您所在的位置: 上海有色 > 有色金属产品库 > 三水合硝酸钴

三水合硝酸钴

抱歉!您想要的信息未找到。

三水合硝酸钴专区

更多
抱歉!您想要的信息未找到。

三水合硝酸钴百科

更多

三水铝石

2018-12-29 09:43:03

三水铝石的化学组成为Al(OH)3、晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯(Gibbs)的姓于1822年命名。晶体结构与水镁石相似,由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成,只是Al3+不占满夹层中的全部八面体空隙,仅占据其中的2/3。三水铝石的晶体一般极为细小,呈假六方片状,并常成双晶﹔通常以结核状、豆状、土状集合体产出。白色,或因杂质染色而呈淡红至红色。玻璃光泽,解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5,比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物,是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。   三水铝石(Gibbsite)   Al(OH)3   [晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。   [结构与形态]单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm,β=94°34';Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。   斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。 [物理性质]白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。   偏光镜下:无色。二轴晶( ),2V=0°。Ng=1.587,Nm=Np=1.566。   [产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

三水铝石(Gibbsite)

2019-01-21 10:39:10

Al(OH)3 【化学组成】常有少量的Fe2+和Ga3+呈类质同像替换Al3+。 【晶体结构】单斜晶系, ;a0=0.864 nm,b0=0.507 nm,c0=0.972 nm,β=94°34′;Z=8。具水镁石型结构,但Al3+只充填于每两层相邻的OH-羟离子之间的2/3八面体空隙,组成配位八面体的结构层。 【形态】单晶呈假六方形极细片状。通常成结核状、豆状集合体或隐晶质块状集合体。     【物理性质】白色,常带灰、绿和褐色;玻璃光泽,解理面呈珍珠光泽,集合体和隐晶质者暗淡。解理平行{001}极完全。硬度2.5~3.5。相对密度2.30~2.43。 【成因及产状】主要是长石等铝硅酸盐经风化作用而形成。部分三水铝石为低温热液成因。在区域变质作用中,三水铝石经脱水作用变为一水硬铝石;而在更深的区域变质条件下,可变为刚玉;如有SiO2存在时则变为含铝硅酸盐矿物。 【主要用途】为铝的主要矿石矿物。也可用于制造耐火材料和高铝水泥原料。

中国钴行业振兴计划(三)

2018-12-10 14:19:22

支持钴行业的进行调整与振兴的要点 3.1支持有条件的钴企业走出去控制国外资源,特别是非洲的钴储量资源     加大中国政策性银行与商业银行支持有条件的钴企业走出去控制国外资源。在矿山抵押贷款方面要有突破,给予长期开发贷款。根据项目进展情况,财政可以免息或贴息。 3.2 支持钴行业的领军企业上市融资     目前钴企业尚无一家上市,但有4-5家已经完成了改制进入了辅导期,证监会可以优先安排其中的行业领军企业上市融资,促进钴行业的发展。 3.3 支持钴行业的领军企业进行收购重组,促使其利用市场手段扩大规模     由于中国钴行业企业虽然数量多,但是单个的规模均无法与世界巨头抗衡,因此,要鼓励银行发放专项收购重组贷款,促使钴行业进行行业重组。 3.4 对钴材料实行出口退税,支持钴行业中进行钴材料生产的企业进行产品升级换代,开发高科技产品,开拓国际市场。     中国的增值税为17%,而欧美只有11%左右,且出口退税,造成中国的钴材料在国际市场竞争力大大下降。因此,对利用国外钴资源加工而成的钴高科技材料,如钴酸锂、四氧化三钴、钴粉、高纯钴盐等应该全面实行17%的出口退税,以支持钴行业中进行钴材料生产的企业进行产品升级换代,开发高科技产品,开拓国际市场。 3.5 运用财政税收政策,鼓励钴行业企业提高环保水平,降低能源、资源消耗水平。     一般来说,规模大的企业其环保水平、能源、资源消耗水平相对领先,而规模小的企业因为实力与意识的问题,往往环保水平、能源、资源消耗水平相对落后。困此可出台相应政策,对规模小,能耗高、环保落后的小规模钴冶炼企业进行淘汰,对规模在2000吨/年以上的企业进行财政资助,税收减免,鼓励其对装备升级换代,促使其的环保水平与时俱进。 3.6 鼓励钴行业企业积极履行社会责任     针对国外媒体不断针对中国企业境外开拓资源的鼓噪,积极运用专项财政政策鼓励钴行业企业积极履行社会责任,出版社会责任报告,并通过国际权威中介机构进行社会责任认证,减少中国企业开拓国外资源的阻力。

高岭石-三水铝石型铝土矿

2019-02-12 10:07:54

首要矿藏为三水铝石、高岭石、赤铁矿、针铁矿等。关于低档次的三水铝石的铝土矿,一般以为浮选都是比较有用的,有主线正浮选三水铝石,也有建议反浮选含硅矿藏,药方与一般氧化矿浮选根本相同。以为参加和辅佐捕收剂(火油、机油)能够强化浮选,浮选流程方面留意泥沙分选及分支浮选等。     某高岭石-三水铝石型铝土矿选用泥、水分选,粗等级(-50mm+3mm)磨矿后用磁选除铁,矿泥磨矿后浮选,其选别工艺流程如图1所示。选别后得三种产品,铝土精矿用于出产电炉刚玉或拜耳法炼铝氧,高岭石产品用烧结法收回,含铁产品出产铁精矿,从而使铝土矿得到归纳收回。图1  某高岭石-三水铝石铝土矿选别示意图     磁选磁场强度为3000~3500奥斯特,浮选捕收剂为油酸:塔尔油:机油=1:1:1,其总用量为300g/t。其选别成果见表1。从表1中可见,铝土矿精矿含Al2O3为49.8%、收回率为58.8%,铝硅比从4.7提高到8.4,取得了必定分选作用。 表1  某高岭石-三水铝石型铝土矿选别目标产品名称产率/%Al2O3/%SiO2/%Fe2O3/%铅硅比档次收回率档次收回率档次收回率铝土矿精矿 高岭石产品 含铁产品 原矿50.10 21.70 25.10 100.0049.80 39.30 30.70 24.4058.80 23.00 18.20 100.005.95 21.80 2.97 9.1332.70 59.10 8.20 100.0014.00 23.00 30.40 17.5340.10 16.30 43.60 100.008.4 1.8 10.3 4.7

铝土矿床的主要成分--三水铝石

2018-12-28 09:57:34

三水铝石(Gibbsite) Al(OH)3 三水铝石是铝的氢氧化物矿物,在铝土矿床中它是主要的成分。三水铝石的晶体极细小,晶体聚集在一起成结核状、豆状或土状,一般为白色,有玻璃光泽,如果含有杂质则发红色。它们主要是长石等含铝矿物风化后产生的次生矿物。   化学组成为Al(OH)3﹑晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯 (Gibbs)的姓于1822年命名。晶体结构与水镁石相似﹐由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成﹐只是Al3+不占满夹层中的全部八面体空隙﹐仅占据其中的2/3。三水铝石的晶体一般极为细小﹐呈假六方片状﹐并常成双晶﹔通常以结核状﹑豆状﹑土状集合体产出。白色﹐或因杂质染色而呈淡红至红色。玻璃光泽﹐解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5﹐比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物﹐是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。   三水铝石[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。   [结构与形态] 单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm;Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3 具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。   斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。     [物理性质] 白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。   偏光镜下:无色。二轴晶。Ng=1.587,Nm=Np=1.566。   [产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

硝酸镍

2017-06-06 17:49:59

硝酸镍化学式Ni(NO3)2。硝酸镍碧绿色单斜晶系板状晶体,密度2.05g/cm3,熔点56.7℃,沸点136.7℃(饱和溶液)。易溶于水,液氨,乙醇,微溶于丙酮,水溶液呈酸性,有吸湿性,潮湿空气中很快潮解。干燥空气中缓慢风化。受热时会失去四个分子水,温度高于110℃时开始分解并形成碱式盐,继续加热生成棕黑色的三氧化二镍和绿色的氧化亚镍的混合物。继续加热生成棕黑色的三氧化二镍和氧化亚镍混合物。易溶于水,水溶液呈酸性,溶于氨水,液氨,氧化剂,与有机物还原及易燃物硫,磷等混合有引起燃烧和爆炸危险。分子式 Ni(NO3)2·6H2O外观与性状 青绿色单斜结晶,易潮解分子量 290.81 沸 点 136.7℃熔 点 56.7℃ 溶解性 易溶于水、乙醇、氨水密 度 相对密度(水=1)2.05 稳定性 稳定制备:1、由镍板与浓硝酸发生反应,再经稀释、调节酸度、静置、过滤、滤液酸化、减压蒸发浓缩、冷却结晶、离心分离得到成品。2、由含镍工业废料酸溶、精制、沉淀出氢氧化镍,再用稀硝酸溶解得到。硝酸镍用途:用于电镀镀镍铬合金制件,使制件镀层细致,也用于制造蓄电池和彩釉着色,以及用于制造其他镍盐和镍催化剂。 

硝酸稀土

2017-06-06 17:50:12

硝酸稀土是由轻稀土元素镧、铈、镨、钕中的两种或两种以上硝酸盐组成的无机混合物。为白色到浅粉色的晶体颗粒或粉末,极易吸湿潮解,易溶于水,溶于乙醇。质量指标  外观:白色/浅粉色的晶体颗粒或粉末,无肉眼可见的夹杂物。   有效成份:RExOy≥38%   杂质含量:Pb<0..002%   Cd:<0.0005%   As:<0.0003%   Hg:<0.00001%   Cl:<1%   水不溶物:<0.5%   总α放射性比活度不大于800Bq/kg。硝酸稀土的应用方法  广泛用于各种粮食、油料、糖料、蔬菜、水果、花卉、烟草、茶叶和橡胶等作物,亦用于牧草和林木种植。   使用方法以喷洒为主,多用于苗期或花期,喷洒次数一般1~2次,也可拌种、浸种、涂抹(橡胶树)等。   喷洒使用时宜把天然水酸度先调至pH值5~6,以提高使用效果。   使用剂量一般为20~60克/亩。更多有关硝酸稀土的内容请查阅上海 有色 网

硝酸稀土

2017-06-06 17:50:03

硝酸稀土硝酸稀土:土微黄色液体或晶体;易溶于水。主要用于稀土微肥。用于肥料添加剂。可以说是植物的肥料.稀土资料稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth),简称稀土(RE或R)。稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。       硝酸稀土也是植物生长调节剂的一种。       以上是硝酸稀土的介绍,更多信息请详见上海 有色金属 网。 

浮选方法提高三水铝石铝硅比的研究

2019-01-24 09:38:19

Abstract The flotation experiments of Indonesia gibbsite ore were conducted using oxidized paraffin soap and tall oil as the collectors and sodium carbonate, sodium silicate and sodium hexametaphosphate as the regulators. Through the con- ditional experiments of multi-factors such as grinding fineness, collector and regulator dosage and pulp concentration, the factors influencing the improvement of the silicon-aluminum ratio of gibbsite and the suitable flotation conditions were inves- tigated. The experiment results show that a flotation concentrate having a recovery of 63.49% and an aluminum to silicon ratio of 11.18 could be obtained at a grinding fineness of 75% -200 mesh, sodium carbonate dosage of 4000g/t, sodium silicate dosage of 2kg/t, sodium hexametaphosphate dosage of 250g/t , collector dosage of 700g/t and pulp concentration of28.57%. 铝土矿是生产氧化铝、耐火材料及建材的主要原料,随着经济的快速发展,金属铝的消耗量将日益增加。随着铝土矿高品位矿石急剧减少,对中低铝硅比铝土矿采用选矿一拜尔法是生产氧化铝的有效方法,即采用选矿方法脱除矿石中的含硅矿物,获得高铝硅比精矿作为拜尔法生产氧化铝的原料。目前国内外都在探索铝土矿选矿脱硅的方法和工艺。 根据铝土矿的化学组成和晶体结构不同,可分为三水铝石、-水软铝石和-水硬铝石等。铝土矿的分子式为Al203·nH2O,属氢氧化物类。主要形成于外生风化和沉积作用中,与褐铁矿、碳页岩、粘土矿物密切共生,含杂质较多。三水铝石又名水铝氧石、氢氧铝石,分子式为A1203·3H2O,晶体结构属层状。氢氧离子成六方最紧密堆积,铝离子填充于邻接的两层氢氧离子之间的2/3八面体空隙,组成配位八面体的结构层。结构层内属离子键,结构层间属分子键,其层状结构决定了它的片状形态。三水铝石通常与高岭石、针铁矿、赤铁矿、伊利石等共生。三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉,可以被高岭石、多水高岭石等交代。高岭石为主要含硅矿物,分子式Al4(Si4010)(OH)8,因本身含铝,在选矿脱除高岭石时,会造成少量铝的损失。 浮选的方法包括正浮选和反浮选两种。正浮选一般采用脂肪酸或磺酸盐类捕收剂浮选铝土矿,反浮选则采用胺类捕收剂,以六偏磷酸钠、水玻璃、丹宁和苏打等作为调整剂。早在20世纪30—40年代,美国采用浮选法选别阿肯色地区的三水铝石铝土矿,可以将铝土矿的铝硅比由3—8提高到10~19,不足之处是回收率较低。70年代初,针对含高岭石、石英的三水铝石型铝土矿采用塔尔油、机油和油酸的混合物作捕收剂,硅酸钠、六偏磷酸盐作调整剂进行了浮选回收三水铝石的研究,同样精矿回收率很低[1]。Weston等人的专利提出,将NaOH(或 KOH)、Na2CO3和分散剂六偏磷酸钠等加入球磨机中进行湿磨,pH保持在9.5~12.5进行调浆浮选,可获得满意的结果。前苏联处理乌克兰境内的维考波里斯克铝土矿时,采用塔尔油脂肪酸和阳离子药剂AH lI一14的混合物作捕收剂,并添加苏打和0II-7型药剂,可使铝硅比由原矿的5左右提高到9左右。前苏联对三水铝石铝土矿采用筛洗一脱泥一浮选流程,铝硅比由4.7提高到9.00,回收率为58.80%[2.3 J。V.V.Ishchenko[4]等使用十二胺对铝硅比为2.4~2.7的原矿进行反浮选,获得铝硅比>7的精矿。N.M.Anishchenko[5]等使用月桂胺成功地实现了鲕绿泥石与三水铝石的分离。 近年来,我国主要是对一水硬铝石型铝土矿浮选脱硅进行了研究,而对三水铝石型铝土矿的选矿研究很少。20世纪90年代,正浮选铝硅分离研究获得进展,具代表性的是选择性磨矿一选择性聚团浮选分离工艺和阶段磨浮分离工艺。根据铝土矿中各种矿物可磨性差异,通过选择性磨矿+分级获得部分粗粒级合格产品,再脱泥后对剩余窄级别物料进行浮选[6]。针对我国一水硬铝石型铝土矿含硅矿物硬度低、密度小、易磨,一水硬铝石嵌布粒度细等特点,近年来开展了铝土矿反浮选研究[78]。本研究以印尼的三水铝土矿为原料,通过磨矿细度、捕收剂和调整剂用量、浮选浓度等多因素条件试验,探讨正浮选方法脱硅影响因素和适宜工艺条件。 一、矿石性质与试验方法 印尼三水铝石型铝土矿主要含铝矿物为三水铝石,含硅矿物主要为高岭石和石英,并含赤铁矿、钛针铁矿、锐钛矿等。原矿矿物含量和化学组成如表1和表2所示。原矿粒度组成如表3所示。 表1  原矿矿物含量       %矿物名称三水铝石高岭石石英赤铁矿钛针铁矿锐钛矿含量759~102542表2  原矿化学组成       %矿物名称SiO2Al2O3Fe2O3TiO2MgOCaO含量5.6550.317.341.180.100.17原矿铝硅比为8.67。为了分析+200目、-200目级别的铝硅比,原矿用-200目筛子分为+200目和-200目两个级别,分别进行了化学分析。其分析结果见表4。从表4可看出,原矿中+200目和-200目级别铝硅比明显不同,+200目级别的铝硅比达到10以上。 浮选试验采用XFDl-63型单槽式浮选机,浮选槽容量500mL,浮选温度32℃,调浆时间3min,浮选时间为10min。试验以氧化石蜡皂和塔尔油作为捕收剂,碳酸钠、水玻璃、六偏磷酸钠作为调整剂。碳酸钠在磨矿过程中加入。 二、试验结果与分析 (一)磨矿细度对浮选精矿铝硅比和回收率的影响。不同磨矿细度的浮选试验结果如表5所示。其中碳酸钠用量5kg/t,捕收剂用量0.5kg/t,矿浆浓度28.6%。从表5可看出,浮选精矿A1203品位和铝硅比随着磨矿细度的增加而逐渐增加,在磨矿细度为75%-200目时分别达到最大值50.67%和10.92;当磨矿细度大于75%-200目时精矿A12O3品位和铝硅比开始下降。精矿A1203回收率则随着磨矿细度的增加不断增加,磨矿细度为一200目含量92%时精矿中A1203的回收率达到66.19%。可认为磨矿细度为75%一200目时铝土矿中含铝矿物基本达到单体解离,随着磨矿细度继续增大,脉石矿物产生泥化,从而使浮选精矿中夹杂了更多脉石矿物,导致精矿的铝硅比降低。 (二)碳酸钠用量对浮选的影响。在磨矿细度为75%一200目条件下,进行了不同碳酸钠用量浮选试验。试验结果如表6所示。从表6可见,随着碳酸钠用量从3000g/t增加到7000g/t,精矿A1203品位和铝硅比变化不大, A1203品位介于50.03%~50.54%,铝硅比介于10.52-lO.88;而精矿A1203回收率随着碳酸钠用量增加先增大而后逐渐降低,在4000g/t时达到最大值64.07%。因为精矿Al203品位和铝硅比受碳酸钠用量影响不大,所以可认为碳酸钠主要是起调整矿浆pH的作用,而在矿浆中的分散作用并不明显。碳酸钠用量增大使捕收剂在高碱性条件下有更强的捕收性,从而提高精矿A1203回收率。

稀土硝酸盐

2017-06-06 17:50:13

稀土硝酸盐掺杂的氧化锌压敏陶瓷材料及制备方法,属功能陶瓷材料制造技术领域。其特征在于氧化锌压敏电阻材料按摩尔百分比包括下述组分:ZnO 94-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1-1.0%,稀土硝酸盐为0.01-2.0%,其中稀土硝酸盐为稀土钇、镨、锶的硝酸盐的一种。稀土硝酸盐掺杂的氧化锌压敏陶瓷发明通过稀土硝酸盐掺杂并通过调整稀土硝酸盐的合理掺杂浓度,使氧化锌压敏陶瓷的显微组织均匀,电性能得以提高,压敏陶瓷的电位梯度提高到1000- 1300V/mm,非线性系数为30-50,漏电流为2-20μA。稀土硝酸盐掺杂的氧化锌发明的压敏陶瓷可用于制造超高压电力系统的优质避雷器产品。更多有关稀土硝酸盐的内容请查阅上海 有色 网