您所在的位置: 上海有色 > 有色金属产品库 > 氧化钴硬度

氧化钴硬度

抱歉!您想要的信息未找到。

氧化钴硬度专区

更多
抱歉!您想要的信息未找到。

氧化钴硬度百科

更多

氧化钴

2017-12-27 15:30:03

氧化钴一种化学品的名称,通常是灰色粉末, 有时是绿棕色晶体。主要用作制取金属钴的原料,制取的金属钴用于生产钨钴硬质合金、钴磁合金、经过继续氧化成四氧化三钴用作钴锂电池的正极材料,在化工行业用作催化剂,还用作玻璃、搪瓷、陶瓷、磁性材料、密着剂、天蓝色、钴蓝色、钴绿色等色彩的着色剂,家畜微量元素营养剂。用作制取金属钴的原料,制取的金属钴用于生产钨钴硬质合金、钴磁合金、继续氧化成四氧化三钴用作钴锂电池的正极材料,用作玻璃、搪瓷、陶瓷、磁性材料、密着剂、天蓝色、钴蓝色、钴绿色等色彩的着色剂,家畜微量元素营养剂。化工行业用作催化剂。

氧化钴基础知识

2019-03-07 10:03:00

氧化钴粉首要包含CoO、Co2O3、Co3O4。含钴74%以上的高品位氧化钴为褐色,含钴74%以下的氧化钴为黑色。依照其用处和化学成分的不同,依据国家标准,精制氧化钴粉首要分为Y类和T类两大系列,而Y类产品又分为Y0、Y1、Y2三种牌号,T类产品分为T1、T2两种牌号。精制氧化钴粉的粒度一般在180~250目,其松装密度为0.4~0.61t/m3。氧化钴,主成分为CoO或Co2O3,黑灰色粉末,渐溶于热和热稀硫酸中,并别离放出氯和氧,不溶于水和醇。用作氧化剂,制作钴和不含镍的钴盐、钴催化剂、颜料、陶瓷的釉料、色素着色剂、硬质合金,用于电子及冶金工业等。精制氧化钴粉首要用于制作硬质合金,占用量的93%;部分用作颜料和釉料,4%用于陶瓷,3%用于珐琅职业。将草酸钴在650~7500C下进行煅烧,终究制得精美氧化钴产品。金川钴体系选用回转窑煅烧,钴的回收率可到达98%以上。 四氧化三钴(Co3O4)为灰黑色粉末状固体,广泛应用于制作硬质合金、磁性材料、珐琅颜料、陶瓷颜料及玻璃颜料、故触媒、油墨颜料、玻璃脱色剂,是制备催化剂和干燥剂的首要原料。现在首要用于出产锂离子电池材料钴酸锂。因为通讯、电子业的开展,我国对锂离子电池的需求也不断增加,估计从现在到2010年我国对锂离子电池的需求将以每年10%~20%的速度增。现在我国对四氧化三钴的需求量为2600t。 四氧化三钴传统的出产办法多选用灼烧或是热分解法。灼烧法就是将钴粉用红热蒸汽加热法生成CoO,在5000C下进一步氧化成Co3O4,可是这种办法产出的Co3O4粉末活性差,纯度低,粒度散布宽。热分解法是将纯洁的氧化钴或是硝酸钴溶液沉积出产草酸钴或是碳酸钴,经高温煅烧产出Co3O4。但该法相同存在粒度散布不均匀的问题,产品纯度较低。 近几年,我国对高浓度硝酸钴或氧化钴溶液直接组成Co3O4进行了实验研讨。将含钴溶液加热后,缓慢参加溶液,调理溶液的PH值,并缓慢参加H2O2,反响发生黑色沉积,沉积产品首要为钴的氧化物和水合物,含钴为65%~68%,沉积物经进一步煅烧,可得到纯度95%以上的Co3O4粉末。直接氧化法制得产品需求进一步煅烧,流程较长,并且参加量及参加速度对产品影响较大,进程较难于操控。 2004年北京矿冶研讨总院对加压浸出法直接出产Co3O4进行了实验研讨。产品含钴到达71.4%对产品进行x射线衍射分析断定,产品为纯度较高的四氧化三钴,谱线中未发现有其他物质。电子显微照片显现,加压浸出法产出四氧化三钴颗粒较煅烧法细,粒度较为均匀。

钴渣制取氧化钴的生产实践

2019-03-05 12:01:05

氧化钴是钴基合金、硬质合金及珐琅,陶瓷颜料的重要原材料,国内现在年产1000多吨。氧化钴有三种不同方式:CoO、Co2O3、Co3O4,色彩和含钴量都不同。因为各厂的质料和出产条件不同,在浸出、净化和钴沉积上各有特色。 从镍体系钴渣出产氧化钴的典型出产工艺为金川公司流程,如图1所示。图1  金川公司用钴渣出产氧化钴的流程图 一、萃取除杂 黄钠铁矾除铁后液中的杂质总量仍还有约2g∕L,包含Cu、Fe、Ca、Mg、Pb、Zn、Mn等,为了得到合格的氧化钴产品,还必须进一步的净化。金川公司选用P204萃取工艺进行深度净化除杂。 P204主要成分为二-(2-乙基己基)磷酸,是一种烷基磷酸萃取剂,分子量323,无臭味,出厂规格为P204≥93%,密度0.9694~0.9700g∕cm3(25℃),黏度0.42cP(25℃),在水中溶解度0.012g∕L,10%碳酸钠溶液中溶解度为0.026g∕L,1moL硫酸溶液中溶解度为0.0017g∕L,平衡pH值时pKa=3.5,酸性杂质为0.3%~0.4%,水分为0.3%~0.4%,其分子结构式为:萃取除杂在25级聚氯乙烯混合弄清箱中进行,溶液中的Cu、Fe、Zn、Mn、Ca等杂质进入有机相中,别离用1.2mol∕L、2.5mol∕L和6mol∕L洗Co、洗Cu、洗Fe。萃余液送P507别离镍钴。 25级别离为10级萃取,5级洗钴,4级洗铜,4级洗铁,2级弄清。 混合室:0.52m×0.52m×l.20m 弄清室:0.52m×2.60m×1.20m 萃取箱拌和桨为钛质六叶桨,直径200mm,由5台5.5kW电动机带动,转速470~500r∕min。流量由高位槽操控,转子流量计丈量。 萃取操作的技术参数为: 萃取剂:      10% P204,90%磺化火油 皂化剂:      8~9mol∕L NaOH溶液 皂化率:      60%~65% 物料流比:    有机相∶料液∶洗钴液=0.6∶1.0∶0.06 皂化在φ2×2mPVC槽内进行。 反萃用的2.5mol∕L和6.0molL∕L溶掖内循环,别离降至0.1~0.2mol∕L或4~4.5mol∕L时更换新酸液。 除杂后液成分:二、萃钴 P507萃钴在34级萃取箱中进行,其间制锦皂5级,镍钴别离7级,洗镍5级,钴反萃6级,洗铁5级,弄清6级。萃取箱尺度、结构、拌和桨及转速等与萃取除杂相同。 萃钴操作的技术参数为: 萃取剂        25% P507,75%磺化火油 制镍皂溶液    35~40g/L硫酸镍溶液 制钠皂溶液    8~9mol∕L NaOH溶液 物科流比      有机相∶料液∶洗镍液∶反萃液=1.0∶0.7∶0.07∶0.15 皂化在φ2×2mPVC槽内进行。 洗镍用1.2mol∕L溶液,反萃钴用2.5mol∕L溶液,冼铣用6.0mol∕L溶液(内循环)。 三、草酸钴沉积 运用沉积剂草酸铵,由草酸溶液通入自行沉积制备。运用φ2m×2m不锈钢槽,在60℃下溶解工业草酸,真空抽滤除掉残渣,溶液在机械拌和条件下通入气,至pH=4.0~4.5时沉积结束,真空过滤得到草酸铵。 沉钴分两段进行,都在2m3珐琅釜内完结,操作条件见表1。 表1  两段沉钴技术参数四、煅烧制氧化钴 一段沉积草酸钴选用反转管电炉煅烧,电炉规格为φ0.5m×10m,转速0~2.07r∕min,倾角3°,总功率250kW,炉头温度700℃,炉中600℃,炉尾500℃。 二段沉积选用红外线炉煅烧热解,温度530℃。 硬质合金出产用的氧化钴要求松装比重在0.45~0.55g∕cm3之间,为此要求在沉钴过程中严格操控氯化钴的初始浓度、淀度及草酸铵的参加速度,以确保取得必定粒度的沉积;一起严格操控煅烧时的炉温,不致过烧或缺乏。

氧化钴的生产工艺流程介绍

2019-02-22 10:21:22

钴矿用球磨机破坏到粒度约-100目巨细后,将矿浆打到溶解槽,用硫酸或溶解后压滤,将滤液加热,往热溶液中参加碳酸钠、、、硫代硫酸钠等化工原料作为除杂剂,除掉溶液中的很多的铜、铁、钙、镁、铅、锌等杂质。少数的杂质随溶液进入下一道工序,运用P204[磷酸二异辛酯]作萃取剂,将钴、镍与铜铁等杂质元素别离,萃取液用稀反萃(洗脱),钴、镍进入水相中,将含钴、镍溶液送入含P507[2-乙基己基磷酸-2-乙基己基酯]的萃取槽进行钴镍别离。含镍溶液作为副产品出产硫酸镍,含钴溶液经浓缩到达规则的浓度后用反萃,生成氯化钴溶液,用草酸铵沉积钴,转化为草酸钴沉积,将沉积物枯燥后以草酸钴方式作为产品运用。草酸钴经高温锻烧后生成氧化钴,经复原后制成钴粉。经钴镍别离后的钴溶液,假如用硫酸溶液洗脱,可制成硫酸钴产品,用醋酸洗脱可制成醋酸钴,氯化钴溶液用碳酸钠沉积可制成碳酸钴,用于出产钴粉、氧化亚钴或四氧化三钴。

从氧化钴矿石中提取钴的工艺技术

2019-02-11 14:05:44

钴具有耐腐蚀、熔点高、强磁性等优秀功能,是各种特殊钢、耐热合金、抗腐蚀合金、磁性合金、硬质合金出产的重要质料,广泛用于航空、航天、机械制造、电气外表等范畴,因而,钴被誉为战略物资。     现在钴的出产基本上都是以钴土矿、钴硫精矿、硫化铜镍矿渣、砷钴矿等为质料。现已探明的钴矿资源均匀档次仅为0.02%,并且在出产过程中收回率低、工艺杂乱、出产成本较高。     一、矿石性质     实验所用钴矿石为非洲刚果氧化型水钴矿,呈灰黑色,密度2.780t/m3,化学分析成果见表1。水钴矿属成分杂乱的氧化物和氢氧化物,其杂质成分和结晶程度互不相同,X射线衍射成果表明可能是三价和二价的单水化合物变种,具有不稳定成分,如水钴铜矿(2Co2O3·CuO·6H2O),铜水钴矿(2Co2O3·CuO·3H2O)等。 表1  水钴矿化学分析成果    %CoCuFeMnNiMgCa9.2415.422.780.190.180.960.084     二、仪器、试剂及工艺流程     实验所用仪器有KS-Ⅱ康氏振荡器,78HW-1恒温磁力拌和器,LD2001电子秤,JJ-2型增力电动拌和器,2XZ-0.5旋片真空泵,F97-A矿石粉碎机,分液漏斗。     实验所用试剂有工业级硫代硫酸钠、碳酸钠、、P204、P507、硫酸、化学纯,草酸铵,分析纯。     实验工艺流程见图1。    图1  从氧化钴矿石中提取钴的工艺流程     三、成果与评论     (一)浸出     钴的贱价氧化物易在稀硫酸溶液中溶解,生成可溶性CoSO4,而高价氧化物必须在浓硫酸中才溶解。反响式为: CoO+H2SO4(稀)=CoSO4+H2O, Co2O3+2H2SO4(浓)=2CoSO4+2H2O+1/2O2, CoO·SiO2+H2SO4(稀)=CoSO4+H2SiO3, CoO·Fe2O3+4H2SO4(稀)=CoSO4+Fe2(SO4)3+4H2O。     1、一段浸出     将水钴矿磨细,浆化,用1mol/L H2SO4溶液浸出,首要调查矿石粒度、浸出时刻、浸出温度对钴浸出率的影响,实验成果见表2~4。 表2  矿石粒度对钴浸出率的影响序 号矿石粒度/目钴浸出率/%1 2 3-60 -120 -2009.8 25.5 41.18     浸出时刻12h;浸出温度90℃。 表3  浸出时刻对钴浸出率的影响序 号浸出时刻/h钴浸出率/%1 2 3 46 12 18 2428.1 40.9 41.0 43.6     矿石粒度-200目,浸出温度90℃。 表4  浸出温度对钴浸出率的影响序 号浸出温度/℃钴浸出率/%1 2 3 425 60 90 1004.3 11.7 42.3 42.6     矿石粒度-200目,浸出时刻12h。     从表2~4能够看出,矿石粒度越细,浸出温度越高,保温时刻越长,钴浸出率越高。归纳考虑,一段浸出以矿石粒度200目以下、保温时刻12h、温度90℃为宜。     2、二段浸出     取一段浸出渣,按液固体积质量比2:1调浆,用4mol/L H2SO4溶液按液固体积质量比4:1拌和浸出,温度95℃以上,保温必定时刻,调查矿石粒度、保温时刻对钴浸出率的影响。实验成果见表5、表6。能够看出,矿石粒度减小、保温时刻延伸,钴浸出率进步。归纳考虑,矿石粒度以200目以下、保温时刻24h为宜。 表5  矿石粒度对钴浸出率的影响序 号矿石粒度/目钴浸出率/%1 2 3-60 -120 -20021.1 70.3 99.1     保温24h;温度95℃以上。 表6  保温时刻对钴浸出率的影响序 号保温时刻/h钴浸出率/%1 2 3 46 12 18 2456.3 86.9 94.2 99.03     (二)浸出液的净化     用硫酸经过二段浸出,矿石中大部分钴都进入溶液,一起其他共存元素也进入溶液。杂质元素的存在收回钴或钴化合物有很大影响,需预先去除。最优条件下取得的浸出液成分见表7。 表7  浸出液成分阶段   g/LCo2+Zn2+ΣFeNi2+Cu2+Ca2+Mg2+18.60.182.340.2841.80.601.99     (三)除铁     选用黄钠铁矾法除铁。黄钠铁矾[Na2Fe6(SO4)4(OH)12]为淡黄色晶体,是一种过滤功能、洗刷功能都杰出的盐基性硫酸盐。除铁总反响式为: 3Fe2(SO4)3+6H2O+5Na2CO3=Na2Fe6(SO4)4 (OH)12↓+5Na2SO4+6CO2     取上述浸出液1000mL,调pH进行实验,成果见表8。能够看出,结尾pH对铁矾的构成有很大的影响。pH在4.0~4.5范围内,铁去除彻底,溶液中钴/铁质量浓度比到达18600。 表8  溶液pH对Fe沉积的影响pHρ(Fe)/(g·L-1)ρ(Co)/ρ(Fe)铁矾渣中 w(Co)/%铁矾渣中 w(Fe)/%2.0~2.5 2.5~3.0 3.0~3.5 3.5~4.0 4.0~4.50.39 0.146 0.04 0.026 <0.00147.7 127.4 465 715.4 186000.3 0.04 0.5 0.9 0.3622.57 23.1 20.6 24.1 22.1     (四)除Ca2+、Mg2+、Cu2+     使用Ca2+、Mg2+的氟化物溶解度低的特色,操控溶液pH,使Ca2+、Mg2+别离构成CaFe2、MgFe2沉积。 Na2S2O3与Cu2+反响构成CuS沉积,Co2+则留在溶液中,然后完成Ca2+、Mg2+、Cu2+与Co2+、Ni2+的别离。反响方程式如下: MgSO4+2NaF=MgFe2↓+Na2SO4, CaSO4+2NaF=CaF2↓+Na2SO4, 2CuSO4+2Na2S2O3+2H2O=Cu2S+S+2Na2SO4+2H2SO4。     对去除了铁的溶液,在必定温度下,先后参加必定量NaF和Na2S2O3,调查NaF对Ca2+、Mg2+杂质去除的影响及Na2S2O3对Cu2+去除的影响。实验成果见表9和表10。能够看出,在必定温度下,操控NaF和Na2S2O3用量,能够将浸出液中的Ca2+、Mg2+及Cu2+去除。 表9  NaF参加量对Ca2+、Mg2+去除的影响m(NaF)/ m(Ca2++Mg2+)溶液中ρ(Ca2+)/ (g·L-1)溶液中ρ(Mg2+)/ (g·L-1)ρ(Co2+)/ρ (Ca2+)ρ(Co2+)/ρ (Mg2+)5 10 120.44 0.0144 0.01020.75 0.0113 0.007842.3 1291.7 1823.524.8 1646 2384.6     保温时刻4h。 表10  Na2S2O3参加量对Cu2+去除的影响m(Na2S2O3)/ m(Cu2+)溶液中ρ(Cu2+)/ (g·L-1)溶液中ρ(Co2+)/ (Cu2+)渣中w(Co)/%渣中w(Cu)/%4 6 8 105.3 0.065 0.01 <0.0135 286 1860 <18600.015 0.03 0.02 0.0155.9 57.9 67.2 60.3     溶液调pH后,参加Na2S2O3,在必定温度下保温30min。     (五)P204萃取深度除杂质     以化学法除杂后的溶液中还含有少数杂质(表11),还须进行深度净化。操控溶液pH、流量等,经过串级萃取能够使杂质进一步去除。由串级萃取理论核算萃取段为8级,洗刷段为7级。流量比:V(有机相):V(洗刷液)=8:3:1。溶液pH=4.5,成分见表12。 表11  化学除杂后溶液成分   g/LCo2+Ni2+Cu2+ΣFeCa2+Mg2+Mn2+Zn2+As3+Pb2+24.20.512.020.00720.01210.00621.360.220.00290.0146 表12  除杂质后萃余液成分    g/LCo2+Ni2+Cu2+Mn2+Zn2+Ca2+Mg2+ΣFeNa+17.20.320.00860.0104<0.0010.00350.0056<0.00146.4     (六)P507萃取别离钴、镍     去除杂质后的萃余液(组成见表12)进行钴镍别离。操控pH、流量、萃取级数进行萃取,萃余液中ρ(Ni2+)=0.056g/L,ρ(Co2+)=0.154g/L;有机相中ρ(Ni2+)<0.001g/L,ρ(Co2+)=0.154g/L。     从有机相中6级反萃取钴,洗刷液为2.5mol/L HCl,操控流量比为:V(有机相):V(洗刷液)=6:1。反萃取后的CoCl2溶液组成见表13。 表13  反萃取后的CoCl2溶液组成    g/LCo2+Ni2+Cu2+Mn2+Ca2+Mg2+Zn2+Na+pH68.20.0410.0030.010.030.0025<0.00110.51~2     (七)沉积、烘干     去除杂质后的溶液中,钴以CoCl2方式存在,选用草酸铵沉积法沉积草酸钴,反响式如下: Co2++(NH4)2C2O4=CoC2O4+2NH4-     草酸钴沉积中含有必定量可溶性离子(如NH4+、Na+、SO42-、Cl-等),用热水洗刷可得到精制草酸钴产品。二价钴的草酸盐一般为桃红色,难溶于水,微溶于酸,在空气中加热即变成无水盐。洗刷后的草酸钴在箱式炉中进行烘干,炉温90~110℃,操控草酸钴色彩为桃红色,水分小于0.65%。所得草酸钴产品松装密度为0.29g/cm3,化学成分见表14。 表14  草酸钴产品的化学成分阶段   %CoNiCuMnCaMgZnNaH2O31.20.080.0940.020.10.0090.0090.080.085     四、定论     (一)氧化钴型水钴经过硫酸两段浸出,浸出液中Co2+质量浓度达15~20g/L,钴浸出率达99%。     (二)选用化学法去除溶液中的Fe、Ca、Mg、Cu杂质,能够操控杂质含量到达要求。     (三)对化学除杂后的浸出液,选用204串级萃取进一步除杂,P507萃取别离钴、镍,可得到合格的CoCl2溶液。     (四)用草酸铵沉积得草酸钴,洗刷后在必定温度下烘干即得草酸钴产品。

氧化水解分离钴

2019-01-31 11:06:04

使用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。 在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发作发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。 水解沉积进程中有H+发生,有必要加碱进行中和。 在出产使用中,为了使钴和镍杰出别离,应遵照以下根本原则: (一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。 (二)操控恰当的析钴率,溶液含钴高时析钴率可高些。 (三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。 沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图1所示。二次沉钴的根本技术参数见表1。图1  从氢氧化钴出产电钴的工艺流程图 表1  二次沉钴的首要技术参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。

氧化钴矿的选矿工艺流程

2019-01-18 11:39:40

某含大量矿泥氧化钴矿工艺矿物学研究表明,原矿中的主要有用矿物为裼铁矿和杂水钴矿及少量的水钴矿,杂水钴矿普遍含铁、锰,钴主要存在于钴的独立矿物杂水钴矿中,褐铁矿中亦含有少量钴,褐铁矿及水钴矿、杂水钴矿类矿物约占10%,以风化产物充填在石英颗粒间。主要脉石矿物为石英及其风化产物,占有量约65%~70%,少量浸染褐铁矿的黏土矿类矿物,占有量约15%~20%。未见独立的铜矿物,铜主要存在于含钴矿物及褐铁矿中,铜、钴关系密切,不可能分别富集,铜将在选钴的过程中得到富集,获得含铜钴精矿;本研究推荐工艺流程为:原矿预脱原生泥后磨矿,强磁选脱次生矿泥再抛尾,采用浮选得到最终产品,并控制产品质量,使铜钴精矿钴品。。。。。。

氧化镍钴锰锂

2017-06-06 17:49:58

一种新型高比能量锂离子电池正极用氧化镍钴锰锂材料,日前由天津电源研究所研制成功。并获得了信息产业部电子基金的资金支持,随即建成年产200吨氧化镍钴锰锂生产线,在国内率先实现了产业化生产。目前市场上的锂离子电池大多以氧化钴锂为正极,其材料的稳定性和产品的安全性比较差。天津电源研究所针对氧化钴锂存在的突出问题,采用价格相对低廉的镍、锰替代钴,并研发独特的烧结工艺,仅用了一年多时间就成功解决了这一难题。据了解,这种新型材料具有容量高、寿命长、安全系数高、无污染等优点。与氧化钴锂相比,制造成本降低了10%至15%,每克容量由140毫安时可提升到220毫安时,由此不仅提高了产品的安全性能,而且增大了电池容量,一举突破了锂离子电池发展的瓶颈制约。该产品现已得到多家用户的认可,并实现了为出口欧盟的高端电池产品生产厂家供货。为了研制在电性能、安全性和成本价格等三方面均能较好地满足电动汽车需求的锂离子电池,选择了在氧化钴锂中掺杂氧化镍锰钴锂三元材料的方法,研制了新的50Ah动力型锂离子电池。通过对研制电池进行电性能和安全性试验,各项性能均满足电动汽车的技术要求,加上氧化镍锰钴锂三元材料的价格仅为氧化钴锂的50%左右,所以掺杂氧化镍锰钴锂三元材料是解决电动汽车对动力型锂离子电池严格需求的理想途径之一。近期有一种锂离子电池正极材料氧化镍钴锰锂及其制备方法。本发明属于锂离子电池技术领域。锂离子电池正极材料氧化镍钴锰锂为富锂型层状结构,化学成分Li↓[1+z]M↓[1-x-y]Ni↓[x]Co↓[y]O↓[2],其中0.05≤z≤0.2,0.1<x≤0.80.1<y≤0.5。制备方法:镍、钴、锰的可溶性盐为原料;氨水或铵盐为络合剂,氢氧化钠为沉淀剂;加水溶性分散剂,加水溶性抗氧化剂或用惰性气体控制和保护;将溶液并流方式加到反应釜反应;碱性处理,陈化,固液分离,洗涤干燥;氧化镍钴锰和锂原材料混合均匀;将混合粉体分三温区烧结得到氧化镍钴锰锂粉体。本发明比容量高,循环特性好,晶体结构理想,生产周期短,功耗低,适合产业化生产等。 

怎么增加黄铜的硬度

2019-05-29 19:27:42

怎样添加黄铜的硬度?黄铜怎样自己硬度?黄铜是咱们日子中常见的一种金属合金,在咱们印象中,黄铜的硬度一般都是不高的,相关于其他金属合金来说比较软,那么,有没有什么方法能够添加黄铜的硬度呢?下面小编就为我们带来添加黄铜硬度的!黄铜  怎样添加黄铜的硬度?在铝黄铜中添加微量钴研讨微量钴、冶炼铸造技术及制作技术参数对轧制法加工的带材的机械功能的影响.探究选用铝黄铜代替现在广泛运用的弹性铜合金材料.锡磷青铜的可行性.  研讨结果显现:钴能有用削减铸态合金的晶粒尺度、改动晶粒的形状,进步合金的抗拉强度、硬度,并确保合金具有较好的延展性.铝黄铜中添加0.4%钴.选用合理的制作技术加工出的黄铜带具有比锡磷青铜更优异的功能,0.25mm厚的带材,其抗拉强度可达840.4MPa,伸长率为2.8%,维氏硬度值为228,比特硬状况的QSn6.5-0.1带材的抗拉强度最大值(805MPa)进步了4.4%,满意弹性元件的运用要求;一起,因为该黄铜中含有22.7%的锌,可有用下降成本,具有实践使用价值.  黄铜管是由铜和锌所组成的合金。假如仅仅由铜、锌组成的黄铜就叫作普通黄铜。假如是由二种以上的元素组成的多种合金就称为特殊黄铜。如由铅、锡、锰、镍、铅、铁、硅组成的铜合金。黄铜有较强的耐磨功能。特殊黄铜又名特种黄铜,它强度高、硬度大、耐化学腐蚀性强。还有切削制作的机械功能也较杰出。由黄铜所拉成的无缝铜管,质软、耐磨功能强。黄铜无缝管可用于热交换器和冷凝器、低温管路、海底运送管。制作板料、条材、棒材、管材,铸造零件等。含铜在62%~68%,塑性强,制作耐压设备等。  怎样添加黄铜的硬度?依据黄铜中所含合金元素品种的不同,黄铜分为普通黄铜和特殊黄铜两种。压力制作用的黄铜称为变形黄铜。  1.普通黄铜管  (1)普通黄铜的室温安排普通黄铜是铜锌二元合金,其含锌量改变规模较大,因而其室温安排也有很大不同。依据Cu-Zn二元状况图(图6),黄铜的室温安排有三种:含锌量在35%以下的黄铜,室温下的显微安排由单相的α固溶体组成,称为α黄铜;含锌量在36%~46%规模内的黄铜,室温下的显微安排由(α+β)两相组成,称为(α+β)黄铜(两相黄铜);含锌量超越46%~50%的黄铜,室温下的显微安排仅由β相组成,称为β黄铜。  (2)压力制作功能α单相黄铜管(从H96至H65)具有杰出的塑性,能接受冷热制作,但α单相黄铜在铸造等热制作时易呈现中温脆性,其详细温度规模随含Zn量不同而有所改变,一般在200~700℃之间。因而,热制作时温度应高于700℃。单相α黄铜中温脆性区发作的原因主要是在Cu-Zn合金系α相区内存在着Cu3Zn和Cu9Zn两个有序化合物,在中低温加热时发作有序改变,使合金变脆;别的,合金中存在微量的铅、铋有害杂质与铜构成低熔点共晶薄膜散布在晶界上,热制作时发作晶间决裂。实践标明,参加微量的铈能够有用地消除中温脆性。  含锌量大于46%~50%的β黄铜因功能硬脆,不能进行压力制作。  (3)机械功能黄铜中因为含锌量不同,机械功能也不一样,图7是黄铜的机械功能随含锌量不同而改变的曲线。关于α黄铜,跟着含锌量的增多,σb和δ均不断增高。关于(α+β)黄铜,当含锌量添加到约为45%之前,室温强度不断进步。若再进一步添加含锌量,则因为合金安排中呈现了脆性更大的r相(以Cu5Zn8化合物为基的固溶体),强度急剧下降。(α+β)黄铜的室温塑性则一直随含锌量的添加而下降。所以含锌量超越45%的铜锌合金无实用价值。  2.特殊黄铜  为了进步黄铜的耐蚀性、强度、硬度和切削性等,在铜-锌合金中参加少数(一般为1%~2%,少数达3%~4%,极个别的达5%~6%)锡、铝、锰、铁、硅、镍、铅等元素,构成三元、四元、乃至五元合金,即为杂乱黄铜,亦称特殊黄铜。  铅黄铜:铅实践不溶于黄铜内,呈游离质点状况散布在晶界上。铅黄铜按其安排有α和(α+β)两种。α铅黄铜因为铅的有害效果较大,高温塑性很低,故只能进行冷变形或热挤压。(α+β)铅黄铜在高温下具有较好的塑性,可进行铸造。  锡黄铜:黄铜中参加锡,可明显进步合金的耐热性,特别是进步抗海水腐蚀的才能,故锡黄铜有“水兵黄铜”之称。锡能溶入铜基固溶体中,起固溶强化效果。可是跟着含锡量的添加,合金中会呈现脆性的r相(CuZnSn化合物),不利于合金的塑性变形,故锡黄铜的含锡量一般在0.5%~1.5%规模内。  常用的锡黄铜有HSn70-1,HSn62-1,HSn60-1等。前者是α合金,具有较高的塑性,可进行冷、热压力制作。后两种牌号的合金具有(α+β)两相安排,并常呈现少数的r相,室温塑性不高,只能在热态下变形。  锰黄铜:锰在固态黄铜中有较大的溶解度。黄铜中参加1%~4%的锰,可明显进步合金的强度和耐蚀性,而不下降其塑性。  锰黄铜具有(α+β)安排,常用的有HMn58-2,冷、热态下的压力制作功能相当好。  铁黄铜:铁黄铜中,铁以富铁相的微粒分出,作为晶核而细化晶粒,并能阻挠再结晶晶粒长大,然后进步合金的机械功能和技术功能。铁黄铜中的铁含量通常在1.5%以下,其安排为(α+β),具有高的强度和耐性,高温下塑性很好,冷态下也可变形。常用的牌号为Hfe59-1-1。  镍黄铜:镍与铜能构成接连固溶体,明显扩展α相区。黄铜中参加镍可明显进步黄铜在大气和海水中的耐蚀性。镍还能进步黄铜的再结晶温度,促进构成更细的晶粒。   以上便是今日小编为我们带来的关于“怎样添加黄铜的硬度”的介绍,期望能对各位有所协助。拓宽阅览:黄铜管体积的计算方法黄 铜价 格一斤?h85黄铜棒化学成分及其使用【组图】h65黄铜板特色及其应用范围【组图】铜及铜合金的标准-板材标准 

紫铜硬度

2017-06-06 17:50:09

紫铜的硬度根据它的不同品种各有大小,现在 市场 上有很多测量紫铜硬度的仪器。WBB75是轻便的紫铜硬度计,可以现场快速测试软 金属 硬度的仪器。测试迅速,简便,一卡即可,硬度值直接读出,符合中国 有色 标准YS/T471。 WBB75系列铜合金韦氏硬度计可以测试型材、管材和板材,测试过程对工件无损伤,并且不必取样。特别适于在生产现场、销售现场或施工现场对产品进行快速无损的硬度检查。 WBB75适于测试黄铜和超硬铝合金材料。 WBB75适于测试退火黄铜和紫铜上材料。 W-B75b、W-BB75b型仪器分别是W-B75和W-BB75型仪器的细管专用型,仪器砧座减小到Ф5.8mm,可测试内径6mm以上的细管材。 标准硬度块经过标准硬度机的检测,附有检测报告。WBB75紫铜硬度计用 途* 确定工件有无热处理,检查热处理效果,判定工件力学性能是否合格。* 测试不便送到实验室的过长、过重工件或装配件。* 确定工件是否为不适当的合金加工而成,判定材料合金成份是否合格。* 区分材料的硬度级别。判断材料的退火、1/8硬、1/4硬、1/2硬、全硬等各种热处理状态。 WBB75紫铜硬度计主要技术参数 量 程:0-20HW 精 度:0.5HW 重 量:0.5kg 试样尺寸:厚 度:0.4mm-6mm 管材内径:?10mm以上 WBB75紫铜硬度计标准配置 主 机: 1台 标准硬度块: 1块 校正 扳手: 1个 备用 压针: 1支 小螺 丝刀: 1个 仪 器 箱: 1个 WBB75紫铜硬度计可选附件标准硬度块 ) 备用压针 表头玻璃片 仪器选型型号 试样范围/直径 mm 净重 Kg 总重 Kg 包装尺寸 mm W-B75 厚度:0.4 ~6mm,内径≥10mm 0.5 1.1 280×230×80 W-BB75 厚度:0.4 ~6mm,内径≥10mm 0.5 1.1 280×230×80 W-B75b 厚度:0.4 ~6mm,内径≥6mm 0.5 1.1 280×230×80 W-BB75b 厚度:0.4 ~6mm,内径≥6mm 0.5 1.1 280×230×80想要了解更多关于紫铜硬度的信息,请继续浏览上海 有色 网。