您所在的位置: 上海有色 > 有色金属产品库 > 铬钒渣厂家

铬钒渣厂家

抱歉!您想要的信息未找到。

铬钒渣厂家专区

更多
抱歉!您想要的信息未找到。

铬钒渣厂家百科

更多

钠化钒渣提钒工艺

2019-02-19 12:00:26

直接往含钒铁水中增加6%的纯碱、8%的铁皮,处理后得钠化钒渣。含钒铁水的脱钒率可达60%~80%。钠化钒渣含V2O5达6%以上。主要成分为NaVO3、Na4V2O7、Na3VO4的复合物。硫构成Na2S进入渣相,脱硫率大于80%;磷构成Na3PO4进入渣相,脱磷率60%~80%。所得半钢的硫、磷含量均低于制品钢的规格,因而可在转炉内完成无渣或少渣炼钢。 选用天然碱处理含钒铁水得到的钠化钒渣,曾在四川西昌410厂进行过湿法提钒及收回钠盐的扩展试验。天然碱取自河南吴城及内蒙古西林郭勒盟及鄂尔多斯湖等地。天然碱是Na2CO3及少数NaHCO3、Na2SO4、NaCl的混合物。所得钠化钒渣的成分如下:成分V2O5Na2OPSiO2S%12.8840.861.289.42.09 工艺流程共分6步:1)碳酸化浸取;2)浸取液的氧化及净化;3)深度碳酸化、浓缩结晶分出NaHCO3;4)碱性铵盐沉钒、制取;5)沉钒后液蒸、回来沉钒、后液回来浸取;6)NaHCO3煅烧得纯碱、煅烧得产品V2O5。 此流程在技术上有诱人的远景,扩展试验已成功,产品合格。但纯碱直销严重,故未能施行。

钒渣的浸取及浸取设备

2019-02-21 15:27:24

一、浸取 依据钒渣来历及性质的不同,浸取的溶剂可所以中性、酸性或碱性。 (一)焙烧熟料的中性浸取 通过高温下化焙烧的熟料,钒现已转化为五价钒的钠盐,易溶于水。因而,大部分的钒均可溶解。因为熟猜中残留少数的碱,故溶液呈碱性,pH值约为7.5~9。一些可溶性离子如Fe2+、Fe3+、Cr3+、Mn2+、Al3+等均将水解而构成沉积。上述各离子的水解pH值如下:离子Fe2+Fe3+Mn2+Cr3+水解pH值6.5~7.51.5~2.37.8~8.83.3~44~4.9 (二)焙烧熟料的酸性浸取 当酸度增加时,将使贱价钒酸盐如Ca(VO3)2、Mn(VO3)2、Fe(VO3)2、Fe(VO3)3部分溶解。为此残渣在第2段浸取时将选用酸性浸取,以进步钒的浸取率。 四价钒用硫酸浸取时,可生成安稳的VOSO4: VO2+H2SO4=VOSO4+H2O 进步酸度虽使钒浸取率进步,但浸取液中的杂质也相应增加,给净化工序增加了困难。 (三)焙烧熟料的碱浸及碳酸化浸取 含钙高的质料及增加氧化钙焙烧的熟料可选用碱性溶液浸取钒。例如:因为CaCO3的溶度积小于Ca(VO3)2,故在上述复分化反应中,使Ca(VO3)2分化构成CaCO3沉积,而 被浸取。通过CO2则可使溶液pH值下降,更有利于Ca(VO3)2的分化与浸取。 (四)直接酸浸 含钒质料的直接酸浸,首要用于处理含钒铀矿,一起收回铀和钒。浸取时一起增加氧化剂如二氧化锰或。运用浓硫酸在挨近沸点下浸取。铀、钒的浸取率可别离到达98%、85%。 (五)加压碱浸 含钒质料的直接碱浸,可在高压下200℃左右,通入压缩空气,使贱价钒氧化为五价钒而溶解。最终以Na3VO4·(5~12)H2O的结晶收回。 含钒原猜中的钒若以五价钒的状况存在,则亦可用浸取法提取。可选用50~300℃,0.1~20MPa,NH32~8mol/L的条件进行浸取。 二、浸取设备 在焙烧进程中会发生烧结及结团现象,为此浸取时仍需细磨以进步浸取率。一般是将熟料先水淬,再进湿球磨,细磨至-100目以下,然后可明显进步钒的浸取率,缩短钒的浸取时刻。一般通过湿球磨后,浆料即已完结浸取,进而送至稠密机进行固液别离。 焙烧熟料的碱浸,湿球磨后需要碳酸化浸取,一般是在机械拌和槽内进行,在槽底鼓入CO2气体(焙烧熟料的尾气或石灰窑气)。也能够运用气体拌和槽,俗称巴秋卡槽。假如质料是疏松多孔的块矿或焙烧球团,则可用渗滤浸取器。以上均参见图1。图1  浸取槽 a-气体拌和槽(巴秋卡槽);b-浸滤浸取槽

从钒渣提取V2O5的工艺实例

2019-02-19 12:00:26

在炼钢前或炼钢过程中吹炼含钒生铁,可得到钒渣。炼钢前先经雾化吹钒发生的钒渣称为雾化钒渣。其特点是钒含量高,但铁含量也高,而钙等杂质则含量较低。在含钒生铁炼钢过程中发生的炉渣,钙、磷、硅等杂质含量都比较高。现在南非、俄罗斯和我国出产的钒渣基本上都是雾化钒渣。     一、前苏联丘索夫厂     其流程如图1所示。图1  前苏联丘索夫厂湿法流程     (一)除铁:先选用手选除掉大块铁,然后磨细至1.0mm,磁选别离铁粒;     (二)化焙烧:配加钠化剂Na2CO3、NaCl、Na2SO4,在850~950℃之间焙烧,所用回转窑直径2.5m,长42m,处理量2500~3200kg/h。焙烧后钒的水溶转浸率为85%~92%。     (三)浸取:先加水中性浸取,液固比3.5/1,40~50℃,过滤后残渣含0.6%的V2O5,送到第二步加酸浸取。     (四)沉钒:选用酸性水解沉钒,得红饼。最终得熔片含89%~90%的V2O5。     二、峨嵋铁合金厂     针对攀枝花钢厂雾化钒渣所选用的流程如图2所示。图2  峨嵋铁合金厂提钒流程钒渣的粒度20目60目80目100目筛余/%2331.247.955.8钒渣成分:V2O5FeSiO2Al2O3含量/%15.0844.0311.863.52        (一)试剂:纯碱,Na2CO3 98%;硫酸铵,工业品;芒硝,Na2SO4 98%;硫酸,工业品;氯化钙,工业品。     (二)浸取、净化:在湿球磨浸取并加CaCl2除磷,加亮为0.5~1.5kg/m³溶液,净化后的溶液成分见表1。 表1  攀钢雾化钒渣净化后液成分        (g/L)样  号VPSiFeK2ONa2OpH值注17.70.00770.270.001360.0197.39.5二次渣液315.70.00760.270.00320.004831.99.5二次渣液        (三)沉钒:所用设备为机械搅拌罐,转速16r/min,直接蒸汽加热,先打入定量的净化后液,然后缓慢参加硫酸,调理pH值至2~3再参加硫酸铵,通蒸汽加热至85℃,60min,硫酸加量系数为1~1.3。沉钒结尾控制在上清液含钒0.1g/L以下。沉钒率为99%,钒酸铵熔片含V2O5 98%以上。     因为沉积夹藏约50%的游离水,故应运用1%~2%的硫酸铵溶液洗刷,以脱除游离水中的Na2O。     (四)的脱熔化:熔化在12m³的水冷熔化炉中进行。燃料用煤气,热分化第一阶段为600℃,第二阶段为800~900℃。V2O5熔片的成分如表2所示。 表2  V2O5熔片的成分    (%)炉号V2O5SiO2FePSAsK2ONa2O398.870.2750.2690.02740.01630.001850.120.967299.50.150.1970.01810.00590.0550.389

中华人民共和国国家标准-钒渣

2018-12-10 09:51:30

中华人民共和国国家标准 钒渣 GB5062-85 本标准运用于含钒生铁提炼的钒渣。 1技术要求 1.1牌号和化学成分 1.1.1钒渣按五氧化二钒品位分为六个牌号,其化学成分应符合下表规定:牌号钒渣11钒渣13钒渣15钒渣17钒渣19钒渣21代号FZ11FZ13FZ15FZ17FZ19FZ21化学成分V2O510.0-12.0>12.0-14.0>14.0-16.0>16.0-18.0>18.0-20.0>20.0P一组不大于0.08二组0.35三组0.70CaO一组1.0二组1.5三组2.5SiO2一组22.0二组24.0三组34.0四组40.01.1.2块状钒渣的金属铁含量不得大于22%。 1.2物理状态 钒渣以块状或粉状交货,块状钒渣的粒度不得大于200mm×200mm,粉状钒渣的粒度及金属铁含量由供需双方议定。 1.3交货要求 交货钒渣不得混入明显杂质。 2试验方法 2.1取样 块状钒渣试样的采取按附录A(补充件)所规定的方法进行。 2.2制样 块状钒渣试样的制备按附录3(补充件)所规定的方法进行。 2.3铁含量测定 块状钒渣金属铁含量的测定暂按各厂现行的试验方法进行。 2.4化学分析 化学分析方法按YB547-67《钒渣化学分析方法》进行。 2.5其他 粉状钒渣的试验方法除化学分析外均由供需双方协议。 3检验规则 3.1交货钒渣按车验收,每一车厢钒渣为一交货批。 3.2钒渣质量的检查和验收,由供方技术监督部门负责进行。需方有权进行复验,如有异议,应从到货之日起一个月内向供方提出。 4包装、运输和质量证明书 4.1块状钒渣为散装、敞车运输,如需方要求,可用棚车或简易棚车装运。 4.2粉状钒渣的包装和运输由供需双方协商确定。 4.3交货钒渣按批附复验试样和质量证明书。 质量证明书中应注明: a.钒渣牌号,组、级、类、化学成分和金属铁含量; b.重量及基准量. c.车号及交货日期; d.供方名称及检查员代号。 附录A 块状钒渣的取样方法 (补充件) A.1试样应在发货车厢内用铁锹采取。 A.2试样分两层采取,上、下样层的高度应分别位于钒渣实装高度的3/4和1/4处。各取样点位置应符合下图要求: “○”、“×”分别表示上、下层取样点位置 A.3各取样点取样量应均衡,并不小于10kg,每批钒渣取样总量应不小于该批钒渣实际重量的1%。 A.4钒渣试样的粒度分布应能代表本批钒渣的实际粒度分布。 A.5经供需双方协议,允许定量贮存钒渣,并在装车前预先取样,装车后将组成该批钒渣的份样合并为该批试样。 附录B 块状钒渣试样的制备方法 (补充件) B.1试验用钒渣样品,由同一交货批的全部试样进行多段破碎、缩分后制取。 B.2试样用破碎机或手工在专用高锰钢板上进行破碎。 B.3将试样平铺在钢板上,用四分法(取对角)按下表规定缩分:破碎前最大粒度,mm破碎后最大粒度,mm铺层厚度,mm缩分次数200100150150100220503100501001205021020450205011020352042010202502033 缩分至2.5kg1052013 缩分至2.5kg53 缩分至2.5kg B.4用四分法将3mm以下的试样分为四等份,一份作试验用样,一份作副样,保留三个月,交需方,另一份废弃。 B.5化学分析用试样取于经磁选吸除金属铁Ⅰ和金属铁Ⅱ并通过120目的筛下物。 附加说明: 本标准由中华人民共和国冶金工业部提出。 本标准由承德钢铁厂负责起草。 本标准主要起草人周荫军、晋心翠。 本标准委托冶金工业部情报标准研究总所负责解释。 自本标准实施之日起,原冶金工业部部标准YB320—75《钒渣》作废。

铬渣处理工艺

2019-02-20 15:16:12

消除金属铬和铬盐出产进程中排出的废渣对环境的污染和使其得到综合运用的进程。铬渣是由铬铁矿参加纯碱、白云石、石灰石在1100~1200℃高温焙烧、用水浸出后的残渣。每出产1t铬酸盐约发生3~5t铬渣。 成分 铬渣的化学成分见下表。 铬渣的矿藏组成首要有方镁石(MgO)、硅酸二钙(β–2CaO•SiO2)、铁铝酸钙(4CaO•Al2O3•Fe2O3)、亚铬酸钙(α–Ca(CrO2)2)、铬尖晶石((Mg•Fe)(CrO2)2)、四水(4Na2CrO4•4H2O)等。其间,有很大一部分相似水泥的物相组成,故铬渣也有水硬性,在空气中吸水结块。损害 铬渣中的首要毒物为水溶性的四水,是强氧化剂,毒性强。铬渣堆置不只占有土地,并且细粒随风飘扬构成空气污染;铬渣露天堆积,受雨雪淋浸,所含的六价铬被溶出进入地下水或进入河流、湖泊中,污染环境。我国某铁合金厂的铬渣堆场,未采纳相应的防渗方法,致使地下水六价铬离子含量猛增到150~180mg/L,超越饮用水标准数千倍,构成严峻的污染公害,下流污染规模增加到15~20km2,污染区域几个村庄的日子用水,全赖由外面引入自来水或用车送水直销;各种农作物也都遭到不同程度的污染。六价铬、铬化合物以及铬化合物的气溶胶,能以多种形式损害人畜健康。因而,铬渣的堆存场有必要采纳铺地防渗和加设棚罩。 处理和运用 避免铬渣污染的方法是进行解毒处理。在有复原剂的酸性条件下,或在有碱金属硫化物、硫氢化物的碱性条件下,或在有硫、碳和碳化物存在的高温、缺氧条件下,六价铬都可复原为毒性较小的三价铬。铬渣的运用首要有六方面。 1、制烧结砖。将铬渣枯燥、破坏,按铬渣粉40%和粘土60%的份额混合配料,制坯、焙烧。在高温文强复原性环境中,六价铬复原为不溶于水的三价铬,消除剧毒,砖材可到达建筑要求。 2、制作水泥。用铬渣、石灰石、粘土等质料按普通硅酸盐水泥配料,能够烧制水泥熟料,用来制作水泥。运用碳复原后的铬渣同高炉粒化渣,转炉钢渣和硅酸盐水泥熟料。参加5%左右的石膏,也可制作少熟料钢铁渣水泥。 3、出产铬渣铸石。将30%铬渣、25%硅砂(含SiO2>95%)、45%烟道灰、3%~5%氧化铁皮(轧钢铁皮)混合、破坏、于1500℃池窑中熔融,在1300℃下浇铸成型,结晶、退火后缓慢降温即为制品,模仿辉绿铸石组分是优秀的耐酸耐腐蚀材料。 4、替代蛇纹石出产钙镁磷肥。蛇纹石的首要成分为MgO和SiO2,可用铬渣替代。先将铬渣造球,按无烟煤:磷矿:铬渣:硅石=37.5:50∶35∶15(分量比)的配料比装入高炉中,于1600℃进行熔融反响,经水淬骤冷,沥水别离,转筒内枯燥后,球磨破坏即得制品。 5、替代白云石、石灰石作炼铁熔剂。铬渣中CaO、MgO的含量与炼铁运用的白云石、石灰石中的量附近,能够替代白云石、石灰石炼铁。炼1t生铁耗用600kg铬渣,六价铬可悉数复原、解毒完全,并且生铁中铬成分上升、硬度、耐磨和耐腐蚀性都有所提高。 6、替代铬铁矿做玻璃着色剂。制作绿色玻璃时常用铬矿粉做着色剂,首要是运用三价铬离子在玻璃中的光学特性。铬渣中含有部分未反响掉的铬矿粉和六价铬,高温有利于六价铬转变为三价铬,完全除毒,所得制品色泽碧绿艳丽。铬渣参加量3%~5%为宜。 此外,水淬铬渣还可作为水泥混合材料、矿棉质料、耐热胶凝材料、熔融水泥质料等。因为铬渣具有毒性,难以运送,因而使它的运用受到了必定约束。

铬渣选矿技术概述

2019-01-24 09:37:04

铬渣是冶炼铬铁合金时产生的固体废渣,这些废渣如果不及时经过科学有效地处理,将会对环境造成极大的危害。铬铁冶炼渣中含有少量的铬铁合金颗粒,回收这些颗粒可以获取可观的经济效益,且为铬渣的下一步处理奠定基础。 铬铁冶炼渣一般为干渣,铬铁合金颗粒不均匀嵌布其中,要想分离出这些铬铁合金,首先需要将大块的铬渣破碎成小块,达到铬铁合金和固体废渣基本单体解离的状态,这样铬铁合金与固体废渣在具体形态上单体解离,下一步将采用一种简单的工艺方法使铬铁合金颗粒与这些废渣分开,达到分选的目的。 众所周知,铬铁合金颗粒作为一种合金,其密度远大于这些类似石块的固体废渣,因此只需简单的重选工艺方法即可将固体废渣与铬铁合金颗粒分开,达到分选的目的。重选法即根据矿物与废石密度的差异进行分选的一种方法,比重差越大,分选效果越好。用于选铬渣的重选设备主要是跳汰机和摇床,跳汰机用于选粗,中,细粒矿物物料,摇床只能选别细粒物料,而铬铁合金的块越大,价格越高,因此众多的投资者希望获得尽可能大的铬铁合金颗粒。这就需要再破碎时采用选择性破碎,尽可能保留大块的铬铁合金颗粒,进入大粒度跳汰机进行选别,分选出大块铬铁合金,然后再将细粒嵌布的铬铁渣进一步破碎,选别出细粒铬铁合金颗粒。

峨嵋铁合金厂从钒渣提取V2O5的工艺实例

2019-02-21 13:56:29

峨嵋铁合金厂    针对攀枝花钢厂雾化钒渣所选用的流程如图1所示。图1  峨嵋铁合金厂提钒流程钒渣的粒度20目60目80目100目筛余/%2331.247.955.8钒渣成分:V2O5FeSiO2Al2O3含量/%15.0844.0311.863.52        一、试剂:纯碱,Na2CO3 98%;硫酸铵,工业品;芒硝,Na2SO4 98%;硫酸,工业品;氯化钙,工业品。     二、浸取、净化:在湿球磨浸取并加CaCl2除磷,加亮为0.5~1.5kg/m³溶液,净化后的溶液成分见表1。 表1  攀钢雾化钒渣净化后液成分        (g/L)样  号VPSiFeK2ONa2OpH值注17.70.00770.270.001360.0197.39.5二次渣液315.70.00760.270.00320.004831.99.5二次渣液        三、沉钒:所用设备为机械搅拌罐,转速16r/min,直接蒸汽加热,先打入定量的净化后液,然后缓慢参加硫酸,调理pH值至2~3再参加硫酸铵,通蒸汽加热至85℃,60min,硫酸加量系数为1~1.3。沉钒结尾控制在上清液含钒0.1g/L以下。沉钒率为99%,钒酸铵熔片含V2O5 98%以上。     因为沉积夹藏约50%的游离水,故应运用1%~2%的硫酸铵溶液洗刷,以脱除游离水中的Na2O。     四、的脱熔化:熔化在12m³的水冷熔化炉中进行。燃料用煤气,热分化第一阶段为600℃,第二阶段为800~900℃。V2O5熔片的成分如表2所示。 表2  V2O5熔片的成分    (%)炉号V2O5SiO2FePSAsK2ONa2O398.870.2750.2690.02740.01630.001850.120.967299.50.150.1970.01810.00590.0550.389

铬渣的危害及其利用

2019-03-14 11:25:47

铬渣,即出产金属铬和铬盐过程中发生的工业废渣。对人类有必定的损害。铬渣是出产金属铬和铬盐过程中发生的工业废渣。我国现在有20多个省市排放铬渣。   成分:   铬渣的化学成分为:二氧化硅占4~30%,三氧化二铝占5~10%,氧化钙占26~44%,氧化镁占8~36%,三氧化二铁占2~11%,六氧化二铬(Cr2O6)占0.6~0.8%和(Na2Cr2O7)占1%左右等。铬渣所含首要矿藏有方镁石(MgO)、硅酸钙(2CaO·SiO2)、布氏石(4CaO·Al2O3·Fe2O3)和1~10%的剩余铬铁矿等。   损害:   在无复原剂时,的水溶液含有剧毒的六价铬离子。   铬渣露天堆积,受雨雪淋浸,所含的六价铬被溶出进入地下水或进入河流、湖泊中,污染环境。严峻污染带内水中六价铬含量可高达每升数十毫克,超越饮用水标准若干倍。六价铬、铬化合物以及铬化合物气溶胶等,能以多种形式损害人畜健康(见铬污染对健康的影响)。因而铬渣的堆存场有必要采纳铺地防渗和加设棚罩。   据专家介绍,铬污染的土壤修正方法一直是个科技难题。现有的三种修正方法都不老练,也正是因为毒性强,修正难,根据对铬污染的注重,上个世纪90年代我国开端全面整理铬盐职业,逐渐关停并转了40多家铬盐厂商。到2005年只保留了25家,而关于残留的很多铬渣,国务院在2005年也曾向全国发出通知,要求一切前史堆存铬渣都要在“十一五”末悉数完成无害化处理。可是从云南曲靖的这家陆良平和化工厂来看,国务院的要求明显没有完成,很多残留的铬渣不只没有进行有用的处理,并且还呈现了极端恶劣的随意倾倒事情。   处理和运用:   避免铬渣损害的方法是进行高温处理,消除其毒性。在有复原剂的酸性条件下,或在有碱金属硫化物、硫氢化物的碱性条件下,或在有硫、碳和碳化物存在的高温、缺氧条件下,六价铬都可复原为毒性较小的三价铬。铬渣的运用首要有以下几个方面:   ①制烧结砖:将铬渣枯燥、破坏,按铬渣粉40%和粘土60%的份额混合配料,制成砖坯,入窑烧制。在高温文强复原性环境中,六价铬复原为不溶于水的三氧化二铬,消除剧毒。砖材可到达建筑要求。   ②制高强铬砖:将5份铬渣和3份碳酸渣混合加水40%,在球磨机内湿磨。铬渣中的六价铬变成不溶于水的铬酸,一部分转化成三价铬。按3份铬渣浆和2份煤渣配料,通过碾压和焖料,制成砖坯。然后经升温、恒温、降温各2小时,在8个大气压力下进行压蒸维护,制成铬砖。铬渣中含较多氧化镁,体积会胀大,需求寄存一段时间,体积安稳后运用。   ③制铬渣铸石:以30%铬渣、25%硅酸盐和45%煤渣配料,再掺入3~5%氧化铁,经熔融浇铸,结晶退火,制得抗压强度为4800~5500千克力/厘米的高强度、耐磨损、防腐蚀的铸石。   ④制水泥:用铬渣、石灰石、粘土等质料按普通硅酸盐水泥配料,能够烧制水泥熟料,用来制作水泥。运用碳复原后的铬渣同高炉粒化渣、转炉钢渣和硅酸盐水泥熟料,参加5%左右石膏,也可制作少熟料钢铁渣水泥。   此外,铬渣还可替代铬矿粉,作为玻璃的翠绿色着色剂。水淬铬渣还可作为水泥混合材料、矿棉质料、耐热胶凝材料、熔融水泥质料等。日本在除毒后的铬渣中,参加硫酸亚铁、氧化亚铁等复原剂,制成可塑性凝结材料或作石膏板材填充料。   铬渣具有毒性,难以运送,它的运用没有翻开局势。

前苏联丘索夫厂从钒渣提取V2O5的工艺实例

2019-02-20 11:59:20

前苏联丘索夫厂    其流程如图1所示。图1  前苏联丘索夫厂湿法流程     一、除铁:先选用手选除掉大块铁,然后磨细至1.0mm,磁选别离铁粒;     二、化焙烧:配加钠化剂Na2CO3、NaCl、Na2SO4,在850~950℃之间焙烧,所用回转窑直径2.5m,长42m,处理量2500~3200kg/h。焙烧后钒的水溶转浸率为85%~92%。     三、浸取:先加水中性浸取,液固比3.5/1,40~50℃,过滤后残渣含0.6%的V2O5,送到第二步加酸浸取。     四、沉钒:选用酸性水解沉钒,得红饼。最终得熔片含89%~90%的V2O5。

碱法浸出某含钒铬泥中的钒

2019-02-21 12:00:34

钒是一种重要的战略资源。在我国,钒及其化合物的首要来历有两个,即钒钛磁铁矿和石煤。一些与钒相关的工业生产进程中所发作的含钒抛弃物虽在量上不占优势,但从资源循环运用的视点考虑,对这类抛弃钒资源进行提钒回用的研讨也有重要意义。     依据钒资源的不同特性,提钒工艺也有所不同。关于石煤和含钒粘土,传统提钒首要运用钠化焙烧-水浸、钙化焙烧-酸浸及空白焙烧-酸浸等工艺,对其间机理,特别涉及到焙烧工序的机理,已有很多学者进行了研讨报导。别的,也有学者从焙烧办法的视点进行了研讨,提出了微波焙烧-水浸提钒新工艺,并开端探讨了微波焙烧的机理。因为焙烧进程存在一些缺陷,如污染性气体的发作,转浸率低以及能耗量高级,提钒工艺研讨的重心转向了湿法酸浸,现在已在其工艺及机理上取得了必定发展。与此同时,也有研讨显现,对某些含钒资源进行直接酸浸,需较大的酸量才干得到较高的钒浸出率,这对提钒后续工序的操作造成了极大困难。还有学者研讨了在加压条件下酸浸提钒工艺发现用低酸即可溶出较多的钒,但因为设备约束等原因,该类工艺的工业化具有必定难度。因为碱浸进程具有杰出的挑选性,且对设备要求低一级长处,遭到了很多学者的注重。Navarro,何东升等人,针对各自钒资源特性进行了碱浸出的研讨。     关于含钒抛弃资源,因为其发作途径存在较大差异,即使同一类的钒资源也可能在物理性质、化学组成及结构等方面存在许多不同,因而,对这类含钒资源的提钒研讨需求有更强的针对性,才干到达工艺最优化的意图。本文针对某含钒铬泥的特色,先进行了探索性试验,然后进行了碱浸单要素试验,在此基础上,进行了氧化浸出的开端试验。     一、试验材料与办法     (一)试验材料 含钒铬泥取自攀枝花某公司,原矿渣中含水较多,将其在105℃下烘干后,进行元素分析,成果见表1。 表1  含钒铬泥干基化学组成(质量分数)/%V2O5CrFeCaSiO2NaClTiS4.8030.203.002.401.501.501.000.402.80     (二)试验原理     在浸出进程中,pH值对V(V)在溶液中的存在形状及行为有着较大的影响,具体表现如下:    关于V(V),酸浸出时有必要使pH<1.5,而碱浸出则有必要确保OH-离子浓度足够大,以取代与阳离子结合的VO3-,使其溶出。     关于V(W),在pH=6.7~11.5之间并不溶解,在pH<6.7的酸性溶液中能够VO2+离子形状溶出,在pH>11.5的碱性溶液中将发作如下反响而溶出: VO2++3OH-→VO(OH)3-     (三)试验办法     先对含钒铬泥进行了钒浸出的探索性试验。浸出时,称取100g含钒铬泥放入置于水浴之中的三口烧瓶,按必定液固比(浸出剂体积(mL)与钒渣质量(g)的比值)参加事前装备好的必定浓度的浸出剂,浸出剂用量为浸出剂与矿样的质量分数。操控浸出温度和浸出时 间。完结浸出后,对浸出液中V2O5浓度进行测定,若Cr离子浓度较低,未发作色彩搅扰,则用NaAsO2屏蔽Cr后用硫酸亚铁铵法进行滴定。若Cr离子浓度较高,则用钒铬接连测定法接连测定V2O5和Cr的浓度。     二、试验成果与评论     (一)探索性试验     先对高铬钒渣简略研磨后进行了探索性试验,分别用H2SO4和NaOH对含钒铬泥进行浸出,浸出时液固比2∶1,浸出时刻60min,浸出温度95℃。成果如表2所示。由表2可知,H2SO4能有用溶出铬泥中的钒,但酸用量大,且溶出的Cr3+又需后续处理,极为不方便。试验进程中还发现,酸浸液中存在很多胶凝态物质,使浸出液过滤功能差。在碱浸试验中,必定用量的NaOH能使V2O5浸出率到达68.50%,且挑选性强,Cr3+并未溶出,这一成果与文献报导的有所不同。     探索性试验标明,因为酸浸工艺存在酸耗量高和浸出液过滤功能差等缺陷,不宜选用酸浸工艺从该铬泥中浸出V2O5。而碱浸工艺挑选性强,且V2O5浸出率较高,因而,关于该铬泥,以挑选碱浸工艺提取其间V2O5为宜。 表2  铬泥探索性浸出成果浸出剂用量V2O5浸出率/%Cr浸出率/%10%H2SO418.515.350%H2SO491.892.410%NaOH7.8<1.030NaOH68.5<1.0     (二)NaOH浸出单要素试验     1、NaOH用量对V2O5浸出作用的影响NaOH用量对V2O5浸出作用的影响如图1。浸出时,液固比2∶1.浸出时刻60 min,浸出温度95℃。图1   NaOH用量对V2O5浸出率的影响     由图1可知,跟着NaOH用量的添加,V2O5浸出率也随之增大。但当NaOH用量到达30%并持续添加到50%时,V2O5浸出率仅从68.50%添加至72.30%,增幅并不显着,阐明当NaOH用量到达30%时,V2O5浸出率现已趋向于极限。     2、浸出时刻对V2O5浸出作用的影响浸出时刻对V2O5浸出作用的影响如图2。浸出时,NaOH用量30%。液固比2∶1,浸出温度95℃。图2  浸出时刻对V205浸出率的影响     由图2能够看出,浸出初始阶段,V2O5浸出率受浸出时刻影响较为显着,在20~60min之间,V2O5浸出率急速添加,从37.90%敏捷添加到68.50%,60min后,浸出时刻的影响显着下降V2O5浸出率简直不再添加。     3、浸出温度对V2O5浸出作用的影响浸出温度对V2O5浸出作用的影响如图3。浸出时,NaOH用量30%.液固比2∶1.浸出时刻60min。图3  浸出温度对V2O5浸出率的影响     由图3可知,浸出温度对V2O5浸出率有着较大的影响。温度为40℃时,V2O5浸出率很低,仅为36.70%,而当温度升高至95℃时,V2O5浸出率显着进步,为68.50%。     4、液固比对V2O5浸出作用的影响液固比对V2O5浸出作用的影响如图4。浸出时,NaOH用量30%,浸出温度95℃,浸出时刻60min。     由图4可知,当液固比小于5∶1时V2O5浸出率并未遭到太大影响,但跟着液固比的持续升高,V2O5浸出率有下降趋势。这是因为在液固比较低时,尽管矿浆粘度较高,不利于浸出反响,但NaOH浓度也比较高,OH-与v(Ⅳ)或v(Ⅴ)的作用显着强于粘度影响,因而,V2O5浸出率也比较高。而当液固比增大,OH-与V(Ⅳ)或V(Ⅴ)的作用削弱,不利于V2O5的浸出。图4  液固比对V2O5浸出率的影响     (三)氧化碱浸出试验     为进一步进步V2O5的浸出率,研讨了氧化碱浸出工艺对该铬泥中V2O5浸出的影响作用。试验中,采纳两种不同氧化办法将V(Ⅳ)氧化为V(Ⅴ),即直接碱浸氧化及在弱酸性条件下的氧化,前者运用H2O2作为氧化剂,而后者则运用KC1O3。     1、H2O2用量对V2O5及Cr浸出率的影响H2O2用量对V2O5及Cr浸出率的影响如图5所示。浸出条件为:NaOH用量30%,初始液固比2∶1,浸出温度95℃,浸出时刻60min。由图5可知,碱浸氧化进程中,Cr浸出率因H2O2用量的增大而添加,而V2O5的浸出率则显现出不同规则:当H2O2用量较低时,V2O5浸出率下降,直到必定程度后,才呈上升趋势。这可能是因为在该浸出系统中存在很多Cr(OH)3,故H2O2优先氧化Cr(Ⅲ),且在氧化进程中消耗掉必定的NaOH,所以下降了V2O5浸出率。跟着H2O2用量升高,Cr(Ⅲ)和v(Ⅳ)呈现了竞争性的氧化,因而V2O5浸出率开端进步。图5  H2O2用量对V2O5及Cr浸出率的影响     2、 KC1O3用量对V2O5浸出率的影响按液固比参加10% H2SO4发明酸性条件,参加进行氧化,温度95℃,酸性氧化时刻60min,完结氧化后,进行NaOH浸出。NaOH用量30%,浸出温度95℃,液固比2∶1,浸出时刻60min. KC1O3用量对V2O5浸出率的影响如图6所示。因为Cr(Ⅲ)在酸性条件下的强稳定性,并未在碱浸液中检测出Cr,因而,不对Cr进行测定。图6   KClO3用量对V2O5及Cr浸出率的影响     由图6可知,在酸性条件下氧化后的高铬钒渣,碱浸出率显着有进步。当KClO3用量为1%时,V2O5浸出率为71.4%,而当KClO3用量为2%时,V2O5浸出率到达79.3%,KClO3用量持续添加时,V2O5浸出率进步不显着。     三、结语     (一)关于本文研讨的含钒铬泥,因为酸浸工艺存在酸耗量高和浸出液过滤性差等缺陷,不宜选用酸浸;     (二)碱浸出工艺可较好地浸出铬泥中的V2O5,适宜的工艺条件为:NaOH用量30%,液固比2∶1,浸出温度95℃,浸出时刻60 min。此刻V2O5浸出率到达19.50%。     (三)比照碱浸直接氧化浸出工艺和弱酸性氧化-碱浸出工艺,发现碱浸直接氧化存在挑选性差、浸出进程中Cr也被很多浸出的缺陷,需很多H2O2才干进步V2O5浸出率。而在酸性条件下氧化后的铬泥,碱浸出时V2O5的浸出率有较大进步,可到达79.30。