您所在的位置: 上海有色 > 有色金属产品库 > 碱式碳酸钴硫化 > 碱式碳酸钴硫化百科

碱式碳酸钴硫化百科

碳酸钴制备超细球形钴粉的工艺探讨

2018-12-10 14:19:22

碳酸钴制备超细球形钴粉的工艺探讨.pdf

碱式硫酸铅

2017-06-06 17:49:58

碱式硫酸铅的性质为它是白色单斜结晶,密度6.92g/cm3,熔点977℃。碱式硫酸铅极微溶于热水,微溶于硫酸。碱式硫酸铅由氧化铅和硫酸铅熔融制得,亦可用氧化铅和硫酸铅悬浮水溶液煮沸制得。碱式硫酸铅可用作白色颜料,塑料的热稳定剂。让我们再来了解一下有关硫酸铅方面的知识。硫酸铅的化学式为PbSO4,为铅矾或硫酸铅矿的主要成分。硫酸铅是白色单斜或正交晶体;熔点1170℃,密度6.2克/厘米3;微溶于水,溶解度为0.0041克/100克水(20℃)。硫酸铅几乎不溶于稀的强酸溶液,能溶于较浓的硫酸溶液、乙酸铵溶液和强碱溶液,生成易溶物质。平时硫酸铅可用以下方法制备:①在硝酸铅溶液中加入稀硫酸或可溶性硫酸盐溶液②使一氧化铅与硫酸作用③使金属铅溶于较浓的硫酸后用水稀释④用过氧化氢氧化硫化铅。硫酸铅可用来制蓄电池和油漆颜料。了解了相关碱式硫酸铅和硫酸铅方面的知识后,我们相信您能够通过所掌握的知识在日常生活中很好地运用。但是在这里我们必须要提醒您注意一点,务必要注意在做碱式硫酸铅实验时的安全性,因为一不小心硫酸可能会腐蚀到您的皮肤,所以您在配置碱式硫酸铅时要格外小心。 

碱式硫酸镍

2017-06-06 17:49:58

如果您的疑问是碱式硫酸镍的话,我想您可能要找的是碱式碳酸镍。碱式碳酸镍Nickel Carbonate ,Basic   1. 产品介绍   1.1 草绿色粉末状晶体,不溶于水和碳酸钠溶液,与氨水和酸作用生成可溶性盐,在中温下用氢还原成细分散的有催化活性的金属镍。   1.2分子式:NiCO3 •3Ni(OH)2 •4H2O   1. 3相对分子量:468.87碱式碳酸镍  2. 产品材质   2.1 含量(以Ni计):不少于44%   不纯物最高含量(指标以百分含量计):   名称 含量(小于或等于)   盐酸不溶物 0.01   氯化物(Cl) 0.005   硫酸盐(SO4) 0.01   铁(Fe) 0.001   钴(Co) 0.05   重金属(以Cu计) 0.005   锌(Zn) 0.05   碱金属及碱土金属(以硫及盐计) 0.4用途:用于电镀、磁性材料,镍催化剂,瓷釉颜料及制造其它镍盐等。 指标名称 企业标准 含 量Assay ≥98% 镍(Ni)Nickel ≥45% 铁(Fe)Ferric ≤0.008% 铜(Cu)Copper ≤0.0005% 钴(Co)Cobalt ≤0.005% 氯化物(Cl)Chloride ≤0.05% 硫酸盐(SO4)Sulfate ≤0.6% 盐酸不溶物Hydrochloric insolubles ≤0.05% 碱及碱土Alkalies and alkaline earths ≤1%很多化合物金属名词如碱式碳酸镍很容易和碱式硫酸镍混淆。所以商家们一定要清楚了解产品的真正详细情况。以免造成不必要的损失。

碱式氯化铝

2019-03-11 11:09:41

碱式(PAC)是一种多价电解质,能明显下降水中粘土类杂质的胶体电荷。分子量大,吸附才能强,具有优秀的凝集才能,构成的混凝体较大,凝集沉积功能优于其他混凝剂。

四碱式硫酸铅

2017-06-06 17:50:00

碱式硫酸铅分子式: PbO·PbSO4。四碱式硫酸铅性质:白色单斜结晶。密度6.92g/cm3。熔点977℃。极微溶于热水。微溶于硫酸。由氧化铅和硫酸铅熔融制得。四碱式硫酸铅亦可用氧化铅和硫酸铅悬浮水溶液煮沸制得。四碱式硫酸铅用作白色颜料,塑料的热稳定剂。    四碱式硫酸铅对VRLA电池性能影响的研究:    通讯产业和电动汽车的发展期待着具有更高比能量和比功率以及更长循环寿命的铅酸电池的出现,为了适应这种形势就必须解决电池的早期失效问题.四碱式硫酸铅技术作为近年来发展的新技术,已被证明是防止阀控电池早期容量损失的最有效措施之一.因此,研究四碱式硫酸铅技术具有重要的意义    采用高温固化的方法制备主要成分为四碱式硫酸铅的电池极板.通过X射线衍射、扫描电镜等测试,研究了不同的铅膏密度、固化条件对形成的四碱式硫酸铅结构和含量的影响.    实验结果表明:50℃固化主要生成三碱式硫酸铅,70℃固化主要产物为三碱式硫酸铅和四碱式硫酸铅的混合物,80℃固化主要生成四碱式硫酸铅.    实验研究了不同硫酸密度和浸泡时间对不同密度的四碱式硫酸铅极板的孔率、平均孔直径、比表面积及铅膏相组成变化的影响,并测量了浸泡不同时间,硫酸密度的变化;采用四种化成制度化成,通过扫描电镜研究化成制度对铅膏微观结构的影响.    实验结果表明三碱式硫酸铅极板最易化成,化成后的PbO<,2>含量和β-PbO<,2>所占比例均是最高的.化成制度对四碱式硫酸铅的化成效率有很大影响,采用放电化成和间歇化成方法得到的活性物质β-PbO<,2>含量明显高于普通的一步恒流法.浸泡的酸密度越高,得到的活性物质PbO<,2>含量越高,同时β-PbO<,2>所占的比例也越高.浸泡和化成过程影响物质的微晶结构.浸泡和化成时活性物质的性能受固化的影响很大,受铅膏密度的影响较小.实验电池容量和循环寿命测试的结果表明低温固化电池的初容量最高,高温固化电池的初容量最低.高酸密度、长浸泡时间和放电化成可以提高电池的初容量.循环试验和失效电池研究表明采用高温固化制得四碱式硫酸铅充当电池活性物质可以延长电池的循环寿命.    更多关于四碱式硫酸铅的资讯,请登录上海有色网查询。

含钴铜镍硫化矿提钴

2019-03-05 09:04:34

我国钴产值的40%来自铜镍硫化矿的归纳收回。金川有色金属公司占去从铜镍硫化矿中收回钴产值的80%。金川公司原矿含钴一般为0.05%,主要以硫化物形状存在于镍黄铁矿中,选矿时进入硫化镍精矿。此种精矿在电炉熔炼过程中,有85%的钴进入产品低镍锍,转炉吹炼时又一次分流,钴量的1/3进入高镍锍,其他2/3散布于转炉渣中。因转炉吹炼前、中、后期氧化程度的不同,中后期转炉渣含钴可达前期渣的2倍,均为0.4%-0.7%。此中后期转炉渣不回来电炉处理,而是作为提钴质料送炼钴体系。镍高锍中的钴在电解时与镍一道进入阳极液,可采用将Co2+氧化成Co3+,然后调pH使之水解成Co(OH)3沉积从溶液中分出。过滤后所得钴渣含Co 10%、Ni 30%、Fe 2%-4%、SiO2 4%-9%,可用来出产氧化钴、钴盐和电解钴。

钴的硫化物及砷化物

2019-01-31 11:06:04

一、钴的硫化物 钴硫系状态图1中存在有下列硫化物:图1  Co-S系状态图 CoS理论上含Co64.76%,S35.24%。最一般的钴硫化合物分于式为CoS1+x,为六方晶系。当H2S经过微酸性或性的钴盐水溶液时,则生成普通的黑色CoS沉积。CoS有溶度积为5×10-22的α-CoS和1.9×10-27的β-CoS两种。CoS是很安稳的化合物,挨近熔点(1160℃)时才开端离解。约650℃时水蒸气能使CoS分化。 Co4S3:在高于830℃的温度下用熔融法制得或在300~400℃下用氢复原固体CoS制得。Co4S3晶格与斑铜矿相同,为体心立方品型。每摩尔分于硫生成Co4S3的△G°=-61900+23.21T。 Co3S4含Co57.45%,S42.05%,是面心立方晶型。在400~450℃温度下,在气流中处理硫化钴10小时制得。高于480℃时,开端分出硫。在630℃时,Co3S4分化为CoS和CoS2。 CoS2:具有黄铁矿的晶形,由CoS或CoO与过量的硫经长期加热而制得。由Co3S4固与S2气生成CoS2固时的△G°600~K-50160+50.41T(卡/摩尔分子硫)。 此外,还有人发现有Co2S3,Co6S5,Co9S8等硫化物。 二、钴的砷化物 钴砷状态图见图2。图2  Co-As系状态图 钴能与砷组成四种安稳的化合物:Co5As2,Co2As,Co3As2,CoAs。组成的CoAs无磁性,熔点1180℃。当温度升高时,CoAs离解成低砷化合物。Co5As2是黄渣的首要组成。 钴砷化合物的着火点与砷含量有关,砷含量越低,着火点越高。如粒度为-200意图砷化物着火温度:CoAs700~750℃,Co5As2≥800℃。 CoAs在加热时,与浓,硫酸的反响都很弱小,但能生成极毒的。CoAs在硝酸和中则溶解得很好。

从钴的硫化物及砷化物中提钴的方法

2019-01-31 11:06:04

现在世界上从该类质料中提钴的供应商较多。尽管各厂所用出产工艺流程各异,但按其出产办法大致可分为两类:(一)火法预处理和开端富集,继之用湿法脱除杂质和提取钴产品;(二)用湿法流程处理含钴精矿得到钴产品。下面按各种含钴质料挑选有代表性的流程概述。 一、钴、硫精矿的硫酸化焙烧-湿法处理流程 因为成矿原因,黄铁矿或磁黄铁矿常含有少数的有色重金属,钴、镍代替了铁的硫化矿藏中的铁离子而成类质同晶,故难分选,多产出含钴的黄铁矿或磁黄铁矿精矿,我国通称钴硫精矿。 因为钴需要量的添加,含钴黄铁矿或磁黄铁矿已作为提钴原科之一。第二次世界大战前后,多限于从黄铁矿烧渣中收回。本世纪五十年代世界上各工业发达国家开端很多研讨钴硫精矿的硫酸化焙烧-湿法处理流程,处理两个首要问题:(一)有用别离和充分利用很多的铁、硫组分来确保较高的钴提取率;(二)别离、收回浸出液中的钴与其它金属。处理问题(一)的办法现代公认以欢腾硫酸化焙烧为好。各厂处理问题(二)的办法各异,有用陈旧的分步沉积法,有高压(NH3)2CO3浸出铜、钴沉积、继之分步蒸别离法,有较新的溶剂萃取法等。下面挑选三例阐明。 我国某厂的钴硫精矿的硫酸化焙烧-湿法冶金工艺流程见图1。图1  某厂处理钴硫精矿工艺流程 芬兰科科拉钴厂是世界上最大的处理钴硫精矿的工厂,1968年建成投产,图2是该厂所用流程图,质料和产品的成分见表1。近年也用粒化-浸出法归纳处理曼斯菲尔德铜厂鼓风炉前床产出的合金,添加钴的产值。 表1  质料与产品的成分图2  科科拉钴厂钴硫精矿处理流程图 钴硫精矿和这种精矿经氧化焙烧所产的焙砂按1∶(3~4)进行硫酸化焙烧,有矩形欢腾炉两台,每台分红四个间室,焙砂用皮带运输机参加榜首室,经隔墙下部洞孔顺次流经各室,终究从第四室溢流口排出。硫酸化焙烧的条件:欢腾层高2~2.5米,温度680℃,参加各间室的精矿量以坚持硫酸化所需的温度和气氛为准。该厂1981年产钴1500吨。 日本北海道下川矿山所产钴硫精矿含铜、钴各0.35%~0.4%,是日本最大的国产钴质料来历。出产流程见图3,其总收回率分别为(%):Co7l,Cu82,S82。图3  日本下川钴硫精矿处理流程 二、铜钴硫化精矿的硫酸化焙烧-湿法流程 盛产铜、钴矿的非洲区域多选用这种流程。现列出卢依卢钴厂流程为例(图4)。图4  卢依卢铜钴厂流程 三、镍钴硫化精矿的舍利特·高尔顿流程 镍精矿的浸出液经氢复原镍后,用H2S沉积钴和剩余的镍,将钴的沉积物按图5流程处理。高压酸浸钴镍硫化物的成分为(%):Ni20、Co19.8、Fe0.2、Zn1.3、NH3(总)7.2、S(总)30.6、(NH4)2SO428.2。硫化物矿浆与硫酸参加卧式的多室高压釜内,每个室通入空气使硫化物氧化成硫酸盐。浸出的最佳条件是:温度122℃,压力7公斤/厘米2,pH1.5~2.5,(NH4)2SO4≤150克/升,浸出2~3小时,钴、镍浸出率达97%~98%。图5  镍钴硫化精矿的高压湿法冶金流程 浸出液含Co、Ni70~80克∕升,Fe0.5~2.0克/升。溶液在常压和80℃下用空气氧化,用中和至pH=4.9~5.1,三价铁盐便水解分出。脱铁后液送去高压氧化,Co2+变为Co3+,便能生成溶于酸性溶液中的[Co(NH3)5·H2O]2(SO4)4。氧化用的是不锈钢质卧式多室的高压釜,每个室均有拌和器和蛇形管加热,空气由每室底部送入。氧化温度71℃,压力7公斤/厘米2,浓液接连加到高压釜的榜首室,NH3与(Ni+Co)的摩尔分子比约为5.5∶1。的浓度和温度不宜太高,避免生成不溶性的六钴络合物和添加废气带出的丢失。 氧化后液分两次除镍,参加浓硫酸并激烈拌和,冷却至30℃,使pH=2.6,便得到一次镍铵硫酸盐沉积(干量,%:Ni14.5,Co2.0),过滤后滤渣回来镍浸出工序。滤液(克/升:Co 30,Ni 0.5~1.0)在立式不锈钢蒸腾罐中浓缩到含Co 45克/升,(NH4)2 SO4450克/升,并往浓缩液中参加钴粉(2克/升)生成二价钴氯络合物,然后促进微量镍与钴构成钴和镍铵硫酸盐在酸化时一同沉积,能够确保二次除镍到达所要求的程度。滤渣含Co12.2%,需回来高压氧化工序,滤液去复原。 滤液在高压氢复原之前,需预先参加钴粉在常压下使Co3+复原为Co2+,避免在加热时三价钴盐水解分出Co(OH)3沉积,使终究产品不纯。参加钴粉一同参加硫酸使NH3游离与Co的摩尔分子比降到下步复原所要求的(2.4~2.6)∶1。高压氢复原的温度为177℃,氢分压为20公斤/厘米2。作业是周期性的,包含晶核生成,钴粉长大25~35次以及对釜内沉积物的浸出等作业,复原后液含有Co3.3克/升、(NH4)2SO4 494克∕升,用H2S收回钴后去制(NH4)2SO4。钴粉经水洗,并在慵懒气氛下枯燥,过35目筛后装入钢桶出售。钴粉成分为(%) Co+Ni99.9,Ni0.80。 四、硫化铜钴精矿的火法-湿法流程 赞比亚的奇布卢玛钴厂用火法处理浮选铜钴精矿,产出钴冰铜送比利时奥兰精粹钴厂用湿法进一步处理得到氧化钴和金属钴。这是处理硫化铜钴精矿的火法-湿法联合流程的典型。前半部火法流程见图6。图6  硫化铜钴精矿的火法-湿法联合流程的前半部 硫化铜钴精矿成分为(%):Cu3.0、Co3.5、Fe34、S43、SiO212,约1∕3的精矿经浆化参加欢腾炉进行氧化焙烧脱硫,一般操控温度约700℃、线速度0.2~0.3米/秒,过剩空气50%。溢流焙砂与旋风收尘器烟尘的份额为7∶1,一同送去电炉造锍熔炼。 电炉炉料组成为(%):干精矿∶焙砂∶焦粉∶石灰石=30∶60∶5∶5。经圆盘混合的炉料参加3500千伏安的电炉内,经电炉熔炼产出钴锍(%:Cu11,Co11)和炉渣。参加焦粉和石灰石是为了造金属化钴镜和下降渣损。 五、含钴铜镍硫化精矿的冶炼流程 钴常以少数伴生在镍、铜、锌、铅的硫化矿中,尤其是铜、镍硫化矿中较为遍及。一般硫化镍矿中Ni∶Co=100∶(2~5),氧化镍矿中Ni∶Co=100∶(1~30)。从含钴的铜镍硫化精矿冶炼流程中收回钻的准则流程见图7。图7  含钴的铜镍硫化精矿冶炼的准则流程 从上述流程看出:镍的高压氢复原、电解、常压或高压羰基法都可归纳收回钴,其收回率只要精矿中含钻量的25%~40%,因为在造锍熔炼中,钴的硫化物随渣的丢失百分率略大于镍,当回来转炉渣时,因为钴首要以氧化物和硅酸盐形状存在,故熔炼中钴的渣丢失急增。某些镍冶金厂的转炉渣专门以金属化锍贫化处理,然后使钴的收回率达75%~85%。详细情况见图8。图8  从转炉渣提钴的准则流程 高冰镍精粹的各种办法尽管都能够收回其间的钴,但以羰基法和常压溶浸法中钴的收回率较高。

含钴铜镍硫化精矿的冶炼流程

2019-03-04 11:11:26

钴常以少数伴生在镍、铜、锌、铅的硫化矿中,尤其是铜、镍硫化矿中较为遍及。一般硫化镍矿中Ni∶Co=100∶(2~5),氧化镍矿中Ni∶Co=100∶(1~30)。从含钴的铜镍硫化精矿冶炼流程中收回钻的准则流程见图1。图1  含钴的铜镍硫化精矿冶炼的准则流程 从上述流程看出:镍的高压氢复原、电解、常压或高压羰基法都可归纳收回钴,其收回率只要精矿中含钻量的25%~40%,因为在造锍熔炼中,钴的硫化物随渣的丢失百分率略大于镍,当回来转炉渣时,因为钴主要以氧化物和硅酸盐形状存在,故熔炼中钴的渣丢失急增。某些镍冶金厂的转炉渣专门以金属化锍贫化处理,从而使钴的收回率达75%~85%。详细情况见图2。图2  从转炉渣提钴的准则流程 高冰镍精粹的各种办法尽管都可以收回其间的钴,但以羰基法和常压溶浸法中钴的收回率较高。

铜钴硫化精矿的硫酸化焙烧-湿法流程

2019-01-03 09:37:04

盛产铜、钴矿的非洲地区多采用这种流程。现列出卢依卢钴厂流程为例(图1)。图1  卢依卢铜钴厂流程

碳酸锰矿石的干式强磁选工艺

2019-01-25 10:19:06

碳酸锰矿床,属于海相沉积型锰矿床,储量和规模较大,是生产商品锰矿石的重要资源。湖南省桃江锰矿强磁选厂处理的是菱锰矿和锰方解石。矿石经细碎、磨矿和分级后,0.5~4mm矿石进入CGDE—210强磁选机分选,0~0.5mm进入SHP强磁选机分选,所得精矿合并后烧结,流程如下图所示。 桃江锰矿强磁选流程

硫化铜钴矿提钴的生产实践

2019-01-07 08:31:34

刚果(金)的希土鲁钴厂(Shituru Cobalt Plant)是世界主要钴厂之一,从铜钴硫化矿和氧化矿中提钴。硫化铜钴精矿含铜约40%,钴3%~4%;氧化铜钴精矿含铜20%~25%,钴1.5%~2%。生产厂分为铜和钴两个系统,钴生产的原料来自铜电解液,台Cu 8g∕L、Co 12g∕L,年产电钴7200t、钴镍合金3500t(20% Ni)。两个生产系统的工艺流程简图分别示于图1和图2。图1  铜生产系统工艺流程简图图2  钴生产系统工艺流程简图 硫化精矿的焙烧在670~730℃完成,硫酸化的程度主要取决于精矿中的铁含量,也与达到酸的平衡有关。硫酸化焙烧过程中主要反应可简单表示为:焙砂的铜浸出率为97%~98%,钴浸出率为95%~96%,铁浸出率2%~4%;氧化矿浸出率为96%~97%。 浸出矿浆除去浸渣后的溶液加入石灰逐步调pH至3.3除去铁和铝,然后调pH=6沉铜,微量铜在pH=2.5时用钴粉置换沉淀除去,这些渣返回铜系统。 氢氧化钴用石灰调至pH=8.5时沉淀,过滤。钴电积在鼓风搅拌产生的氢氧化钴悬浮液中进行,电解液(pH=7)循环,电解时产生的酸使氢氧化钴溶解,使溶液含25g∕L Co。钴的总收率约85%。电钴含96.32% Co,主要杂质含量(10-6):Al 19、C 486、Ca 1663、Cd 281、Cu 72、Fe 439、Mg 110、Mn 354、Ni 1406、Pb 101、S 1444、Zn 1076。 主要设备和工艺参数: 电炉         2台,2000kW 回转窑       1台,φ0.9m×3.1m 电解槽       80个 阳极         Ag-Sb-Pb合金,700mm×1000mm,每槽l3片 阴极         低碳钢,750mm×1030mm,每槽12片 槽电压       5V 电流密度     430A/m2 同极距       80mm 电流效率     85%~88% 电解温度     50℃ 进液pH      7.0 出液pH      6.0~6.3 溶液含Co    15~20g∕L

【技术】国内重质碳酸钙干式粉碎设备优缺点分析

2019-03-06 10:10:51

导读20世纪80年代初,我国重钙工业开端从浙江建德、富阳起步,然后扩展到安徽、四川、广东、广西、湖北、江西等地。全国重钙产能从1985年的约20万t,到1995年的100万t、2000年的400万t、2006年打破1000万t、2009年迫临1500万t,而Roski11报导,2009年国际重钙产能刚刚挨近9000万t。据全国重钙产地产能实地调查,2011年度我国重钙总产能约2000万t,而当年国际重钙总产能约为9300万t,我国约占当年国际重钙总产能的21.5%。  1、雷蒙磨粉机  20世纪9O年代初,重钙职业开端起步,出产重钙一般用雷蒙机,国内以桂林鸿程为代表,从3R、4R到5R,不断晋级换代。产品品种首要以“双飞粉”(200目)、“三飞粉”(325目)、600目以下产品为主;90年代后,跟着分级机的运用,商场上逐步呈现了600~800目、800~1500意图产品;本世纪初,跟着分级机技能的前进,商场上逐步呈现了1250~2500意图产品。 2、环辊磨  在本世纪初,福建丰力推出国内第一款超细重钙破坏机,叫环辊磨。前期的环辊磨尽管机型小、产值低,可是其习惯了重钙工业超细加工的需求,首要出产800~1250意图产品。近年来,跟着该设备的很多运用及耐磨件质料的改善,福建丰力、亿丰等公司相继推出188、198等大型环辊磨并开端运用,单机产能也有所前进,1250目产品单机产能可达1.8~2.0t/h,每吨能耗在65度电左右。环辊磨在重钙职业得到广泛运用,被职业人士称为“龙岩磨”。关于环辊磨来说,假如能够战胜产品同质化的现象、改善或前进耐磨件质料及设备的运用功用,其显着的节能作用将使其具有必定商场竞争优势。 龙岩市山和机械在龙岩磨的基础上,通过从头改善,设备耐磨件愈加精密经用,修理装卸愈加便当,然后降低了用户的运用本钱,在商场上取得了一席之地。 3、球磨机与分级机技能  前期传统的球磨机很少运用在重钙职业,分级机技能的运用使得球磨机加工重钙成为可能,如欧米亚等外资厂商纷繁进入我国重钙商场,球磨机与分级机工艺开端走向我国重钙厂商。上世纪末开端,国内上规模的超细重体厂商引入Alpine、阿肯图等公司的分级机及其技能,与球磨机配套出产超细重钙。国内分级机及其技能的前进晋级更使得该工艺在2000年前后得到很多运用。该工艺有利于完成800~2000目产品的精密化出产,产品特别适用于涂料及塑胶母料等中高端职业。关于球磨机+分级机工艺来说,契合了重钙超细粉体加工的规模化、精密化开展要求,产品附加值相对较高,但能耗比较高,就1250目来说,每吨电耗在160度左右,约束了球磨机+分级机工艺的推行。 4、立式磨  前期立式磨及其技能在我国重钙职业很少运用,而马来西亚、印尼和日本等国早在80年代就遍及选用立式磨技能,并且其运用领域不只触及重钙,还触及白云石、叶蜡石和重晶石等非矿职业。跟着台湾及东南沿海地区台资重钙厂商的运用,立式磨及其技能在内地现已得到一些运用。立式磨是选用碾压、剪切原理,到达粒度要求的粉体颗粒能及时随气流带走,然后避免了过研磨状况,到达节能意图。其次,立式磨集细碎、粉磨、烘干(5%以下水分)、分级、运送功用于一身,工作效率较高,节能作用显著。再者,依据立式磨的破坏原理,能够满意出产微观结构形状破坏性小(即坚持质料颗粒的原有描摹)、污染小(磨耗小)的产品出产。立式磨及其技能特色:①吨产品电耗低;②满意工业规模化出产;③满意产品精密化深加工要求。

镍钴硫化精矿的舍利特·高尔顿流程

2019-03-04 11:11:26

镍精矿的浸出液经氢复原镍后,用H2S沉积钴和剩余的镍,将钴的沉积物按图1流程处理。高压酸浸钴镍硫化物的成分为(%):Ni20、Co19.8、Fe0.2、Zn1.3、NH3(总)7.2、S(总)30.6、(NH4)2SO428.2。硫化物矿浆与硫酸参加卧式的多室高压釜内,每个室通入空气使硫化物氧化成硫酸盐。浸出的最佳条件是:温度122℃,压力7公斤/厘米2,pH1.5~2.5,(NH4)2SO4≤150克/升,浸出2~3小时,钴、镍浸出率达97%~98%。图1  镍钴硫化精矿的高压湿法冶金流程 浸出液含Co、Ni70~80克∕升,Fe0.5~2.0克/升。溶液在常压和80℃下用空气氧化,用中和至pH=4.9~5.1,三价铁盐便水解分出。脱铁后液送去高压氧化,Co2+变为Co3+,便能生成溶于酸性溶液中的[Co(NH3)5·H2O]2(SO4)4。氧化用的是不锈钢质卧式多室的高压釜,每个室均有拌和器和蛇形管加热,空气由每室底部送入。氧化温度71℃,压力7公斤/厘米2,浓液接连加到高压釜的榜首室,NH3与(Ni+Co)的摩尔分子比约为5.5∶1。的浓度和温度不宜太高,避免生成不溶性的六钴络合物和添加废气带出的丢失。 氧化后液分两次除镍,参加浓硫酸并激烈拌和,冷却至30℃,使pH=2.6,便得到一次镍铵硫酸盐沉积(干量,%:Ni14.5,Co2.0),过滤后滤渣回来镍浸出工序。滤液(克/升:Co 30,Ni 0.5~1.0)在立式不锈钢蒸腾罐中浓缩到含Co 45克/升,(NH4)2 SO4450克/升,并往浓缩液中参加钴粉(2克/升)生成二价钴氯络合物,然后促进微量镍与钴构成钴和镍铵硫酸盐在酸化时一起沉积,能够确保二次除镍到达所要求的程度。滤渣含Co12.2%,需回来高压氧化工序,滤液去复原。 滤液在高压氢复原之前,需预先参加钴粉在常压下使Co3+复原为Co2+,避免在加热时三价钴盐水解分出Co(OH)3沉积,使终究产品不纯。参加钴粉一起参加硫酸使NH3游离与Co的摩尔分子比降到下步复原所要求的(2.4~2.6)∶1。高压氢复原的温度为177℃,氢分压为20公斤/厘米2。作业是周期性的,包含晶核生成,钴粉长大25~35次以及对釜内沉积物的浸出等作业,复原后液含有Co3.3克/升、(NH4)2SO4494克∕升,用H2S收回钴后去制(NH4)2SO4。钴粉经水洗,并在慵懒气氛下枯燥,过35目筛后装入钢桶出售。钴粉成分为(%) Co+Ni99.9,Ni0.80。

2018-04-19 17:41:48

钴是灰色硬质金属,它的居里点(失去磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发生氧化作用,极细粉末状钴会自动燃烧。钴能溶于稀酸,在浓硝酸中会形成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发生剧烈反应。 

一种硫化钴-钼系加氢催化剂的方法

2018-12-10 14:19:22

本发明涉及一种硫化钴—钼系加氢催化剂的方法,其特征在于将固体硫化剂与钴-钼系加氢催化剂分层按一定的比例共同装入钴-钼加氢反应器,建立钴-钼加氢反应器氮气升温流程,其钴-钼加氢反应器的床温为120~350℃,整个过程约8~10小时。本发明能有效地克服原有钴-钼系加氢催化剂预硫化方法预硫化时间长、毒性大、劳动保护条件差、操作麻烦、而且需要专门设置一台硫化剂发生器并使用大量的开工循环油、硫化剂运输困难、对设备管道有很大的腐蚀作用、需要改造原有流程等缺点。

钴常识

2019-03-14 10:38:21

钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。  自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。  金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。  我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。

金属钴

2018-04-19 17:42:10

自然界中已知含钴矿物有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿物有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿物的赋存状态复杂,矿石品位低,所以提取工艺比较复杂且回收率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状态,然后再用湿法使钴进一步富集和提纯,最后得到钴化合物或金属钴。   金属钴主要用于制造合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢可以显著地提高钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即使加热到1000℃也不会失去其原有的硬度。航空航天技术中应用最广泛的合金是镍基合金,也可以使用钴基合金。含钛和铝的镍基合金强度高是因为形成组成为NiAl(Ti)的相强化剂,当运行温度高时,相强化剂颗粒就转入固溶体,这时合金很快失去强度。钴基合金的耐热性是因为形成了难熔的碳化物,这些碳化物不易转为固体溶体,扩散活动性小,温度在1038℃以上时,钴基合金的优越性就显示无遗,它可用于制造高效率的高温发动机。在航空涡轮机的结构材料使用含20%-27%铬的钴基合金,可以不要保护覆层就能使材料达高抗氧化性。钴是磁化一次就能保持磁性的少数金属之一,在热作用下失去磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力提高2.5倍。在振动下,一般磁性钢失去差不多1/3的磁性,而钴钢仅失去2%-3.5%的磁性。因而钴在磁性材料上的优势就很明显。钴在电镀、玻璃、染色、医药医疗等方面也有广泛应用。   我国钴矿资源主要分布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其余30%的储量分布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,品位较低,钴主要作为副产品加以回收。根据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的平均品位仅为0.02%,因而生产过程中金属回收率低,工艺复杂,生产成本高。可利用的钴资源主要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国主要钴生产地。可利用的钴资源其次伴生在铜铁矿床中,目前已经开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。由于受资源条件限制,国内钴产量增长缓慢,不能满足国内市场需求,需通过进口弥补不足

蓄热式熔铝炉及蓄热式燃烧系统

2019-01-14 11:15:38

蓄热式燃烧系统包括:一对蓄热体、一对点火烧嘴、一对蓄热式烧嘴;换向装置;燃料、空气和烟气管路;各种手动、电动调节阀;鼓风机、引风机;炉温、炉压检测元件和自动控制系统等。    优点:对烟气热回收达到极限,排烟温度达≤150℃;因降低排烟温度,燃烧效率接近90%;减少温室气体    蓄热式燃烧器:具有超强稳定的点火和火焰稳定系统保证设备在运行时不会发生燃爆。空燃比优化设计,使燃烧更充分,较大限度的节约燃料。蓄热体采用陶瓷小球,该蓄热体具有自清洗防尘结渣,阻力小,便于拆下清洗,反复使用,蓄热效率高,正常寿命保证1年以上。    燃料快速脉冲阀:采用美国honywell公司电磁阀,该电磁阀比气动阀关闭速度快,可频繁开、关。    换向装置:采用空气/烟气两位两通阀(或采用气动快速切断阀四台),切换时间为1次/min左右,采用定温换向方式。正常使用寿命两年以上。    排烟系统:排烟系统由空气/烟气两位通用阀、烟气流量调节阀、排烟管道和高温引风机构成,耐温为200℃。    供风系统:采用根据我公司专门选用的高压风机,带流量调节。    蓄热式燃烧系统主要检测及控制参数    1、炉膛温度控制、显示;    2、铝液温度的测量与显示;    3、排烟温度检测、显示,当温度超过200℃时,系统强制换向;    4、炉压控制与显示;    5、空、燃气压力低报警、显示及切断燃气;    6、换向阀换向到位显示及不到位报警、联锁功能;    7、鼓风机、引风机停运、燃气快断阀联锁功能;    蓄热式燃烧系统优点:    1、对烟气热回收达到极限,排烟温度≤150℃;    2、因降低排烟温度,燃料能量利用率接近90%;    3、减少温室气体CO2排放量的30~40%;    4、燃烧采用浓淡燃烧方法,降低了火焰温度,提高了铝液表面黑度,提高了熔化率。    蓄热式燃烧器控制说明    本控制系统由西门子S7-200系列PLC(可编程控制器),一台气动燃气快断阀,四台气动空气两通阀和一套空气/烟气比例脉冲阀等共同组成了燃烧换向控制部分;西门子触摸显示屏,燃料电动调节阀,变频器等共同组成了燃烧温度自动控制部分;同时还具有各种连锁报警功能。    连续式蓄热燃烧系统直接对主喷孔天然气火焰进行检测,烧嘴点火也直接针对主天然气点燃,烧嘴熄火会立刻关断电磁阀。为提高烧嘴的安全性能,设置了两道火焰检测——离子型火焰检测和紫外线火焰检测。无论远近火焰的存在都会被检测到。提高了燃烧设备的稳定性和可靠性。

生物浸出低品位镍铜硫化矿中的镍、铜、钴

2019-01-21 18:04:55

一、前言 生物浸出低品位复杂矿中的有价金属元素是目前矿冶领域的重要研究方向。生物浸出低品位镍铜硫化矿的工艺研究文献报道较少。Miller等曾对南非低品位镍矿进行了细菌堆浸模拟实验,在浸出70d后镍的浸出率在30%~50%。Southwood等研究了影响低品位镍矿生物堆浸的一些重要参数,表明矿石的理化性质、浸堆的渗透度和孔隙度是影响浸出速度和浸出率的主要因素,大量脉石的存在阻碍了镍的浸出。前人的工作表明,采用生物堆浸方式处理低品位镍铜矿,浸出速度慢,浸出率低。为了进一步提高浸出效率,有必要实验其它浸出方式处理低品位复杂镍铜矿的效果。 本文论述了3种不同方式生物浸出低品位镍铜硫化矿的实验结果。不同生物浸出方式的实验研究,以已完成的浸出条件研究结果为基础,包括:采用氧化亚铁硫杆菌(TF5)浸出硫化矿,pH值应严格控制在1.2~2.0;细菌的初始接种量应保持在108~109个∕g(细胞∕原矿);合适的矿浆浓度由矿物的硫化物含量确定;加入适量氧化硫硫杆菌(TT)有利于浸矿的进行,以TF5∶TT=2∶1的比例进行接种为最佳;在温度为35℃的情况下镍和铜的浸出率最高。实验的浸出方式包括通气搅拌浸出、通气气搅浸出及柱式渗滤浸出。 二、实验 实验采用的矿样取自金川二矿区底部贫矿,主要矿物成份为镍磁黄铁矿、镍黄铁矿、黄铜矿。矿石含镍0.68%、铜0.34%、钴0.022%。实验矿样分为两种粒度:-300目占97%和-300目占54%。细菌来自中科院微生物所提供的氧化亚铁硫杆菌和氧化硫硫杆菌,经进一步驯化培育后使用。 氧化亚铁硫杆菌采用Leathen培养基,氧化硫硫杆菌用Starky培养基,温度35℃,摇床转速140r∕min下培养。并用原矿培养混合菌,混合菌由氧化亚铁硫杆菌和氧化硫硫杆菌组成,其比例为2∶1。 用原子吸收分析法分析溶液中的镍、铜和钴,并计算浸出率。 三、结果与讨论 (一)通气气搅浸出 以矿浆浓度为5%,15%,25%进行浸出,浸出温度为室温(30℃左右)。实验过程为:当矿浆浓度为5%时,在简单气升式反应器(外管直径3.5cm,中心管直径2.5cm,其中心直管单气泡通入空气)中加入270mlLeathen培养基,15g原矿(粒度为-300目占97%)然后加酸进行预浸。待pH稳定在2。0左右,进行接种,接种量为30ml适应混合菌,最后通入空气进行浸出,通气速率约为60L∕h,每隔2d取样分析结果。当矿浆浓度为15%和25%时,实验步骤相同,只是由于固体浓度不同,接种量有所不同,固体与细菌接种量之比为每5g矿接种10ml菌液。3种不同矿浆浓度的镍铜浸出结果如图1所示,渣相分析见表1。实验结果表明,当矿浆浓度为15%时,浸出情况最好,镍浸出率达95%以上,钴浸出率达82%以上。浸出过程中,细菌生长的停滞期与矿浆浓度密切相关,矿浆浓度为5%时最短。图1  通气气搅生物浸出镍和铜 表1  气搅浸出结果通气气搅浸出时,矿石颗粒借助气流的提升悬浮于浸出液中,因而在浸出液中不均匀分布。细菌在矿浆中的分布与细菌周围的营养物、氧气和二氧化碳的分布有关。矿浆浓度高的部分,必须补充高浓度的营养物、氧气和二氧化碳,细菌才能充分生长。所以通气气搅实验明显存在弊端,矿石分布的不均匀,导致浸出液中各部分生长环境不同,使细菌生长环境受到制约,进而直接影响到金属元素的浸出速度和浸出率。且浸出低品位镍矿时,由于硫化物含量较低,矿浆浓度必须比较高才更有利于细菌的生长,但通气气搅方式不适合高矿浆浓度的浸出,因而采用该方式浸出低品位镍矿时,需要在高效反应器中进行,这部分工作正在研究中。 (二)通气搅拌浸出 通气搅拌浸出的特点是,在电磁搅拌下通入空气浸出。搅拌浸出反应器置于恒温水浴中,温度控制在35℃,搅拌速度为300r∕min,空气通入速率约40L∕h。 1、不同矿浆浓度的通气搅拌浸出 实验在矿浆浓度为15%,25%,30%条件下进行。15%矿浆浓度下浸出实验过程为:在恒温水浴浸出槽中加入140mlLeathen培养基,然后放入30g原矿(-300目占97%),加酸进行预浸,pH稳定在2.0之后,接种60ml适应混合菌,然后进行通气搅拌浸出。25%和30%矿浆浓度下的浸出实验过程相同,接种的细菌固体比为每5g矿接种10ml菌液。每隔两天进行取样,分析结果如图2所示。浸渣分析结果见表2。图2  通气搅拌浸出不同矿浆浓度下的镍和铜 表2  不同矿浆浓度下通气搅拌浸出结果实验表明,25%矿浆浓度时浸出结果最佳。原因在于15%矿浆浓度时,单位体积中硫化物量较少,不能为细菌生长提供足够的能量。在显微镜下观察,25%矿浆浓度时细菌数量明显多于15%矿浆浓度时。而30%的矿浆浓度过高,产生的较强剪切力有碍细菌生长,使浸出率下降。 2、不同粒度的通气搅拌浸出 实验在25%的矿浆浓度下进行,原矿分为两种粒度,分别为-300目占54%及-300目占97%。实验过程为:在恒温水浴浸出槽中加入100mlLeathen培养基及50g原矿,进行酸预浸。pH值稳定在2.0之后,接入100ml菌液。两个实验操作步骤相同,并不断补充培养基使溶液体积固定在200ml。每隔两天取样进行分析,实验结果示于图3,表3为浸出结果。图3通气搅拌浸出不同粒度的镍和铜 表3  不同粒度下通气搅拌浸出结果实验结果表明,矿物的粒度越小越有利于浸出。在浸出过程中,粒度较细时,耗酸量明显增加。 通气搅拌浸出与通气气搅浸出相比有明显的优点。采用机械搅拌,使矿石在浸出液中的分布较均匀,可采用较高矿浆浓度,对细菌的生长较有利。另一方面,在矿浆浓度较高情况下,通气加上机械搅拌,产生较强剪切力,不利于细菌浸出。因而采用这种方式浸出时,浸出率不及气搅浸出。然而,搅拌速度和矿浆浓度的合适配合,可能提高通气搅拌浸出的浸出率,比较适合浸出低品位镍铜矿。但该方式生产成本较高,由于低品位镍铜矿的脉石含量高,有价金属含量低,只有缩短生产周期,才有比较好的经济效益。为此,需要解决高效菌种,缩短生长停滞期,研制分布均匀、又不产生过高剪切力的高效反应器。 (三)柱式渗滤浸出 低品位镍铜矿采用搅拌浸出将明显增加处理成本,为提高经济效益,考虑成本相对低廉的生物堆浸。实验室中常采用柱式渗滤浸出模拟堆浸。本实验,采用柱式玻璃反应器(直径2。5cm),矿粒度控制在-20目~+40目,矿量总重为100g,浸出液(pH=2)柱高约20cm,总体积为4000ml,浸出液流速约25cm∕h,渗滤柱矿样表面无溶液,温度约25℃进行循环浸出。首先进行酸预浸,待pH稳定在2.0之后,接入400ml菌液。浸出过程中,液体蒸发部分用Leathen培养基补充。每隔7d进行取样分析,实验结果如图4所示,表4为浸出结果。图4  柱式渗滤浸出镍和铜 表4  柱式渗滤浸出结果在浸出28d后,加入银离子作为催化剂以提高铜的浸出率,加入量为1.2mg∕g(催化剂∕原矿)。由实验结果可以看到,柱浸渗滤浸出实验的浸出速度很慢。在浸出过程中,溶液的Eh值一直处于较低水平,在0.62mV(SCE)左右。由于浸出过程缓慢,pH值常上升,要经常加酸补充,调节pH值,浸出期间的总耗酸量为0.002mol∕g。 渗滤浸出是生产成本最低的浸出方式,但由于矿石粒度较细,且一直处于静止状态,浸出周期很长,浸出率也低于前二种方式。然而,从经济效益考虑,渗滤浸出最具应用于工业生产的前景。 四、结论 采用3种不同方式进行了金川低品位镍铜硫化矿的生物浸出实验,得到如下结论: (一)通气气搅浸出结果最好,在15%矿浆浓度下浸出20d后,镍浸出率达953.4%,铜为48.6%,钴为82.6%。 (二)通气搅拌浸出可在高矿浆浓度下进行,且浸出周期最短,在25%矿浆浓度下浸出14d后,镍浸出率为80.2%,铜为45.2%,钴为78.4%。 (三)柱式渗滤浸出周期长,浸出率低,浸出49d后,镍浸出率为48.5%,铜为37.5%,钴为33.6%。

钴镍

2017-06-06 17:50:12

钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工 行业 、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。   一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价 金属 转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他 金属 ,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价 金属 的综合回收利用。   二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。   三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。   四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍 金属 广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等 行业 ,钴镍粉体是现代工业不可缺少的 金属 材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍 金属 ,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。 

含钴黄铁矿提钴

2019-03-05 09:04:34

因为Co原子占有FeS中Fe的晶格,构成类质同相,所以选矿别离富集钴困难,浮选产出的钴硫精矿含钴不超越0.5%。为从贫钴硫精矿中提取钴,先氧化焙烧将S氧化成气体SO2除掉,一起将钴转变成水溶或酸溶形状,再用酸浸出钴,并与很多的铁渣别离。我国使用的焙烧工艺有三种:硫酸化焙烧、氧化焙烧一烧渣硫酸化焙烧和氧化焙烧一烧渣化焙烧。焙烧设备均选用欢腾焙烧炉。    氧化焙烧一烧渣硫酸化焙烧是一种两段法工艺。钴硫精矿硫酸化动力学研讨标明,该焙烧进程是分段完结的,开端是脱硫氧化反响,当焙砂含S降到2%-3%时,钴才开端很多硫酸化。因而分段焙烧既提高了S的利用率和设备生产能力,又有利于钴的硫酸化和收回。    1.氧化焙烧    在欢腾焙烧炉中于840-860℃温度下焙烧钴硫精矿。当精矿成分为(%):Co 0.3-0.4、Fe 35-45、S 30-35时,可得到含Co 0.4%、Fe 45%、S 1.8%的焙砂和SO2浓度8%-10%的烟气。    2.硫酸化焙烧    焙砂配入含钴黄铁矿,使混合料含硫到达10%以上,一起参加3% Na2SO4,将铁酸盐中钴转变为CaSO4。酸化焙烧条件为:床能率5-6t/(m2·d),钴浸出率75%-80%。浸出液通过净化、沉积、缎烧等工序,即可得到产品氧化钴。

碳酸锂

2017-07-03 11:04:29

碳酸锂,一种无机化合物,化学式为Li2CO3,为无色单斜晶系结晶体或白色粉末。密度2.11g/cm3。熔点618℃(1.013*10^5Pa)。溶于稀酸。微溶于水,在冷水中溶解度较热水下大。不溶于醇及丙酮。可用于制陶瓷、药物、催化剂等。常用的锂离子电池原料。由于生产碳酸锂的主要原料是盐湖卤水(矿石法由于成本高在全球产能很小),因此规模化生产碳酸锂的企业必须拥有锂资源储量较为丰富的盐湖资源开采权,这使得该行业具备较高的资源壁垒;另一方面,由于全球盐湖绝大多数资源都是高镁低锂型,而从高镁低锂老卤中提纯分离碳酸锂的工艺技术难度很大,之前这些技术仅掌握在少数国外公司手中,这使得碳酸锂行业又具备了技术壁垒。因此,造就了碳酸锂行业的全球寡头垄断格局。目前全球碳酸锂市场集中度非常高。在我国的几个大型项目投产前,全球主要产能集中在SQM、FMC、和Chemetall三家手中;资料显示,碳酸锂产品虽然存在一定的资源和技术壁垒,但我国具备可开采价值的盐湖还是不少,技术除中信国安、西藏矿业外盐湖集团也面临突破,行业的壁垒正逐渐削弱,行业目前的高毛利率必然会吸引更多资金介入。作用与用途用于制取各种锂的化合物、金属锂及其同位素。还用于制备化学反应的催化剂。半导体、陶瓷、电视、医药和原子能工业也有应用。分析化学中用作分析试剂。在锂离子电池中也有应用。在水泥外加剂里作为促凝剂使用。碳酸锂有明显抑制躁狂症作用,可以改善精神分裂症的情感障碍,治疗量时对正常人精神活动无影响,作用机制可能与抑制脑内神经突触部位去甲肾上腺素的释放并促进再摄取,对升高外周血细胞有作用,本药小剂量用于子宫肌瘤合并月经过多的有一定治疗作用,小剂量也可用于急性菌痢,锂盐无镇静作用,一般对严重急性躁狂患者先与氯丙嗪或氟哌啶合用,急性症状控制后再单用碳酸锂维持。使用注意事项危险性概述健康危害:误服中毒后,主要损及胃肠道、心脏、肾脏和神经系统。中毒表现有恶心、呕吐、腹泻、头痛、头晕、嗜睡、视力障碍、口唇、四肢震颤、抽搐和昏迷等。环境危害:对环境可能有危害,对水体可造成污染。燃爆危险:该品不燃。急救措施皮肤接触:脱去污染的衣着,用大量流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。洗胃,导泄。就医。消防措施危险特性:自身不能燃烧。受高热分解放出有毒的气体。有害燃烧产物:一氧化碳、二氧化碳。灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。灭火时尽可能将容器从火场移至空旷处。然后根据着火原因选择适当灭火剂灭火。泄漏应急处理应急处理:隔离泄漏污染区,限制出入。建议应急处理人员戴防尘口罩,穿一般作业工作服。不要直接接触泄漏物。小量泄漏:避免扬尘,小心扫起,收集于干燥、洁净、有盖的容器中。大量泄漏:收集回收或运至废物处理场所处置。操作处置与储存操作注意事项:密闭操作,提供充分的局部排风。防止粉尘释放到车间空气中。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴防尘面具(全面罩),穿透气型防毒服,戴橡胶手套。避免产生粉尘。避免与氧化剂、酸类、氟接触。配备泄漏应急处理设备。倒空的容器可能残留有害物。储存注意事项:储存于阴凉、通风的库房。远离火种、热源。防止阳光直射。包装密封。应与氧化剂、酸类、氟分开存放,切忌混储。储区应备有合适的材料收容泄漏物。制备将锂辉石和石灰石高温烧结生成铝酸锂再浸出氢氧化锂溶液,与碳酸钠反应制得。亦可利用卤水经提取氯化镁后的含锂料液,经纯碱除钙、镁离子,用盐酸酸化,再与纯碱反应制得。医疗用途及注意事项碳酸锂常被用来治疗双相型障碍(bipolar disorder),它通过稳定钙和血清素来稳定情绪(mood),对抗狂躁(antimanic)。它的生物要效率也很不错。一天服用2-3次。它通过肾脏被快速排掉,但是会对肾脏造成负担,因此如果病人的肾功能不好的话,很容易造成锂中毒。事实上这种药物是容易造成中毒的,因此在服用这个药的时候,要定期检查血液。血液中的锂含量必须保持在0.6-1.2mEq/L之间。如果超过1.5mEq/L的话,就会造成锂中毒。即使血液中含量正常,也可能会中毒。锂中毒现象:<1.5mEq/L:恶心、呕吐、腹泻、口渴、多尿、软弱无力、言语不清1.5mEq/L-2.0mEq/L:肠胃不适、震颤、头脑混乱、心电图(EKG)变化、嗜睡2.1mEq/L-2.5mEq/L:共济失调、嗜睡、严重的EKG变化、视力模糊、耳鸣、昏迷>2.5mEq/L:癫痫发作(seizure)、肾衰竭、死亡。注意事项:碳酸锂是致畸药物(pregnancy category D),因此孕妇慎用。在怀孕最先的3个月服用这个药,有11%左右的可能会造成胎儿心脏畸形。如果身体里面的钠非常少的时候(例如服用利尿药物或脱水时),身体会把锂当做盐来保存起来不排泄掉,造成锂中毒。因此在服用这个药物时,要多喝水,多吃钠盐。给病人服药以前,要注意:1. 病人是否有锂中毒现象。2. 病人血液中锂的含量是否超标。3. 通过检查 肌氨酸酐来查看病人的肾功能是否好。4. 检查病人的血钠含量是否太低。5. 检查病人是否服用利尿药物。由于锂有利尿作用,因此病人服药期间要检查尿量。如果病人服药时感到恶心的话,可以在服药的同时吃点食物,以减少恶心的感觉。禁忌:脱水、心脏病、肾病、钠不平衡的病人不能服用这个药。 

钴知识

2019-03-08 09:05:26

钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。 自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。 金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。 我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。

稀土精矿碱法分解

2019-02-26 10:02:49

首要有烧碱分化法和纯碱焙烧法。前者首要用于分化独居石和磷钇矿精矿,后者首要用于分化氟碳铈矿和独居石的混合精矿。 烧碱分化法 有液碱(烧碱的水溶液)法和固碱法两种办法。液碱法又分常压法、压煮法和热球磨法。工业上大多选用液碱常压分化法。 独居石精矿液碱分化 1952年印度稀土有限公司(Indian Rare EaithLtd.)在特兰旺科一科琴(Travancore-Cochin)的阿尔沃耶(Alwaye)建成了世界上第一座液碱分化独居石精矿的工厂。直至90年代初期,美国、巴西、法国、马来西亚、朝鲜等国也相继建成了液碱处理独居石精矿的工厂。我国第一条液碱分化独居石精矿的出产线于1964年在上海跃龙化工厂投产。 液碱分化独居石精矿出产氯化稀土首要由液碱分化、归纳收回、优先溶解、除镭等作业组成。 在液碱分化中,独居石精矿中的稀土和钍与碱液效果生成氢氧化物沉积: REPO4+3NaOH=RE(OH)3↓+Na3PO4 (1) Th3(PO4)4+12NaOH=3Th(OH)4↓+4Na3PO4 (2) 而磷则生成可溶性的Na3PO4转入分化液中。因为分化进程在精矿颗粒表面生成的氢氧化物阻止了液碱与矿粒内部稀土持续反响,故分化前须先将精矿湿磨细至0.043mm粒级,然后再与含。NaOH50%的溶液在413K温度下反响约5h。实践用碱量约为精矿质量的1.5倍。分化进程在外加热的钢制反响器中进行。 碱液分化完成后,分化液中含过量NaOH和新生成的Na3PO4 有必要归纳收回。收回的办法是用热水稀释并洗刷分化产品,过滤后从滤液中收回Na3PO4和剩下的烧碱。独居石精矿含P2O5约25%,仅低于稀土,故Na3PO4 是烧碱分化独居石精矿的一种重要副产品。 滤饼的首要成分为稀土、钍、铁等的氢氧化物,运用稀土和其他元素的碱性差异,用稀优先溶解稀土: RE(OH)3+3HCl=RECl3+3H2O (3) 优先溶解结束时,溶液pH约4.5,在此pH下钍、铀、铁等仍残留在滤饼中。优先溶解产品经过滤所得的滤渣是提取铀、钍的质料(见铀钍与稀土元素别离)。 过滤所得滤液尚含有微量钍、铀的放射性蜕变产品226Ra和228Ra,有必要经过除镭处理。镭和同属ⅡA族元素,其硫酸盐溶度积均很小(298K时BaSO4为1.1×10-10,RaSO4为4.2×10-11)。往滤液中参加BaSO4就可使镭被BaSO4载带子沉积中: Ba2+(Ra2+)+2SO42-=BaSO4(RaSO4)↓ (4) 除镭后的清液为纯洁的RECl3溶液,可直接浓缩、结晶分出混合稀土氯化物产品,也可先经过P204溶剂萃取分组(见稀土元素革取分组别离)得到混合轻稀土氯化物和中重稀土富集物两种产品。 法国罗纳一普朗克公司(Rhone-Poulene)在拉罗歇尔(LaRochelle)的工厂选用在压煮器内用液碱分化独居石精矿的办法。因为压煮器的温度较常压容器的高,能加快独居石精矿的分化反响,然后可缩短分化时刻、下降碱耗。 与浓硫酸法分化独居石精矿(见稀土精矿硫酸法分化)比较,液碱分化法有两大长处:(1)分化反响不发作酸气,全流程产出的三废量少;(2)经济合理,占独居石精矿分量90%以上的稀土、磷、铀、钍均得到收回,分化剂中的钠成为副产品Na3PO4•12H2O的组成部分而得到运用。但也存在需运用磨细的高质量精矿等问题,因为精矿含杂质多会添加碱的耗费量。 白云鄂博混合型稀土矿精矿烧碱分化白云鄂博混合型稀土矿精矿含钙较高(折组成CaO5%~10%),钙首要以萤石(CaF2)形状存在。钙含量过高不只会导致混合稀土氯化物产品质量下降乃至不合格,还会使稀土收率下降。我国已研讨出除掉精矿中钙的办法。 白云鄂博混合型稀土矿精矿含有氟碳铈矿和独居石两种稀土矿藏,在碱分化时,除发作独居石和烧碱式(1)的反响外,还发作氟碳铈矿和烧碱的反响: RECO3+3NaOH=RE(OH)3+Na2CO3+NaF (5) 影响稀土矿藏分化的首要因素是分化温度和烧碱浓度,较高的分化温度和较高的烧碱浓度都可加快分化反响。烧碱液的沸点随烧碱浓度的添加而升高,因此添加烧碱浓度亦可进步常压烧碱液分化的温度。但烧碱浓度过高又会引起分化产品过于粘稠,影响反响进行。 1982年我国选用固碱电场分化白云鄂博混合型稀土矿精矿。其作法是将除钙的精矿(含水分12%~14%)和固体碱混兼并拌和10min,然后装入分化设备,通电分化15~20min。其间最终7~8min的物料温度达453K。因精矿含有水分,碱易吸潮,故这种反响实践上是浓烧碱液与矿藏的反响,但分化设备中究竟还存在着固碱,所以存在分化反响不易进行的死角。电场分化时刻很短,能耗和碱耗都低。 1985年我国又选用在电加热的反响器平分化除钙后的白云鄂博混合型稀土矿精矿办法。该法运用含烧碱60%~70%的溶液,在433~453K温度下分化40min。这种分化工艺操作简略,耗碱量低。因为烧碱报价比硫酸高得多,故处理规划远不如浓硫酸法分化。 白云鄂博混合型稀土矿精矿烧碱法分化出产氯化稀土的工艺进程与独居石精矿液碱分化出产氯化稀土的类似,分化产品经水洗、过滤、优先溶解稀土、浓缩、结晶等处理,最终得到混合稀土氯化物产品。或在优先溶解稀土后,经溶剂萃取分组,得到混合轻稀土氯化物和中重稀土富集物产品。没有发现白云鄂博混合型稀土矿精矿中有镭的同位素,故全流程无需设除镭工序。 纯碱焙烧(或烧结)法纯碱即为碳酸钠(Na2CO3),1958年苏联用纯碱焙烧(烧结)分化独居石精矿。1963年我国开端研讨用纯碱焙烧白云鄂博混合型稀土矿精矿,1970年前后曾用于工业出产。前苏联也曾进行过用纯碱烧结分化稀土氟碳酸盐和磷酸盐混合精矿的研讨。 按白云鄂博混合型稀土矿精矿质量的10%~30%参加纯碱,混合后于873~973K温度下焙烧,稀土矿藏即可分化生成RECO3,且精矿中的Ce抖被氧化成ce”,为后续作业的铈与其他稀土别离发明了条件。焙烧矿经磨细后,再用水、稀酸洗去非稀土杂质,然后用含硫酸0.25mol/L溶液浸出稀土。浸出液中Ce4+与F-构成合作物。如浸出液的F一浓度过低,则会使稀土浸出率和铈氧化率明显下降。浸出后过滤,滤液用1mol/LP204-0.2mol/LTBP-火油组成的有机相萃取Ce4+,得到纯度超越99.9%的CeO2。因浸出液中含F-及铁、硅等杂质,萃取进程中易发作乳化。参加可抑制因F-而发作的乳化。 前苏联所用的稀土混合精矿由钇氟碳铈矿(Y,Ca)FCO3•CaCO3、磷钇矿、独居石和钇萤石组成。精矿档次低(均匀含RE2O3约6%),还含很多萤石、铁矿藏、云母及锆石,且各矿藏含量改变大。以精矿质量30%的Na2CO3+Na2SO4为分化剂,在1173K温度下焙烧可使稀土矿藏分化成可溶性的碳酸盐或硫酸盐。萤石有助于稀土矿藏分化。当精矿中含萤石高于15%时,不加分化剂在1273K温度下焙烧稀土矿藏即自行分化。 展望从环境保护、资源归纳运用、经济效益等方面衡量,独居石精矿的液碱分化都不失为一种较好的办法,因此为全世界大多数处理独居石的工厂所选用。但一般选用含烧碱50%的碱液在常压下分化,不只碱耗和能耗高,并且分化时刻长,因此极待改善。改善方向是从工艺和设备下手,环绕强化分化条件(如恰当进步分化温度)来进行,这是削减耗费、进步功率、下降成本的有效途径。烧碱分化白云鄂博混合型稀土矿精矿的研讨成果与工业实践都可以在这些方面供给学习。 将白云鄂博混合型稀土矿精矿的氟碳铈矿与独居石分隔,即把混合精矿分红两种精矿(见白云鄂博混合型稀土矿),运用这两种矿藏的不同特色别离处理:独居石精矿用烧碱法分化,制取混合稀土化合物,磷亦得到归纳收回;氟碳铈矿精矿选用氧化焙烧分化,Ce3+一起氧化成Ce4+,然后进行单一稀土别离(见稀土元素别离提纯)。这是白云鄂博混合型稀土矿精矿的最佳处理计划。

硫化镍

2017-07-04 14:59:01

硫化镍晶体呈 黄铜 黄色,粉末呈黑色。密度:5.3-5.6g/mL,25/4℃。熔点797℃。生态学资料对水体是危害的,即使小量产品不能接触地下水、水道或污水系统,未经政府许可勿将材料排入周围环境。性质与稳定性常温常压下稳定避免的物料:氧化物、酸。相对密度5.3~5.65(α);5.0~5.6(β);5.34(γ,30℃)。熔点797℃(α);810℃(β);γ-NiS在396℃时转变为βNiS。α-NiS溶于盐酸,在空气中转变成Ni(OH)S。β-NiS在2mol/L HCl中煮沸,迅速溶解。它们均溶于 硝酸 和 王水 。储存方法常温密闭避光,通风干燥。注意事项玻璃在制作过程中有时会在其内部残留一种叫硫化镍的特殊杂质。之所以说它特殊,是因为它不会像一般物质一样 热胀冷缩 ,恰恰相反,它会热缩冷胀。由于 钢化玻璃 是由普通玻璃高温骤冷处理之后制成的,在这一过程中,硫化镍的体积先是受热缩小,后又冷却膨胀,这使钢化玻璃内部出现很大的应力,这就会使钢化玻璃出现自爆现象。这样的钢化玻璃通常会在制成后不久自爆,但极个别情况时,当硫化镍恰好位于钢化玻璃中间时,自爆就会延迟,最长可以延迟到几年之后。玻璃中有NiS杂质,也就是硫化镍,这个玩意无法从玻璃里完全剔除,总有一定量的NiS存在于玻璃里,这种杂质想性质同水比较相似属于 冷胀热缩 的东西, 钢化玻璃 在钢化的过程中他会缩小,冷却过程中又会变大(伴随位移的),但是因为冷却时间很短,不足以让它还原成常温的大小,所以在冷却完成后还会继续变化,这种变化就可能会造成钢化玻璃自爆,这是钢化玻璃不可避免的。 

钴渣生产电钴的实例

2019-03-04 11:11:26

电解钴是最重要的钴产品之一。国内电钴的出产质料,一般是铜、镍、铅、锌等冶炼进程产出的含钴副产品,如镍电解净化进程产出的钴渣、含钴黄铁矿烧渣等。 从含钴副产品中出产电钴的准则流程首要有两种,一是选用化学沉积法去除杂质,两段氧化沉积别离镍和钴,火法煅烧后复原熔炼得到粗钴,铸成阳极电解精粹;另一种是选用萃取除杂,萃取别离镍和钴,得到氯化钴溶液,不溶阳极电解。 金川集团公司是我国镍钴的首要出产基地,钴的年产量到达500t以上,目条件钴已构成两大出产体系,别离出产电钴和氧化钴,并产出钴盐等其他产品。出产质料为镍体系的钴渣和富钴锍。 电钴的出产以镍体系电解流净化所产钴渣为厚料,选用钴渣球磨浆化→复原溶解→黄钠铁矾除铗→除铜→二段沉钴→氢氧化钴反射炉烧结→电炉复原熔炼→可溶阳极电解工艺出产电解钴,别离钴后的硫酸镍回来镍出产体系。这是一个火法和湿法相结合的出产流程。出产工艺的流程图示于图1和图2。图1  从钴渣出产氢氧化钴的工艺流程图图2  从氢氧化钴出产电钴的工艺流程图 选用与此相似流程出产电解钴的其他供应商还有前沈阳冶炼厂、重庆冶炼厂等。 选用N235萃取净化和别离、不溶阳极电解工艺出产电解钴的首要供应商是成都电冶厂。 一、钴渣的复原浸出 镍电解体系净化产出的钴渣,首要元素组成列于表1。 表1  钴渣的首要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中首要以氧氧化物方式存在,在液固比为(3~4)∶1及机械或鼓风拌和条件下,用硫酸调pH=1.5~1.7,通入SO2复原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,复原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气拌和浸出时部分Fe氧化成三价。首要化学反响可表示为:在鼓空气拌和情况下,可发作亚铁离子的部分氧化,如:复原浸出液的成分列于表2。 表2  钴渣复原浸出液首要成分二、钴浸出液的净化 浸出液中首要杂质元素是铁和铜,非有必要的有铅、锌、锰、砷等。铁选用黄钠铁矾法除掉,铜用硫化沉积法除掉,其他杂质用水解沉积法除掉。 (一)黄钠铁矾除铁 黄钠铁矾除铁的基率原理是生成难溶盐。黄钠铁矾[Na2Fe6(SO4)4(OH)12]是一种淡黄色晶体沉积,具有杰出的过滤性和洗刷性,生成进程比较复杂,需求较严格操控生成条件,首要影响要素有碳酸钠溶液的浓度、温度和pH值、晶种的参加等。详细操控条件如下: 1、碳酸钠的浓度 7%~8%的浓度,且有必要均匀参加,常用办法是运用低压风使碱液呈雾状喷入铁矾生成槽内。碳酸钠浓度高时,易生成胶状氢氧化铁,形成渣含有价金属上升,且过滤困难:浓度过低则对整个体系的体积平衡晦气,下降溶液浓度。 2、温度、氧化和pH值 除铁前溶液需经氧化,使Fe2+氧化成Fe3+,氧化剂一般为NaClO3,氧化温度≥85℃,铁矾生成温度≥90℃时,呈颗粒状,具有杰出过滤功能;除铁前溶液的pH值操控在1.5~1.7,氧化时刻操控在1.5~2.0h,结尾pH值操控在2.5~3.0,除铁率可达99%,溶液中Fe≤0.05g∕L;终究pH值操控在4.0~4.5时,除铁后溶掖中Fe≤0.001g∕L。 3、晶种 湿铁矾渣作晶种参加,即在除铁压滤时,在反响罐底留必定渣量,可大大加速黄钠铁矾除铁速度。 洗后铁渣成分为:0.5%~1% Co,1%~3% Ni,0%~0.4% Cu,Fe≥24%。 (二)沉积除铜 除铜的根本原理是生成难溶的硫化铜沉积。除铜作业在机械拌和的珐琅釜中进行,用量为Cu2+∶Na2S=1∶5。先配成饱和溶液,常温下缓慢参加釜内,初始pH=2.0~3.0,终究pH=3.5~4.0,由于为碱性。除铜停留时刻约30min。溶液中的铜含量可降至0003g∕L以下,一同可除掉铅。除铜的缺陷是或许部分生成NiS和CoS沉积,形成铜渣含镍钴过高,且使溶液中带入钠离子。 三、氯化水免除砷、锑 氧化水免除砷、锑的首要原理,是运用铁水解产出的肢状Fe(OH)3具有较强吸附效果,使砷、锑等杂质一道沉积。因而,砷、锑从溶液中脱除的深度,在很大程度上取决于溶液中的含铁量,一般要求溶液中含铁量为砷、锑量的10~20倍。在水解沉积前参加氧化剂,如、次或,意图是使二价铁氧化为三价铁。 四、氧化水解别离钴 运用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。 在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发出发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。 水解沉积进程中有H+发生,有必要加碱进行中和。 在出产运用中,为了使钴和镍杰出别离,应遵照以下根本准则: (一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。 (二)操控恰当的析钴率,溶液含钴高时析钴率可高些。 (三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。 沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图2所示。二次沉钴的根本技能参数见表3。 表3  二次沉钴的首要技能参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。 五、粗钴阳极板的制备 二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。 反射炉煅烧的意图有3个: (一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块; (二)参加石油焦,使氧化钴半复原; (三)脱除部分硫。 反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。 反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。 六、电解精粹 金川公司选用可溶阳极和阴极隔阂电解法出产电钴。出产运用12个电解槽,规格为2060mm×790mm×860mm,运用2个槽造液。电解液为氯化物体系,阴极新液的化学成分列于表4。 表4  钴电解新液的成分    (g∕L)钴电解时的首要技能条件如下: 阳极规格及片数:    500mm×230mm×40mm,每槽22块 同极中心距:        180mm 始极片规格及片数:     540mm×520mm,每槽10块 电解温度:              55~65℃ 电流密度              300~400A∕m2 槽电压:              1.6~2.2V 电解液循环量:        16~220ml∕(min·袋) 阴阳极区液面差:      30~50mm 阴极周期:            3天 钴电解阳极液的成分:阳极液和造液一同进行净化除杂,然后作为阴极新液回来电解。首要除杂作业为除镍、除铜、除铅和除铁。净化除杂的首要工艺条件列于表5。 表5  电解钴阳极液除杂首要工艺条件净化渣压滤除掉,含钴铁渣回来与镍体系钴渣一同进行浆化、复原溶解。通过净化处理,溶液到达出产电钴的阴极液的要求,即:Co>100g∕L,Fe<0.001g∕L,Cu≤0.003g∕L,Pb≤0.0003g/L,Zn≤0.007g∕L。

紫铜化学式

2017-06-06 17:50:12

紫铜是比较纯净的一种铜,一般可近似认为是纯铜,导电性、塑性都较好,但强度、硬度较差一些。紫铜化学式是cu。紫铜 因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能,因此也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,紫铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20世纪70年代,紫铜的 产量 超过了其他各类铜合金的总 产量 。紫铜中的微量杂质对铜的导电、导热性能有严重影响。其中钛、磷、铁、硅等显著降低电导率,而镉、锌等则影响很小。氧、硫、硒、碲等在铜中的固溶度很小,可与铜生成脆性化合物,对导电性影响不大,但能降低加工塑性。普通紫铜在含氢或一氧化碳的还原性气氛中加热时,氢或一氧化碳易与晶界的氧化亚铜(Cu2O)作用,产生高压水蒸气或二氧化碳气体,可使铜破裂。这种现象常称为铜的“氢病”。氧对铜的焊接性有害。铋或铅与铜生成低熔点共晶,使铜产生热脆;而脆性的铋呈薄膜状分布在晶界时,又使铜产生冷脆。磷能显著降低铜的导电性,但可提高铜液的流动性,改善焊接性。适量的铅、碲、硫等能改善可切削性。紫铜退火板材的室温抗拉强度为22~25公斤力/毫米2,伸长率为45~50%,布氏硬度(HB)为35~45。紫铜的用途比纯铁广泛得多,每年有50%的铜被电解提纯为纯铜,用于电气工业。这里所说的紫铜,确实要非常纯,含铜达99.95%以上才行。极少量的杂质,特别是磷、砷、铝等,会大大降低铜的导电率。铜中含氧(炼铜时容易混入少量氧)对导电率影响很大,用于电气工业的铜一般都必须是无氧铜。另外,铅、锑、铋等杂质会使铜的结晶不能结合在一起,造成热脆,也会影响纯铜的加工。这种纯度很高的纯铜,一般用电解法精制:把不纯铜(即粗铜)作阳极,纯铜作阴极,以硫酸铜溶液为电解液。当电流通过后,阳极上不纯的铜逐渐熔解,纯铜便逐渐沉淀在阴极上。这样精制而得的铜;纯度可达99.99%。想要了解更多关于紫铜化学式的信息,请继续浏览上海 有色 网。

钨钴合金

2017-06-06 17:50:12

钨钴合金钨钴合金又称碳化钨-钴硬质合金。碳化钨和 金属 钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类 金属 陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。钨是属于 有色金属 ,也是重要的战略 金属 ,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的 金属 ,熔点极高,硬度很大。钨钴合金镀层的外观接近铬镀层,且镀液分散能力及覆盖能力好.在此研究了钨酸钠、硫酸钴、添加剂、电流密度及pH值对镀层钨含量及性能的影响.钨钴合金具有很好的耐蚀、耐热和耐磨性能,应用前景好. 售价70000元/千克 W含量83.36%,Co含量9.56%,C含量5.44%,硬度HRA为87。钨钴合金可用作刀具可加工铸铁、 有色金属 、非 金属 、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨钴合金陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、 有色金属 、非 金属 、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。

铍钴铜

2017-06-06 17:50:12

铍钴铜铍钴铜的物理指标:硬度: >260HV,导电率:>52%IACS,软化温度:520℃,同时铍钴铜具有许多优秀的特性,在许多方面都具有很独特的性质。电阻焊电极: 铍钴铜力学性能比铬铜材料和铬锆铜材料要高,但导电率和热导性低于铬铜和铬锆铜,这类材料在作为焊和缝焊电极时,用于焊接高温下仍保持特性高强度的特性的不锈钢、高温合金等,因为焊接这类材料时需要施加较高的电极压力,要求电极材料的强度也较高。这类材料可以作为点焊不锈钢和耐热钢的电极、受力电极电极握杆、轴和电极臂, 也可以作成缝焊不锈钢和耐热钢的电极轮轴和衬套,模具、或是镶嵌电极。铍钴铜具有许多优良的特性。各种耐磨内套(如结晶器用内套以及机械设备中的耐磨内套)以及高强度电工引线等。高热传导性 ,优良的抗腐蚀性,优良的抛光性 ,优良的抗磨性 ,优良的抗粘着性 ,优良的机械加工性,高强度和高硬度,极优良的焊接性。铍钴铜广泛用于制造注塑模或钢模中的镶件和模芯。用作塑胶模具中的镶件时,可有效地降低热集中区的温度,简化或者省去冷却水道设计。铍钴铜现有出厂的规格包括;经锻轧成型的圆材和扁材,挤压成型的管材,经机械切削加工的芯棒(Core Pins),铸锭和各类铸造型材。铍钴铜的极优良热传导性比模具钢材优越约3~4倍。此特性可确保塑胶制品快速及均匀地冷却,减少制品的变形,外形细节不清晰及类似的缺陷,在多数情况下可显著地缩短产品的生产周期。铍钴铜的用途:铍钴铜可广泛地采用在需要快速均匀冷却的模具、模芯、嵌入件,特别是高的热传导性,抗腐蚀性及良好抛光性的要求。吹塑模:夹断部,劲圈和把手部位镶件。注塑模:模具、模芯、电视机外壳角落的镶件。注塑:喷咀和热流道系统的汇流腔。