碳酸钴制备超细球形钴粉的工艺探讨
2018-12-10 14:19:22
碳酸钴制备超细球形钴粉的工艺探讨.pdf
电石渣制备碳酸钙工艺研究
2019-03-07 09:03:45
渣是制取聚氯乙烯(PVC)、气体时发生的工业废渣。渣中首要的物质为氢氧化钙,还含有少数的无机杂质,比方MgO、FeO和SiO2等,因为渣内含有少数的C、S、P等杂质使其呈现灰白色,并伴有浓郁的冲鼻滋味。渣中的颗粒十分的细小,粒径大约在10-15μm;渣的pH值大约能够到达12.5左右,呈现比较强的碱性。因而以渣为质料出产高需求量的超细活性碳酸钙,无疑是处理渣最好的途径。
1、渣的预处理
渣浆的预处理方法直接影响到CaCO3产品质量的好坏和渣的运用率。一般渣的预处理方法包含两种,105℃下枯燥和530℃下锻烧。挑选105℃下枯燥一方面能够除掉渣内的水分,另一方面能够使渣内的有机物和挥发性杂质分化,然后能够减小碳酸钙制品中杂质的含量。530℃下锻烧一方面是使渣内的氢氧化钙分化成氧化钙,另一方面使渣内的金属化合物转换成难溶物质。
试验标明,渣经105℃枯燥的作用最好。在这种预处理方法下所得Ca(OH)2回收率和碳酸钙白度最高。
2、渣的浸出
许多金属氢氧化物是不溶性阳离子物质,只需操控必定的碱性条件,可使系统中的金属阳离子有挑选性的沉积。依据溶度积原理,在浸取的进程中,pH操控在必定规模以内,就能够使Mg2+、Fe3+、Mn2+等杂质离子先构成氢氧化物沉积,而Ca2+达不到Ca(OH)2的溶度积仍留在溶液中,过滤掉沉积即可得到不含镁、铁、锰杂质的精制Ca2+溶液。
(1)浸出
高传相等选用对渣进行杂质处理后得到球形超细CaCO3,所得碳酸钙纯度大于98%,白度大于97,均匀晶粒尺度为45nm,电镜均匀粒径约为80nm,比表面积约为32m2/g。乔叶刚等选用必定浓度的溶解渣,过滤除掉不溶性杂质,使CaCl2溶液得到净化。
(2)氯化铵浸出
卢忠远等将渣参加质量分数为J%、过量30%的NH4Cl的溶液中反响,CaCO3的回收率最高达99%,所组成的碳酸钙为针状文石型碳酸钙。
(3)甘酸浸出
袁可等选用甘酸水溶液将渣中的有用钙转变为可溶性的甘酸钙,经过碳化,组成出球形碳酸钙。其工艺与氯化钱工艺十分类似,但在氯化铵系统中,所制备的碳酸钙描摹为立方形,而在甘酸系统中,碳酸钙的描摹则为球形。两者描摹彻底不同,这或许是因为甘酸对碳酸钙的描摹有抑制作用。
3、碳酸钙的制备
(1)CO2碳化
吴琦文等以渣为质料,CO2为碳源,制备纳米碳酸钙。在其制备进程中,研讨质料的浓度、CO2气体的浓度、CO2气体的流速、反响温度、拌和速率以及添加剂的用量对碳酸钙产品粒径和晶型的影响,结果标明:质料的浓度、CO2浓度和流速对碳酸钙均匀粒径有稍微的影响,在必定的条件下可制备颗粒粒径为50nm、均匀晶粒尺度约30nm的方解石型纳米碳酸钙颗粒。
Jun-HwanBang等运用CO2微气泡发生器组成得到小尺度、高比表面积的碳酸钙,并研讨了Ca(OH)2浓度、电解质的量、CO2流量和注入方法对碳酸钙的尺度、比表面积的影响。结果标明:CO2流量的添加会减小碳酸钙粒子的尺度,或许的原因是CO2流量的添加使得剪切速率变大而且添加了CO2的涣散;运用MBG(微气泡发生器)注入CO2要比惯例的泡沫发生器制得的碳酸钙粒子更小。
(2)碳酸钠碳化
YuDong等运用微乳液作为组成途径,以碳酸钠为碳源,可控的得到不同描摹的碳酸钙。经过操控这些参数:表面活性剂的品种、陈化时刻以及W0(水与表面活性剂的摩尔比)得到了许多新颖的描摹,纳米棒、六角圆片以及类镜头像结构。碳酸钠和氯化钙量的添加会使得碳酸钙粒子形状不规则,到达必定量后不会构成微乳液。
Fang-zhiHuang等以碳酸钠为碳源,经过参加可溶性添加物的正向微乳液得到不同描摹的碳酸钙粒子。当在甘酸润饰的正向微乳液下,碳酸钙生成中空的微球粒子,然而在Mg2+润饰的正向微乳液下,得到了许多新颖的分层霞石碳酸钙晶体,比方轴型霞石碳酸钙、圆片霞石碳酸钙等等。这些不同晶相的特殊描摹碳酸钙或许是因为碳酸钙的前体(球形的或许片状的纳米粒子)在两层的模版下,自发拼装构成的,意味着咱们能够在两层模版下,经过仿生组成手法,组成得到具有特殊描摹和结构的无机或许有机一无机杂化材料。
(3)碳酸铵碳化
张宏等选用以下试验工艺条件:浸取液Ca2+浓度为0.85mol/L,(NH4)2CO3:CaCl2=0.95:1(物质的量比),反响温度位15℃,组成得到碳酸钙的晶形为立方体,均匀粒径为50nm。试验进程发现,Ca2+浓度在1mol/L以下,跟着浓度的添加粒径线性下降,1mol/L以上则改变不明显;而且,Ca2+浓度在1mol/L以上,对渣中杂质的去除是十分晦气的。
闻琨等以渣为质料、氯化铵溶液为浸取剂、碳酸铵为碳化剂、柠檬酸为晶行操控剂,选用液相法制备了高纯度的纳米级碳酸钙。调查了钙浓度、柠檬酸的用量、碳化温度三种要素对碳酸钙晶型和粒径的影响,结果标明:钙浓度为0.6mol/L、柠檬酸与碳酸钙质量比为0.03、碳化温度为12℃为最佳工艺,所得碳酸钙粒径为40-60nm,为纯洁的方解石晶型。
4、渣碳酸钙在塑猜中的使用
聚
董卫龙等以渣为质料,或氯化铵为浸取剂提取渣内的Ca2+离子,并别离选用液相法和微乳法制备碳酸钙。选用微乳液法得到的超细活性碳酸钙与浙江菱化活性钙、纳米钙三种碳酸钙填充PP,力学功能结果标明:跟着碳酸钙含量的添加,力学功能都呈现了明显地下降,可是渣制备的碳酸钙填充PP的力学功能一直比浙江菱化活性钙、纳米钙填充PP的要高;流变功能显现渣制备的碳酸钙和浙江菱化活性钙填充PP后的熔体粘度整体比浙江菱化纳米钙填充PP的小。
黑镍的制备和除钴
2019-01-24 09:37:16
合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。
除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。
表1 除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31
表2 钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5
粗钴阳极板的制备
2019-01-31 11:06:04
二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。
反射炉煅烧的意图有3个:
(一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块;
(二)参加石油焦,使氧化钴半复原;
(三)脱除部分硫。
反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。
反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。
球形碳酸钙的制备及机理分析
2019-03-07 09:03:45
碳酸钙具有方解石、文石和球霞石3种晶型结构,常温常压下方解石最安稳,球霞石热力学安稳性较差,因而制备的碳酸钙多由方解石构成。
碳酸钙微球具有体积小、比表面积大、孔隙率大等特色,广泛使用于生物技术、医药等高端职业。碳酸盐与钙盐在无其他物质的参加下能够直接反响得到立方体碳酸钙,产品一般由方解石构成,一些表面活性剂如柠檬酸(CA)、乙二胺四乙酸盐(EDTA)和十六烷基三甲基化铵(CTAB)以及部分聚合物等能够调控碳酸钙的成长,操控碳酸钙的结晶速度和描摹,终究操控碳酸钙的晶型及晶粒大小。陈先勇等以柠檬酸钠作晶型操控剂,以醋酸钙和碳酸钠为质料制备出了孪生球状碳酸钙。
1、试验
(1)试剂
无水氯化钙(CaCl2)、无水碳酸钠(Na2CO3)、无水乙醇(C2H5OH)和一水柠檬酸(C6H8O7·H2O)、(NaOH)。
(2)仪器与设备
场发射扫描电子显微镜(FESEM,表面镀金,作业电压15kV)、Zetasizer3000HS、多功能X射线衍射仪(XRD,扫描视点3-80°,铜靶,电压40kV,电流40mA)、SpectrumOne型傅里叶变换红外光谱仪(FTIR,KBr压片,测验规模400-4000cm-1)。
(3)乙醇溶液法制备碳酸钙
别离制造2份100mL体积分数为0,25%,50%和75%乙醇水溶液贮存于0℃条件下备用,称取4份0.01mol的无水氯化钙别离参加4种不同体积分数的乙醇水溶液中拌和使其充沛溶解,相同办法称取4份0.01mol的无水碳酸钠别离参加不同体积的乙醇水溶液中拌和使其充沛溶解,并在0℃水浴条件下别离参加相应乙醇体积分数的CaCl2溶液中,然后用浓度为1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。
同样地,称取0.01mol的无水氯化钙和无水碳酸钠,别离参加2份100mL体积分数为50%的无水乙醇溶液中,拌和使其溶解充沛,将Na2CO3溶液在水浴温度为60℃条件下,参加CaCl2溶液中,然后,用1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后,静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。
(4)添加柠檬酸制备碳酸钙
称取0.01mol的一水柠檬酸,参加100mL浓度为0.15mol/L的CaCl2溶液中,拌和使其溶解均匀,用1.0mol/L的NaOH溶液调理溶液的pH值为5.8,必定拌和速度下快速倒入100mL浓度为0.15mol/L的Na2CO3溶液,调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。同上所述,称取0.1mol的一水柠檬酸进行上述反响。
2、成果与评论
(1)描摹分析由图1可知,乙醇的体积分数为0(水溶液)时,制备的碳酸钙相似于短柱状,面和棱均清晰可见;
乙醇的体积分数为25%时,制备的碳酸钙相似于梭状,并且单个呈现空心,见图1b中扩大图,制备的碳酸钙没有显着的棱角,空心梭的截面呈现空心环的描摹;
乙醇的体积分数为50%时,制备的碳酸钙为双球形,从图lc中的扩大图能够看出,微球是由纳米颗粒构成;
乙醇的体积分数为75%时,制备的碳酸钙相似于棉絮状,见图1d中扩大图。
跟着反响溶液中乙醇体积分数的添加,碳酸钙晶粒的直径逐步减小,能够估测乙醇的添加能够阻挠碳酸钙的成核或成长。乙醇的体积分数为50%时,生成的碳酸钙是直径为纳米级的颗粒,因为较高的表面能而聚组成球,构成双球状。图2为乙醇体积分数为50%时,不同水浴温度条件下制备的碳酸钙微球FESEM图画。从图中能够看出,较高温度下制备的碳酸钙微球中间洼陷程度较小,或许是跟着反响时间添加,高温下乙醇部分蒸发导致浓度减小,对碳酸钙的成长按捺效果减小,然后有利于碳酸钙微球的成长,中间洼陷程度削减。图3是柠檬酸浓度别离为0.1、1.0mol/L时,制备的碳酸钙微球FESEM图画。柠檬酸浓度为0.1mol/L时,制备的碳酸钙微球粒径较大。经过图3a中扩大图能够看出,与在乙醇溶液中制备的碳酸钙相似,都是由纳米状碳酸钙聚合而成,不同的是在柠檬酸的操控下制备的碳酸钙微球没有中间洼陷,构成的球较规整。
柠檬酸浓度为1.0mol/L时,制备的碳酸钙微球粒径显着减小,且相似于圆饼状,由图3d中扩大图发现,制备的碳酸钙微球相似于层状包裹而成,而不是由碳酸钙纳米颗粒聚合而成,这与其他微球显着不同。
比照图3a和图3b发现,柠檬酸能够有用地阻挠碳酸钙晶粒的成长,并且柠檬酸的浓度为1.0mol/L时能够促进碳酸钙更好地成球。
经过图2和图3能够看出,在乙醇溶液和柠檬酸溶液中都能制备出描摹较规整的碳酸钙微球,并且跟着无水乙醇和柠檬酸的量的添加,制备的碳酸钙晶粒都有必定程度的减小,阐明两者都能够按捺碳酸钙的成长。
(2)相结构分析图4为图1对应制备碳酸钙的XRD谱图。图4中a对照X射线标准卡片发现与碳酸钙的标准卡片JCPDS47-1743完全契合,阐明制备的碳酸钙是由方解石构成,图4中a和b在29.4°处的峰十分强并且尖利,对应的是碳酸钙的(104)晶面,阐明图4a和b对应的碳酸钙结晶性杰出。
图4中b、c和d在2θ坐落24.9°、27.1°、32.8°、43.9°、50.1°处均呈现球霞石的特征峰(JCPDS33-268),阐明图4b、c和d对应的碳酸钙中均有球霞石存在,并且方解石的峰值逐步减小;球霞石的峰值逐步添加,阐明跟着反响溶液中的无水乙醇含量添加,制备的碳酸钙中的方解石含量逐步削减,球霞石逐步添加,因而,能够揣度乙醇能够按捺方解石的生成,促进球霞石的生成,并且跟着乙醇含量的添加,对方解石的按捺效果添加,进而影响碳酸钙的结晶度。图5为图2和图3对应制备碳酸钙的XRD谱图。图5中a和b是无水乙醇体积分数为50%时别离在0、60℃条件下反响制备的样品的XRD谱图。与图5a对应的碳酸钙是由方解石和球霞石构成不同,图5b对应的碳酸钙是由方解石和文石构成的,估测或许是反响系统温度较高,促进球霞石转化为热安稳性较高的文石,别的,反响系统温度的升高,系统中乙醇的含量下降,按捺效果下降,也促进文石的发作。
图5c和5d是反响系统中添加柠檬酸后制得的碳酸钙的XRD谱图。经过比较发现,柠檬酸的浓度为0.1mol/L时,制备的碳酸钙样品是由方解石构成;而柠檬酸的浓度为1.0mol/L时制备的碳酸钙样品是由方解石和球霞石构成。与未添加柠檬酸时制备的碳酸钙的XRD谱图(图4a)比照,标明柠檬酸的添加会按捺方解石的成长,促进球霞石的成长,然后按捺碳酸钙的结晶,并且跟着柠檬酸含量的添加,对反响系统的按捺效果增大。图6为不同条件下制备的碳酸钙的FTIR谱图。712、874、1417cm-1处呈现的峰是方解石的特征吸收峰,745cm-1是球霞石的特征峰,1455-1490cm-1对错晶碳酸钙的吸收峰。由此可知,图6中a和d对应的碳酸钙微球含有球霞石,这与XRD图的分析成果共同。4个样品中均呈现非晶态碳酸钙的特征吸收峰,阐明乙醇溶液和柠檬酸的参加都在必定程度上按捺了碳酸钙的结晶,促进非晶态碳酸钙的发作,这也契合XRD图得出的定论。样品b中未呈现文石的特征吸收峰,这与XRD得出的定论不太共同,或许是被其他较强的峰掩盖,也或许是在样品制备过程中发作反响。
3、碳酸钙微球的构成机理
在制备碳酸钙的反响中,没有柠檬酸的参加下,氯化钙溶液和碳酸钠溶液一经混合,反响首要生成热安稳性较好的方解石。反响过程中晶核的发作需求较大的能量,晶核的成长速度远远大于构成速度,因而倾向于构成描摹较大,晶面较规整的碳酸钙(图la)。描摹操控剂的参加阻挠了Ca2+和CO32-的有用磕碰,按捺晶核的构成和成长,然后按捺反响的进行,到达操控样品描摹的意图。
当按捺剂的量较多时,进一步阻挠系统反响的进行,进而添加系统的能量,促进很多晶核的发作。因为比表面积较大,因而晶核在成长过程中聚会构成颗粒的集合体,然后构成比表面积较小的球状(图2a、2b和2c)。乙醇溶液对碳酸钙的成长具有按捺效果,乙醇钙的电离才干较强,而乙醇是弱电解质,溶液中存在很多的乙醇分子。估测反响过程中乙醇分子的存在阻挠了Ca2+和CO32-的有用磕碰,而乙醇分子的存在也阻挠了碳酸钙晶核的成长。跟着乙醇浓度的添加,系统中乙醇分子和离子的量添加,阻挠效果增强。而反响温度的添加,促进了乙醇的蒸发,下降了反响系统中乙醇的含量,然后下降了乙醇的按捺效果,加速反响的进行,削减球霞石的发作而构成文石(图2b)。图7为柠檬酸的分子结构图。柠檬酸根离子是一种较强的金属鳌合剂,能与钙离子鳌合,构成安稳的柠檬酸钙,这与乙醇钙的阻挠效应不同。添加柠檬酸后,柠檬酸根离子与钙离子鳌合构成结构安稳,易溶于水的柠檬酸钙,下降了系统中钙离子的浓度。跟着柠檬酸钙的缓慢离解,Ca2+与溶液中游离的CO32-反响生成CaCO3,少数柠檬酸根离子吸附在晶核表面,按捺晶面的进一步成长,然后使溶液中碳酸钙的过饱和度添加。而球霞石是碳酸钙无水结晶中最不安稳的晶型,一般需求更好的表面能和较高的过饱和度才干构成,因而,反响有利于生成球霞石。
跟着柠檬酸浓度的增大,更多的柠檬酸根离子集合到碳酸钙分子周围,下降了晶核构成的能垒,促进碳酸钙晶核的发作,而进一步按捺晶体的成长。因为柠檬酸根离子浓度较大,对碳酸钙晶体成长的按捺效果也更强,终究得到粒径较小的含有很多球霞石晶型的碳酸钙颗粒。又因为柠檬酸根的空间位阻效果较大,因而,制得的球形碳酸钙微粒的分散性较好,粒度散布较会集。
另一方面,初始构成的纳米级碳酸钙小颗粒具有较高的表面能,为了下降表面能,小颗粒极易集合到一同,而初始构成的碳酸钙集合体表面高低不平,在集合体表面凹的部分区域液相相对流速较慢,Ca2+和CO32-简单在该区域富集,较易快速构成许多小晶粒,这些小晶粒经过彼此交融及结构重组完成集合体的表面最小化。而柠檬酸浓度增大时,吸附在碳酸钙表面的柠檬酸量添加,阻挠了Ca2+和CO32-在碳酸钙表面的富集,按捺碳酸钙颗粒的成长,因而,颗粒直径减小(图3b)。图8所示为依据试验分析得出的或许的碳酸钙微球构成机理。
4、结语
(1)别离选用乙醇和柠檬酸作为碳酸钙粒子的结构和描摹的调控剂,发现二者都能经过按捺碳酸钙的成长调控碳酸钙的结晶,然后制备出不同描摹的碳酸钙。
(2)经过改动试验条件发现乙醇和柠檬酸制备碳酸钙的机理不同,乙醇溶液经过下降粒子的活性来按捺碳酸钙的成长速度,而柠檬酸经过与钙离子反响下降溶液中钙离子的浓度来调控碳酸钙的成长速度。
(3)乙醇溶液对碳酸钙描摹的影响较严峻,50%体积分数的乙醇溶液与浓度为1.0mol/L柠檬酸调控下都能制备出描摹杰出的碳酸钙微球,但是在柠檬酸调控下制备的碳酸钙微球描摹愈加规整,粒度也较小,使用规模愈加广泛。
材料来源于碳酸钙微球的制备及其机理。
立式粉磨机制备超微细重质碳酸钙
2019-03-07 09:03:45
重质碳酸钙,简称重钙,是由天然碳酸盐矿藏如方解石、大理石、石灰石经破碎与粉磨而成,是重要的绿色环保、节能减排、契合国家可持续发展的非金属矿藏材料,可广泛使用于塑料、涂料和橡胶等职业。
图1 重质碳酸钙的使用范畴我国重钙首要出产基地1
我国国重质碳酸钙出产基地首要有广西贺州、广东连州、浙江建德和四川宝兴等,广西贺州被称为“我国重钙之都”,年产重质碳酸体达800万吨以上,产品商场占有量到达60%以上,是全国最大的重质碳酸体出产基地。
图2 广西贺州碳酸钙千亿元工业演示基地重质碳酸钙出产工艺
2
重质碳酸钙工艺首要有干法、湿法和干湿结合法。
(1)干法工艺
重质碳酸钙干法出产工艺一般有球磨-分级机多种规格产品粉磨体系、雷蒙磨混合振动磨-分级机组合粉磨体系、气流磨-分级机组合体系、立式拌和磨-分级机组合粉磨体系。
(2)湿法工艺
重质碳酸钙干法出产工艺一般有卧式磨串并联组合体系、立式磨单机开路粉磨体系、和立式磨多机串联粉磨体系。湿法出产的滤饼、浆料可直接供应,或经冲击式自磨、枯燥体系枯燥成粉体产品。
(3)干湿结合工艺
干湿结合法行将两种工艺进行组合,其出产工艺流程见图。
图3 重质碳酸钙干湿结合出产工艺常见的超细粉磨设备3
选用雷蒙磨、立式磨、球磨机、旋磨机和高速机械冲击式破坏机等粉磨设备,产品细度多在200-1250目之间,想要得到1250-2500意图超细重质碳酸体,须将磨机和干式精密分级机组合,多段分级,接连闭路进行出产,循环负荷高达300-500%。
立式粉磨机的作业原理4
图4 立式粉磨机结构(1)研磨
质料由反转下料器进入主机,在底部磨盘滚动的离心力下,质料被推送至磨轮之间进行研磨,三个磨轮均有独自的油压连杆操控研磨压力,油压体系所输出的安稳压力为70-75kg/cm2,使质料于三个磨轮与磨盘之间进行研磨,油压体系配备有六个蓄压器可吸收颗粒状质料开始破坏时所发生出来的震动力。
(2)分级
质料由磨轮和磨盘之间研磨成细粉之后,自磨盘周围溢出,跟着环带状气流上升,进入上端的滚动锥形分级叶片区,经过分级叶片区较粗的粉无法经过以设定转速的分级叶片区,而直接落在下部持续研磨,经过分级叶片区的粉末称为细粉,这些细粉将被收人在后段收尘设备中。
(3)制品
细粉跟着气流经过分级叶片后,进入旋风收尘器或是脉冲式袋式收尘器中,收尘设备搜集细粉后,被别离的空气会借风机再次运行至体系中,整个体系中的气流呈负压状况,然后将不会导致因粉尘的数量而发生的环境污染。
立式粉磨机制备重工艺5
(1)方解石经过选矿、水冲刷等除掉杂质,暴晒风干送入堆棚。
(2)分一段或许两段进行破碎,如有大块石料,须先送入鄂式破碎机粗碎,之后再进入锤式破碎机细碎,破碎后的细石料经斗式提高机送入质料储库待用。
(3)闭路粉磨分级体系中,首要细石料从质料库由定量给料机送入立式粉磨机粉磨-分级体系,较细产品将直接被搜集到高浓度高压脉冲袋式收尘器内,经过分级叶片可将产品细度操控在500-3000目之间调理,之后进行包装。粗粉再次进入立式粉磨机,与质料混合,从头粉磨。
图5 姑苏某公司立式粉磨机制备重质碳酸工艺选用立式粉磨机制备重质碳酸,具有简略高效、能耗低、噪音小等优势。
重钙出产技能发展趋势6
(1)商场关于超微细重质碳酸钙产品的需求愈来愈多,分级机作为超细粉加工关键设备,其发展趋势将在超微细范畴使用。当时,国内加工3000目以下超微细产品的分级机技能比较老练,但是加工3000目以上超微细产品的分级机技能有待开发。
(2)以产品质量安稳、出产成本下降为意图,在新建厂及现有厂的技能改造中选用低能耗、低损耗、操作保护便利、功能安稳的老练设备。
(3)出产过程的自动化和智能化程度有待进一步提高。
塑料用重质碳酸钙制备技术与工艺探讨
2019-03-06 10:10:51
导读
重质碳酸钙(重钙)因报价低廉、白度高、化学稳定性及热稳定性好,而成为塑料工业中的首选填料,广泛运用于塑料薄膜、型材、管材、塑编拉丝和人造革等塑料工业中。 前期,重钙在塑料制品中首要是到达塑料制品增容、增重、降低成本等效果。跟着塑料职业的开展,重钙在塑料加工中的效果扩展到:①进步加工功能、涣散功能;②进步尺度稳定性、刚性和耐性;③进步耐热性、抗老化以及抗紫外线功能;④(部分)替代贵重的白色颜料,起到必定的增白效果;⑤进步制品的表面光泽和表面平坦性等。
一、塑料用重钙加工的设备与技能工艺
从塑料用重钙产品加工来看,在满意塑料商场对产品功能及其精细化开展要求的条件下,就看加工设备是否节能,节能就意味着经济效益的进步。依据查询,国内重钙资源大多质量优秀、纯度高、白度高,一般不需通过浮选或其他除杂工艺,仅需超细粉磨分级即可。因而挑选功能优越、质量牢靠的粉磨分级设备和工艺是非常重要的。
现在我国的雷蒙磨、高压磨等国产粉磨设备,在必定程度上满意了国内重钙产品加工的需求,完成了必定的经济效益,可是,跟着工业现代化的开展,需持续对该类型设备进行技能革新,以期习惯现代非金属矿产业规模化及其产品精细化开展的商场需求。近年来,国内重钙加工厂商在探究非矿产业规模化和产品精细化开展之路时,目光开端转向高效、节能型的配备与技能,而欧版磨粉机等配备及其配套技能为完成重钙工业规模化和产品精细化开展供给了典型典范。
依照塑料用重钙加工的设备类型及制品细度规模,合适塑料用重钙加工的设备及工艺首要有欧版磨体系、立式磨体系、超细环辊磨体系。
1.1 合适出产33~200μm重的技能及工艺
该细度规模内的重加工可挑选欧版磨机和立式磨机等产品,体系均为干法出产,完成自磨自选,通过变频高效选粉机,可直接制备重,无需再通过外部筛分或分选。因为选用内部循环风,可快速将契合制品的重吹选出,完全避免过粉磨现象,大大进步了产值和出产功率,一起因为选用了先进的除尘器,体系到达国家环保要求。
1.1.1 欧版磨机体系
欧版磨机体系为闭路体系(见图1),是在国产雷蒙磨和摆式磨的基础上,引入欧洲先进的规划理念及标准,悉心开宣布的具有世界抢先技能水平,具有多项自主专利技能的粉磨设备,该机型选用了锥齿轮全体传动、内部稀油光滑体系、弧形风道等多项专利技能。欧版磨粉机作为一种高效节能配备,其技能特色是单机出产能力大,易于规模化出产、单位产品能耗低,出产的产品粒度散布广、纯度好、流动性好,一次制品细度d97=33~200μm,单机出产能力依机型不同在6~35t /h。
该体系选用的设备首要有破碎机、提升机、电磁振荡给料机、欧版磨粉机(见图2)。因为欧版磨粉机内部带有选粉设备,不需外部的选粉机,使得流程简略。
1.1.2 立式磨体系
立式磨体系为开路体系(见图3),是结合德国莱歇、特殊、伯利鸠斯以及丹麦斯密斯等公司的技能优势,结合我国的工况条件而开发规划的一款大型化、工业化制粉设备,特别适用于规模化的碳酸钙破坏加工,其自动化程度高、出产成本低、功率高,一次制品细度d97=33~200μm,单机出产能力依机型不同在20~80t/h。
立式磨首要由传动设备、磨辊与磨盘、分级设备、加压和光滑设备、机壳与机座等五大部分组成(见图4)。分级设备由传动体系、转子、导向叶片、粗粉锥斗、出风口(细粉出口)等组成,是确保产质量量的关键性部件,有动态、动静态组合及高效转子多种结构型式。立式磨是运用磨辊与磨盘的相对运动对物料进行料床破坏,辊压添加,物料细度变小;磨细的物料靠气流将其带起,由其上面的分离器(分级机)在磨内分级,粗粉落入磨盘从头被破坏;合格细粉由风送出磨至袋收尘器搜集。
1.2 合适出产3~33μm重的技能及工艺
该细度规模内的重加工可挑选超细中速微粉磨,体系为干法出产,完成自磨自选,通过变频高效选粉机,可直接制备重,无需再通过外部筛分或分选。选用先进的除尘器,体系到达国家环保要求。该机首要运用于超细碳酸钙的破坏加工,一次制品细度d97=3~33μm,单机出产能力依机型不同在0. 5~8t / h 。超细中速微粉磨的全套配备为: 锤式破碎机、斗式提升机、储料仓、给料机、微粉磨主机、变频分析机、隔音房、双旋风集粉器、脉冲除尘体系等(见图5)。据下流运用客户反映,选用上述几种工艺配备,出产的重钙产品的白度、杂质含量等理化目标均契合塑料用重钙产品的要求。在d97、d100目标近似的条件下,体系出品的重与球磨机工艺出品的重比较,从理化特征来看,具有粒度散布窄、细粉含量适中、颗粒形状扁平的特色;从运用的视点来说,该体系出品的重具有产品流动性好、涣散性好、吸油值低优势。该粉特别适宜于进步塑料材料的机械强度和造纸职业涂布需求。
2 塑料用重制备工艺运用状况
上述几种工艺现在已广泛推广运用,特别在一些碳酸钙出产基地,如浙江长兴、安徽池州、江西永安等地,这些区域大部分雷蒙磨等运用供应商为了习惯重钙产品精细化开展,也纷繁仿效该系列出产技能。实践证明,选用上述干法工艺出产的产品粒度具有散布窄、涣散功能好、流动性好、白度高级长处,并且单机出产能力大、单位产品能耗低。依据现在我国塑料用重钙工业开展的实际状况及非金属矿节能减排要求,推广运用该类技能是较好处理(现在重钙及非金属矿职业高能耗和技能设备落后的有用方法。
3 结语
在我国塑料工业中已显现出用重质碳酸钙替代轻质碳酸钙的趋势。但是,现在在我国塑料工业出产中所运用的重质碳酸钙与轻质碳酸钙数量之比约为5∶1,远未到达世界上的(14~18)∶1的份额。因而,需加速塑料用重钙产品精细化开展,这不只要求加工厂商对原矿质量的稳重挑选,更要重视加工设备与工艺的挑选。
欧版磨机等配备与配套工艺选型为其产品精细化开展和产品附加值的进步,奠定了坚实基础。欧版磨配备及其工艺出产的重钙产品不只能够满意塑料商场对产品功能的要求,还促进了塑料用重钙产品精细化和规模化开展,习惯商场对中高端精细化产品的需求。欧版磨配备及技能是国家大力倡议的节能降耗新技能,作为近年来干法超细破坏技能的首要发展之一,契合重钙等非金属矿加工要求,单位产品能耗低、产品白度高的准则。
我国纳米碳酸钙的制备技术与产业现状
2019-03-06 10:10:51
导读
纳米技能是当今世界各国抢先开展的科技热门,但纳米技能和材料的研讨、出产及其使用在我国尚处于起步阶段,能够产业化的只要为数不多的几个种类,纳米碳酸钙就是其间最具代表性的种类之一。
我国于20世纪80年代初开始纳米碳酸钙制备技能的研讨,80年代末完结工业化出产,已研发出多种制备技能,首要有:间歇式碳化法、超重力法、多级喷雾碳化法、非冷冻法、笔直筛板塔式碳化法、内循环碳化塔制备法、喷发吸收法、“双喷”新工艺、自吸式拌和反响器制备法、管式反响碳化法、微乳法制备法、超声空化法等,这些制备技能有些已成功地用于工业出产中,出产出不同晶型和不同用处的纳米碳酸钙产品,部分技能水平已到达乃至超越世界先进水平。现在,已完结工业化的首要有间歇式碳化法、超重力法、多级喷雾碳化法、非冷冻法和膜涣散微结构反响器制备纳米碳酸钙技能。1间歇式碳化法
1.1间歇鼓泡式碳化法间歇鼓泡式碳化法是国内外较常用的出产办法,该法是将净化后的氢氧化钙乳液降温到25℃以下,泵入碳化塔并坚持必定液位,由塔底通入含有二氧化碳的窑气鼓泡进行碳化反响,经过操控反响温度、浓度、气液比、增加剂等工艺条件制备纳米碳酸钙。此法出资小、工艺进程及操作简略,但能耗较高,工艺条件难以操控,粒度散布较宽。广东广平化工实业有限公司从日本白石公司引入的、广东恩平市嘉维化工实业有限公司、安徽铜陵集团碳酸钙厂以及广东省龙门县精密碳酸钙厂前期的纳米碳酸钙出产设备就是选用这种技能出产的。其工艺流程图见图1:
1.2间歇拌和式碳化法间歇拌和式碳化法选用低温拌和鼓泡釜式碳化反响器,经过参加晶形操控剂制备不同晶体结构和不同粒径的碳酸钙。该法是将25℃以下的氢氧化钙乳液泵入碳化反响罐中,通入二氧化碳,在拌和状况下,进行碳化反响,经过操控反响温度、浓度、拌和速度、增加剂等工艺条件制备纳米碳酸钙。该法因拌和气-液触摸面积大,反响较均匀,产品粒径散布较窄等,已成为近几年纳米碳酸钙出产的首要办法。选用该技能建造的有上海杰出纳米新材料股份有限公司、山西兰花华明纳米材料有限公司、江西华明纳米碳酸钙有限公司、上海耀华纳米科技有限公司等。其制备技能首要有华东理工大学技能化学物理研讨所和上海杰出纳米新材料股份有限公司具有。间歇拌和式碳化法因为影响产品粒径的要素较多,在工业出产进程中操控困难,因而存在着重复性差,粒径散布不均匀等缺陷;碳化反响器存在着扩展试验负效应大,反响周期长,单台设备出产才能低一级不利要素。针对以上缺少,上海杰出纳米新材料股份有限公司经过在产业化进程中的实践,对碳化反响进程操控及碳酸钙粒子表面改性等方面作了严峻改善,首要处理了粒子散布、表面处理优化、粒子二次聚会等问题,使产质量量有了进一步的进步,已构成了具有自主专利的制备技能,工艺技能已达世界先进水平,该制备技能具有下列特色:①到达和部分超越国外同类产品目标;②粒子功能(描摹、粒度、晶型)可控,构成了不同形状的纳米碳酸钙系列产品,合适各种不同用处对粒子描摹的要求;③产品功能安稳重复性强,0.1kt/a中试、3kt/a工业化试验和15kt/a出产线组成粒子与小试产品粒子功能相同,且批与批之间适当重复,消除了化工出产中的扩展效应;④进行了纳米碳酸钙的表面改性处理,现已构成用于轿车底漆、涂料、密封胶、塑料、橡胶和油墨等不同用处的系列化纳米级碳酸钙产品。上海杰出纳米新材料股份有限公司的工程塑料、硅橡胶、涂料、油墨用等系列纳米活性碳酸钙已悉数代替国外比如日本白石公司、法国Solvay公司产品进入国内外闻名独资公司、合资公司,并获得发明专利一项:高级胶印油墨用纳米通明碳酸钙的制备办法(专利号:ZL01 1 26404.7)。
2超重力法北京化工大学超重力研讨中心研发开发的超重力法组成纳米碳酸钙技能,成功地制备出粒径为15~30nm的纳米碳酸钙,并为组成纳米颗粒而规划了具有共同新式结构的超重力反响器。超重力反响器是一高速旋转的填料床,超重力碳化技能是指氢氧化钙乳液在超重力反响器中经过高速旋转的填料床时,获得较重力加快度大2~3个数量级的离心速度,在这种情况下,乳液被填料破碎成极小的液滴、液丝和极薄的液膜,极大地增加了气液触摸面,强化了碳化速度;一同,因为乳液在旋转床中得到高度涣散,约束了晶粒的长大,即便不增加晶形操控剂,也可制备出粒径为15~30nm的纳米级碳酸钙。超重力法组成纳米碳酸钙技能与超重力反响设备具有如下特色:①超重力反响法根据分子混合与反响结晶理论,组成纳米碳酸钙的办法和设备,属世界创始;②以氢氧化钙乳液和二氧化碳为质料,使用气-液-固超重力反响法,成功的组成出均匀粒径15~30nm、比表面积在62~77m2/g范围内粒度可调、粒度散布均匀、质量高的纳米碳酸钙产品,其质量目标处于世界抢先水平;③粒子功能(描摹、粒度、晶型)可控,构成了不同形状的纳米碳酸钙系列产品,毋需增加晶体出产抑制剂,即可生成各种不同用处对粒子描摹的要求,且产品纯度高;④适用范围广,超重力法制备技能和配备不光适用于气-液-固三相反响,并且还适用于气-液和液-液反响体系制备纳米材料,已成功地制备出碳酸钙、氢氧化铝、碳酸、碳酸、白碳黑等纳米粉体材料,开发了相应的气-液-固超重力反响法、气-液超重力反响法和液-液超重力反响法制备技能,标明超重力法技能和配备具有很强的通用性,是一项渠道性的高新技能;⑤工业化试验标明,超重力法技能和设备与传统的间歇鼓泡式、间歇拌和式碳化法制备技能比较,具有设备体积小、出产效率高,产质量量安稳等特色,但设备出资高、单台设备出产才能小、二氧化碳使用率低是影响和约束其工业化出产的首要妨碍。现在,蒙西高新材料股份公司、山西芮城华新纳米材料有限公司、巢东纳米材料科技股份有限公司、山东隆重科技股份有限公司等单位使用该技能建造的工业化出产设备也已建成投产。
3多级喷雾碳化法河北科技大学胡庆福等研讨的多级喷雾碳化技能,选用三段喷雾碳化塔,氢氧化钙乳液经过压力喷嘴喷成雾状与二氧化碳混合气体逆流触摸,使氢氧化钙乳液为涣散相,窑气为接连相,大大增加了气液触摸表面,经过操控氢氧化钙乳液浓度、流量、液滴径、气液比等工艺条件,在常温下可制得粒径在40~80nm的碳酸钙。其制备技能具有下列特色:①接连出产效率高,出产才能大,操作安稳;②气液触摸面积大,反响均匀,晶核生成和生长可分隔操控,易于完结在不同碳化率下增加操控剂、表面处理剂等;③可制作立方形、链锁形等各种单一型产品,可制作超细(<100nm)和超微细(<20nm)产品,粒度均匀;④能够用少数活性物质制作出均匀的高活性产品。选用此法出产的有湖南大乘氮有限公司。
4非冷冻法间歇式碳化法、超重力法和多级喷雾碳化法三种出产技能,因受温度改动的影响,粒径改动频率较大,且碳酸钙出产进程中的碳化进程是一种放热反响,要确保产品细度,就要严格要求操控温度,经过在碳化进程中的冷冻将浆液温度操控在25℃以下,方可使碳酸钙结晶粒子的构成在100nm以下。因为制冷设备的投入、维护费用和电能耗费,产品出产成本高,对厂商的经济效益有较大的影响。非冷冻法制备纳米碳酸钙技能与其它制备技能差异在于:选用间歇鼓泡式碳化法,在不改动设备设备的情况下,经过接连参加配备的多种涣散剂的办法,在碳化塔内与浆液一同反响,取消了冷冻体系,减少了能耗,降低了出产成本。非冷冻法制备纳米碳酸钙技能具有以下特色:①碳化是在常温常压下进行,能耗低、出资小、出产成本低。与超重力法、间歇式碳化法制备技能比较,对10kt/a的纳米碳酸钙项目,项目总出资分别为4000万元、2000万元和1800万元,吨产品成本分别为2000元、1250元和1000元;②产品粒径经过调整涣散剂配方和使用量调控,操作简略。产品粒径可根据需要在10~100nm范围内调整,且粒度散布窄;③枯燥前的表面处理,既能够避免纳米粒子在枯燥阶段的吸附聚会,也进步了纳米碳酸钙的涣散功能,经过增加不同的改性剂,适用于不同产品对纳米碳酸钙的需求,为产品使用发明了有利条件。现在,广东省龙门县精密碳酸钙厂选用该技能在已有的5kt/a纳米碳酸钙设备中进行了出产,产品经意大利EVC公司及国内几家公司试用,产品功能优秀。河北科技大学化学与制药工程学院胡庆福等经过开发复合型结晶导向剂,在试验室试验和中试的基础上,完结了在非冷冻(高温35~75℃)、氢氧化钙高浓度(质量分数7%~12%)条件下碳化出产针状(晶须)纳米碳酸钙。将该办法使用在石家庄博达钙业有限公司2.5万t/a的轻质碳酸钙工业设备上,经扫描电镜、透射电镜、X射线衍射和比表面积测定分析标明,产品纳米碳酸钙的晶形为针状,粒度均匀、散布窄,粒径10~20nm,长径比15~20,比表面积≥90m2/g,总孔容≥0.26mL/g。非冷冻法制备纳米碳酸钙技能是一种较为抱负的低成本的纳米碳酸钙出产办法,但要大规划的使用,还需处理一系列工业化出产中的问题。
5膜涣散微结构反响器制备纳米碳酸钙技能清华大学化学工程联合国家重点试验室与山东隆重科技股份有限公司联合,用微孔膜涣散法强化多相传递进程的新技能,研发了膜涣散微结构反响器用于纳米碳酸钙的制备。在膜涣散微结构反响器中,用孔径为几个微米或几十微米的膜材料作为涣散介质,将待涣散相经过压力压入到接连相中,待涣散相经过细小膜孔道被活动的接连相剪切成细小粒径的气泡或液滴,进入接连相,完结微米标准的相间混合,大大增强了传质表面积,使得传质通量得到很大程度的进步,促进反响的进行。关于纳米碳酸钙制备中的碳化进程,相间传质是决议速步,膜涣散微结构反响器经过强化微观混合可促进传质和反响的快速进行,使得制备的碳酸钙颗粒粒径小且散布均匀。经过调控反响物浓度、两相的流量、压力等参数可较好地操控生成碳酸钙的粒径和晶型。一同,在膜涣散微结构反响器中,只需将能量输入到涣散相上,降低了能量的耗费。膜涣散微结构反响器法制备纳米碳酸钙技能具有以下特色:①具有设备体积小,单台设备的尺度在1200x500X200mm,最多时能够6台设备层层并联,单台反响器产值达400t/a;②无传动设备、效率高、能耗低、气体使用率高,单台设备的造价仅万元左右,二氧化碳气体使用率在60%左右;③能够大规划制备粒径在30~60nm、粒径散布均匀且巨细可控的碳酸钙颗粒,并已完结工业试验;④工艺与出产进程简略,不需晶型操控剂、碳化进程无需冷冻。在由中科院院士汪家鼎、费维扬、袁权等参加的技能判定会上(作者为判定专家组成员之一),专家组成员共同以为,膜涣散微结构反响器制备纳米碳酸钙技能已到达世界先进水平。但要大规划的工业化出产使用,同非冷冻法制备纳米碳酸钙技能相同还需处理一系列工业化出产中的问题。
6纳米碳酸钙的出产现状现在世界上能出产100nm以下的碳酸钙首要供应商有:英国的ICI公司、法国的Solvay公司、美国的矿藏技能公司(MTI)、Pfizer公司、王子造纸公司、Resso Wces Casbec公司、日本的白石公司、日本丸尾钙公司等,产品首要用于橡胶、塑料、胶粘剂(含密封胶)、涂料油漆、涂布纸张、油墨、虫剂、蜡制品、搪瓷制品及化妆品等。日本是世界上开发和出产纳米碳酸钙最好和较早的国家,早在四、五十年代就出产出了微米级、纳米级碳酸钙,现已有纺锤形、立方形、链锁形等纳米级碳酸钙产品及改性产品50余种;美国着重于纳米碳酸钙在造纸和涂料上的使用;英国则首要从事填料专用纳米碳酸钙的研发,近20年来英国在轿车专用塑料用碳酸钙中占独占位置。我国于20世纪80年代末完结工业化出产,2004年我国的纳米碳酸钙实践出产才能仅150kt左右,其间纳米级活性碳酸钙的出产才能缺少100kt,远远不能满意商场需求,每年仍需从日本、英国等国家进口100kt以上。据有关专家猜测,未来几年间,纳米碳酸钙在发达国家的需求量将以年均10%的速度增加,在我国将以年均20%的速度增加,因而纳米碳酸钙商场前景宽广。7纳米碳酸钙工业出产存在的问题我国纳米碳酸钙的开展具有以下特色:①开展速度在世界各国名列首位;②产质量量和种类有较大的进步;③国内科研院所对纳米碳酸钙制备技能的研讨,效果明显,间歇拌和式碳化法和超重力法制备纳米碳酸钙技能处于世界先进水平;④关键设备国内均能自主出产,无需进口;⑤国外一些公司看准我国纳米碳酸钙商场,纷繁来我国搞合资或独资出产产品,或推销其设备或技能,加快了我国碳酸钙工业的开展。综观我国碳酸钙工业现状,存在着出产规划小、出产工艺及自动操控水平、产品表面处理技能、枯燥技能以及产品检测水平与国外比较有较大的距离,产品规格种类少,层次较底,使用开发相对滞后,造成了等级低碳酸钙产品供过于求,很多出产厂商亏损,与此一同高级碳酸钙求过于供,严峻依赖于进口的局势,其落后状况也严峻影响了相关工业的开展。距离详细表现在:(1)我国的科学工作者对纳米碳酸钙的制备技能进行了许多的研讨工作,获得了明显的效果,对纳米碳酸钙的研讨多、面广,力气涣散,低水平的重复性研讨开发现象严峻,我国纳米碳酸钙制备技能不少,有的开发时刻也不晚、但制备技能不成熟,对制备技能中详细工艺条件的研讨还很不行,已获得的效果仅停留在试验室和小规划出产阶段,对规划扩展时和出产中存在的问题,还研讨的很少。(2)种类规格少,不能系列化:纳米碳酸钙技能与出产的重点是碳化和表面改性,表面改性技能是厂商出产的中心。表面改性技能意味着产品在功能上、专用化、精密化和商场占有率的抢先,因为碳酸钙表面处理的成果决议产品的层次和用处,很多的专用碳酸钙的首要差异在于表面改性的不同,其产品用处和报价就可能相差较远,表面改性技能的差异是约束我国纳米碳酸钙出产和使用的最首要的要素。(3)产质量量差:对组成纳米颗粒的进程机理缺少深化的研讨,对操控微粒的形状、散布、粒度、功能等技能的研讨还很不行。因为国内科研开发资金投入缺少,新产品无力开发,老产品问题也得不到改善,所以,技能水平一向处于落后状况,产质量量必定就与国外有较大距离,因而,许多高级产品仍需进口。(4)出产技能配备落后:纳米碳酸钙项目一般出资较小,一些大型的工程公司(规划院)对工程化的兴趣不大,不肯投入很多的人力物力进行工程开发,因而工程开发才能单薄。许多出产供应商因为建造资金的约束,土法上马,致使配备规划小、自动化水平低,产质量量差,尤其是对影响产品终究质量和出产成本的枯燥技能及其工业出产中的经济性研讨较少,致使产品的聚会现象严峻,出产成本过高,厂商效益欠安。
8结语跟着工业的迅速开展,各个职业对碳酸钙的粒度、表面改性和产品的使用提出了越来越高的要求,有必要很多出产各种规格的产品以满意商场,超细化、表面改性和产品使用成为碳酸钙工业的开展方向,给碳酸钙更为广泛地使用带来了新的生命力,并极大地进步了它的使用价值。因而,开发及出产高级纳米级碳酸钙产品不只具有十分宽广的商场,一同能够代替国外同类进口产品,节省很多外汇,降低成本,并可完结国内等级低碳酸钙产品更新换代,促进我国碳酸钙工业以及涂料、橡塑、造纸等相关职业的开展,在我国构成一个世界化规划的纳米级碳酸钙出产基地,充分使用国内资源、技能、产品成本与功能的优势,参加世界竞争,出口创汇,具有巨大的社会效益和经济效益。综上所述,尽管我国纳米碳酸钙工业的开展与世界先进水平比较,依然存在着必定的距离,但经过业内人士的共同努力,信任在不远的将来,我国纳米碳酸钙职业将会获得更大的开展。
球形碳酸钙制备方法及研究进展!
2019-03-06 10:10:51
碳酸钙按形状分为无规矩体、纺锤形、针形、球形、链锁形、片形、偏三角形和菱形六面体形、无定形等,不同形状的碳酸钙,其应用范畴和功用也各不相同。图1 不同晶型碳酸钙晶SEM相片
因为球形碳酸钙有杰出的滑润性、流动性、涣散性和耐磨性等特性,故而被广泛应用在橡胶、涂料油漆、油墨、医药、牙膏和化妆品等范畴。
01 球形碳酸钙制备办法及研讨进展
球形碳酸钙的组成办法多以液相法为主,依据反响机理的不同又可将其划分为三种反响体系:Ca(OH)2-H2O-CO2反响体系、Ca2+-H2O-CO32-反响体系和Ca2+-R-CO32-反响体系(R为有机质)。
(1)Ca(OH)2-H2O-CO2反响体系——碳化法
该反响体系是以Ca(OH)2水乳液作为钙源,用CO2碳化制得碳酸钙。Ca(OH)2一般由天然碳酸钙锻烧成生石灰,然后经消化得到,碳酸钙锻烧的烟道气经净化作为碳化反响的CO2来历。
碳酸钙晶体的成长与描摹的构成首要发生在碳化阶段,可经过反响温度、Ca(OH)2浓度、CO2流量、晶体成长抑制剂等要素加以操控,制得球形碳酸钙产品。
研讨进展:
①向兰等选用间歇碳化法(管式气体散布器)组成了均匀粒径0.1μm左右的超细球形碳酸钙;选用小气泡及CO2含量较高的混合气体有利于构成超细碳酸钙,参加少数添加剂如ZnCl2、MgCl2或EDTA(乙二胺四乙酸)可显着改动碳酸钙粒子的描摹和巨细。
②陈先勇等选用间歇鼓泡碳化法,在碳化温度为20℃左右、灰乳密度为1.07(d)的条件下,参加少数复合添加剂PBTCA(2-磷酸基-1,2,4-三羧酸)和CTAB(十六烷基三甲基化铵),可制得粒度散布均匀、涣散性好、均匀粒径为40nm左右的球形碳酸钙。
③赵风云等以一种出产球形纳米碳酸钙的喷发-乳化新式组合式碳化反响器,在小型试验设备上,选用正交试验的办法,断定出粒度散布窄的球形纳米碳酸钙的最佳反响条件为:温度15℃,氢氧化钙浆液质量浓度65g/L,气液体积比5:1,在完结小试的基础上,建成了年产60吨纳米碳酸钙的中试试验设备,并成功制备出均匀粒径80nm球形纳米碳酸钙。图2 球形纳米碳酸钙中试出产线
④谷丽等以石灰石为质料,选用间歇鼓泡碳化法制备纳米球形碳酸钙,在反响温度为20-40℃,石灰乳浓度为86g/L,空塔气速为0.114m/s时,晶形操控剂参加量为1%时,可得到涣散性较好、粒度散布较均匀纳米球形碳酸钙。
碳化反响开端后,在不同时刻参加同一剂量的同一种晶形操控剂,制得碳酸钙的晶形和粒径不尽相同,晶形操控剂参加的时刻越早,所得到的球形碳酸钙晶体的描摹越好、粒径越小。
图3 纳米球形碳酸钙工艺流程
⑤申小清等用硅酸钠为晶形操控添加剂,经过石灰乳碳化工艺制备了颗粒尺度为40-50nm的球形超细碳酸体,添加剂最佳用量为0.7-1.5%。
(2)Ca2+-H2O-CO32-反响体系——复分化法
该体系是将含Ca2+的溶液与含CO32-的溶液在必定条件下混合反响来制备碳酸钙。依据质料的不同又分为氯化钙钙-碳酸钙法、氯化钙-苏打法(苏尔维法)、石灰-苏打法等。
一般经过添加剂来操控产品的粒径和晶体结构。用Ca2+-H2O-CO32-反响体系反响体系能够得到20-100nm的碳酸钙。
研讨进展:
①方卫民等选用复分化法将必定量的无水Na2CO3和CaCl2别离溶解于适量水中,经过参加少数添加剂乙二胺四乙酸二钠和磷酸氢二钠,制备出了均匀粒径为50-70nm的球形碳酸钙。
②雷鸣等经过有机聚合物聚磺酸钠PSSS对碳酸钙粒子的调制效果,成功制备出了均匀粒径为5μm的球形碳酸钙。
③谢英惠等运用缓冲剂氯化钠和结晶成长中止剂调理碳酸钙的描摹,选用复分化法制备出了球形碳酸钙。
(3)Ca2+-R-CO32-反响体系——微乳液法和凝胶法
该反响体系是经过有机介质R来调理Ca2+和CO32-的传质,然后到达操控晶体成核成长的意图。依据有机介质R品种的不同可分为微乳液法和凝胶法两类。
微乳液法选用的有机介质一般为液体油,而凝胶法选用的是有机凝胶。这类共聚物具有2个亲水链段(耦合链段与促溶链段),能够定向吸附于无机-水界面。
带有特定功用团的共聚物可能与金属离子及表面活性剂相互效果而在溶剂中构成较为杂乱的有序集合结构。这些特性使得双亲水嵌段共聚物在调控无机粒子描摹方面显示出共同的长处。
(4)其他
①袁可等将基酸-甘酸和废渣经过简略的酸碱中和反响,制备出了超微细球形碳酸钙,其纯度和白度均达96%以上,成团微粒为纳米级,二次团粒结构的粒径散布在1-3μm之间,经过pH或物理和化学的涣散,可便利的调控其微观尺度。
②赖永华等运用甘酸与渣的首要成分Ca(OH)2反响生成可溶性的甘酸钙,过滤除掉不溶杂质。在气升式高效反响器中,向甘酸钙溶液通入CO2进行碳化反响,洗刷后制得超微细球形碳酸钙膏体。选用该超微细球形碳酸钙膏体替代配方中的悉数粉体制备水性涂料,不光能够下降涂料的质料本钱和出产本钱,还能够简化涂料的出产操作、削减粉尘污染。
表1 超微细球形碳酸钙性能目标02 国外球形碳酸钙出产及研讨现状
国外开发的低光泽纸专用球形碳酸钙具有白度高、易涣散、油墨吸收性杰出、粒径散布窄等优秀特性,其2-5μm的粒子占比约为67%,晶体形状为较规矩球形。
研讨标明:3.5μm低光泽纸专用球形碳酸钙在涂猜中的最佳用量在40-50%之间,此刻能够获得较低的纸页光泽度,较高的印刷光泽度和高的光泽度差。与其他无光纸用颜料比较,运用球形碳酸钙可获得光学目标、物理性能及印刷适性之间的平衡,而且不会发生印刷斑驳。
因而,球形碳酸钙是一种出产低光泽涂布纸的优秀颜料,能够替代现行涂料配方中的几种颜料,提凹凸光泽涂布纸质量,下降出产的杂乱性,将会有宽广的市场前景。
现在,碳化法制备球形碳酸钙是出产厂商和科研院所重视和研讨的要点,别的也有一些厂商经过湿法超细研磨制备出了椭圆形碳酸体材料。未来,对粒子巨细和描摹的有用调控将成为碳酸钙被广泛应用的关键技术。
碳化法制备纳米碳酸钙的工业合成方法
2019-01-04 15:16:46
纳米碳酸钙的制备方法按制备过程中是否发生化学反应分为化学方法和物理方法,其中化学方法包括碳化法、乳液法、夹套反应釜法、复分解法。碳化法是生产纳米级轻质碳酸钙的主要方法。首先,将精选的石灰石煅烧,得到氧化钙和窖气。然后,使氧化钙消化,并将生成的氢氧化钙悬浊液在高剪切力作用下粉碎、多级悬液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浊液。然后通入二氧化碳气体,加入适当的晶形控制剂,碳化至终点,得到要求晶形的碳酸钙浆液。再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。碳化是整个生产工艺的核心,根据碳化反应过程二氧化碳气体与氢氧化钙悬浮液接触方式的不同,纳米碳酸钙的工业合成方法可分为间歇鼓泡法、喷雾碳化法、喷射吸收法和超重力碳化法。
间歇鼓泡法
间歇鼓泡碳化法是目前国内外大多采用的方法。间歇鼓泡碳化法,也称釜式碳化法,是将石灰乳通过冷冻机降温到25℃以下,泵入碳化塔,通入CO2混合气,在搅拌下进行碳化反应。通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件间歇制备纳米碳酸钙。该法可以生产普通微细碳酸钙,但对于生产纳米级碳酸钙就需要严格控制一些工艺条件,如碳化反应温度、石灰乳浓度等,而且也相应地需对鼓泡塔做一些改进,比如加搅拌器、挡板或通过气体分布器控制等,但也存在着粒度分布不均匀,而且不易控制、粒度不够细化、批次间产品质量重现差、工业放大困难等缺点。陈先勇等人采用间歇鼓泡碳化法,通过对碳化反应温度、灰乳密度、添加剂等因素的严格控制,成功制得粒度分布均匀、平均粒径为40nm左右的单分散球形纳米碳酸钙产品。
多级喷雾碳化法
制备纳米碳酸钙的基本步骤为:按工艺要求的浓度配制精制的石灰乳悬浮液,然后加入适量的添加剂,充分混匀后泵入喷雾碳化塔顶部的雾化器中,在高速旋转产生的巨大离心力作用下,乳液被雾化成微细粒径的雾滴;把干燥的含有适量CO2的混合气体从塔底部通入,经气体分布器均匀分散在塔中,雾滴在塔内和气体进行瞬时逆向接触发生化学反应产生 CaCO3。经过多级喷雾碳化法制备的CaCO3产品的粒度细小且均匀,平均粒径在30~40nm 范围内,微粒晶型可以调节控制。此法生产能力大,产品质量稳定,能耗低,投资较小。
喷射吸收法
喷射吸收法是由中南工业大学满瑞林等研究的一种工艺,这工艺是将窖气通过降温降尘后,经风机送入喷射碳化器中,再用浆液泵把石灰乳送入喷射碳化器中,在碳化器狭窄的喉管处,窖气与石灰乳高度分散,相互剪切混合,因此具有很大的气液接触面积。该工艺具有投资少、设备简单、碳化效率高、维修方便、能耗低等优点。
超重力法
超重力法是利用离心力使气-液、液-液、液-固两相,在比地球重力场大数百倍甚至上千倍的超重力场条件下的多孔介质中产生流动接触,巨大的剪切力把液体撕裂成极薄的膜和极细小的丝和滴,产生了巨大的和快速的相界面,使相间传质的体积传质速率比塔器中的大1~3个数量级,使微观混合速率得到了极大的强化。超重力结晶法从根本上强化反应器内的传递过程和微观混合过程,而且CaCO3成核过程和生长过程分别在两个反应器中进行,即将反应成核区置于高度强化的微观混合区,宏观流动型式为平推流,无返混(超重力反应器);晶体反应器置于宏观全混流区(带搅拌的釜式反应器)。与传统的碳化法所采用的工艺相比较,这种组合工艺确保结晶过程满足较高的产物过饱和度、产物浓度空间分布均匀、所有晶核具有相同的生长时间等要求。在超重力反应结晶法制备立方形纳米CaCO3过程中,因为CO2吸收传质过程为整个碳化过程的关键步骤,所以强化CO2在液相中的传质速率是提高整个过程速率的有效途径。同时,由于溶液中CO32-的浓度是由化学吸收而生成的,因此控制CO2的吸收速率也是控制体系中过饱和度高低的有效手段之一。超重力加速度g、液体循环量、气体流量、Ca(OH)2初始浓度等操作条件对碳化反应过程均有影响。运用超重力反应结晶法可以制备出平均粒度为15-40nm、分布较窄的CaCO3,碳化反应时间比传统方法大大缩短。立方形纳米CaCO3的晶体结构为方解石晶型,属六方晶系。该晶体结构和普通碳化法合成的产物相同,立方形纳米CaCO3颗粒因表面效应显著,其热分解温度下降了195℃。
纳米碳酸钙的制备方法及其应用的研究进展
2019-01-04 15:16:49
1、国内外纳米碳酸钙的发展状况与展望
1.1 国外纳米碳酸钙的发展状况
纳米级碳酸钙是 20 世纪 80年代发展起来的一种新型超细固体材料。因为纳米级碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,在磁性、催化剂、光热阻和熔点等方面与常规材料相比显示出优越的性能,因而广泛应用于橡塑、油墨、化妆品等领域。
当今世界上能生产 100nm 以下的碳酸钙主要厂家是:英国的 ICI 公司、法国的 Solvay 公司、美国的矿物技术公司(MTI)、Pfizer公司、王子造纸公司、Resso Wces Casbec 公司、日本的丸尾钙公司、日本的白石公司等。
日本是世界上开发和生产纳米碳酸钙较早和最好的国家,现在已有纺锥形、立方形、锁链形等纳米级碳酸钙产品及改性产品 50 多种;最近 20年英国在汽车专用塑料用碳酸钙中占垄断地位;美国则着重于纳米碳酸钙在造纸和涂料上的应用。
1.2 国内纳米碳酸钙的发展状况
20 世纪 90 年代初,中国生产的超细化活性轻质碳酸钙总体上质量较差,主要表现在两个方面:一是平均粒度较大,产品主要平均粒度为150~500nm;二是国内产品的粒度分布较宽,因而在质量上逊色于平均粒度相同但分布较窄的进口产品。
北京化工大学陈建峰教授采用超重力应用沉淀法(简称超重力),目前已建立了 3000t/aCaCO 3粉末工业生产线,使中国在该领域从技术产品进口国转变成为技术出口国,具有很大的经济效益和显著的国际影响性。
目前,该技术已转让给新加坡纳米材料科技公司等多家单位。2013 年我国纳米级碳酸钙产量达到 147 万吨,同比增长 14.84%。2014 年 1-6月我国纳米碳酸钙产量达到85 万吨,比上年同期增长 15.76%。
2、纳米碳酸钙的制备方法
2.1 间歇鼓泡法
间歇鼓泡碳化法是目前国内外大多采用的方法,是将石灰乳通过冷冻机降温到 25℃以下,泵入碳化塔,通入 CO 2混合气,在搅拌下进行碳化反应。通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件间歇制备纳米碳酸钙。
该法可以生产普通微细碳酸钙,但也存在着粒度分布不均匀,而且不易控制、粒度不够细化、批次间产品质量重现差、工业放大困难等缺点。
2.2 多级喷雾碳化法
按工艺要求的浓度配制精制的石灰乳悬浮液,加入适量的添加剂,充分混匀后泵入喷雾碳化塔顶部的雾化器中,在高速旋转产生的巨大离心力作用下,乳液被雾化成微细粒径的雾滴;把干燥的含有适量CO 2 的混合气体从塔底部通入,经气体分布器均匀分散在塔中,雾滴在塔内和气体进行瞬时逆向接触发生化学反应产生 CaCO 3 。
经过多级喷雾碳化法制备的 CaCO 3 产品的粒度细小且均匀,平均粒径在 30~40nm范围内,微粒晶型可以调节控制。此法生产能力大,产品质量稳定,能耗低,投资较小。
2.3 喷射吸收法
喷射吸收法是由中南工业大学满瑞林等研究的一种工艺,这工艺是将窖气通过降温降尘后,经风机送入喷射碳化器中,再用浆液泵把石灰乳送入喷射碳化器中,在碳化器狭窄的喉管处,窖气与石灰乳高度分散,相互剪切混合,因此具有很大的气液接触面积。该工艺具有投资少、设备简单、碳化效率高、维修方便、能耗低等优点。
2.4 超重力法
超重力法是利用离心力使气-液、液-液、液-固两相,在比地球重力场大数百倍甚至上千倍的超重力场条件下的多孔介质中产生流动接触,产生巨大的和快速的相界面,使微观混合速率得到了极大的强化。
CaCO 3成核过程和生长过程分别在两个反应器中进行,与传统的碳化法所采用的工艺相比较,这种组合工艺确保结晶过程满足较高的产物过饱和度、产物浓度空间分布均匀、所有晶核具有相同的生长时间等要求。
3、纳米碳酸钙的应用
3.1 在橡胶工业中的应用
碳酸钙是橡胶工业中使用得最早,用量最大的填充剂之一。纳米碳酸钙由于其具有超细、超纯、表面改性的特点,在橡胶中具有空间立体结构,又具有良好的分散性,可提高材料的补强性能、拉伸性能及抗老化性能。橡胶工业用的纳米碳酸钙产品要求粒子微细化、表面活性化、易分散。
3.2 在造纸中的应用
目前对纳米碳酸钙的研究证明,加入了碳酸钙的纸张,纸张的老化现象有明显的改善,对紫外线具有一定的吸收性,纸张不易发黄,不易发脆,且具有较好的隔离性。
碳酸钙在纸张中可作填料或涂布颜料,它能提高纸的不透明度、增加纸的吸墨性能、使成纸柔软更有光泽。纳米碳酸钙目前主要应用于女性卫生品、婴儿尿布、纸巾等中。
3.3 在塑料行业中的应用
添加纳米碳酸钙可以提高塑料制品尺寸的稳定性、硬度和刚性,可以改善塑料的流变性能,提高塑料制品的耐热性。然而普通碳酸钙对塑料只能起到填充剂的作用,其添加或多或少地降低塑料的抗张强度,使塑料伸长率降低,所以用在塑料里面的纳米碳酸钙都需要进行表面活化处理,才能很好地起到功能材料的作用,改善塑料的性能。
3.4 在涂料中的应用
纳米碳酸钙填充于水性涂料中,具有白度高、涂膜光滑等优点,其空间位阻效应,在制漆中能使配方中密度较大的立德粉悬浮,起到防沉降作用。制漆后,漆膜白度增加,光泽度高,而遮盖力却不降低,这一性能使其在涂料工业被大量推广应用。
另外,利用其存在的“蓝移”现象,将其添加到胶乳中,能对涂料形成屏蔽作用,达到抗紫外老化和防热老化的目的,增强涂料的隔热性。
3.5 在油墨工业中的应用
纳米碳酸钙作为树脂性油墨的填料,具有稳定性好、适应性强、光泽度高、不影响印刷油墨的干燥性能等优点,可代替较贵的胶质钙。
用于高档油墨,可以提高油墨的附着力,减少油墨对机械的磨损,适于高速印刷。用于油墨中的纳米碳酸钙一般要经过活化处理,晶型为球型或立方型最好。
3.6 在日化和医药化工行业中的应用
纳米碳酸钙也可作为高档化妆品、香皂、洗面奶、儿童牙膏等日化产品的填料;在制药化工中是培养基中的重要成分和钙源添加剂,在止痛药和胃药中也有一定的药理作用,作为微生物发酵缓冲剂而应用于抗生素的生产。
4、展望
从近几年来纳米碳酸钙行业发展来看,企业不断洗牌整合,一些落后和不合理的工艺技术被淘汰;国内现在还没有出现较大规模的大型企业,市场的集中度不够,市场中产品混乱、价格恶性竞争无法避免。还要顺应市场规律,行业分布在地域性方面得到集中,技术和人才也得到相对集中。
期望行业中出现较大规模的企业,年产量和销量能达到10-20万吨,这样才有实力和国外公司站在同一平台上竞争,还要加大技术创新的投入,提高企业自身研发和创新力量,使行业的高端技术进入世界领先水平,并在国际高端产品市场占有一席之地。
中国的经济和社会在持续高速发展,工业技术等方面和发达国家之间的差距越来越小,有足够的理由认为中国的纳米碳酸钙行业会赶上并赶超世界发达国家。
纳米碳酸钙的制备方法及其应用研究进展
2019-03-07 09:03:45
本文介绍了纳米碳酸钙在国内外的研讨进展,论述了纳米碳酸钙在国内外各个范畴的运用。总结了间歇鼓泡法、多级喷雾碳化法、喷发吸收法、超重力法等几种纳米碳酸钙惯例制备办法,并对这几种办法的优缺陷进行概括比照,分析了这几种办法的适用范围与操作的难易程度。具体介绍纳米碳酸钙在橡胶工业、造纸、塑料、涂料、油墨、日化及化妆品中的运用并对纳米碳酸钙的运用远景进行展望。1国内外纳米碳酸钙的开展情况与展望
国外纳米碳酸钙的开展情况
纳米级碳酸钙是20世纪80年代开展起来的一种新式超细固体材料。因为纳米级碳酸钙粒子的超细化,其晶体结构和表面电子结构发作变化,发作了普通碳酸钙所不具有的量子尺度效应、小尺度效应、表面效应和微观量子效应,在磁性、催化剂、光热阻和熔点等方面与惯例材料比较显示出优胜的功能。将其运用于橡胶工业、塑料工业中能使制品表面光艳,伸长度好,抗张力高,抗撕力强,耐曲折,抗龟裂功能好,是优秀的白色补强材料;在高档油墨职业、涂料工业。作为填料运用,起到增稠防沉、进步产品功能和下降产品成本的成效;其在饲料职业可作为补钙剂,进步含钙量;在化妆品中,因为其纯度高、白度好、粒度细,能够代替钛。
当今世界上能出产 100nm 以下的碳酸钙首要供应商是:英国的ICI公司、法国的Solvay公司、美国的矿藏技能公司(MTI)、Pfizer公司、王子造纸公司、Resso WcesCasbec公司、日本的丸尾钙公司、日本的白石公司等。产品首要用于塑料、橡胶、涂料油漆、涂布纸张、油墨、胶粘剂、虫剂、蜡制品及化妆品等。日本是世界上开发和出产纳米碳酸钙较早和最好的国家,在四、五十年代就出产出了微米级、纳米级碳酸钙,现在已有纺锥形、立方形、锁链形等纳米级碳酸钙产品及改性产品50多种;英国首要研发填料专用纳米碳酸钙,最近20年英国在轿车专用塑料用碳酸钙中占独占位置;美国则着重于纳米碳酸钙在造纸和涂料上的运用。
国内纳米碳酸钙的开展情况
我国的超细碳酸钙产品开始于:1990年头广东恩平化工实业有限公司和辽宁本溪助剂厂先后从日本各引进了一条超细碳酸钙出产线,可出产5~6种晶形,首要用于塑料职业。上海华明超细碳酸钙有限公司将3000t/a超细碳酸钙才能扩至8000t/a,产品取得国家级新产品奖,并经过了ISO9002质量认证。山西兰花科技创业股份有限公司选用华东理工大学的技能已建成7kt/a的出产设备,出产及供应情况良好,两边合资又建造15kt/a的新设备。安徽铜陵化工集团公司与中科院合肥分院固体物理研讨所合作开发的纳米碳酸钙技能于2000年6月经过了安徽省科委的中试判定,2001年已完成工业化出产。北京密云碳酸钙厂选用天津化工研讨院的技能出产纳米碳酸钙,但只能出产用于普通油墨的产品。
20世纪90年代初,我国出产的超细化活性轻质碳酸钙总体上质量较差,首要表现在两个方面:一是均匀粒度较大,产品首要均匀粒度为150~500nm;二是国内产品的粒度散布较宽,因而在质量上差劲于均匀粒度相同但散布较窄的进口产品。北京化工大学陈建峰教授选用超重力运用沉淀法(简称超重力),现在已建立了3000t/aCaCO3粉末工业出产线。该技能的创造和产业化的成功,使我国在该范畴从技能产品进口国改变成为技能出口国,具有很大的经济效益和明显的世界影响性。现在,该技能已转让给新加坡纳米材料科技公司等多家单位。2013年我国纳米级碳酸钙产值到达147万吨,同比增加14.84%。2014年1-6月我国纳米碳酸钙产值到达85万吨,比上年同期增加15.76%。
2纳米碳酸钙的制备办法
纳米碳酸钙的制备办法按制备进程中是否发作化学反响分为化学办法和物理办法,其间化学办法包含碳化法、乳液法、夹套反响釜法、复分化法。碳化法是出产纳米级轻质碳酸钙的首要办法。首要,将精选的石灰石煅烧,得到氧化钙和窖气。然后,使氧化钙消化,并将生成的氢氧化钙悬浊液在高剪切力效果下破坏、多级悬液别离除掉颗粒及杂质,得到必定浓度的精制氢氧化钙悬浊液。然后通入二氧化碳气体,参加恰当的晶形操控剂,碳化至结尾,得到要求晶形的碳酸钙浆液。再进行脱水、枯燥、表面处理,得到纳米碳酸钙产品。碳化是整个出产工艺的中心,依据碳化反响进程二氧化碳气体与氢氧化钙悬浮液触摸办法的不同,纳米碳酸钙的工业组成办法可分为间歇鼓泡法、喷雾碳化法、喷发吸收法和超重力碳化法。
间歇鼓泡法
间歇鼓泡碳化法是现在国内外大多选用的办法。间歇鼓泡碳化法,也称釜式碳化法,是将石灰乳经过冷冻机降温到25℃以下,泵入碳化塔,通入CO2混合气,在拌和下进行碳化反响。经过操控反响温度、浓度、拌和速度、添加剂等工艺条件间歇制备纳米碳酸钙。该法能够出产普通微细碳酸钙,但关于出产纳米级碳酸钙就需要严格操控一些工艺条件,如碳化反响温度、石灰乳浓度等,并且也相应地需对鼓泡塔做一些改善,比方加拌和器、挡板或经过气体散布器操控等,但也存在着粒度散布不均匀,并且不易操控、粒度不行细化、批次间产品质量重现差、工业扩大困难等缺陷。陈先勇等人选用间歇鼓泡碳化法,经过对碳化反响温度、灰乳密度、添加剂等要素的严格操控,成功制得粒度散布均匀、均匀粒径为40nm左右的单涣散球形纳米碳酸钙产品。
多级喷雾碳化法
制备纳米碳酸钙的根本进程为:按工艺要求的浓度制造精制的石灰乳悬浮液,然后参加适量的添加剂,充沛混匀后泵入喷雾碳化塔顶部的雾化器中,在高速旋转发作的巨大离心力效果下,乳液被雾化成微细粒径的雾滴;把枯燥的含有适量CO2的混合气体从塔底部通入,经气体散布器均匀涣散在塔中,雾滴在塔内和气体进行瞬时逆向触摸发作化学反响发作 CaCO3。经过多级喷雾碳化法制备的CaCO3产品的粒度细微且均匀,均匀粒径在30~40nm 范围内,微粒晶型能够调理操控。此法出产才能大,产品质量安稳,能耗低,出资较小。
喷发吸收法
喷发吸收法是由中南工业大学满瑞林等研讨的一种工艺,这工艺是将窖气经过降温降尘后,经风机送入喷发碳化器中,再用浆液泵把石灰乳送入喷发碳化器中,在碳化器狭隘的喉管处,窖气与石灰乳高度涣散,彼此剪切混合,因而具有很大的气液触摸面积。该工艺具有出资少、设备简略、碳化效率高、修理便利、能耗低一级长处。
超重力法
超重力法是使用离心力使气-液、液-液、液-固两相,在比地球重力场大数百倍乃至上千倍的超重力场条件下的多孔介质中发作活动触摸,巨大的剪切力把液体撕裂成极薄的膜和极细微的丝和滴,发作了巨大的和快速的相界面,使相间传质的体积传质速率比塔器中的大1~3个数量级,使微观混合速率得到了极大的强化。超重力结晶法从根本上强化反响器内的传递进程和微观混合进程,并且CaCO3成核进程和成长进程分别在两个反响器中进行,行将反响成核区置于高度强化的微观混合区,微观活动型式为平推流,无返混(超重力反响器);晶体反响器置于微观全混流区(带拌和的釜式反响器)。与传统的碳化法所选用的工艺比较较,这种组合工艺保证结晶进程满意较高的产品过饱和度、产品浓度空间散布均匀、一切晶核具有相同的成长时刻等要求。在超重力反响结晶法制备立方形纳米CaCO3进程中,因为CO2吸收传质进程为整个碳化进程的关键进程,所以强化CO2在液相中的传质速率是进步整个进程速率的有用途径。一起,因为溶液中CO32-的浓度是由化学吸收而生成的,因而操控CO2的吸收速率也是操控系统中过饱和度凹凸的有用手法之一。超重力加速度g、液体循环量、气体流量、Ca(OH)2初始浓度等操作条件对碳化反响进程均有影响。运用超重力反响结晶法能够制备出均匀粒度为15-40nm、散布较窄的CaCO3,碳化反响时刻比传统办法大大缩短。立方形纳米CaCO3的晶体结构为方解石晶型,属六方晶系。该晶体结构和普通碳化法组成的产品相同,立方形纳米CaCO3颗粒因表面效应明显,其热分化温度下降了195℃。
电石渣制备高附加值碳酸钙的研究进展
2019-02-28 11:46:07
渣是法出产工艺进程中发生的废渣,首要成分为Ca(OH)2。要完成化学工业的绿色开展和可持续开展,需求推动固体废弃物的资源化归纳使用,开展循环经济。渣前期首要用于出产普通水泥、耐火砖等建筑材料,其资源化使用存在两方面的问题,一是归纳使用率低,二是废渣制得的产品附加值低。现在,渣制备碳酸钙可以完成渣的高附加值使用。碳酸钙作为重要的精密化工产品,使用广泛。
渣制备碳酸钙的根本办法和循环工艺
以渣为质料制备碳酸钙,首要要对渣进行处理得到 Ca(OH)2悬浮液或可溶性钙离子溶液,然后经过碳化得到碳酸钙,如图1。经过操控工艺制得具有较高纯度和白度,并具有不同的结构和晶型的碳酸钙产品,以满意多样化的使用需求。图1
渣中钙的提取办法
从渣中取得钙资源的办法有两种:一是直接煅烧再加水消化得到必定浓度的氢氧化钙溶液,二是不经煅烧以浸取剂浸取得到可溶性钙离子溶液。浸取剂常用或氯化铵溶液,也有研讨挑选甘酸和脂肪酸作为浸取剂,几种浸取剂与渣的反响见方程式(1)~式(4)。也有选用两种办法相结合的提取办法,即先经过高温煅烧,再用浸取剂浸取。碳化办法
碳化办法常用的有CO2碳化和碳酸盐碳化。CO2碳化是工业上常用的碳化办法,碳酸盐碳化其本质为复分化反响,所用碳酸盐包含碳酸铵或碳酸氢铵、碳酸钠等。浸取液与碳酸钠经过复分化反响碳化的反响见式(5),氯化铵浸取液和不同碳化剂的复分化碳化反响见式(6)、式(7)。可见CO2碳化和碳酸氢铵碳化除得到 CaCO3外,副产物为 NH4Cl,可以收回作为浸取剂以完成循环使用。CO2碳化常选用气-液间歇鼓泡碳化工艺,CO2的流速和在混合气体中的浓度是影响产品结构和功能的重要要素。
使用复分化反响碳化可完成液-液接连碳化,接连碳化反响系统能构成较高且均匀的过饱和度,相对于间歇碳化可得到更小的粒径。
氯化铵浸取碳化法及其循环工艺
氯化铵浸取碳化法因为可以完成循环工艺而得到广泛研讨,是完成渣资源化使用制备碳酸钙的抱负办法。循环工艺包含浸取反响逸出的少数气的收回使用、碳化反响生成的氯化铵滤液的收回使用以及过滤得到的滤渣及碳酸钙洗液中少数氯化铵的收回使用。渣制备轻质碳酸钙
碳酸钙依据制备办法和质量不同可分为重质碳酸钙和轻质碳酸钙。轻质碳酸钙即沉积碳酸钙,差异于研磨得到的重质碳酸钙,粒度更细、纯度更高,使用领域也更为广泛。因为氢氧化钙的溶解度小,水溶法提取钙离子对渣使用率较低,不利于工业化出产。工业化出产不只要求产品具有较高的质量,一起期望渣具有较高的使用率。现在选用氯化铵浸取、CO2碳化工艺,渣制备轻质碳酸钙现已完成工业化出产,株洲化工集团与湖南工业大学现已协作建成50kt/a高纯度轻质碳酸钙的出产线。
渣制备纳米碳酸钙及其表面改性
纳米碳酸钙是一种高附加值的精密化工产品。纳米碳酸钙因为尺度小、比表面积大而易于聚会,经过表面改性添加纳米碳酸钙在橡胶、塑料等有机聚合物中的分散性是其使用的关键技术。陈红等在渣煅烧消化后间歇鼓泡CO2碳化制备超细碳酸钙进程中进行了表面改性研讨,发现在碳化进程中参加改性剂钛酸酯偶联剂JN117时,碳酸钙的吸油值由未改性产品的 72m L/100g 显着下降为29m L/100g,活化度由 0 升高为98.9%,并优于在消化进程改性和直接对碳酸钙产品改性。
渣制备碳酸钙的晶型操控
碳酸钙的晶形首要有球形、立方形、针叶形、链锁形、板片状等几种,不同晶形的碳酸钙有不同的用处。不同形状碳酸钙的组成实质上是动力学和热力学要素竞赛的成果,经过调理各种反响条件,可以制备不同晶型和形状的碳酸钙。温度和添加剂是影响碳酸钙晶型和描摹的重要要素。
国际上现已可以经过操控条件制备具有杂乱精密结构的碳酸钙产品,美国专利US7708973B2经过参加不同的晶型操控剂包含柠檬酸、聚酸、聚天冬酸等制得了纳米纤维结构、纳米念珠结构、柴束结构和纳米片结构的碳酸钙。我国对渣制备纳米碳酸钙的晶型操控研讨有待深化,在常见结构的基础上进一步开发具有精密结构的碳酸钙产品。
结语与展望
渣制备碳酸钙产品从轻质碳酸钙到纳米碳酸钙,经过表面改性添加纳米碳酸钙的活性和适用性,并经过晶型操控得到不同晶型的产品,呈现出低附加值使用向高附加值使用开展的趋势,具有显着的经济效益和环境效益。一起碳酸钙的制备应朝着超细化、表面改性化及结构杂乱化和晶型可控化的方向开展。
钴
2018-04-19 17:41:48
钴是灰色硬质金属,它的居里点(失去磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发生氧化作用,极细粉末状钴会自动燃烧。钴能溶于稀酸,在浓硝酸中会形成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发生剧烈反应。
钴常识
2019-03-14 10:38:21
钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。 自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。 金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。 我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。
金属钴
2018-04-19 17:42:10
自然界中已知含钴矿物有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿物有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿物的赋存状态复杂,矿石品位低,所以提取工艺比较复杂且回收率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状态,然后再用湿法使钴进一步富集和提纯,最后得到钴化合物或金属钴。 金属钴主要用于制造合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢可以显著地提高钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即使加热到1000℃也不会失去其原有的硬度。航空航天技术中应用最广泛的合金是镍基合金,也可以使用钴基合金。含钛和铝的镍基合金强度高是因为形成组成为NiAl(Ti)的相强化剂,当运行温度高时,相强化剂颗粒就转入固溶体,这时合金很快失去强度。钴基合金的耐热性是因为形成了难熔的碳化物,这些碳化物不易转为固体溶体,扩散活动性小,温度在1038℃以上时,钴基合金的优越性就显示无遗,它可用于制造高效率的高温发动机。在航空涡轮机的结构材料使用含20%-27%铬的钴基合金,可以不要保护覆层就能使材料达高抗氧化性。钴是磁化一次就能保持磁性的少数金属之一,在热作用下失去磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力提高2.5倍。在振动下,一般磁性钢失去差不多1/3的磁性,而钴钢仅失去2%-3.5%的磁性。因而钴在磁性材料上的优势就很明显。钴在电镀、玻璃、染色、医药医疗等方面也有广泛应用。 我国钴矿资源主要分布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其余30%的储量分布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,品位较低,钴主要作为副产品加以回收。根据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的平均品位仅为0.02%,因而生产过程中金属回收率低,工艺复杂,生产成本高。可利用的钴资源主要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国主要钴生产地。可利用的钴资源其次伴生在铜铁矿床中,目前已经开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。由于受资源条件限制,国内钴产量增长缓慢,不能满足国内市场需求,需通过进口弥补不足
钴镍
2017-06-06 17:50:12
钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工
行业
、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。 一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价
金属
转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他
金属
,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价
金属
的综合回收利用。 二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。 三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。 四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍
金属
广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等
行业
,钴镍粉体是现代工业不可缺少的
金属
材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍
金属
,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。
含钴黄铁矿提钴
2019-03-05 09:04:34
因为Co原子占有FeS中Fe的晶格,构成类质同相,所以选矿别离富集钴困难,浮选产出的钴硫精矿含钴不超越0.5%。为从贫钴硫精矿中提取钴,先氧化焙烧将S氧化成气体SO2除掉,一起将钴转变成水溶或酸溶形状,再用酸浸出钴,并与很多的铁渣别离。我国使用的焙烧工艺有三种:硫酸化焙烧、氧化焙烧一烧渣硫酸化焙烧和氧化焙烧一烧渣化焙烧。焙烧设备均选用欢腾焙烧炉。 氧化焙烧一烧渣硫酸化焙烧是一种两段法工艺。钴硫精矿硫酸化动力学研讨标明,该焙烧进程是分段完结的,开端是脱硫氧化反响,当焙砂含S降到2%-3%时,钴才开端很多硫酸化。因而分段焙烧既提高了S的利用率和设备生产能力,又有利于钴的硫酸化和收回。 1.氧化焙烧 在欢腾焙烧炉中于840-860℃温度下焙烧钴硫精矿。当精矿成分为(%):Co 0.3-0.4、Fe 35-45、S 30-35时,可得到含Co 0.4%、Fe 45%、S 1.8%的焙砂和SO2浓度8%-10%的烟气。 2.硫酸化焙烧 焙砂配入含钴黄铁矿,使混合料含硫到达10%以上,一起参加3% Na2SO4,将铁酸盐中钴转变为CaSO4。酸化焙烧条件为:床能率5-6t/(m2·d),钴浸出率75%-80%。浸出液通过净化、沉积、缎烧等工序,即可得到产品氧化钴。
碳酸锂
2017-07-03 11:04:29
碳酸锂,一种无机化合物,化学式为Li2CO3,为无色单斜晶系结晶体或白色粉末。密度2.11g/cm3。熔点618℃(1.013*10^5Pa)。溶于稀酸。微溶于水,在冷水中溶解度较热水下大。不溶于醇及丙酮。可用于制陶瓷、药物、催化剂等。常用的锂离子电池原料。由于生产碳酸锂的主要原料是盐湖卤水(矿石法由于成本高在全球产能很小),因此规模化生产碳酸锂的企业必须拥有锂资源储量较为丰富的盐湖资源开采权,这使得该行业具备较高的资源壁垒;另一方面,由于全球盐湖绝大多数资源都是高镁低锂型,而从高镁低锂老卤中提纯分离碳酸锂的工艺技术难度很大,之前这些技术仅掌握在少数国外公司手中,这使得碳酸锂行业又具备了技术壁垒。因此,造就了碳酸锂行业的全球寡头垄断格局。目前全球碳酸锂市场集中度非常高。在我国的几个大型项目投产前,全球主要产能集中在SQM、FMC、和Chemetall三家手中;资料显示,碳酸锂产品虽然存在一定的资源和技术壁垒,但我国具备可开采价值的盐湖还是不少,技术除中信国安、西藏矿业外盐湖集团也面临突破,行业的壁垒正逐渐削弱,行业目前的高毛利率必然会吸引更多资金介入。作用与用途用于制取各种锂的化合物、金属锂及其同位素。还用于制备化学反应的催化剂。半导体、陶瓷、电视、医药和原子能工业也有应用。分析化学中用作分析试剂。在锂离子电池中也有应用。在水泥外加剂里作为促凝剂使用。碳酸锂有明显抑制躁狂症作用,可以改善精神分裂症的情感障碍,治疗量时对正常人精神活动无影响,作用机制可能与抑制脑内神经突触部位去甲肾上腺素的释放并促进再摄取,对升高外周血细胞有作用,本药小剂量用于子宫肌瘤合并月经过多的有一定治疗作用,小剂量也可用于急性菌痢,锂盐无镇静作用,一般对严重急性躁狂患者先与氯丙嗪或氟哌啶合用,急性症状控制后再单用碳酸锂维持。使用注意事项危险性概述健康危害:误服中毒后,主要损及胃肠道、心脏、肾脏和神经系统。中毒表现有恶心、呕吐、腹泻、头痛、头晕、嗜睡、视力障碍、口唇、四肢震颤、抽搐和昏迷等。环境危害:对环境可能有危害,对水体可造成污染。燃爆危险:该品不燃。急救措施皮肤接触:脱去污染的衣着,用大量流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。洗胃,导泄。就医。消防措施危险特性:自身不能燃烧。受高热分解放出有毒的气体。有害燃烧产物:一氧化碳、二氧化碳。灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。灭火时尽可能将容器从火场移至空旷处。然后根据着火原因选择适当灭火剂灭火。泄漏应急处理应急处理:隔离泄漏污染区,限制出入。建议应急处理人员戴防尘口罩,穿一般作业工作服。不要直接接触泄漏物。小量泄漏:避免扬尘,小心扫起,收集于干燥、洁净、有盖的容器中。大量泄漏:收集回收或运至废物处理场所处置。操作处置与储存操作注意事项:密闭操作,提供充分的局部排风。防止粉尘释放到车间空气中。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴防尘面具(全面罩),穿透气型防毒服,戴橡胶手套。避免产生粉尘。避免与氧化剂、酸类、氟接触。配备泄漏应急处理设备。倒空的容器可能残留有害物。储存注意事项:储存于阴凉、通风的库房。远离火种、热源。防止阳光直射。包装密封。应与氧化剂、酸类、氟分开存放,切忌混储。储区应备有合适的材料收容泄漏物。制备将锂辉石和石灰石高温烧结生成铝酸锂再浸出氢氧化锂溶液,与碳酸钠反应制得。亦可利用卤水经提取氯化镁后的含锂料液,经纯碱除钙、镁离子,用盐酸酸化,再与纯碱反应制得。医疗用途及注意事项碳酸锂常被用来治疗双相型障碍(bipolar disorder),它通过稳定钙和血清素来稳定情绪(mood),对抗狂躁(antimanic)。它的生物要效率也很不错。一天服用2-3次。它通过肾脏被快速排掉,但是会对肾脏造成负担,因此如果病人的肾功能不好的话,很容易造成锂中毒。事实上这种药物是容易造成中毒的,因此在服用这个药的时候,要定期检查血液。血液中的锂含量必须保持在0.6-1.2mEq/L之间。如果超过1.5mEq/L的话,就会造成锂中毒。即使血液中含量正常,也可能会中毒。锂中毒现象:<1.5mEq/L:恶心、呕吐、腹泻、口渴、多尿、软弱无力、言语不清1.5mEq/L-2.0mEq/L:肠胃不适、震颤、头脑混乱、心电图(EKG)变化、嗜睡2.1mEq/L-2.5mEq/L:共济失调、嗜睡、严重的EKG变化、视力模糊、耳鸣、昏迷>2.5mEq/L:癫痫发作(seizure)、肾衰竭、死亡。注意事项:碳酸锂是致畸药物(pregnancy category D),因此孕妇慎用。在怀孕最先的3个月服用这个药,有11%左右的可能会造成胎儿心脏畸形。如果身体里面的钠非常少的时候(例如服用利尿药物或脱水时),身体会把锂当做盐来保存起来不排泄掉,造成锂中毒。因此在服用这个药物时,要多喝水,多吃钠盐。给病人服药以前,要注意:1. 病人是否有锂中毒现象。2. 病人血液中锂的含量是否超标。3. 通过检查 肌氨酸酐来查看病人的肾功能是否好。4. 检查病人的血钠含量是否太低。5. 检查病人是否服用利尿药物。由于锂有利尿作用,因此病人服药期间要检查尿量。如果病人服药时感到恶心的话,可以在服药的同时吃点食物,以减少恶心的感觉。禁忌:脱水、心脏病、肾病、钠不平衡的病人不能服用这个药。
含钴铜镍硫化矿提钴
2019-03-05 09:04:34
我国钴产值的40%来自铜镍硫化矿的归纳收回。金川有色金属公司占去从铜镍硫化矿中收回钴产值的80%。金川公司原矿含钴一般为0.05%,主要以硫化物形状存在于镍黄铁矿中,选矿时进入硫化镍精矿。此种精矿在电炉熔炼过程中,有85%的钴进入产品低镍锍,转炉吹炼时又一次分流,钴量的1/3进入高镍锍,其他2/3散布于转炉渣中。因转炉吹炼前、中、后期氧化程度的不同,中后期转炉渣含钴可达前期渣的2倍,均为0.4%-0.7%。此中后期转炉渣不回来电炉处理,而是作为提钴质料送炼钴体系。镍高锍中的钴在电解时与镍一道进入阳极液,可采用将Co2+氧化成Co3+,然后调pH使之水解成Co(OH)3沉积从溶液中分出。过滤后所得钴渣含Co 10%、Ni 30%、Fe 2%-4%、SiO2 4%-9%,可用来出产氧化钴、钴盐和电解钴。
钴知识
2019-03-08 09:05:26
钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。
自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。
金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。
我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。
一种碳化钨-钴/二硫化钼复合粉末及其制备方法
2018-12-10 14:19:22
一种碳化钨-钴/二硫化钼复合粉末,其特征在于:粉末成分为WC-Co 94~ 99%重量,MoS2 1~6%重量。本发明碳化钨-钴/二硫化钼复合粉末可以在保证涂层的硬度、致密度和结合强度的前提下,降低涂层的摩擦系数末,从而使涂层的磨损率大幅下降,得到一种优良的复合自润滑硬质耐磨涂层。
利用AlCl3作晶形控制剂制备棒状纳米碳酸钙
2019-03-07 09:03:45
以无水三(AlCl3)和乙二胺四乙酸(EDTA)为晶形操控剂和涣散剂,选用碳化法制备了短径为40nm左右的棒状纳米碳酸钙
纳米CaCO3是一种优秀的无机填料,在塑料、橡胶、涂料、化妆品等许多工业范畴使用远景宽广。纳米CaCO3作为一种新式化工原料,碳酸钙功能首要取决于其形状特征、粒度和涣散功能等,一起其活化度、吸油值、沉降体积等对其使用范畴有决议性效果。AlCl3溶于水能够生成胶状线性物质,使用这个特性,能够考虑将其用作制备棒状纳米碳酸钙的晶型操控剂。晶型操控剂有很多种,但用AlCl3作为晶形操控剂的研讨报导还很少,本试验研讨了纳米CaCO3的制备工艺中AlCl3用量对产品功能(活化度、吸油值和沉降体积)的影响,并用SEMM和XRD对产品进行了表征。
1 试验
1.1 仪器
JSM-6330F型扫描电镜(冷场),日本JEOL;X射线衍射仪(XRD),日本岛津600型;DDS-307型电导率仪、PHS-313型pH计,上海精科;DC-0515型水循环制冷仪,上海恒平科学仪器有限公司等。
1.2 试剂
氢氧化钙,上海市奉贤奉城试剂厂;乙二胺四乙酸(EDTA),天津市百世化工有限公司;无水三,天津市福晨化学试剂厂;硬脂酸钠,天津市科密欧化学试剂有限公司;95%乙醇,天津市红岩化学试剂厂;邻二二辛酯(DOP),天津市耀华化学试剂有限责任公司(上述试剂均为分析纯);液体白腊,天津市广成化学试剂有限公司(化学纯)。
1.3 办法
称取必定量的Ca(OH)2,加蒸馏水溶解,配成浓度为6%的Ca(OH)2浆液,陈化一段时刻,经200目筛网过滤,碳化反响前参加EDTA,操控反响温度、CO2流量、拌和速率等参数,以pH仪和电导仪操控反响进程,待电导第一次下降并开端上升时参加必定量的AlCl3,持续碳化进程,当pH值略小于9时中止通入CO2并持续拌和一段时刻,碳化反响进程完毕。将碳化反响得到的CaCO3溶液陈化12h,然后将其置于水浴锅中进行升温,并向其间参加硬脂酸钠,操控拌和速率和反响时刻,抽滤、95%乙醇洗刷、枯燥、破坏和过筛后得纳米碳酸钙产品。
1.4 分析办法
活化度:称取5g试样,准确至0.01g,置于250mL分液漏斗中,参加200mL蒸馏水,以120次/min的速度往复振摇1min。轻放于漏斗架上,静置20~30min,待显着分层后一次性将下沉碳酸钙放入预先于(105±5)℃恒重的(准确至0.001g)玻璃砂坩埚中,抽滤除掉水,置于恒温枯燥箱中,于(105±5)℃枯燥至恒重,准确到0.001g。活化度X按式(1)核算。
吸油值:称取5g试样,准确至0.01g,置于玻璃板或釉面瓷板上,用已知质量的盛有邻二二辛酯(DOP)的滴瓶滴加DOP,在滴加时用调刀不断地进行翻动研磨,起先试样呈涣散状,后逐步成团直至悉数被DOP所潮湿,并构成一整团即为滴定结尾。称取滴瓶质量,准确至0.01g。整个测定要求在90min内完结。吸油量Y按式(2)核算。
沉降体积:称取5g纳米碳酸体置于有刻度的50mL具塞量筒内,参加必定量的液体白腊,待粉体被白腊彻底滋润后,再参加液体白腊至50mL刻度处,以120次/min振动频率上下振动3min,使粉末涣散均匀,然后静置,每隔12h记载一次固体体积。
2 成果与评论
2.1 AlCl3用量对活化度、吸油值和沉降体积影响
Ca(OH)2浓度(质量体积浓度)为6%,碳化开始温度为20℃,CO2流量为o.1m3/h,拌和速率为300r/min,EDTA用量为1g/100gCa(OH)2,AlCl3用量分别为0g/100g Ca(OH)2、0.5g/100g Ca(OH)2、1g/100g Ca(OH)2、1.5g/100gCa(OH)2、2.0g/100g Ca(OH)2、2.5g/100g Ca(OH)2。活化温度为80℃,表面改性剂硬脂酸钠用量为6g/100gCaCO3,活化时刻为40min。所得产品活化度、吸油值及沉降体积如图1-图3所示。
由图1可知,AlCl3用量对产品的活化度影响很大,当其浓度低于1.5%时,活化度随用量的添加改变不大,而当其浓度大于1.5%时,活化度跟着浓度的添加明显下降。这是因为在碳化进程中,当参加过量AlCl3后,剩余的AlCl3对后期活化进程中硬脂酸钠在纳米碳酸钙的表面吸附有阻止效果,然后下降了终究产品的活化度。
由图2可知,AlCl3用量对产品吸油值影响较大,吸油值首要由碳酸钙的表面能决议,当AlCl3用量为0%时,吸油值最高这是因为没有参加晶形操控剂时,生成的纳米碳酸钙产品首要为纺锤形,且粒度散布不均匀(如图4(a)所示);当AlCl3用量为1.5%时,其吸油值最低,因为参加必定量的晶形操控剂时,碳化反响进程中生成的晶形较为单一,首要为棒状条形(如图4(b)所示);而当参加过量的AlCl3时,因为AlCl3和水反响释放出很多的热量,使反响液部分温度升高至29℃,温度对晶形的影响很大,然后导致不同晶形的产品的构成。
由图3可知,参加晶形操控剂对产品的沉降体积的影响较大,当AlCl3用量为2%时,产品的沉降体积最大,且改变起伏最小。沉降体积相同与晶形及粒径有关,球形和立方形纳米碳酸钙沉降体积小于线条形纳米碳酸钙,因为其沉降速度较快。当参加必定的AlCl3时,因为生成的纳米碳酸钙产品晶形为链状且粒径散布均匀,所以其沉降体积较大。2.2 产品描摹的表征
2.2.1 SEM 表征
将试验制备的纳米碳酸钙进行扫描电镜测验,所得成果如图4所示。由图4可知,未添加AlCl3的纳米碳酸钙产品,晶形较为杂乱,首要为纺锤形,且粒径散布不均,聚会十分凶猛;而添加1.5%AlCl3的纳米碳酸产品为棒状条形,其短径约为40nm,长短径比约为10:1;添加2.5%AlCl3的纳米碳酸钙产品也为棒状条形,但表面有些杂质,这可能是因为过多的AlCl3引起的。
2.2.2 XRD分析
将用AlCl3作晶形操控剂得到的纳米碳酸钙产品进行XRD分析,所得成果如图5所示。将图5与ASTM 卡对照可知纳米碳酸钙晶型为方解石型。
3 定论
(1)纳米碳酸钙的吸油值随AlCl3用量的添加而先下降后升高,阐明参加适量的AlCl3可下降产品的吸油值,且最佳用量为1.5%。
(2)当AlCl3用量小于1.5%时,跟着AlCl3用量的添加,产品的活化度改变很小,当AlCl3用量大于1.5%时,跟着AlCl3用量的添加,产品的活化度随用量的添加而明显下降。
(3)纳米碳酸钙的沉降体积随AlCl3用量的添加先下降后升高,且最佳浓度为2%。归纳考虑上述要素,当用AlCl3作晶形操控剂制备棒状纳米碳酸钙时,AlCl3用量应介于1.5%~2.0%之间。
钴渣生产电钴的实例
2019-03-04 11:11:26
电解钴是最重要的钴产品之一。国内电钴的出产质料,一般是铜、镍、铅、锌等冶炼进程产出的含钴副产品,如镍电解净化进程产出的钴渣、含钴黄铁矿烧渣等。
从含钴副产品中出产电钴的准则流程首要有两种,一是选用化学沉积法去除杂质,两段氧化沉积别离镍和钴,火法煅烧后复原熔炼得到粗钴,铸成阳极电解精粹;另一种是选用萃取除杂,萃取别离镍和钴,得到氯化钴溶液,不溶阳极电解。
金川集团公司是我国镍钴的首要出产基地,钴的年产量到达500t以上,目条件钴已构成两大出产体系,别离出产电钴和氧化钴,并产出钴盐等其他产品。出产质料为镍体系的钴渣和富钴锍。
电钴的出产以镍体系电解流净化所产钴渣为厚料,选用钴渣球磨浆化→复原溶解→黄钠铁矾除铗→除铜→二段沉钴→氢氧化钴反射炉烧结→电炉复原熔炼→可溶阳极电解工艺出产电解钴,别离钴后的硫酸镍回来镍出产体系。这是一个火法和湿法相结合的出产流程。出产工艺的流程图示于图1和图2。图1 从钴渣出产氢氧化钴的工艺流程图图2 从氢氧化钴出产电钴的工艺流程图
选用与此相似流程出产电解钴的其他供应商还有前沈阳冶炼厂、重庆冶炼厂等。
选用N235萃取净化和别离、不溶阳极电解工艺出产电解钴的首要供应商是成都电冶厂。
一、钴渣的复原浸出
镍电解体系净化产出的钴渣,首要元素组成列于表1。
表1 钴渣的首要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中首要以氧氧化物方式存在,在液固比为(3~4)∶1及机械或鼓风拌和条件下,用硫酸调pH=1.5~1.7,通入SO2复原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,复原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气拌和浸出时部分Fe氧化成三价。首要化学反响可表示为:在鼓空气拌和情况下,可发作亚铁离子的部分氧化,如:复原浸出液的成分列于表2。
表2 钴渣复原浸出液首要成分二、钴浸出液的净化
浸出液中首要杂质元素是铁和铜,非有必要的有铅、锌、锰、砷等。铁选用黄钠铁矾法除掉,铜用硫化沉积法除掉,其他杂质用水解沉积法除掉。
(一)黄钠铁矾除铁
黄钠铁矾除铁的基率原理是生成难溶盐。黄钠铁矾[Na2Fe6(SO4)4(OH)12]是一种淡黄色晶体沉积,具有杰出的过滤性和洗刷性,生成进程比较复杂,需求较严格操控生成条件,首要影响要素有碳酸钠溶液的浓度、温度和pH值、晶种的参加等。详细操控条件如下:
1、碳酸钠的浓度
7%~8%的浓度,且有必要均匀参加,常用办法是运用低压风使碱液呈雾状喷入铁矾生成槽内。碳酸钠浓度高时,易生成胶状氢氧化铁,形成渣含有价金属上升,且过滤困难:浓度过低则对整个体系的体积平衡晦气,下降溶液浓度。
2、温度、氧化和pH值
除铁前溶液需经氧化,使Fe2+氧化成Fe3+,氧化剂一般为NaClO3,氧化温度≥85℃,铁矾生成温度≥90℃时,呈颗粒状,具有杰出过滤功能;除铁前溶液的pH值操控在1.5~1.7,氧化时刻操控在1.5~2.0h,结尾pH值操控在2.5~3.0,除铁率可达99%,溶液中Fe≤0.05g∕L;终究pH值操控在4.0~4.5时,除铁后溶掖中Fe≤0.001g∕L。
3、晶种
湿铁矾渣作晶种参加,即在除铁压滤时,在反响罐底留必定渣量,可大大加速黄钠铁矾除铁速度。
洗后铁渣成分为:0.5%~1% Co,1%~3% Ni,0%~0.4% Cu,Fe≥24%。
(二)沉积除铜
除铜的根本原理是生成难溶的硫化铜沉积。除铜作业在机械拌和的珐琅釜中进行,用量为Cu2+∶Na2S=1∶5。先配成饱和溶液,常温下缓慢参加釜内,初始pH=2.0~3.0,终究pH=3.5~4.0,由于为碱性。除铜停留时刻约30min。溶液中的铜含量可降至0003g∕L以下,一同可除掉铅。除铜的缺陷是或许部分生成NiS和CoS沉积,形成铜渣含镍钴过高,且使溶液中带入钠离子。
三、氯化水免除砷、锑
氧化水免除砷、锑的首要原理,是运用铁水解产出的肢状Fe(OH)3具有较强吸附效果,使砷、锑等杂质一道沉积。因而,砷、锑从溶液中脱除的深度,在很大程度上取决于溶液中的含铁量,一般要求溶液中含铁量为砷、锑量的10~20倍。在水解沉积前参加氧化剂,如、次或,意图是使二价铁氧化为三价铁。
四、氧化水解别离钴
运用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。
在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发出发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。
水解沉积进程中有H+发生,有必要加碱进行中和。
在出产运用中,为了使钴和镍杰出别离,应遵照以下根本准则:
(一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。
(二)操控恰当的析钴率,溶液含钴高时析钴率可高些。
(三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。
沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图2所示。二次沉钴的根本技能参数见表3。
表3 二次沉钴的首要技能参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。
五、粗钴阳极板的制备
二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。
反射炉煅烧的意图有3个:
(一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块;
(二)参加石油焦,使氧化钴半复原;
(三)脱除部分硫。
反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。
反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。
六、电解精粹
金川公司选用可溶阳极和阴极隔阂电解法出产电钴。出产运用12个电解槽,规格为2060mm×790mm×860mm,运用2个槽造液。电解液为氯化物体系,阴极新液的化学成分列于表4。
表4 钴电解新液的成分 (g∕L)钴电解时的首要技能条件如下:
阳极规格及片数: 500mm×230mm×40mm,每槽22块
同极中心距: 180mm
始极片规格及片数: 540mm×520mm,每槽10块
电解温度: 55~65℃
电流密度 300~400A∕m2
槽电压: 1.6~2.2V
电解液循环量: 16~220ml∕(min·袋)
阴阳极区液面差: 30~50mm
阴极周期: 3天
钴电解阳极液的成分:阳极液和造液一同进行净化除杂,然后作为阴极新液回来电解。首要除杂作业为除镍、除铜、除铅和除铁。净化除杂的首要工艺条件列于表5。
表5 电解钴阳极液除杂首要工艺条件净化渣压滤除掉,含钴铁渣回来与镍体系钴渣一同进行浆化、复原溶解。通过净化处理,溶液到达出产电钴的阴极液的要求,即:Co>100g∕L,Fe<0.001g∕L,Cu≤0.003g∕L,Pb≤0.0003g/L,Zn≤0.007g∕L。
钨钴合金
2017-06-06 17:50:12
钨钴合金钨钴合金又称碳化钨-钴硬质合金。碳化钨和
金属
钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类
金属
陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。钨是属于
有色金属
,也是重要的战略
金属
,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的
金属
,熔点极高,硬度很大。钨钴合金镀层的外观接近铬镀层,且镀液分散能力及覆盖能力好.在此研究了钨酸钠、硫酸钴、添加剂、电流密度及pH值对镀层钨含量及性能的影响.钨钴合金具有很好的耐蚀、耐热和耐磨性能,应用前景好. 售价70000元/千克 W含量83.36%,Co含量9.56%,C含量5.44%,硬度HRA为87。钨钴合金可用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨钴合金陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。
铍钴铜
2017-06-06 17:50:12
铍钴铜铍钴铜的物理指标:硬度: >260HV,导电率:>52%IACS,软化温度:520℃,同时铍钴铜具有许多优秀的特性,在许多方面都具有很独特的性质。电阻焊电极: 铍钴铜力学性能比铬铜材料和铬锆铜材料要高,但导电率和热导性低于铬铜和铬锆铜,这类材料在作为焊和缝焊电极时,用于焊接高温下仍保持特性高强度的特性的不锈钢、高温合金等,因为焊接这类材料时需要施加较高的电极压力,要求电极材料的强度也较高。这类材料可以作为点焊不锈钢和耐热钢的电极、受力电极电极握杆、轴和电极臂, 也可以作成缝焊不锈钢和耐热钢的电极轮轴和衬套,模具、或是镶嵌电极。铍钴铜具有许多优良的特性。各种耐磨内套(如结晶器用内套以及机械设备中的耐磨内套)以及高强度电工引线等。高热传导性 ,优良的抗腐蚀性,优良的抛光性 ,优良的抗磨性 ,优良的抗粘着性 ,优良的机械加工性,高强度和高硬度,极优良的焊接性。铍钴铜广泛用于制造注塑模或钢模中的镶件和模芯。用作塑胶模具中的镶件时,可有效地降低热集中区的温度,简化或者省去冷却水道设计。铍钴铜现有出厂的规格包括;经锻轧成型的圆材和扁材,挤压成型的管材,经机械切削加工的芯棒(Core Pins),铸锭和各类铸造型材。铍钴铜的极优良热传导性比模具钢材优越约3~4倍。此特性可确保塑胶制品快速及均匀地冷却,减少制品的变形,外形细节不清晰及类似的缺陷,在多数情况下可显著地缩短产品的生产周期。铍钴铜的用途:铍钴铜可广泛地采用在需要快速均匀冷却的模具、模芯、嵌入件,特别是高的热传导性,抗腐蚀性及良好抛光性的要求。吹塑模:夹断部,劲圈和把手部位镶件。注塑模:模具、模芯、电视机外壳角落的镶件。注塑:喷咀和热流道系统的汇流腔。
铜钴合金
2017-06-06 17:50:09
铜钴合金是铜和钴所组成的合金.其中钴是具有光泽的钢灰色
金属
,熔点1493℃、比重8.9,比较硬而脆,钴是铁磁性的,在硬度、抗拉强度、机械加工性能、热力学性质、的电化学行为方面与铁和镍相类似。加热到1150℃时磁性消失。钴的化合价为2价和3价。在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细
金属
钴粉在空气中能自燃生成氧化钴。 钴在地壳中的平均含量为0.001%(质量),海洋中钴总量约23亿吨,自然界已知含钴矿物近百种,但没有单独的钴矿物,大多伴生于镍、铜、铁、铅、锌、银、锰、等硫化物矿床中,且含钴量较低。 全世界已探明钴
金属
储量148万吨,中国已探明钴
金属
储量仅47万吨。分布于全国24个省(区),其中主要有甘肃、青海、山东、云南、湖北、青海、河北和山西。这七个省的合计储量占全国总保有储量的71%,其中以甘肃储量最多,占全国的28%。此外,安徽、四川、新疆等省(区)也有一定的储量。 世界钴
产量
1986年达到顶峰3万吨,以后不断下降,到1989年只有2.5万吨左右。扎伊尔和赞比亚是最大的钴生产国,其
产量
约占世界总
产量
的70%。 钴在地壳中的平均含量为0.001%(质量),海洋中钴总量约23亿吨,自然界已知含钴矿物近百种,但没有单独的钴矿物,大多伴生于镍、铜、铁、铅、锌、银、锰、等硫化物矿床中,且含钴量较低。 全世界已探明钴
金属
储量148万吨,中国已探明钴
金属
储量仅47万吨。分布于全国24个省(区),其中主要有甘肃、青海、山东、云南、湖北、青海、河北和山西。这七个省的合计储量占全国总保有储量的71%,其中以甘肃储量最多,占全国的28%。此外,安徽、四川、新疆等省(区)也有一定的储量。 世界钴
产量
1986年达到顶峰3万吨,以后不断下降,到1989年只有2.5万吨左右。扎伊尔和赞比亚是最大的钴生产国,其
产量
约占世界总
产量
的70%。有一种铜钴镍合金---白铜.呈白色.铜镍二元合金称简单白铜.三元以上合金称复杂白铜.含钴的白铜就属于复杂白铜.工业应用中常分为结构白铜和电工白铜.前者力学性能和耐腐蚀性能好.色泽美观.用于制造精密机械.化工机械和船舶构件,后者一般有良好的导热性和导电性.主要有锰铜.康铜和考铜等.用于制造精密电工仪器.变阻器.精密电阻.热电偶等.钴的主要用途是制造各种合金.钴合金的硬度很高.含钨78-88%.钴6-15%与碳5-6%的合金称为超硬合金.在1000℃时也不会失去原来的硬度.可用来制造切削工具,由钴35%.铬35%.钨15%.铁13%与碳2%组成的[钨铬钴合金".也是用来制造高速切削刀具.钻头的硬质合金.钴合金还具有磁性.所谓永久磁铁.便是由钴15%.铬 5-9%.钨1%和碳组成的钴钢.有些磁性合金中.钴的含量甚至高达49%.另外在一些耐热.耐酸的合金中.也常用到钴. 以钴为基加入其他合金元素形成的合金。铜钴合金是其中的一种。范围内具有较高的强度和良好的抗热疲劳性能,适用于制作喷气发动机、燃气轮机等高负荷的耐热部件。
钴铜合金
2017-06-06 17:50:08
铍钴铜合金(Beryllium cobalt copper ) 型号:ANK-2 Mogel:ANK 标准:ASTM-C17500 Standard :ASTM-C17500 产品应用:各种滚焊机 、点焊机 、对焊机等焊接用电极。 铍钴铜合金 ,加工性良好 , 可锻造成各种形狀的零件 , 铍钴铜的強度.耐磨性比鉻锆銅合金物理性能更佳 , 可做焊接机 器零部件及焊接嘴及点焊焊接材料 。 铍钴铜合金技术参数:电导率(%IACS)≈55 ,硬度(HV) ≈210, 软化温度(℃)≈610 可以提供棒材、板材,超大件及各类异型件需客户提供图纸。主要参数(Main Date ) 密度:g/cm3(8.9) 抗拉强度:MPa(650) 硬度HV(≥250) 延伸率%(55) 导电率%IACS(55) 導熱率W/m.k(195) 软化温度℃(≥700)
铍钴铜
2017-06-06 17:50:02
铍钴铜物理指标:硬度: >260HV,导电率:>52%IACS,软化温度:520℃电阻焊电极:铍钴铜力学性能比铬铜材料和铬锆铜材料要高,但导电率和热导性低于铬铜和铬锆铜,这类材料在作为焊和缝焊电极时,用于焊接高温下仍保持特性高强度的特性的不锈钢、高温合金等,因为焊接这类材料时需要施加较高的电极压力,要求电极材料的强度也较高。这类材料可以作为点焊不锈钢和耐热钢的电极、受力电极电极握杆、轴和电极臂, 也可以作成缝焊不锈钢和耐热钢的电极轮轴和衬套,模具、或是镶嵌电极。铍钴铜广泛用于制造注塑模或钢模中的镶件和模芯。用作塑胶模具中的镶件时,可有效地降低热集中区的温度,简化或者省去冷却水道设计。 铍钴铜现有出厂的规格包括;经锻轧成型的圆材和扁材,挤压成型的管材,经机械切削加工的芯棒(Core Pins),铸锭和各类铸造型材。 铍钴铜的极优良热传导性比模具钢材优越约3~4倍。此特性可确保塑胶制品快速及均匀地冷却,减少制品的变形,外形细节不清晰及类似的缺陷,在多数情况下可显著地缩短产品的生产周期。 铍钴铜的用途: 铍钴铜可广泛地采用在需要快速均匀冷却的模具、模芯、嵌入件,特别是高的热传导性,抗腐蚀性及良好抛光性的要求。 吹塑模:夹断部,劲圈和把手部位镶件。 注塑模:模具、模芯、电视机外壳角落的镶件。 注塑:喷咀和热流道系统的汇流腔。铍钴铜的其它相关信息查询您可以登入上海
有色
网,在我们
有色
网的主页还有其它详细的
金属
资讯。
从含钴废料及铜钴合金中提取钴的方法
2019-02-11 14:05:44
国际钴资源比较丰富,2005年国际钴储量为700万t,储量根底为1300万t。国际钴储量会集散布于刚果(金)、澳大利亚、古巴、赞比亚、新喀里多尼亚、俄罗斯和加拿大等,储量总和约占国际总储量的95%以上。我国钴资源贫乏,钴矿档次均匀仅0.02%,单个高的为0.05%~0.08%,而刚果(金)和赞比亚的铜钴矿,钴档次为0.1%~0.5%,高的到达2%~3%。因为钴矿档次偏低,矿石组成杂乱,所以收回工艺比较杂乱,出产本钱高,钴收回率低。近年来,我国镍、铜、钴的消费大幅增加,但受矿产资源条件限制,我国铜、钴矿石的出产增加缓慢,铜、钴矿产品进口量逐渐上升,供求矛盾日益突出。
铜钴合金是现在刚果(金)钴铜矿石深加工产品的首要方式之一,也是我国往后从非洲进口的首要钴质料之一,因而,研讨从铜钴合金或含钴废猜中收回钴、铜有着重要意义。
钴废料品种许多,首要有废高温合金、废硬质合金、废磁性合金、废可伐合金、废催化剂和废二次电池材料等。钴废料成分比较杂乱,一般含有铜、新、猛、镍、镉等有价金属。
铜钴合金有2种,一种是在铜冶炼进程中经转炉吹炼得到的转炉渣再经电炉复原熔炼水淬而得到的合金,其间含Cu、Co、Fe、Mn、Si等元素(现在,作为钴质料的铜钴合金许多从刚果(金)、赞比亚、扎伊尔输入),另一种是熔炼氧化钴矿和钴精矿的富铜产品。在电炉内,用焦炭复原氧化钴矿产出2种合金,密度较大的为红合金(铜质量分数约为89%,钴质量分数4%~15%),较轻的为铜钴合金(铜质量分数约15%,钴质量分数约42%,铁质量分数约34%)。2种铜钴合金中其他元素含量均较低。
一、火法工艺
依据含钴质猜中各元素与氧的亲和力的巨细,可选用火法别离有关元素。有关元素对氧亲和力的巨细次序为A1>Si>V>Mo>Cr>C>P>Fe>Co>Ni>Cu,因而,将钴含量低的物料在电弧炉中高温熔化,再鼓风吹炼造渣,使与氧亲和力比Co大的杂质不同程度地氧化而进入炉渣,一起取得含Ni和Co的镍阳极。镍阳极经隔阂电解得电镍,钴进入阳极液。此办法适合于处理含镍、钴的合金废料。
彭忠东,等选用造渣熔炼-浸出工艺处理Cu-Co-Fe合金,在1300℃下增加10%CaCO3造渣焙烧,然后用硫酸溶液恒温90℃拌和浸出5h,钴浸出率为95%;而削减CaCO3用量一半,一起增加5%Na2SO3,在相同温度下造渣焙烧后,用浓硫酸浸出,钴浸出率可进步到97%。火法工艺比较繁琐。
二、湿法工艺
(一)浸出
关于富钴合金,可选用酸法浸出、氧化浸出、电化学溶解法和微生物浸出法浸出。
1、酸法浸出。用硫酸、硝酸、均可将钴合金中的金属转入溶液,化学反响为:
2H++Me=Me2++H2↑
(Me表明Co、Fe等金属)。
当有氧存在时,金属铜和其他生动金属与酸反响生成金属离子,进入溶液:
2H++Me+O2=Me2++H2O
(Me表明Cu等金属)。
当硫酸初始浓度为6mol/L,浸出温度为100℃,浸出时刻为6h,液固体积质量比为5∶1时,钴、镍浸出率别离到达95.37%和96.73%。
2、氧化浸出。在用稀硫酸浸出时,往溶液中通入可强化浸出进程,进步金属浸出率,但简略溢出,构成环境污染,并且在各种物料氯化浸出液中都含有3~5g/L的钴需求收回。
3、电化学溶解法。以硫酸介质作电解液,合金作阳极、铜板作阴极,当电流通过期,阳极中的金属和金属硫化物按下式反响,钴转入溶液:
Me(Co,Fe,Cu)-2e=Me2+(Co,Fe,Cu)
CoS-2e=CO2++S。
4、微生物浸出法。微生物浸出是运用某些微生物或其代谢产品对某些矿藏进行氧化、复原、溶解、吸附等,使钴转入溶液。微生物浸出法适用于处理贫矿、尾矿、炉渣等,其出资少,金属提取率高,无污染。选用氧化亚铁硫杆菌浸出首要矿藏为水钴锰矿(钴质量分数0.0054%)的矿石,在pH=2.5、铁总质量浓度3g/L、m(Fe3+)/m(Fe2+)=1∶1、液固体积质量比4∶1、温度26℃条件下,钴、锰浸出率别离是88.6%和67.2%。再针对细菌浸出液含锰高的特色,用Na2CO3调pH至4左右沉积铁,选用沉积钴即可较好地别离钴锰,终究得到硫酸钴溶液。
(二)从含钴溶液中除铁(锰)
钴浸出液中含有铁、锰等金属离子,一般选用氧化中和法、黄钠铁矾法、针铁矿法等去除。
1、氧化中和法。调整溶液pH并增加C12、NaC1O3、HNO3等强氧化剂,将铁、锰等贱价态离子氧化成高价态离子,使构成沉积。化学反响为:
2Fe2++Cl2+6H2O=2Fe(OH)3 ↓+6H++2C1-
3Mn2++Cl2+4H2O=Mn3O4↓+8H++2C1-。
2、黄钠铁矾法。黄钠铁矾法是使三价铁从含有K+、Na+、NH4+等离子的硫酸盐溶液中以淡黄色的结晶化合物,即M2Fe6(SO4)4 (OH)12方式沉积(M表明K+、Na+、NH4+、Pb(I)、Ag+、H3O+等)。此法适用于从含有硫酸根离子的溶液中净化除铁。
3、针铁矿法。将溶液pH调至2.0左右,参加复原剂将其间的Fe3+复原为Fe2+,然后缓慢参加氧化剂,坚持必定的pH,使Fe2+渐渐氧化成Fe3+,构成针铁矿沉积。所构成的针铁矿为棕色针状晶体,其组成为α-FeOOH,属斜方晶系,溶解度很小,并且不带结晶水,过滤功能杰出。
(三)溶液的净化及镍、钴别离
1、萃取法。溶剂萃取法因为具有高选择性、直收率高、流程简略、操作接连、易于完成自动化等长处,已成为提取钴的首要办法。萃取剂的品种许多,我国前期用于镍、钴别离的萃取剂是P204,后改用P507。但P204关于从硫酸镍溶液中去除钙、铁、铜等杂质元素的作用均优于P507,因而二者可合作运用,前者用于除杂,后者用于镍、钴别离,作用很好。P204和P507的一起缺陷是三价铁的反萃取比较困难,加拿大鹰桥公司和法国勒阿弗尔厂都选用TBP(磷酸三丁酯)萃取除铁工艺。5709是核工业北京化工冶金研讨院研讨组成的膦类萃取剂,其功能与P507类似,但其对钙的适应才能优于P507,并且有必定的萃取铅的才能,报价低于P507,是一种功能优秀的萃取剂。
在介质中,可选用N235萃取 FeC13,再用P204萃取除杂P507萃取别离钴、镍,得到的镍、钴溶液既能够出产相应的盐或化合物,也能够出产电镍和电钴。
在协同萃取研讨中,羧酸酯和烷基是最有期望的萃取钴的萃取剂。实验证明,以Versaticl0+10%+Cl2+脂肪族稀释剂为萃取剂,在镍、钴和其他金属混合系统中,可显着改进镍、钴的萃取选择性。
2、液。文献[1]介绍,以P507为活动载体的Span-80表面活性剂膜,在pH为4.2~5.3范围内,能够从含钴、镍的工业废水中提取别离钴、镍,别离作用较好。文献[2]介绍,用EDTA、NH4F和巯基丁二酸等掩蔽搅扰离子,以HDTHP、L113B,液体白腊、磺化火油和内相为2.5 mol/L HCl的水溶液等液膜别离黄铁矿、烟灰、炉渣和含钴废催化剂中的钴,钴提取率均在91%以上。
(四)脱硅
因为合金中含有许多硅,酸性条件下氧化浸出时,许多硅会进入溶液,构成硅酸。当硅酸含量到达必守时则构成硅胶。硅胶一旦构成,即对出产构成严重影响,使溶液无法过滤,乃至导致整个出产中止。
现在的惯例做法是将钴、铜等有价金属转入溶液,将硅等杂质留在浸出渣中;别的一种做法是在强碱性溶液中,钴、铜、镍等金属以氢氧化物方式彻底沉积,硅则以硅酸钠方式进入溶液,完成金属与硅的别离。将别离得到的金属氢氧化物用酸溶解,则溶液中简直不含硅。这种办法的缺陷是本钱较高,不引荐直接选用。
注释:
[1] 李玉萍,王献科。液提取氯化钴[J]。我国钼业,2002,26(2):28-30。
[2] 包福毅。溶剂萃取在镍钴湿法冶金中使用的发展[J]。有色金属:冶炼部分,1995(2):12-6。