁矾称为混合型黄铁矾,上图所示出H2S04-Fe2(S04) 3-(NH4)2SO4-H20-(NH4)x(H30)(1-x)-[Fe3(S04)2(OH)6〕系生成混合型黄铁矾的安稳曲线。假如代表溶液成分的点坐落曲线的上方,溶液内的Fe3+将生成混合型黄铁矾沉积。沉积速度决定于Fe3+浓度间隔相应平衡值的远近。当代表液相成分点坐落平衡曲线(固体物料的安稳区域)以上时,有可能在大气压下浸出铁酸锌并一起沉铁,对铁酸锌物猜中的有价金属一起将以硫酸盐形状提取出来,反响可表示如下:
[next]
从理论上看,铁酸锌的浸出及铁的沉积可在下图平衡线以上的条件进行。但因为当溶液含酸量减少时铁酸锌的浸出速度将下降;又当溶液含酸量添加时,残留铁量将添加。因而实践中有必要挑选在最佳酸度范围内操作。如图所示在科科拉厂转化法使锌的浸出收率由早年的92%上升到96%。 d 铁矾渣的处理及使用 黄铁矾法在锌冶炼厂一般选用焙砂做中和剂,构成有价金属的丢失。因为铅、银、锢等在除铁进程中也能生成黄铁矾型复盐,因而怎么从矾渣中收回有价金属、硫酸盐、铁制品以及渣的固化,引起各国学者的注重。 有人用化学和矿藏办法调查了银在湿法炼锌中的行为。焙烧时,精矿中的银矿藏转变成硫酸银、和金属银。浸出时,银首要先以硫酸银(Ag2SO4)方式溶解,然后当即转成不溶性Ag2S沉积并环包着细的或粗的闪锌矿颗粒。在热酸浸出时,构成元素硫一黄铁矾粒群,其中有细微的Ag2S或Ag2S的夹杂物和替代黄铁矾中的一价阳离子的银存在。溶解后的银对黄铁矾型化合物具有很强的亲和力。大于90%的可溶性银与Na+、NH4+、Pb2+等型黄铁矾共沉积。 在黄铁矾沉积中,银黄铁矾比钠或铵型黄铁矾更安稳。在银、钠共存系统中,黄铁矾中含银量随溶液中银浓度添加而添加。但钾型黄铁矾比银型更安稳。因而假如以K+作沉积剂,对捕集溶液中的微量银是晦气的。 我国会东炼锌厂做了热酸浸出-铁矾沉铁一段转化法处理锌渣的工业实验。产出的铅银铁矾渣经选矿产出产品含银1.5%。 沈阳冶炼厂和辽宁冶金研讨所从前研讨从黄铁矾渣中归纳收回有价金属的工艺流程。
湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(二)
2019-02-14 10:39:49
e 参加晶种对沉积影响 黄铁矾晶核的生成比较缓慢。从含硫酸lOg/dm3,Fe3+10.98g/dm3的热酸浸液中除铁,大约1h后溶液中才有结晶分出。加人晶种后半小时便有晶体分出。在整个沉矾进程中拌和也是必要的。 向热力学稳定相搬运的相变都将下降整个系统的自由能。新相的生成,使系统的相数由一相变为两相。一方面部分原子由高的自由能(旧相)向低的自由能(新相)改变,下降系统内部自由能;但另一方面,新相表面的构成,又需求能量,然后添加系统的自由能。因而新相(如黄铁矾结晶)构成时自由能的改变可用下式标明: △F = -V△fvSσ
式中 V——结晶新相的体积; △fv——单位体积中旧相、新相间自由能之差,△fv = F液-F固; S——新相的表面积; σ——单位相界面上,新旧两相间的表面张力,即两相间比表面能。 假定新相为球形,上式可改写成: 4 △F = - —— πr3n△fv + 4πr2nσ 3式中 r——球形晶粒的半径; n——新相生成的颗粒数。 从下图左能够看出,△F的改变取决于新相颗粒的巨细。当晶粒的半径小于临界颗粒半径rk时,系统总自由能增高;当半径大于rk时,状况相反;半径等于r0时,△F的添加等于零,标明因为新相的生成,构成的相界面表面能抵消了部分原子由液相向自由能较低的固相改变带来的自由能下降;当半径大于r0时,自由能的添加为负值,标明整个系统内的自由能趋于下降。由此可知,在结晶开端后,能够有许多晶粒,可是遭到必定约束,只要那些因为涨落现象等原因使粒径增大到引起系统自由能减小的晶粒得以生长,即半径大于rk的晶粒,才或许成为晶核。下图右标明外加晶种能够大大加速沉矾速度。
[next]
f 黄铁矾沉积进程中其他离子的行为 黄铁矾法除铁首要用于湿法炼锌,因而锌对沉积的影响是首先要考虑的要素。调查锌的影响时发现,即便溶液中含有100g/dm3的Zn2+,沉积由结晶向无定形改变的临界pH值也简直不变,即不加Zn2+,临界pHJA为: pHJA = 0.211lg[Fe3+]+1.84而参加100g/dm3的Zn2+(ZnSO4参加)后: pHJA = 0.21log[ Fe3+]+1.80 标明在沉矾进程中,锌能够看作是一种慵懒物质。但工业上,要考虑的是假如锌浓度过高,溶液黏度增高,对操作晦气。 B 黄铁矾法在锌冶炼中的运用 a 黄钾铁矾除铁法 在湿法炼锌中黄钾铁矾除铁法运用最多,今罗列几个厂的运用状况如下。 澳大利亚雷斯顿电锌厂将残渣处理放到浸出车间(如下图所示)。由锌电解系统来的浸出渣(800~1000g/dm3浓度)和堆积的浸渣浆化后(用预热到75`C的废电解液)一同进入浸出槽,在85~95℃下浸出7h。浸出后的残渣用水力旋流器分级,富锌渣(ZnS 80%)与富铅渣分隔。此外,浸出液中和至pH =0.90 (15g( H2S04 )/dm3),随后将25%的参加溶液。在加焙砂一起,在pH=1.3~1.7中坚持4.5h,生成黄铁矾,以除掉大部分铁。
[next]
挪威锌公司把浸出渣处理进程合并到浸出系统中,如下图左所示。整个系统中包含中性浸出,将焙砂中80%的可溶性锌溶解,一起少数铁和其他杂质沉积而发生一种中性溶液。别离后的残渣进行热酸浸出,温度为90~95℃,酸度40~80g(H2S04)/dm3,使残渣锌溶解。不同焙砂的溶解度有所不同,因而有必要参加浓硫酸操控恰当的酸度以到达最高的提取率。不溶的铅、银残渣为中性,浸出进程中参加焙砂量的10%~12%,别离后剩余的含锌、铁溶液中的铁以黄铁矾方式沉积。
长沙矿冶研讨院马荣骏等针对我国的高锢高铁锌矿资源,研讨出一个有用收回锌、锢的湿法联合流程。流程中的要害工序为焙烧料的热酸浸出-黄铁矾除铁。在低酸浸出液用黄铁矾法沉铁时,锢先富集于铁矾渣,再从渣中收回铟,一起收回一部分锌及钠,然后提高了锌的总收回率,并下降了钠试剂的耗费。研讨了在铟、铁共存的多元系统中,铟、铁进入黄铁矾的规则。铁以黄铁矾沉积时,生成的是钠(或铵)铟铁矾晶体,它的热力学性质与黄铁矾类似。在530~590℃焙烧时大部分铁成三氧化二铁而铟仍为硫酸复盐,铟易被稀酸浸出。1983年在柳州有色金属冶炼厂对此流程进行了工业实验,1985年9月完成了锌流程工业实验。工业实验选用的准则流程如上图右所示。 柳州有色金属冶炼厂用此流程进行了工业出产多年,获得了很好的效益,填补了我国铁矾法的空白。目前我国已稀有家湿法炼锌厂运用热酸浸出铁矾法进行湿法出产锌,均学习了这一效果的经历,而在我国炼锌工业中占有了重要位置。 b 低污染黄钾铁矾法 现有的湿法炼锌厂,广泛选用惯例黄铁矾法除铁,但铁矾渣中仍丢失了一些有价金属。
铝氧化制作标牌氧化方法
2019-02-28 10:19:46
铝氧化标牌制造、面板的氧化办法有以下几种: 1.沟通氧化上色,氧化膜软合适冲压凸字后加工; 2.室温硫酸氧化合适染黑色; 3.低温硫酸氧化,氧化膜详尽又硬,合适染印地素、金色染料等; 4.硫酸、草酸混酸氧化可在常温条件下得到硬氧化膜; 5.瓷质氧化用铬酸和阳极氧化,表面同瓷釉.
紫铜氧化
2017-06-06 17:50:09
紫铜氧化以后是会变成黑色,长期在潮湿环境中会变绿色。紫铜很容易氧化,这对于一些工厂想要长期的储存紫铜是一个很大的问题。那么如何有效的防治紫铜氧化这个问题呢?首先来了解一下紫铜的一些性质:紫铜 因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能 ,因此也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,紫铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20世纪70年代,紫铜的
产量
超过了其他各类铜合金的总
产量
。防治紫铜氧化主要有一下几个方法:1.定期用稀盐酸清洗铜锈,因为附着的铜锈也会加速铜的氧化。 2.可在铜棒表面涂抹油类,减少与空气接触。3.保持储存环境的通风,干燥4.防锈油漆5.铜棒中的杂质
金属
或者碳元素都会加速氧化。想要了解更多关于紫铜氧化的信息,请继续浏览上海
有色
网。
黄铜氧化
2017-06-06 17:50:00
黄铜氧化是指黄铜件经过一系列的氧化工艺从而给黄铜件镀上一层氧化膜的过程。对于黄铜件的防腐蚀具有重要的作用。 黄铜氧化方法一般是黄铜件在含有碱式碳酸铜的氨液中进行氧化,该黄铜氧化工艺具有工艺设备简单,可室温操作,成膜速度快,生产成本低等优点,被认为是黄铜材料的主要氧化方法。 黄铜氧化缺点:常因氧化前预处理方法选用不当和难以避免沉淀于膜上的红色挂霜等问题的存在,往往不能获得理想的氧化膜质量,阻碍了该工艺进一步应用和发展。 黄铜氧化成膜速度过慢原因: 黄铜氧化速度过慢,一般是因为氧化溶液使用一定时间之后,溶液开始老化,由原来的清亮透彻的深蓝色变成混浊的蓝黑色,这是溶液中积聚过多的锌盐和消耗过多的原溶液所致,这时应该更换溶液,但更换时最好留下1/l0~1/20旧液作为“药引子”,这样使用效果好。虽然这样,但也不要当天即用。 黄铜氧化溶液若要继续使用,则需加点温(30~40℃),但此时所获膜层颜色显得较黑,光泽性也比较差。 为提高黄铜氧化溶液的利用率,黄铜氧化溶液使用时尽可能不加温,使用后妥善保管。 黄铜氧化氧化膜表面红色挂灰,其产生的原因是:(1)黄铜氧化氧化液使用过久,有少量金属铜游离析出;(2)黄铜氧化氧化过程中的置换铜层;(3)黄铜氧化氧化前预处理过程中酸洗不当,工件表面已有置换铜层。 上述三点中除了(3)可在酸洗中采取措施去除之外,(1)和(2)两点较难避免,只能黄铜氧化氧化后在膜上设法除去。经过多种酸、碱处理试验发现,用5~7g/L的氰化钠溶液清洗黄铜氧化氧化膜上的红色挂灰效果最好,经此溶液中清洗后的黄铜氧化氧化膜表面不但红色挂灰全部消失,而且黄铜氧化氧化膜色泽更佳,呈深乌黑色,操作也很方便,是一种理想的除挂灰方法。 更多关于黄铜氧化的资讯,请登录上海有色网查询。