您所在的位置: 上海有色 > 有色金属产品库 > 金属钒粉应用

金属钒粉应用

抱歉!您想要的信息未找到。

金属钒粉应用百科

更多

黑色金属钒简介及应用

2019-03-07 10:03:00

钒(V)元素简介 单质:钒 单质化学符号:色彩和状况:银白色。密度:5.96克/厘米3。熔点:1890±10℃沸点:3380℃,发现人:塞夫斯唐姆 发现时代:1830年元素描绘高熔点金属之一,呈浅灰色。密度5.96克/厘米3。熔点1890±10℃,沸点3380℃,化合价+2、+3、+4和+5。其间以5价态为最安稳,其次是4价态。电离能为6.74电子伏特。有延展性,质坚固,无磁性。具有耐和硫酸的身手,并且在耐气-盐-水腐蚀的功能要比大多数不锈钢好。于空气中不被氧化,可溶于、硝酸和。

金属钒介绍

2019-03-08 12:00:43

钒是一种稀有金属,钒是从英语的Vanadium音译过来的。钒的化学符号是V,它的原子序数是23。钒的化学性质非常安稳,在常温下不会被氧化。钒对食盐溶液及海水具有高度的耐蚀性。碱溶液及硫酸对它不起作用,、热的浓硫酸和硝酸以及能溶解钒。熔融的碱、碳酸钾、可溶解钒并构成钒酸盐钒与硅和碳构成的硅化物和碳化物具有高的硬度及化学安稳性。 钒在933K(660℃)以上的温度中被氧化成五氧化二钒V2O5。钒的结构强度适当高,但极易燃、钒的化合物毒性很高、含钒的尘土被吸入后会致肺癌。在氧化物中钒一般显+5价,但也有+2、+3和+4价的氧化物存在,不过它们比较简单过渡为+5价的氧化物。2价和3价的钒氧化物是碱性的,4价的氧化物是双性的,5价的氧化物是酸性的。 在自然界,钒的矿藏一般与其它金属矿藏共生在一起。钒一般以化合物方式 存在,自然界中约有65种钒的化合物。在自然界中,矾土、石油、煤和油页岩中都含有不少钒。光谱分析发现,在太阳和一些恒星的表面也有钒。 钝金属钒是用钙在钢制容器内复原五氧化二矾的方法制得的。得到的金属钒微粒洗刷后于真空炉中熔成块,如此取得的金属含99.99%的钒。不过,大多数钒来自于其它矿藏加工时的副产品。 石煤是一种含碳少、发热值低的残次无烟煤,又是一种低档次多金属共生矿,钒是其间最主要的有价金属元素。含钒石煤遍及我国湘、鄂、川、黔、浙、桂、赣、皖、陕、晋、豫、甘等20余个省区,大多处于经济落后地带。据有关统计资料,石煤中钒的总储量是我国闻名于世的钒钛磁铁矿中钒总储量的7倍,仅浙江至广西一条长约1600多公里的石煤矿,就蕴含着1亿吨以上的五氧化二钒。由此可见,对如此丰厚名贵的含钒石煤资源进行开发利用,具有巨大的经济潜力和社会效益。

钒的主要应用

2019-03-08 12:00:43

在我国,钒90%左右用于钢铁工业,钒在钢中的使用首要是经过增加钒来提 高强度和耐性。在结构钢中参加0.1%的钒,可进步强度10%—20%,减轻结构分量15%—25%,降低成本8%—10%。因为钒钢具有强度大,耐性、耐磨性及耐蚀性好的特色而广泛使用于输油(气)管道、建筑、桥梁、钢轨和压力容器等工程建设中。2000年我国钒钢使用量现已到达120万t/a,含钒钢使用量年均增加10%。 钒和钛组成重要的金属合金Ti—6Al—4V,用于飞机发动机、宇航船舱骨架、、军舰的水翼和引入器、蒸汽涡轮机叶片、火箭发动机壳等。此外,钒合金 还使用于磁性材料、硬质合金、超导材料(如V,Ca)及核反应堆材料等范畴。国内出产钒铝中间合金的厂商有宝鸡有色金属加工厂和锦州铁合金厂,国内的钒铝合金产值不能彻底满意国内需求,每年需要从国外进口一部分,钒铝中间合金的商场发展潜力相当大。 在化工中首要使用的钒制品有深加工产品V2O5,(98%—99.99%),NH4VO3()、NaVO3及KVO3等。它们别离使用于催化剂、陶瓷着色剂、显影剂、干燥剂及出产高纯氧化钒或钒铁的质料。V2O5作催化剂具有特殊的活性,其它元素难以替代。国内的粉状V2O5现首要由石煤提取。因为国内相关厂商规模小、产值低、且难出产高级产品。因而这部分高级产品现首要靠进口处理。 钒的盐类的色彩五颜六色,有绿、红、黑、黄等。如二价钒盐常呈紫色;三价钒盐呈绿色,四价钒盐呈浅蓝色,四价钒的碱性衍生物常是棕色或黑色,而五氧化二钒则是赤色的。这些色彩缤纷的钒的化合物,被制成艳丽的颜料,如加到玻璃中,可制成彩色玻璃,也能够用于制作各种墨水。 此外,二氧化钒薄膜和超细粉体因为其本身共同的相变特性,可广泛使用于电学和光学开关设备、太阳能操控材料、光盘介质材料、涂层、热敏电阻等范畴;北京烁光特晶科技有限公司研制出长距离光纤通讯用的钒酸钇晶体材料,具有双折射率大、透过率高、透光性好,是功能极佳的双折射晶体。

金属钒生产方法

2018-12-12 09:37:10

工业上常以各种含钒矿石为原料制备钒。如在钒炉渣中加入NaCl,经空气焙烧后,先生成NaVO。

金属钒制取和用途

2019-03-07 10:03:00

金属钒制取(preparation of vanaciilam metal)用金属或碳将钒氧化物复原成金属钒的进程,为钒冶金流程的重要组成部分。首要有钙热复原、真空碳热复原、氯化物镁热复原和铝热复原四种办法。 钙热复原一种工业规划出产金属钒的办法。以V2O5或V2O3为质料,屑为复原剂。钙用量为理论量的60%。钙屑和V2O5或V2O3混合后,参加到放置在用惰性气体清洗过的钢质反响罐的氧化镁坩埚(朴昌林)中,再加碘(也可用硫)作发热剂,碘参加量按生成1mol钒增加0.2mol碘计量,充氩气密封后,用高频感应器加热,温度达973K时便开端反响:V2O5+5Ca≈ 2V+5CaO+1620.07kJ V2O3+3Ca≈ 2V+3CaO+683.24kJ因系放热反响,反响开端后便中止加热。中止加热后温度会主动上升到2173K。生成的塑性金属钒块或钒粒用水洗去附着物,钒收率约74%。若在炉料中加铝时,钒收率可提高到82%~97.5%,但因钒含铝高而变脆。真空碳热复原将V2O5粉与高纯碳粉混合均匀,加10%樟脑溶液或酒精,压块后放入真空碳阻炉或感应炉内。炉内真空压力到6.66×10-1Pa后,升温至1573K,保温2h。冷却后将反响产品破碎。依据第一次复原产品的组分再配入适量碳化钒或氧化钒进行二次复原。二次复原炉内的真空压力为2.66×10-2Pa,温度控制在1973~2023K之间,并保温一段时间。真空碳复原法所得金属钒的成分(质量分数m/%)为:钒99.5,氧0.05,氮0.01,碳0.1。 钒收率可达98%~99%。 镁热复原金属镁的纯度高,报价比钙低,反响生成的氯化镁比氯化钙易挥发,所以用镁复原比用钙复原更为合理。其复原进程如下:(1)用含钒80%的钒铁氯化制取粗;(2)用蒸馏法脱除粗四氧化钒中的;(3)在圆柱形镁回流器中将转化为VCl3;(4)用蒸馏法去除VCl3中的VOC13;(5)将冷却后的破碎后放置在复原反响罐中,在氩气维护下参加镁将VCl3复原成金属钒;(6)用真空蒸馏法除掉金属钒中的镁和氯化镁;(7)用水洗去金属钒中残留的氯化镁,枯燥后取得产品钒粉。复原作业在软钢坩埚中进行。软钢坩埚放在软钢罐内,用煤气加热。先将酸洗后的镁锭参加坩埚,再参加3倍于镁锭量的。复原温度控制在1023~1073K。依据温度指示器判别反响的快慢,如反响缓慢则补加镁,保温约7h后冷却到室温。每批可出产18~20kg金属钒。然后取出坩埚放在蒸馏炉中缓慢加热至573K温度,并在573K下保温。当指示压力达0.1333~0.6666Pa时再升温到1173~1223K保温8h,快速冷却到室温,所得海绵钒的纯度为99.5%~99.6%,钒收率为96%。铝热复原法德国选用铝热复原法出产粗金属钒。这种办法是将五氧化二钒和纯铝放在反响弹进行反响,生成钒铝合金。钒合金在2063K的高温文真空中脱铝,可制得含钒94%~97%的粗金属钒。金属钒用处:用处:首要用于制造合金钢和有色金属合金,还用于制造电子工业中的电子管阴极、栅极、射线靶及吸气剂、电极管的荧光体等,或许用作钛基合金的增加元素和高强度耐热特种合金的增加元素。可制造高速增殖堆、核燃料包套。

超细铜粉大应用

2019-03-08 11:19:22

1.超细铜粉在MLCC内电极上的使用  铜具有电阻率小、电搬迁速度小、报价优廉等长处,是银钯内电极的抱负替代品之一,但其化学性质较生动,在空气中,比表面积大的粉状铜极易被氧化,表面会构成Cu2O和CuO的薄膜,使其导电性敏捷下降,乃至变为不导电。相还原法制备的超细铜粉制造的片式多层陶瓷电容器内电极,则克服了以上缺陷,具有涣散性好、球形度高、粒度均匀等长处,必将成为MLCC的极佳挑选。 2.超细铜粉在导电涂猜中的使用 导电涂料是伴跟着科学技术的前进而敏捷开展的一种功用涂料,现在其主要填料有碳系、银系、铜系和镍系及复合系等。作为电磁波屏蔽用涂猜中的导电填料,铜粉以电导率高,报价相对廉价,材料易得,不存在银粉在涂层中发作“银搬迁”而影响涂层功能等长处倍受青睐。但铜简单氧化,且其氧化物电导率低,构成涂层的电导率下降,所以低报价、耐金属搬迁的铜粉复合导电涂料的研讨和开发越来越受到重视。 3.超细铜粉在润滑剂上的使用 超细铜粉以适合的方法涣散于各种润滑油中构成一种安稳的悬浮液,可成为一种功能优秀的润滑剂,大幅度下降材料和设备的磨损和冲突,尤其在重载、低速和高温振荡情况下效果愈加明显,对材料与设备起到极其重要的维护效果。如五水硫酸铜为主要原料制备出纳米铜粉,其抗磨减摩等功能要比传统润滑油更强,已成为新一代润滑油的抗磨减摩添加剂。 4.超细铜粉在催化剂上的使用 超细铜粉的颗粒细而均匀,比表面活性很大,人们使用其这一特性制造高效催化剂。如在汽车尾气净化处理过程中,超细铜粉作为催化剂部分地替代贵金属铂和钌,使毒性的转变为二氧化碳,使转变为。超细铜粉因具有较高的催化活性,还作为二氧化碳和氢组成甲醇等反响过程中催化剂。纳米铜粒子催化聚合也取得了令人满意的效果。 5.超细铜粉在其他方面的使用 超细铜粉用于制备纳米铜材料,可得具有较好的延展性、杰出强度和塑性的铜材料,极有利于材料的加工与微型机械的制造。 此外,因为铜的熔点低,人们还经常将超细铜粉用于航天范畴,制造火箭喷嘴等。在医疗方面,超细铜粉关于医治骨质疏松、骨折等疾病也有适当重要的效果。 可以说,超细铜粉因其具有的小标准效应、表面界面效应、量子标准效应及量子地道效应等基本特征,具有了许多与相同成分惯例材料不同的优秀功能,而被人们广泛使用于力学、电学、化学等范畴,往后跟着科技的进一步开展,其必将展现出更多的潜在使用报价,在更宽广的范畴发挥更大的效果。

CIS系粉体的应用

2019-01-03 09:36:51

CuInSe2(简称CIS)及其衍生物因其低成本、高的光吸收系数(105/cm)和良好的稳定性被认为是最有潜力的薄膜太阳能吸收层材料,近年来逐渐受到研究者的重视。目前CIS系粉体的制备多集中于实验室规模,量产化工艺有待进一步研究和改进。CIS系粉体的应用例举如下。 1 涂覆法制备太阳能电池吸收层 涂覆法是一种很有前景的的CIS系吸收层薄膜低成本制备工艺,该方法先制备出符合原子计量比的前驱物,使用各种涂覆工艺沉积在基板上后在控制气氛下热处理而转变为CIS系薄膜。以CIS系纳米粉末作为涂覆原料可保证薄膜原子计量比接近既定计量比,有利于提高薄膜质量,并且工艺简洁。Ahn等将Cu0.90In0.64Ga0.23Se2.0(15nm)溶于甲醇,使用喷雾的方法沉积到Mo/Glass基板上并在160℃热处理,后经固态源硒化成膜。升高硒源蒸发温度和增加载气流速均有利于形成结晶良好的大尺寸CIGS晶粒,但同时也在Mo和CIGS之间形成MoSe2层。Guo等采用“墨水印刷”的工艺制备CIS系薄膜,将CIS系纳米粉体溶于有机溶剂作为“墨水”,将其直接涂覆于基板上经硒化处理成膜。基于CuInSe2的电池器件达到了3.2%的转换效率;而基于Cu(In1–xGax)(S1–ySey)2的电池器件转换效率为4.76%(有效面积效率5.55%)。 2 纳米晶–聚合物太阳能电池 纳米晶–聚合物太阳能电池又称为混合太阳能电池(Hybrid SolarCell),是将n型半导体纳米晶植入p型掺杂的聚合物而得的新型异质结太阳能电池。该类太阳能电池近年来成为国内外研究的热点。由于CIS系材料的导电类型依赖于自身的缺陷种类,调整其原子计量比就可以得到所期望的导电类型。Arici等[34]将n型CuInSe2纳米颗粒植入p型P3HT聚合物,在ITO玻璃上制得了异质结。当CISe/P3HT质量比为6:1时,其光电响应较好;所制得的器件开路电压最高值为1V,光电流为0.3 ×10–3 A/cm2。Arici等同时研究了基于CuInS2纳米颗粒的异质结,该工作中,作者采用了不同的聚合物体系。

含钒石墨尾矿提钒新技术应用实例

2019-02-20 11:03:19

金溪石墨矿是一个储量达2600万t的大型鳞片石墨矿床,矿石石墨含量高,固定碳均匀档次为10.18%。该矿最大的特色是矿石中有档次较高的钒。钒以氧化钒的方式赋存于钒白云母中,钒白云母呈片状或扇状集合体与鳞片石墨共生,单晶片径0.2~5mm,集合体可达1cm以上,大多沿片理平行散布。石墨矿石中钒白云母的含量占5%~10%,V2O5的含量为0.4~0.7%。该类型的伴生钒资源是我国发现的一种新的共同的钒资源类型。 华东理工大学的研讨标明:选用一段磨矿4次浮选工艺选别金溪石墨矿,可得到固定碳含量为73.72%的石墨精矿;选用酸法和碱法对浮选石墨精矿进行化学提纯,能够取得固定碳含量≥99.9%的高纯石墨产品;石墨矿中伴生的钒绝大部分都进入尾矿中,若随尾矿被抛弃,将构成钒资源的巨大糟蹋。因为金溪石墨矿中的钒是一种新的共同的钒资源类型,钒首要以类质同象的方式赋存在钒的钒白云母中,而钒白云母的结构十分安稳,因而金溪石墨矿中钒的提取技能尚有待研讨。有关专家从维护资源的视点动身,提出要开发金溪石墨矿,有必要处理以下几个问题:1、石墨矿石中钒的赋存状况;2、含钒白云母与石墨的别离;3、钒白云母中钒的提取。 钒作为具有重要战略意义的稀有金属,在航空工业、原子能工业、宇航工业、国防顶级工业等范畴中被越来越广泛地使用,是一种不行短少的重要资源。因而,对金溪石墨尾矿进行提钒技能研讨,对促进该石墨矿的开发,进步我国钒资源的保证程度具有现实意义。 一、实验计划 金溪石墨矿石现在发现的仅有的含钒石墨矿类型,该类型含钒资源的提钒技能在国内均属空白。而从石煤中提取钒是我国取得钒资源的一个重要途径,我国石煤提钒技能十分老练,为含钒石墨尾矿的提钒打下了较好的技能根底。金溪石墨矿中钒的赋存状况等虽与石煤有必定的不同,但也有其相似之处。本实验在学习石煤提钒技能成果的根底上,对金溪石墨尾矿进行提钒技能探究研讨。 依据金溪石墨矿石中钒的特色,结合石煤提钒工艺技能,拟定了从金溪石墨尾矿中提钒的实验计划,其准则工艺流程如下图所示。图  金溪石墨尾矿提钒准则工艺流程 二、实验质料、试剂及仪器设备 实验质料:华东理工大学对金溪石墨矿石进行浮选实验取得的尾矿。石墨尾矿的粒度为-0.074mm,化学组成见表1。 表1  金溪石墨矿石浮选尾矿化学组成  %成分V2O5Fe2O3TiO2SiO2Al2O3CaOMgOK2ONa2O烧失含量0.5562.231.6079.339.890.234.402.560.131.30 试剂:浓硫酸,分析纯;火油,工业级;磷酸三丁酯(TBP),工业级;磷酸二异辛酯(P-204),工业级;碳酸钠,分析纯;过氧化氢,分析纯;氯化钠,分析纯;,分析纯;,分析纯。 实验设备及仪器:马弗炉,SXZ-10-12型;恒温水浴锅HH-2型;电动拌和器,JJ-1型;冰箱,家用型。 实验中钒的测验依照国标GB731511-1987,选用氧化-硫酸亚铁铵复原滴定法。 三、实验成果 (一)加酸焙烧-水浸 金溪石墨尾矿中含钒的矿藏为钒绿云母,v首要以类质同象方式替代硅酸盐矿藏晶格中的Al。含钒的铝硅酸盐矿藏结构十分安稳,难以被水、酸和碱溶解,归于难浸难溶物质。要浸出含钒铝硅酸盐矿藏中的钒,有必要先损坏铝硅酸盐矿藏的晶体结构,使赋存在铝硅酸盐中钒的价态发生变化,即便三价或四价钒转变为五价钒。有实验标明,焙烧可使云母类矿藏中的V3+削减,V4+和V5+增多。 实验发现,选用直接氧化焙烧和氯化钠焙烧工艺,钒的浸出率均很低。因而,改用加酸焙烧工艺进行了探究实验。成果标明,在500℃下加硫酸焙烧2h后进行水浸,钒的浸出率显着比直接氧化焙烧和氯化钠焙烧时高得多。 依据探究实验成果,进行了加酸焙烧-水浸条件实验。实验办法为:称取100g石墨尾矿样品于坩埚中,参加10mL浓H2SO4和适量的水,混合均匀,置于马弗炉中,在必定的温度和时刻下焙烧,然后取出天然冷却。将冷却后的焙烧产品置于烧杯中,参加500mL水,于90℃恒温水浴中拌和浸出必定时刻,使钒以离子方式转入溶液中,然后将渣滤出。 通过实验,断定石墨尾矿加酸焙烧-水浸的最优条件为:硫酸参加量10%,焙烧温度550℃,焙烧时刻3h,浸取时刻2h。在此条件下,钒的浸出率到达95.4%~95.6%,得到的滤渣量超越80g。 (二)除钾除铝 焙烧产品的浸出进程中,石墨尾矿中的Al2O3、Fe2O3、K2O等组分也会随钒一同溶出,以K+、Al3+、Fe3+离子的方式进入浸出液中,因而在提钒前有必要对浸出液进行净化处理。实验选用冷凝结晶和加络合的办法使钾和铝以钾明矾[K2SO4·Al2(SO4)3·24H2O]和铵明矾[(NH4)2SO4·Al2(SO4)3·24H2O]的方式结晶出来(钒不参加结晶),到达除钾除铝的意图。 实验办法:先将浸出液浓缩到所需浓度,放入5℃左右的冰箱中冷凝24h,使钾和部分铝结晶成钾明矾晶体,然后将钾明矾晶体从浸出液中别离出来。别离出钾明矾晶体之后的浸出液中还有部分Al3+存在,通过参加必定量的,一起参加适量的浓硫酸以弥补硫酸根离子,使剩下Al3+被根离子和硫酸根离子络组成铵明矾结晶而得以别离。 依据实验,加络合的最佳条件为浸出液、、浓硫酸的体积比=50∶7∶3.1(溶液pH值在1左右)。 依照上述办法,处理100g石墨尾矿可取得钾明矾9.2g、铵明矾23.2g。 (三)萃取和反萃取 通过焙烧-浸出的办法将含钒白云母中的钒转变为水溶性或酸溶性的含钒离子团(如 等)后,用有机萃取剂(85%火油+5%TBP+10%P-204)将浸取液中的钒离子转移至有机相中,然后使钒与其它金属离子别离(其它金属离子大都不能进入有机相)。含钒有机溶液再用反萃取剂(0.5mol/L的Na2CO3溶液)进行反萃取,使钒从有机相转入再水相中。 实验办法:使水相(浸出液)与有机相(萃取剂)的体积比=4:1,调整混合液的pH值在2~3之间,于分液漏斗中振动、静置,使钒从水相转入有机相中,然后测萃余液(水相)中剩余钒的含量。对萃取液(有机相)依照水相(反萃取剂)与有机相的体积比=1:4的条件进行反萃,使钒转入水相中,然后测水相中钒的含量。 实验成果标明,萃取-反萃取的最佳pH值为2.6。在此条件下,浸出液通过3次萃取,钒的总萃取率到达87.6%;萃取液通过1次反萃取,钒的反萃取率到达99.9%。 反萃取液中的钒呈四价,沉钒之前须将其用氧化成五价。氧化后在拌和条件下用调溶液pH=1.9~2.2,然后在90~95℃下持续拌和1~3h,沉积出(红钒),沉积率可到达99.0%。 实验标明:pH值控制在2左右可取得最高沉积率;进步温度可加快钒的沉积;拌和能使沉积物均匀分散,进步反应速度,特别是在沉积后期溶液中钒浓度不断下降时,拌和的影响更显着。 沉积出的红钒经洗刷后,在氧化气氛中于500~550℃下热解2h,可得到棕黄色或橙红色粉状精钒产品。 四、三废处理计划 石墨尾矿提钒的进程中,会发生废气、废水和废渣,假如直接排放会对环境构成极大的损害,因而有必要加以管理。 废气管理:废气首要为石墨尾矿加酸焙烧进程中发生的SO2气体。此外,烟道中还含有必定量的烟尘。关于SO2气体,能够选用天然高比表面积多孔矿藏材料进行吸附。如斜发沸石、丝光沸石具有杰出的耐酸、耐高温功能,能够用来吸除SO2气体,并可通过解吸办法收回SO2。 废石管理:浸出、萃取和沉钒进程中会发生废水,其间含有酸、有机物、金属离子等,不能直接排放,须通过管理。可选用直接循环回用工艺技能,尽量削减废水排放量。终究排出的废水,可选用中和技能处理其间的废酸,选用活性炭吸附工艺处理其间的有机物。对废水中的铁、钛、镁等金属杂质,可使其以氢氧化物的方式沉积;对少数的铬离子等有害元素,能够使用构成的氢氧化物进行吸附。 废渣管理:废渣首要指石墨尾矿经焙烧浸出后发生的滤渣。该滤渣的首要组分是由SiO2、Al2O3、CaO、MgO、K2O、Na2O、Fe2O3、TiO2等组成的硅酸盐,并且粒度较细(-300目),又通过热处理,因而具有较高的活性,能够将其替代粉煤灰和矿渣作为水泥掺合料和出产建筑材料的质料,然后完成废渣的资源化。 五、定论 选用加酸焙烧-水浸-除钾铝-萃取-反萃取-氧化沉钒处理金溪石墨矿浮选尾矿,钒的浸出率、萃取率、反萃取率和沉积率可别离到达95.5%、87.6%、99.9%和99.0%,一起可取得对浮选尾矿产率别离为9.2%和23.2%的钾明矾和铵明矾。此外,浸出渣首要由硅酸盐组成,并具有较高的活性,能够作为水泥掺合料和出产建筑材料的质料。

国家金属钒铁标准

2019-01-04 09:45:31

钒铁主要用于冶炼合金钢。如在弹簧钢、轴承钢和铸铁上都有广泛的应用、钒铁的含钒量30%以上,在电炉中炼制。钒的各种化合物广泛应用于化学工业中作触媒剂。钒所以这样广泛地用于钢铁工业上,是由于钒能同钢中的碳生成稳定的碳化物,它可以细化钢的组织和晶粒,提高晶粒粗化的温度。因此,钢中加入少量钒就可显著地改善钢的性能,大大提高钢的强度、韧性、耐磨能力、承受冲击负荷的能力和抗腐能力等。          我国钒铁的技术条件,国家标准(GB 4139-87)作了规定。钒铁按钒和杂质含量的不同,分为6个牌号,其化学成分见表1。    表1 钒铁化学成分牌号化学成分 /%VCSiPSAlMn不小于不大于FeV40-A40.00.752.000.100.061.0 FeV40-B40.01.003.000.200.101.5 FeV50-A50.00.402.000.070.040.50.50FeV50-B50.00.752.500.100.050.80.50FeV75-A75.00.201.000.050.042.00.50FeV75-B75.00.302.000.100.053.00.50      钒铁以块状供货;最大块重不得超过8kg,通过10mm*10mm筛孔的碎块,不得超过该批总重的3%。

金属铜粉、电解铜粉、663和氧化铜粉有何不同?

2018-12-13 10:37:27

电解铜粉:纯铜粉、紫铜粉,呈浅玫瑰红树枝状粉末,在潮湿空气中易氧化,能溶于热硫酸或硝酸。广泛应用于金刚石工具,电碳制品,摩擦材料,导电油墨及其他粉末冶金制品。663青铜粉:呈青色球形粉末。Sn5~7%Zn5~7%Pb2~4%Cu余量。广泛应用于粉末冶金含油轴承及金刚石工具。黄铜粉:金黄色非规则形状。轴瓦材料、金刚石制品、粉末冶金制品等雾化铜粉:呈浅玫瑰红不规则粉末,采用雾化法生产。广泛应用于金刚石工具,粉末冶金零件,化学催化剂,碳刷,摩擦材料及焊接电极。氧化铜粉:氧化铜的粉粒。100的粒度是指粒度为100目。