您所在的位置: 上海有色 > 有色金属产品库 > 氧化钴的制备 > 氧化钴的制备百科

氧化钴的制备百科

氧化钴

2017-12-27 15:30:03

氧化钴一种化学品的名称,通常是灰色粉末, 有时是绿棕色晶体。主要用作制取金属钴的原料,制取的金属钴用于生产钨钴硬质合金、钴磁合金、经过继续氧化成四氧化三钴用作钴锂电池的正极材料,在化工行业用作催化剂,还用作玻璃、搪瓷、陶瓷、磁性材料、密着剂、天蓝色、钴蓝色、钴绿色等色彩的着色剂,家畜微量元素营养剂。用作制取金属钴的原料,制取的金属钴用于生产钨钴硬质合金、钴磁合金、继续氧化成四氧化三钴用作钴锂电池的正极材料,用作玻璃、搪瓷、陶瓷、磁性材料、密着剂、天蓝色、钴蓝色、钴绿色等色彩的着色剂,家畜微量元素营养剂。化工行业用作催化剂。

氧化钴基础知识

2019-03-07 10:03:00

氧化钴粉首要包含CoO、Co2O3、Co3O4。含钴74%以上的高品位氧化钴为褐色,含钴74%以下的氧化钴为黑色。依照其用处和化学成分的不同,依据国家标准,精制氧化钴粉首要分为Y类和T类两大系列,而Y类产品又分为Y0、Y1、Y2三种牌号,T类产品分为T1、T2两种牌号。精制氧化钴粉的粒度一般在180~250目,其松装密度为0.4~0.61t/m3。氧化钴,主成分为CoO或Co2O3,黑灰色粉末,渐溶于热和热稀硫酸中,并别离放出氯和氧,不溶于水和醇。用作氧化剂,制作钴和不含镍的钴盐、钴催化剂、颜料、陶瓷的釉料、色素着色剂、硬质合金,用于电子及冶金工业等。精制氧化钴粉首要用于制作硬质合金,占用量的93%;部分用作颜料和釉料,4%用于陶瓷,3%用于珐琅职业。将草酸钴在650~7500C下进行煅烧,终究制得精美氧化钴产品。金川钴体系选用回转窑煅烧,钴的回收率可到达98%以上。 四氧化三钴(Co3O4)为灰黑色粉末状固体,广泛应用于制作硬质合金、磁性材料、珐琅颜料、陶瓷颜料及玻璃颜料、故触媒、油墨颜料、玻璃脱色剂,是制备催化剂和干燥剂的首要原料。现在首要用于出产锂离子电池材料钴酸锂。因为通讯、电子业的开展,我国对锂离子电池的需求也不断增加,估计从现在到2010年我国对锂离子电池的需求将以每年10%~20%的速度增。现在我国对四氧化三钴的需求量为2600t。 四氧化三钴传统的出产办法多选用灼烧或是热分解法。灼烧法就是将钴粉用红热蒸汽加热法生成CoO,在5000C下进一步氧化成Co3O4,可是这种办法产出的Co3O4粉末活性差,纯度低,粒度散布宽。热分解法是将纯洁的氧化钴或是硝酸钴溶液沉积出产草酸钴或是碳酸钴,经高温煅烧产出Co3O4。但该法相同存在粒度散布不均匀的问题,产品纯度较低。 近几年,我国对高浓度硝酸钴或氧化钴溶液直接组成Co3O4进行了实验研讨。将含钴溶液加热后,缓慢参加溶液,调理溶液的PH值,并缓慢参加H2O2,反响发生黑色沉积,沉积产品首要为钴的氧化物和水合物,含钴为65%~68%,沉积物经进一步煅烧,可得到纯度95%以上的Co3O4粉末。直接氧化法制得产品需求进一步煅烧,流程较长,并且参加量及参加速度对产品影响较大,进程较难于操控。 2004年北京矿冶研讨总院对加压浸出法直接出产Co3O4进行了实验研讨。产品含钴到达71.4%对产品进行x射线衍射分析断定,产品为纯度较高的四氧化三钴,谱线中未发现有其他物质。电子显微照片显现,加压浸出法产出四氧化三钴颗粒较煅烧法细,粒度较为均匀。

钴渣制取氧化钴的生产实践

2019-03-05 12:01:05

氧化钴是钴基合金、硬质合金及珐琅,陶瓷颜料的重要原材料,国内现在年产1000多吨。氧化钴有三种不同方式:CoO、Co2O3、Co3O4,色彩和含钴量都不同。因为各厂的质料和出产条件不同,在浸出、净化和钴沉积上各有特色。 从镍体系钴渣出产氧化钴的典型出产工艺为金川公司流程,如图1所示。图1  金川公司用钴渣出产氧化钴的流程图 一、萃取除杂 黄钠铁矾除铁后液中的杂质总量仍还有约2g∕L,包含Cu、Fe、Ca、Mg、Pb、Zn、Mn等,为了得到合格的氧化钴产品,还必须进一步的净化。金川公司选用P204萃取工艺进行深度净化除杂。 P204主要成分为二-(2-乙基己基)磷酸,是一种烷基磷酸萃取剂,分子量323,无臭味,出厂规格为P204≥93%,密度0.9694~0.9700g∕cm3(25℃),黏度0.42cP(25℃),在水中溶解度0.012g∕L,10%碳酸钠溶液中溶解度为0.026g∕L,1moL硫酸溶液中溶解度为0.0017g∕L,平衡pH值时pKa=3.5,酸性杂质为0.3%~0.4%,水分为0.3%~0.4%,其分子结构式为:萃取除杂在25级聚氯乙烯混合弄清箱中进行,溶液中的Cu、Fe、Zn、Mn、Ca等杂质进入有机相中,别离用1.2mol∕L、2.5mol∕L和6mol∕L洗Co、洗Cu、洗Fe。萃余液送P507别离镍钴。 25级别离为10级萃取,5级洗钴,4级洗铜,4级洗铁,2级弄清。 混合室:0.52m×0.52m×l.20m 弄清室:0.52m×2.60m×1.20m 萃取箱拌和桨为钛质六叶桨,直径200mm,由5台5.5kW电动机带动,转速470~500r∕min。流量由高位槽操控,转子流量计丈量。 萃取操作的技术参数为: 萃取剂:      10% P204,90%磺化火油 皂化剂:      8~9mol∕L NaOH溶液 皂化率:      60%~65% 物料流比:    有机相∶料液∶洗钴液=0.6∶1.0∶0.06 皂化在φ2×2mPVC槽内进行。 反萃用的2.5mol∕L和6.0molL∕L溶掖内循环,别离降至0.1~0.2mol∕L或4~4.5mol∕L时更换新酸液。 除杂后液成分:二、萃钴 P507萃钴在34级萃取箱中进行,其间制锦皂5级,镍钴别离7级,洗镍5级,钴反萃6级,洗铁5级,弄清6级。萃取箱尺度、结构、拌和桨及转速等与萃取除杂相同。 萃钴操作的技术参数为: 萃取剂        25% P507,75%磺化火油 制镍皂溶液    35~40g/L硫酸镍溶液 制钠皂溶液    8~9mol∕L NaOH溶液 物科流比      有机相∶料液∶洗镍液∶反萃液=1.0∶0.7∶0.07∶0.15 皂化在φ2×2mPVC槽内进行。 洗镍用1.2mol∕L溶液,反萃钴用2.5mol∕L溶液,冼铣用6.0mol∕L溶液(内循环)。 三、草酸钴沉积 运用沉积剂草酸铵,由草酸溶液通入自行沉积制备。运用φ2m×2m不锈钢槽,在60℃下溶解工业草酸,真空抽滤除掉残渣,溶液在机械拌和条件下通入气,至pH=4.0~4.5时沉积结束,真空过滤得到草酸铵。 沉钴分两段进行,都在2m3珐琅釜内完结,操作条件见表1。 表1  两段沉钴技术参数四、煅烧制氧化钴 一段沉积草酸钴选用反转管电炉煅烧,电炉规格为φ0.5m×10m,转速0~2.07r∕min,倾角3°,总功率250kW,炉头温度700℃,炉中600℃,炉尾500℃。 二段沉积选用红外线炉煅烧热解,温度530℃。 硬质合金出产用的氧化钴要求松装比重在0.45~0.55g∕cm3之间,为此要求在沉钴过程中严格操控氯化钴的初始浓度、淀度及草酸铵的参加速度,以确保取得必定粒度的沉积;一起严格操控煅烧时的炉温,不致过烧或缺乏。

氧化钴的生产工艺流程介绍

2019-02-22 10:21:22

钴矿用球磨机破坏到粒度约-100目巨细后,将矿浆打到溶解槽,用硫酸或溶解后压滤,将滤液加热,往热溶液中参加碳酸钠、、、硫代硫酸钠等化工原料作为除杂剂,除掉溶液中的很多的铜、铁、钙、镁、铅、锌等杂质。少数的杂质随溶液进入下一道工序,运用P204[磷酸二异辛酯]作萃取剂,将钴、镍与铜铁等杂质元素别离,萃取液用稀反萃(洗脱),钴、镍进入水相中,将含钴、镍溶液送入含P507[2-乙基己基磷酸-2-乙基己基酯]的萃取槽进行钴镍别离。含镍溶液作为副产品出产硫酸镍,含钴溶液经浓缩到达规则的浓度后用反萃,生成氯化钴溶液,用草酸铵沉积钴,转化为草酸钴沉积,将沉积物枯燥后以草酸钴方式作为产品运用。草酸钴经高温锻烧后生成氧化钴,经复原后制成钴粉。经钴镍别离后的钴溶液,假如用硫酸溶液洗脱,可制成硫酸钴产品,用醋酸洗脱可制成醋酸钴,氯化钴溶液用碳酸钠沉积可制成碳酸钴,用于出产钴粉、氧化亚钴或四氧化三钴。

从氧化钴矿石中提取钴的工艺技术

2019-02-11 14:05:44

钴具有耐腐蚀、熔点高、强磁性等优秀功能,是各种特殊钢、耐热合金、抗腐蚀合金、磁性合金、硬质合金出产的重要质料,广泛用于航空、航天、机械制造、电气外表等范畴,因而,钴被誉为战略物资。     现在钴的出产基本上都是以钴土矿、钴硫精矿、硫化铜镍矿渣、砷钴矿等为质料。现已探明的钴矿资源均匀档次仅为0.02%,并且在出产过程中收回率低、工艺杂乱、出产成本较高。     一、矿石性质     实验所用钴矿石为非洲刚果氧化型水钴矿,呈灰黑色,密度2.780t/m3,化学分析成果见表1。水钴矿属成分杂乱的氧化物和氢氧化物,其杂质成分和结晶程度互不相同,X射线衍射成果表明可能是三价和二价的单水化合物变种,具有不稳定成分,如水钴铜矿(2Co2O3·CuO·6H2O),铜水钴矿(2Co2O3·CuO·3H2O)等。 表1  水钴矿化学分析成果    %CoCuFeMnNiMgCa9.2415.422.780.190.180.960.084     二、仪器、试剂及工艺流程     实验所用仪器有KS-Ⅱ康氏振荡器,78HW-1恒温磁力拌和器,LD2001电子秤,JJ-2型增力电动拌和器,2XZ-0.5旋片真空泵,F97-A矿石粉碎机,分液漏斗。     实验所用试剂有工业级硫代硫酸钠、碳酸钠、、P204、P507、硫酸、化学纯,草酸铵,分析纯。     实验工艺流程见图1。    图1  从氧化钴矿石中提取钴的工艺流程     三、成果与评论     (一)浸出     钴的贱价氧化物易在稀硫酸溶液中溶解,生成可溶性CoSO4,而高价氧化物必须在浓硫酸中才溶解。反响式为: CoO+H2SO4(稀)=CoSO4+H2O, Co2O3+2H2SO4(浓)=2CoSO4+2H2O+1/2O2, CoO·SiO2+H2SO4(稀)=CoSO4+H2SiO3, CoO·Fe2O3+4H2SO4(稀)=CoSO4+Fe2(SO4)3+4H2O。     1、一段浸出     将水钴矿磨细,浆化,用1mol/L H2SO4溶液浸出,首要调查矿石粒度、浸出时刻、浸出温度对钴浸出率的影响,实验成果见表2~4。 表2  矿石粒度对钴浸出率的影响序 号矿石粒度/目钴浸出率/%1 2 3-60 -120 -2009.8 25.5 41.18     浸出时刻12h;浸出温度90℃。 表3  浸出时刻对钴浸出率的影响序 号浸出时刻/h钴浸出率/%1 2 3 46 12 18 2428.1 40.9 41.0 43.6     矿石粒度-200目,浸出温度90℃。 表4  浸出温度对钴浸出率的影响序 号浸出温度/℃钴浸出率/%1 2 3 425 60 90 1004.3 11.7 42.3 42.6     矿石粒度-200目,浸出时刻12h。     从表2~4能够看出,矿石粒度越细,浸出温度越高,保温时刻越长,钴浸出率越高。归纳考虑,一段浸出以矿石粒度200目以下、保温时刻12h、温度90℃为宜。     2、二段浸出     取一段浸出渣,按液固体积质量比2:1调浆,用4mol/L H2SO4溶液按液固体积质量比4:1拌和浸出,温度95℃以上,保温必定时刻,调查矿石粒度、保温时刻对钴浸出率的影响。实验成果见表5、表6。能够看出,矿石粒度减小、保温时刻延伸,钴浸出率进步。归纳考虑,矿石粒度以200目以下、保温时刻24h为宜。 表5  矿石粒度对钴浸出率的影响序 号矿石粒度/目钴浸出率/%1 2 3-60 -120 -20021.1 70.3 99.1     保温24h;温度95℃以上。 表6  保温时刻对钴浸出率的影响序 号保温时刻/h钴浸出率/%1 2 3 46 12 18 2456.3 86.9 94.2 99.03     (二)浸出液的净化     用硫酸经过二段浸出,矿石中大部分钴都进入溶液,一起其他共存元素也进入溶液。杂质元素的存在收回钴或钴化合物有很大影响,需预先去除。最优条件下取得的浸出液成分见表7。 表7  浸出液成分阶段   g/LCo2+Zn2+ΣFeNi2+Cu2+Ca2+Mg2+18.60.182.340.2841.80.601.99     (三)除铁     选用黄钠铁矾法除铁。黄钠铁矾[Na2Fe6(SO4)4(OH)12]为淡黄色晶体,是一种过滤功能、洗刷功能都杰出的盐基性硫酸盐。除铁总反响式为: 3Fe2(SO4)3+6H2O+5Na2CO3=Na2Fe6(SO4)4 (OH)12↓+5Na2SO4+6CO2     取上述浸出液1000mL,调pH进行实验,成果见表8。能够看出,结尾pH对铁矾的构成有很大的影响。pH在4.0~4.5范围内,铁去除彻底,溶液中钴/铁质量浓度比到达18600。 表8  溶液pH对Fe沉积的影响pHρ(Fe)/(g·L-1)ρ(Co)/ρ(Fe)铁矾渣中 w(Co)/%铁矾渣中 w(Fe)/%2.0~2.5 2.5~3.0 3.0~3.5 3.5~4.0 4.0~4.50.39 0.146 0.04 0.026 <0.00147.7 127.4 465 715.4 186000.3 0.04 0.5 0.9 0.3622.57 23.1 20.6 24.1 22.1     (四)除Ca2+、Mg2+、Cu2+     使用Ca2+、Mg2+的氟化物溶解度低的特色,操控溶液pH,使Ca2+、Mg2+别离构成CaFe2、MgFe2沉积。 Na2S2O3与Cu2+反响构成CuS沉积,Co2+则留在溶液中,然后完成Ca2+、Mg2+、Cu2+与Co2+、Ni2+的别离。反响方程式如下: MgSO4+2NaF=MgFe2↓+Na2SO4, CaSO4+2NaF=CaF2↓+Na2SO4, 2CuSO4+2Na2S2O3+2H2O=Cu2S+S+2Na2SO4+2H2SO4。     对去除了铁的溶液,在必定温度下,先后参加必定量NaF和Na2S2O3,调查NaF对Ca2+、Mg2+杂质去除的影响及Na2S2O3对Cu2+去除的影响。实验成果见表9和表10。能够看出,在必定温度下,操控NaF和Na2S2O3用量,能够将浸出液中的Ca2+、Mg2+及Cu2+去除。 表9  NaF参加量对Ca2+、Mg2+去除的影响m(NaF)/ m(Ca2++Mg2+)溶液中ρ(Ca2+)/ (g·L-1)溶液中ρ(Mg2+)/ (g·L-1)ρ(Co2+)/ρ (Ca2+)ρ(Co2+)/ρ (Mg2+)5 10 120.44 0.0144 0.01020.75 0.0113 0.007842.3 1291.7 1823.524.8 1646 2384.6     保温时刻4h。 表10  Na2S2O3参加量对Cu2+去除的影响m(Na2S2O3)/ m(Cu2+)溶液中ρ(Cu2+)/ (g·L-1)溶液中ρ(Co2+)/ (Cu2+)渣中w(Co)/%渣中w(Cu)/%4 6 8 105.3 0.065 0.01 <0.0135 286 1860 <18600.015 0.03 0.02 0.0155.9 57.9 67.2 60.3     溶液调pH后,参加Na2S2O3,在必定温度下保温30min。     (五)P204萃取深度除杂质     以化学法除杂后的溶液中还含有少数杂质(表11),还须进行深度净化。操控溶液pH、流量等,经过串级萃取能够使杂质进一步去除。由串级萃取理论核算萃取段为8级,洗刷段为7级。流量比:V(有机相):V(洗刷液)=8:3:1。溶液pH=4.5,成分见表12。 表11  化学除杂后溶液成分   g/LCo2+Ni2+Cu2+ΣFeCa2+Mg2+Mn2+Zn2+As3+Pb2+24.20.512.020.00720.01210.00621.360.220.00290.0146 表12  除杂质后萃余液成分    g/LCo2+Ni2+Cu2+Mn2+Zn2+Ca2+Mg2+ΣFeNa+17.20.320.00860.0104<0.0010.00350.0056<0.00146.4     (六)P507萃取别离钴、镍     去除杂质后的萃余液(组成见表12)进行钴镍别离。操控pH、流量、萃取级数进行萃取,萃余液中ρ(Ni2+)=0.056g/L,ρ(Co2+)=0.154g/L;有机相中ρ(Ni2+)<0.001g/L,ρ(Co2+)=0.154g/L。     从有机相中6级反萃取钴,洗刷液为2.5mol/L HCl,操控流量比为:V(有机相):V(洗刷液)=6:1。反萃取后的CoCl2溶液组成见表13。 表13  反萃取后的CoCl2溶液组成    g/LCo2+Ni2+Cu2+Mn2+Ca2+Mg2+Zn2+Na+pH68.20.0410.0030.010.030.0025<0.00110.51~2     (七)沉积、烘干     去除杂质后的溶液中,钴以CoCl2方式存在,选用草酸铵沉积法沉积草酸钴,反响式如下: Co2++(NH4)2C2O4=CoC2O4+2NH4-     草酸钴沉积中含有必定量可溶性离子(如NH4+、Na+、SO42-、Cl-等),用热水洗刷可得到精制草酸钴产品。二价钴的草酸盐一般为桃红色,难溶于水,微溶于酸,在空气中加热即变成无水盐。洗刷后的草酸钴在箱式炉中进行烘干,炉温90~110℃,操控草酸钴色彩为桃红色,水分小于0.65%。所得草酸钴产品松装密度为0.29g/cm3,化学成分见表14。 表14  草酸钴产品的化学成分阶段   %CoNiCuMnCaMgZnNaH2O31.20.080.0940.020.10.0090.0090.080.085     四、定论     (一)氧化钴型水钴经过硫酸两段浸出,浸出液中Co2+质量浓度达15~20g/L,钴浸出率达99%。     (二)选用化学法去除溶液中的Fe、Ca、Mg、Cu杂质,能够操控杂质含量到达要求。     (三)对化学除杂后的浸出液,选用204串级萃取进一步除杂,P507萃取别离钴、镍,可得到合格的CoCl2溶液。     (四)用草酸铵沉积得草酸钴,洗刷后在必定温度下烘干即得草酸钴产品。

粗钴阳极板的制备

2019-01-31 11:06:04

二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。 反射炉煅烧的意图有3个: (一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块; (二)参加石油焦,使氧化钴半复原; (三)脱除部分硫。 反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。 反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。

黑镍的制备和除钴

2019-01-24 09:37:16

合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。     除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。 表1  除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31 表2  钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5

氧化钴矿的选矿工艺流程

2019-01-18 11:39:40

某含大量矿泥氧化钴矿工艺矿物学研究表明,原矿中的主要有用矿物为裼铁矿和杂水钴矿及少量的水钴矿,杂水钴矿普遍含铁、锰,钴主要存在于钴的独立矿物杂水钴矿中,褐铁矿中亦含有少量钴,褐铁矿及水钴矿、杂水钴矿类矿物约占10%,以风化产物充填在石英颗粒间。主要脉石矿物为石英及其风化产物,占有量约65%~70%,少量浸染褐铁矿的黏土矿类矿物,占有量约15%~20%。未见独立的铜矿物,铜主要存在于含钴矿物及褐铁矿中,铜、钴关系密切,不可能分别富集,铜将在选钴的过程中得到富集,获得含铜钴精矿;本研究推荐工艺流程为:原矿预脱原生泥后磨矿,强磁选脱次生矿泥再抛尾,采用浮选得到最终产品,并控制产品质量,使铜钴精矿钴品。。。。。。

制备氧化铜

2017-06-06 17:50:02

氧化铜是初中化学课本中一种普遍的化学药品,氧化铜的性质稳定,用途广泛,在化学试验中利用率高。那当我们在使用氧化铜药品时,除了购买后直接使用之外,有什么办法可以直接制备氧化铜呢?制备氧化铜需要的实验用品: 金属 铜粉、氧气、酒精灯灼热的 金属 铜和氧气反应,就会生成氧化铜。2Cu+O2 =灼热= 2CuO  这个就是实验室制备氧化铜的方法。

氧化水解分离钴

2019-01-31 11:06:04

使用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。 在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发作发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。 水解沉积进程中有H+发生,有必要加碱进行中和。 在出产使用中,为了使钴和镍杰出别离,应遵照以下根本原则: (一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。 (二)操控恰当的析钴率,溶液含钴高时析钴率可高些。 (三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。 沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图1所示。二次沉钴的根本技术参数见表1。图1  从氢氧化钴出产电钴的工艺流程图 表1  二次沉钴的首要技术参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。

碳酸钴制备超细球形钴粉的工艺探讨

2018-12-10 14:19:22

碳酸钴制备超细球形钴粉的工艺探讨.pdf

氧化镍钴锰锂

2017-06-06 17:49:58

一种新型高比能量锂离子电池正极用氧化镍钴锰锂材料,日前由天津电源研究所研制成功。并获得了信息产业部电子基金的资金支持,随即建成年产200吨氧化镍钴锰锂生产线,在国内率先实现了产业化生产。目前市场上的锂离子电池大多以氧化钴锂为正极,其材料的稳定性和产品的安全性比较差。天津电源研究所针对氧化钴锂存在的突出问题,采用价格相对低廉的镍、锰替代钴,并研发独特的烧结工艺,仅用了一年多时间就成功解决了这一难题。据了解,这种新型材料具有容量高、寿命长、安全系数高、无污染等优点。与氧化钴锂相比,制造成本降低了10%至15%,每克容量由140毫安时可提升到220毫安时,由此不仅提高了产品的安全性能,而且增大了电池容量,一举突破了锂离子电池发展的瓶颈制约。该产品现已得到多家用户的认可,并实现了为出口欧盟的高端电池产品生产厂家供货。为了研制在电性能、安全性和成本价格等三方面均能较好地满足电动汽车需求的锂离子电池,选择了在氧化钴锂中掺杂氧化镍锰钴锂三元材料的方法,研制了新的50Ah动力型锂离子电池。通过对研制电池进行电性能和安全性试验,各项性能均满足电动汽车的技术要求,加上氧化镍锰钴锂三元材料的价格仅为氧化钴锂的50%左右,所以掺杂氧化镍锰钴锂三元材料是解决电动汽车对动力型锂离子电池严格需求的理想途径之一。近期有一种锂离子电池正极材料氧化镍钴锰锂及其制备方法。本发明属于锂离子电池技术领域。锂离子电池正极材料氧化镍钴锰锂为富锂型层状结构,化学成分Li↓[1+z]M↓[1-x-y]Ni↓[x]Co↓[y]O↓[2],其中0.05≤z≤0.2,0.1<x≤0.80.1<y≤0.5。制备方法:镍、钴、锰的可溶性盐为原料;氨水或铵盐为络合剂,氢氧化钠为沉淀剂;加水溶性分散剂,加水溶性抗氧化剂或用惰性气体控制和保护;将溶液并流方式加到反应釜反应;碱性处理,陈化,固液分离,洗涤干燥;氧化镍钴锰和锂原材料混合均匀;将混合粉体分三温区烧结得到氧化镍钴锰锂粉体。本发明比容量高,循环特性好,晶体结构理想,生产周期短,功耗低,适合产业化生产等。 

钴的氧化物及氢氧化物

2019-01-31 11:06:04

一、钴的氧化物 钴能生成三种氧化物:CoO,Co3O4,Co2O3。前两种安稳,后者只能在低于3oO℃下存在。而CoO2只能在阳极氧化法中制得,常呈含水的氢氧化物呈现。 (一) CoO:它是钴的碳酸盐或钴的其它氧化物或Co(OH)3在中性或微复原性气氛中煅烧的终究产品。纯CoO在室温下易于吸收氧而生成高价的氧化物Co2O3,Co3O4,煅烧温度越高,吸收的氧越少。如要获得适当纯的CoO,煅烧温度有必要高于1050℃,且煅烧后须在慵懒气氛或弱复原性气氛中冷却。高于850℃时CoO是安稳的,1000℃时离解压为3.36×10-12大气压。随制取办法不同,CoO呈灰绿色至暗灰色,CoO分子量为94.97,理论上含钴为78.65%,用于冶金和化学方面的多为灰色CoO,一般含Co76%,常含有少数Co3O4。 CoO晶体为面心立方体,晶格参数为4.2sA,比重6.2~6.6,生成热为55.6~57.5千卡/摩尔分子,熔点为1810℃。钴氧化成CoO在不同的温度规模内的自由焓改变式分别为:   当温度在120~200℃时,高价氧化钴开端被H2和CO复原。CoO复原反响的平衡常数跟着温度的改变如下:     CoO水化物的分子式为Co(OH)2,溶度积约为1.6×10-18,它极易溶解于热酸中。 (二)Co2O3:分子量为165.88,理论含钴量为71.03%。许多人在氧压为100大气压下氧化CoO或低温从Co(N3O)3,CoCl3中制得含氧量挨近或等于Co2O3计量式中的含氧量再经结构分析依然不是Co2O3。但只在阳极氧化法中制得含水的Co2O3,在低于200℃时脱水得到Co2O3。 (三)Co3O4:理论含钴量为73.43%,分子量为240.82,黑色。在400~900℃的空气中或在300~400℃的氧气中氧化CoO时生成Co3O4。Co3O4于250~400℃的氧气中,因为接连氧化或或许因为化学吸附,而变为Co2O3,但仍坚持Co3O4的尖晶石结构。当高于450℃时离解或脱吸,氧化物的成分可回复或Co3O4。 当CoCO3或含水三氧化二钴在空气中加热到高于265℃而不超越800℃时,构成Co3O4。 因为钴的氧化物相互间易于生成固溶体,因此,难于测定各自的离解压及安稳温度规模,一般以为Co2O3·nH2O在250~280℃彻底分解为Co3O4。Co3O4的离解压可按lg Po2=- +13.3636算出,故知空气中Co3O4在910~920℃内大部分离解为CoO,至980℃可按下式离解彻底,生成的CoO仍具有原Co3O4的尖晶石结构。  Co3O4极难溶干稀硫酸中。 图1是600℃~1490℃间氧在固体金属钴中的溶解度。875℃时氧的溶解度急剧下降是因为钴发生了晶形改变。当溶解O20.26%(适当于CoO1%)时则呈现共晶,其温度为1446℃。与含CoO3.3%和CoO14.6%相对应的凝结温度为1600℃和1700℃。图1  Co-O系状态图 二、钴的氢氧化物 (一)Co(OH)2:它是弱的化合物,极易溶解于酸,而难溶于水。  溶度积为1.6×10-18。当NaOH参加钴盐溶液中,则生成Co(OH)2,因颗粒、吸附离子、时刻、温度和碱度等要素的不同,可呈蓝色、绿色和赤色。pH=6~7和室温时,开始分出的蓝色沉淀物为α-Co(OH)2。老化变为安稳的玫瑰色β-Co(OH)2,两者的溶度积均约为10-12.8。 Co(OH)2在常温下易被空气中的氧部分地氧化成Co(OH)3:Co(OH)2在无机酸和有机酸中能很好溶解并生成相应的盐。多种氧化剂在有碱存在的情况下,能将Co(OH)2和二价钴盐的溶液氧化成Co(OH)3。 (二)Co(OH)3:这是一种易吸水的不安稳化合物,难溶于水,溶度积为2.5×10-43。较易溶于和中,难溶于硫酸中。

某含大量矿泥氧化钴矿的选矿工艺流程研究

2019-01-24 09:36:33

一、矿样性质(一)主要成分含量分析试样的主要成分化学分析结果见表1。 表 1  主要成分化学分析结果/%(二)矿物组成研究矿石中的主要有用矿物为褐铁矿和杂水钴矿及少量的水钴矿,钴主要存在于钴的独立矿物杂水钴矿(含锰钴土)中,褐铁矿中亦含有少量钴,褐铁矿及杂水钴矿类矿物约占 1 0%,无论是钴矿物还是褐铁矿,都是充填在石英颗粒间的风化产物;主要脉石矿物为石英及其风化产物,占有量约 65%~70%,少量浸染褐铁矿的黏土类矿物,占有量约 15%~20%。钴:主要呈与锰组成锰钴土及与铁等元素形成的胶状杂水钴矿,少量呈水钴矿状态或呈现在褐铁矿中。这些钴矿物或含钴矿物的形成很大可能是和风化作用过程中的胶体沉淀有关。能谱分析表明最主要的成分是硅、铝、铁,矿石抛光片的能谱分析证明,硅主要来自作为矿石中脉石的主体——石英,铁主要与褐铁矿有关,铝则主要来 自矿石中存在的黏土,少部分来自褐铁矿,钴主要与铁、锰组成杂水钴矿,含量很少的铜主要存在于含钴矿物及褐铁矿中。 利用扫描电镜对水钴矿及疑为含钴的矿物都进行了能谱定性分析,可以发现其中钴含量的变化是很大的,可见到它或独立存在,或与锰有关,水钴矿中主含锰,但也可以含铁,而褐铁矿中也一样 ,主含铁外也含锰、钴、铜 ,所以彼此互含较明显 ,证明选钴、铜必须同时选钴和铁的水合氧化物,分别富集钴、铜是不可能的。典型能谱见图 1,对能谱图分析表明钴与铁、锰的关系密切 ,褐铁矿本身(B)含一定数量的钴和铜,最高的钴含量出现在锰相(C)中,基本不含锰时,钴亦很少(D)。图1  典型能谱图 铜:含钴相皆含铜 ,但其数量不及钴,目前尚未鉴别出粒度足够粗的独立铜矿物,只是显微镜下见到很小的铜的硫化物为脉石一石英紧密包裹,数量极少,不足计。因此,大部分铜将随水钴矿一杂水钴矿类矿物以及褐铁矿一起富集到精矿中,但精矿中铜的品位不可能超过钴;由于不存在有富集意义的独立铜矿物,所以工艺过程中没有必要考虑单独提高其回收率问题,实际上提高了钴的回收率也就提高了铜的回收率。(三)原矿粒度组成和金属分布对原矿直接或磨矿后进行筛分分级,结果见表2、3 表2  原矿(一2mm)直接筛分分级金属分布结果/%表3  原矿经磨矿后筛分分级金属分布结果从表2、表3可见,在原矿未磨的隋况下,-0.025mm粒级占有率达到 34.39%,其中钴品位为 0.23%,金属占有率为 12.83%,在原矿磨矿的情况下,-0.025mm粒级占有率为 55.83%,其中钴品位为 0.56%,金属占有率为 47.92%,显然,经过磨矿,一0.025mm粒级 占有率提高 21.44%,钴金属分布率相应提高了34.99%,值得注意的是品位升高 0.33%。说明经过磨矿后,有部分易磨的钴矿物进入到细级别。二、流程 方案的确定原矿中的主要有用矿物为褐铁矿和杂水钴矿及少量的水钴矿,钴主要存在于钴的独立矿物杂水钴矿中,褐铁矿中亦含有少量钴。但未见独立的铜矿 物,铜主要存在于含钴矿物及褐铁矿中,铜、钴关系密切,不可能分别富集,铜将在选钴的过程中得到富 集,获得含铜钴精矿。原矿含有较高的原生矿泥,需要进行预处理脱泥、富集。经过预处理后磨矿,由于杂水钴矿物普遍含铁、锰,同时一部分钴赋存在褐铁矿中,因而采用强磁选脱次生矿泥再抛尾;采用浮选得到最终产品,并控制产品质量。 三、工艺流程试验(一)溜槽一强磁扫选试验 给矿粒度一2mm,试验流程见图2,结果见表4。图2 溜槽-强磁扫选试验流程 表4  溜槽-强磁扫选试验结果由表4结果可见,溜槽一强磁扫选能较好地脱除原生矿泥。溜槽精矿 1的钴品位较精矿2的低,主要是因为精矿 1的粗粒脉石含量较高所致。 (二)脱泥后磨矿强磁再抛尾试验1、磁场强度试验原矿经过预处理脱原生矿泥抛尾矿 1,磨矿后进行强磁选脱次生矿泥抛尾矿2,试验结果见图3。强磁选场强选为 1.6T比较合适。图3  磁场强度试验结果 2、磨矿细度试验强磁选场强选定 1.6T后进行磨矿细度试验,试验结果见图4。图4  磨矿细度试验结果 3、强磁精选试验对强磁精矿进行强磁精选试验,试验结果见表5。 表5  强磁精选试验结果/%从表5可见,降低磁场强度后进行精选,得到的精矿含钴较中矿低,进一步说明强磁选无法得到合适的钴精矿。 4、强磁选抛尾试验粗选磁场强度 1.2T、扫选磁场强度 1.6T,强磁选抛尾试验结果见表6。 表6  磨矿磁选抛尾试验结果/%由表6结果可见,原矿经过预处理后磨矿再磁选,可以得到较高品位的粗精矿,因此,原矿经过预处理后磁选再抛尾。 (三)浮选试验前面的强磁精选试验证明,通过强磁选不能得到较高的产品质量,本试验采用浮选出最终产品。 先采用溜槽预脱泥 ,再用一次粗选、一次扫选、强磁再抛尾,然后浮选得到产品。在进行了相关的浮选粗选、精选药剂条件试验后,进行了闭路试验,结果见表 7。 表7  浮选闭路试验指标/%四、结语(一)工艺矿物学研究表明,原矿中的主要有用矿物为褐铁矿和杂水钴矿及少量的水钴矿,钴主要存在于钴的独立矿物杂水钴矿中,褐铁矿中亦含有少量钴,褐铁矿及水钴矿、杂水钴矿类矿物约占 10%无论是钴矿物还是褐铁矿,都是充填在石英颗粒间的风化产物;主要脉石矿物为石英及其风化产物,占有量约 65% 70%,少量浸染褐铁矿的黏土类矿物占有量约 15%~20%。未见独立的铜矿物,铜主要存在于含钴矿物及褐铁矿中,铜、钴关系密切,不可能分别富集,铜将在选钴的过程中得到富集,获得含铜钴精矿。 (二)原矿含有较高的原生矿泥,需要进行预处理脱泥,经过预处理后磨矿,由于杂水钴矿物普遍含铁、锰,同时一部分钴赋存在褐铁矿中,因而采用强磁选脱次生矿泥再抛尾。本试验推荐流程为:原矿预处理后磨矿,进行强磁选脱次生矿泥再抛尾,采用浮选得到最终产品,并控制产品质量,使铜钴精矿钴品位大于3%、铜品位大于1%。

阳极氧化法制备彩色铝粉

2019-03-11 11:09:41

铝粉的阳极氧化是通过电解液的阳极反响而生成氧化铝膜的电化学进程。这个氧化膜吸附有机染料、无机颜料的色彩而上色。将铝粉置于硫酸电解液中,并不断地加以拌和,使铝粉呈漂浮和半漂浮状况,边活动边随时触摸阳极,并坚持不触摸阳极状况,从而在铝粉表面生成易于上色的氧化铝膜。阳极反响是阳极分出的初生态氧与铝粉表面的铝原子化组成氧化铝的反响,其间部分氧化铝立刻与水化组成水合氧化铝,这就是氧化铝膜的构成进程。一起氧化铝膜可被硫酸电解液溶解,所以阳极氧化进程一起存在成膜反响和溶膜反响,因而有必要操控适合的条件,才干构成必定厚度的氧化铝膜。阴极反响中发生,故使构成的氧化铝膜具有多孔疏松的特色,有利于吸附才能的增强。  铝粉上色是一个物理化学进程,将经阳极氧化处理过的铝粉置于有机染色液中浸泡,使铝粉表面氧化膜吸附有机染料分子,一起氧化铝膜中的氧化铝分子可与有机染料分子以共价键、配位键或氢键等方式结合生成合作物,从而使氧化膜上色。   阳极氧化在铝粉粒子表面构成氧化铝膜的进程中,影响成膜的要素较多,一起不同的上色液导致不同的上色作用,因而应该考虑电解液浓度、反响时刻、温度、上色液等要素的影响。研讨结果标明:(1)硫酸电解液的浓度对氧化膜的生成具有显着的影响。硫酸浓度过低,电解液的导电性不强,氧化铝的成膜速度慢,硫酸浓度过高,生成的氧化膜又溶解,最佳的试验条件:硫酸电解液的浓度应为5-10%。(2)阳极电流密度与氧化铝膜生成速度成正比,因为铝粉在某一瞬间触摸阳极,因而阳极电流密度越大,越有利于铝粉在阳极放电,阳极电流密度越大,生成的氧化铝膜越疏松,有利于上色。试验标明,在7%硫酸电解液中进行阳极氧化,一般操控电流密度为5安/分米2以上,电压不该小于40伏。(3)在阳极氧化进程中,只要通过必定的时刻后,才干使铝粉与阳极充沛触摸,试验标明,氧化时刻以60-90分钟为宜,一起氧化时温度也要坚持在25-35°C为宜。(4)在氧化铝膜上上色,其上色的难易程度与氧化膜的厚度及上色液的浓度有关,氧化膜越厚,越易上色;上色液的浓度越大,越易上色,且色彩越深[4]。因而在上色进程中,一般选用较浓的上色液。试验标明:依据所需色彩的深浅,对上色液浓度加以调整。一起上色液温度为50-60°C,上色时刻为20-40分钟,pH为4.5-6.0为宜。

钴的用途

2019-03-07 10:03:00

1,钴首要用于制取合金。含有一定量钴的刀具钢能够显着地进步钢的耐磨性和切削性能。 2,航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金,但两种合金的“强度机制”不同。在温度在1038℃以上时,钴基合金的优越性显现无遗。关于制作高效率的高温发动机,钴基合金适可而止。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。 3, 钴金属在电镀、玻璃、染色、医药医疗等方面也有广泛运用 4, 用碳酸锂与氧化钴制成的钴酸锂是现代运用最遍及的高能电池正极材料。 5,钴还可能用来制作,一种理论上的***或,装于钴壳内,爆破后可使钴变成丧命的放射性尘土。

钴的性质

2019-01-31 11:06:04

一、物理性质 钴是具有钢灰色和金属光泽的硬质金属,归于元素周期表第八族,原于量为58.93,原子序数为27,原子内的电于散布为:1s2、2s2、2p6、3s2,3p6、3d7、4s2。钴有多种同位素,而只要59Co为自然界存在的同位素。 钴至少有两种同素异形体:即在低温下安稳的、具有密布六方品质的α-Co和在较高温度下安稳的、具有面心立方晶格的β-Co。α-Co改变β-Co的相变热为60卡∕克,相改变温度约为430℃(也有测定为417℃),体积约添加0.36%。 钴的熔点为1495℃,沸点为3520℃,熔化热为62卡/克,蒸发热为1540卡/克。 比热与温度有关:0~100℃内为0.103卡/克,500℃时为0.146卡/克,800℃时为0.185卡/克,1000℃时为0.204卡/克,热膨胀系数为12.3×10-6~18.1×10-6。 比重为8. 8~8.9,莫氏硬度5.6,布氏硬度124,相对伸长率5%,弹性模数为21530公斤/毫米2。抗张强度:铸造品为24.2公斤/毫米2,线材为70公斤/毫米2。抗压强度:铸造品为85.8公斤/毫米2,线材为82.5公斤/毫米2。 与铁、镍相同,钴能吸收氢,在细粉状况和高温时能吸附的氢为钴体积的50~150倍。电解钴能吸附的氢为钴体积的35倍。常温下钴也能吸附CO。 钴的导电率约为铜的27.6%,纯度为99.95%的特,20℃时的比电阻为6.248×10-6欧姆·厘米,钴的电阻温度系数在0~100℃时可取0.006∕℃。钴具有延展性及很强的磁性,居里点1121℃。 二、化学性质 钴是中等活性的金属,坐落铁族元素铁镍的中间。钴的抗腐蚀性能好,常温时,水、湿空气、碱及有机酸均对钴不起效果。钴在稀酸中比铁更难溶解,但在加热时,特别是当钴呈粉末状况加热时,能与氧、硫、氯、剧烈反响,还能与硅、磷、砷、锑、铝构成一系列的化合物,与碳构成相似Fe3C的碳化物(Co3C)。不同温度下钴与石墨生成Co3C的△G°=-8580-5.76TlgT+8.75T。 钴能被硫酸、、硝酸溶解构成二价钴盐,能与稀醋酸缓慢效果。 当硫含量超越0.005%时,钴的延展性大大下降,含硫大于0.015%的锭材,因为构成晶粒间的裂缝而不能锻制。 钴的原子价为2或3。关于简略的钴离子,二价钴安稳,三价钴离子不安稳。但关于钴络合物,三价钴安稳。 钴电位序坐落铁与镍之间。在稀酸中,钴较铁难溶,但较镍易溶。在某些情况下,钴在酸或碱溶被中变为钝态。 所报道的钴标准电极电位值或氧化复原电位值不大共同。一般对ECo2+∕Co取-0.277伏,对ECo3+∕Co2+取+1.808伏。在1N20℃的硫酸溶液中和时,氢在钴电极上分出的超电压为-0.22伏。

铱铝高温抗氧化涂层的制备方法

2019-03-01 09:02:05

1、修正工艺    分化清洗后,对一切零件都进行严厉查看,发现形成柱塞泵内漏的首要原因是:柱塞与柱塞孔磨损后合作空隙过大,缸体球面与配流盘的合作面都磨损不均匀。因而,处理内漏的关键是有必要使柱塞与柱塞孔的合作空隙恢康复标准,缸体球面与配流盘的合作面可用研磨法使其到达合作要求。柱塞孔的圆柱度和圆度差错可在内圆磨床上进行修正,柱塞可用刷镀法康复尺度。具体方法如下:    (1)柱塞表面的除油、除锈和加工处理    a.刷镀表面除油可用有机溶剂、常用金属清洗剂和汲取,亦可将油擦洗掉。    b.若柱塞偏磨严峻,应磨削整形,消除偏疼。    c.若柱塞表面有划痕、沟槽和凹坑,应进行整形加工。    (2)柱塞表面的电化学净化和活化处理    a.电净:柱塞接电源负极,镀笔"target=_blank>镀笔接正极,电压8-15V,时刻60-90s,用一号电净液在刷镀表面上重复刷抹,相对速度为4-8m/min。电净处理要完全,一般需处理两遍,以取得较好的结合强度。电净后的柱塞表面应有一层接连的电净液膜存在,且电净液膜不会聚集成小液滴而呈现干斑。电净后使用清水清洗,完全清除电净液和其他"target=_blank>其他污物。    b.表面活化处理:活化时镀件有必要接电源正极,镀笔接负极,电压8-15V,时刻60-90s。活化液"target=_blank>活化液先选用2号,再用3号,处理两遍。2号活化液用电压10-12V,时刻60-90s;3号的用电压16-20V,时刻50-90s。活化的标准为柱塞表面呈现出均匀的银灰色,活化后用清水洗净。

钴渣生产电钴的实例

2019-03-04 11:11:26

电解钴是最重要的钴产品之一。国内电钴的出产质料,一般是铜、镍、铅、锌等冶炼进程产出的含钴副产品,如镍电解净化进程产出的钴渣、含钴黄铁矿烧渣等。 从含钴副产品中出产电钴的准则流程首要有两种,一是选用化学沉积法去除杂质,两段氧化沉积别离镍和钴,火法煅烧后复原熔炼得到粗钴,铸成阳极电解精粹;另一种是选用萃取除杂,萃取别离镍和钴,得到氯化钴溶液,不溶阳极电解。 金川集团公司是我国镍钴的首要出产基地,钴的年产量到达500t以上,目条件钴已构成两大出产体系,别离出产电钴和氧化钴,并产出钴盐等其他产品。出产质料为镍体系的钴渣和富钴锍。 电钴的出产以镍体系电解流净化所产钴渣为厚料,选用钴渣球磨浆化→复原溶解→黄钠铁矾除铗→除铜→二段沉钴→氢氧化钴反射炉烧结→电炉复原熔炼→可溶阳极电解工艺出产电解钴,别离钴后的硫酸镍回来镍出产体系。这是一个火法和湿法相结合的出产流程。出产工艺的流程图示于图1和图2。图1  从钴渣出产氢氧化钴的工艺流程图图2  从氢氧化钴出产电钴的工艺流程图 选用与此相似流程出产电解钴的其他供应商还有前沈阳冶炼厂、重庆冶炼厂等。 选用N235萃取净化和别离、不溶阳极电解工艺出产电解钴的首要供应商是成都电冶厂。 一、钴渣的复原浸出 镍电解体系净化产出的钴渣,首要元素组成列于表1。 表1  钴渣的首要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中首要以氧氧化物方式存在,在液固比为(3~4)∶1及机械或鼓风拌和条件下,用硫酸调pH=1.5~1.7,通入SO2复原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,复原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气拌和浸出时部分Fe氧化成三价。首要化学反响可表示为:在鼓空气拌和情况下,可发作亚铁离子的部分氧化,如:复原浸出液的成分列于表2。 表2  钴渣复原浸出液首要成分二、钴浸出液的净化 浸出液中首要杂质元素是铁和铜,非有必要的有铅、锌、锰、砷等。铁选用黄钠铁矾法除掉,铜用硫化沉积法除掉,其他杂质用水解沉积法除掉。 (一)黄钠铁矾除铁 黄钠铁矾除铁的基率原理是生成难溶盐。黄钠铁矾[Na2Fe6(SO4)4(OH)12]是一种淡黄色晶体沉积,具有杰出的过滤性和洗刷性,生成进程比较复杂,需求较严格操控生成条件,首要影响要素有碳酸钠溶液的浓度、温度和pH值、晶种的参加等。详细操控条件如下: 1、碳酸钠的浓度 7%~8%的浓度,且有必要均匀参加,常用办法是运用低压风使碱液呈雾状喷入铁矾生成槽内。碳酸钠浓度高时,易生成胶状氢氧化铁,形成渣含有价金属上升,且过滤困难:浓度过低则对整个体系的体积平衡晦气,下降溶液浓度。 2、温度、氧化和pH值 除铁前溶液需经氧化,使Fe2+氧化成Fe3+,氧化剂一般为NaClO3,氧化温度≥85℃,铁矾生成温度≥90℃时,呈颗粒状,具有杰出过滤功能;除铁前溶液的pH值操控在1.5~1.7,氧化时刻操控在1.5~2.0h,结尾pH值操控在2.5~3.0,除铁率可达99%,溶液中Fe≤0.05g∕L;终究pH值操控在4.0~4.5时,除铁后溶掖中Fe≤0.001g∕L。 3、晶种 湿铁矾渣作晶种参加,即在除铁压滤时,在反响罐底留必定渣量,可大大加速黄钠铁矾除铁速度。 洗后铁渣成分为:0.5%~1% Co,1%~3% Ni,0%~0.4% Cu,Fe≥24%。 (二)沉积除铜 除铜的根本原理是生成难溶的硫化铜沉积。除铜作业在机械拌和的珐琅釜中进行,用量为Cu2+∶Na2S=1∶5。先配成饱和溶液,常温下缓慢参加釜内,初始pH=2.0~3.0,终究pH=3.5~4.0,由于为碱性。除铜停留时刻约30min。溶液中的铜含量可降至0003g∕L以下,一同可除掉铅。除铜的缺陷是或许部分生成NiS和CoS沉积,形成铜渣含镍钴过高,且使溶液中带入钠离子。 三、氯化水免除砷、锑 氧化水免除砷、锑的首要原理,是运用铁水解产出的肢状Fe(OH)3具有较强吸附效果,使砷、锑等杂质一道沉积。因而,砷、锑从溶液中脱除的深度,在很大程度上取决于溶液中的含铁量,一般要求溶液中含铁量为砷、锑量的10~20倍。在水解沉积前参加氧化剂,如、次或,意图是使二价铁氧化为三价铁。 四、氧化水解别离钴 运用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。 在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发出发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。 水解沉积进程中有H+发生,有必要加碱进行中和。 在出产运用中,为了使钴和镍杰出别离,应遵照以下根本准则: (一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。 (二)操控恰当的析钴率,溶液含钴高时析钴率可高些。 (三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。 沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图2所示。二次沉钴的根本技能参数见表3。 表3  二次沉钴的首要技能参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。 五、粗钴阳极板的制备 二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。 反射炉煅烧的意图有3个: (一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块; (二)参加石油焦,使氧化钴半复原; (三)脱除部分硫。 反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。 反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。 六、电解精粹 金川公司选用可溶阳极和阴极隔阂电解法出产电钴。出产运用12个电解槽,规格为2060mm×790mm×860mm,运用2个槽造液。电解液为氯化物体系,阴极新液的化学成分列于表4。 表4  钴电解新液的成分    (g∕L)钴电解时的首要技能条件如下: 阳极规格及片数:    500mm×230mm×40mm,每槽22块 同极中心距:        180mm 始极片规格及片数:     540mm×520mm,每槽10块 电解温度:              55~65℃ 电流密度              300~400A∕m2 槽电压:              1.6~2.2V 电解液循环量:        16~220ml∕(min·袋) 阴阳极区液面差:      30~50mm 阴极周期:            3天 钴电解阳极液的成分:阳极液和造液一同进行净化除杂,然后作为阴极新液回来电解。首要除杂作业为除镍、除铜、除铅和除铁。净化除杂的首要工艺条件列于表5。 表5  电解钴阳极液除杂首要工艺条件净化渣压滤除掉,含钴铁渣回来与镍体系钴渣一同进行浆化、复原溶解。通过净化处理,溶液到达出产电钴的阴极液的要求,即:Co>100g∕L,Fe<0.001g∕L,Cu≤0.003g∕L,Pb≤0.0003g/L,Zn≤0.007g∕L。

钴的盐类

2019-01-31 11:06:04

常见的钴盐见表1,简直一切简略的钴化合物都是二价的。简略的三价钴盐尽管能够由强氧化剂效果于二价钴发生,但在一般条件下易于被水还原成Co2+。 表1  钴的首要盐类性质 一、钴的无机酸盐类 (一)氯化物:将钴的金属、氧化物、氢氧化物或碳酸盐溶于,便得到CoCl2的水溶液。将此溶液蒸腾则得到樱桃赤色六水盐,即CoCl2·6H2O,脱水变成蓝色CoCl2,它能吸收空气中的水变为淡赤色。 CoCl2是淡蓝色的菱形结晶,比重3.35,分子量129.86,熔点724℃,潍点1049℃,其蒸气压与温度的联系见表2。 表2  CoCl2的蒸气压与温度的联系 常温下CoCl2是安稳的化合物,但在空气中加热至180℃则按下列反响敏捷分化:CoCl2溶于水和一系列有机溶剂中。在水中很简单生成过饱和溶液。CoCl2·6H2O是正盐,它于50℃以下是安稳的,常常以这种方式出售。CoCl2是在枯燥箱内135~140℃温度下加热由正盐制得,CoCl2·H2O是在100℃下将CoCl2溶液蒸于制得,CoCl2·2H2O是把正盐放在温度为500℃的盛有浓硫酸的枯燥器中得到,CoCl2·4H2O是在48~56℃的水溶液中结晶制得。 CoCl2在水中的溶解度见表3: 表3  氯化钴的溶解度与温度的联系当添加氯化钴溶液中的氯离子,则有(CoCl)+和(CoCl3)-生成,在不同浓度的中各种含钴离子的百分率见表4: 表4  不同浓度下各种钴离子的百分率三价钴的氯化物是不安稳的,在中溶解时生成三价不安稳的氯化物的蓝色溶液(稀溶液是玫瑰赤色)。固体状况的CoCl3盐很难得到。 (二)硝酸盐:当金属钴及其氧化物,氢氧化物或碳酸盐用稀硝酸溶解叶,构成Co(NO3)2的水溶液。溶液蒸干后发生赤色的Co(NO3)2·6H2O结晶,在100℃时即熔化成紫色或绿色。此化合物吸水性强并易溶于许多有机溶剂中。三价钴的硝酸盐不安稳,只存在于溶液中。 (三)硫酸盐:当CoO、Co(OH)2或CoCO3溶于稀硫酸时,得到呈桃赤色单斜晶系的CoSO4·7H2O。CoSO4的溶解度与温度和硫酸浓度的美系见图1。CoSO4·7H2O不易潮解或脱水。 要使稀硫酸溶液中亚钴氧化,可用电解氧化法、臭氧或氟氧化,生成Co2(SO4)3·18H2O。该化合物在硫酸中安稳,但当加水时则敏捷变成CoSO4结晶。在空气中也很快分化。图1  CoSO4-H2SO4-H2O系溶解度等温线 当加NaOH到CoSO4溶液中时,沉积出蓝色的CoSO4·5Co(OH)2·xH2O。在有过量的NaOH存在时,沉积分出的碱式硫酸盐将进一步变或桃赤色的Co(OH)2。 (四)碳酸盐:CoCO3简直成纯洁的状况存在于自然界,被称为菱钴矿。把Na2CO3参加二价钴溶液中,构成的沉积一般为碱式碳酸盐,但稍有CO2存在时,则沉积出紫赤色的CoCO3·6H2O。将它放入管内密封加热至140℃,即变为淡赤色粉末状CoCO3。该物质在水中的溶解度很小,100℃时能溶解CoCO30.0293克/升,是较安稳的化合物。 (五)磷酸钴:用H3PO4或Na3PO4与CoCO3或Co(OH)3效果可得到CoPO4。在陶瓷出产中所使用的磷酸钴盐Co3(PO4)2·8H2O,它简直不溶干水。 (六)硅酸盐:把CoO与SiO2一同熔化生成紫色不溶于水的偏硅酸盐(CoSiO3)或正硅酸盐(Co2SiO4)。混合CoSO4和Na2SiO3溶液时,先分出蓝色并很快变成淡赤色的沉积(CoSiO3·2H2O)。蓝色的CoSiO3具有很强的染色性,0.1%或更少的CoSiO3能把玻璃染得很蓝。大青的成分为K2O·CoO·3SiO2,常常作为颜料使用。 二、钴的有机酸盐类 (一)草酸盐:二价钴的草酸盐一般为桃赤色含二水的化合物,但也有含四水和无水形状的。它简直不溶于水,但溶于浓氧中。不安稳的三价钴草酸盐仅存在于水溶液中。二价钴草酸盐可用(NH4)2C2O4溶液与CoCl2溶液或Co(NO3)2溶液效果制得。 (二)Co(CH3COO)2: Co(CH3COO)2在石油及人造纤维工业中用作催化剂。一般含有四个分子水,易溶于水。可用CoCO3与CH3COOH按下述反响制得水溶液,然后操控条件浓缩结晶便制得契合规格的Co(CH3COO)2产品。

高纯钴的制备技术

2019-01-31 11:06:04

一、前语纯度为 99.9%~99.99%的钴 现已广泛运用于磁性材料、超级合金的制作,99.999%乃至更高纯度的钴则用来做为先进电子元件的靶材。钴靶材中的杂质会影响电子器件的运用功用:碱金属(如 Na,K)、非金属(S,C,P)等杂质能够在半导体之间搬迁,然后影响其功用;Fe会导致电子器件磁功用的不一致;Ti,Cr,Cu元素会影响半导体元件的导电功用;气体杂质(如 O)能够添加半导体元件中的Co和 CoSi2的电阻;Ni会影响半导体的界面功用;放射性元素如U,Th能够辐射出α射线,使半导体失效。因而,研讨高纯钴的制备办法对进步钴靶材的质量有着重要的含义。 在国际上,1956年美国矿业局(Bureau of Mines)初次制备出纯度为 99.99%高纯钴。K.K.Kershner等人通过阳离子交流法和沉淀法除掉四合钴(Ⅲ)盐溶液中的铁、铜、镍等杂质,终究选用阴极电解法制备出高纯钴。跟着离子交流法的开展和高效萃取剂 P507,Cynex272,Cynex301等的呈现,钴溶液提纯技能得到长足开展。美国、加拿大、日本、韩国等国在钴提纯技能上进行了很多研讨工作 ,其间以日本最为杰出。日本 JMc公司于 1997年开端出产高纯钴 ,现有 99.998%高纯钴产品。日矿(Nikko)公司和 日本株式会社化学研讨现已出产出99.999%的高纯钴 ;日本 Furuchi公司出产的高纯钴能够到达 99.999 5%(分析 70种杂质元素),是现在报导中纯度最高的。 在国内,1961年上海有色金属的研讨所以粗钴为质料 ,用次溶液除镍,以离子交流除铝和锌 ,中和水解法除铁,制备高度纯洁的氯化钴溶液进行电解精粹,获得 99.99%高纯钴。金川镍钻研讨设计院的申勇峰等以l#电解钴为质料选用电溶 、离子交流法除掉溶液中的杂质离子电解提纯后的溶液,得到 99.994%的高纯钴。此外北京有色金属研讨总院和北京矿冶研讨总院也正在进行高纯金属的研讨工作。金川有色金属公司是我国镍钴首要出产基地,钴产值居全国之首,并且出产技能也代表了我国最高水平。其选用粗钴阳极隔板膜电解法出产出纯度大于 99.98%的电解钴 ,到达 1#电解钴的标准。 国外首要选用离子交流法除掉溶液中大部分杂质离子,然后通过电解得到金属钴,再选用区域熔炼、电子束熔炼等手法进一步提纯得到高纯钴。国内研讨工作首要会集在离子交流和电解精粹上,现在还没有扩大化出产的报导。 二、高纯钴的制备制备高纯钴的质料是工业电解钴、钴盐等,运用的冶金办法首要有湿法冶金、火法冶金、电化学冶金等。制备进程分为钴盐溶液净化和钴金属精粹 2个阶段:第 1阶段首要选用湿法冶金办法,如溶剂萃取、离子交流、膜别离、电解等,用以除掉粗钴溶液中的大多数金属杂质,首要是镍、铜、锌、铁等杂质,并经电解得到金属钴;第 2阶段首要选用火法冶金办法,如区域熔炼、真空脱气等,用以进一步脱除金属钴中的碱金属、碱土金属、非金属气体杂质,终究得到高纯金属钴。 (一)钴盐溶液的净化 1、溶剂萃取法溶剂萃取法是运用杂质离子在有机相和水相之间的分配比不同到达别离杂质的意图。Ritcey等在20世纪 70年代研讨了运用 D2EHPA进行钴、镍别离的工艺。N.B Devi研讨了硫酸盐系统中选用D2EHPA,PC88A,Cyanex272萃取 Co的行为,并评论了比较、皂化率对萃取因子的影响。M.V.Rane选用 LIX84从废旧的催化剂中萃取钴,然后用沉淀法除铁和铝 ,得到了纯度大于 99.9%的钴 。N.V.Thakur等选用 P204和 P507完成了钴与镍、铜等杂质的别离。 Wang Guangxin等选用溶剂萃取法和离子交流法净化钴溶液,然后经电解得到金属钴,其成果见表 1。能够看出,溶剂萃取法对大多数金属离子有很好的除杂作用,但对铜、锌、钛、铅等金属离子反而起了富集作用。溶剂萃取法适用于大规模提纯钴溶液,但在制备高纯钴方面作用却不显着。 表1  离子交流和溶剂萃取后的杂质含量(×10-4%)注:①溶剂萃取-电积工艺;② 离子交流-电积工艺;③ 溶剂萃取-4次离子交流-电积工艺。 2、离子交流法离子交流法是运用离子交流树脂的功用基团和溶液中杂质离子的交流、解析才能的差异到达别离的意图。K.Mimura等选用阴离子交流法净化钴溶液,再经电解、电弧熔炼、电子束熔炼得到纯度为99.999 7%的高纯钴。Nagao等选用阴离子交流法除掉 Fe,Zn,Sn,Ni,Ca,Mg,Na等,然后选用有机胺萃取别离其它杂质,得到的高纯钴盐溶液经结晶、枯燥后复原得到高纯钴粉,其间的Fe,Zn,Sn,Ni,Ca,Na,Mg含量都低于 0.000 l%。 钴盐溶液中的铜在酸性条件下始终能弱吸附在树脂上,难以与钴别离。为处理铜的共吸附问题,Masahito等将钴溶液 中的 Cu2+复原为 Cu+,再选用阴离子交流树脂除掉Cu+(Co2+不被吸附),净化后的高纯 CoCl2溶液结晶、枯燥后经复原得到纯度为 99.999 7%的金属钴(RRR=207),成果见表2。由表 2可见,铜杂质含量低于 0.000 005%。 表2  阴离子交流法制备的高纯钴中的杂质含量(×10-4% )离子交流法对 Zn,Mo,W,Cu的别离作用并不显着,对铅有显着的富集作用。 3、萃取色层法萃取色层法是运用吸附在大孔树脂上的萃取剂对溶液中离子的挑选性萃取到达别离意图。刘扬中等研讨了添加配位剂基乙酸 ,以替代传统的树脂转型办法进行萃取色层法净化钴溶液。他们调查了淋洗液 pH值、进样量及料液中Co、Ni比等要素对别离的影响,在 pH值为 3.40的条件下用5 g萃淋树脂完成将钴、镍质量比在 1~100范围内溶液中的钴、镍(总量为 1.6 mg)彻底别离,并研讨了基乙酸的配位、缓冲作用对别离进程的影响。 周移等将 P507萃淋树脂转型为 Mg型 ,进步了对 Co2+的萃取才能 ,完成了钴与镍的彻底别离 ,并进步了柱子运用寿数。周春山等选用转型后的 P204萃淋树脂以 pH值为 2.5的一钠为淋洗液,完成了钴与铜、锌、锰、铬等金属离子的彻底别离。刘展良等具体研讨了 HCl系统中 Zn、Ca、Mg、Fe、Co、Ni和稀土离子在 P507萃淋树脂上的淋洗行为,并探讨了 Fe3+在柱床上或许存在的反响 机理。萃取色层法既具有液一液萃取中萃取剂的高度挑选性 ,又具有离子交流色层别离的多级性,在别离性质附近的元素上有着优 良的功用,因而在湿法冶金中遭到越来越多的注重。一起萃取色层也存在一些 本身的缺陷 ,如柱子萃取容量比较低 ,萃取剂简单丢失 ,寿数相对较短等。进步柱子的萃取容量,战胜萃取剂丢失,开发挑选性更好的萃取剂是往后萃取色层法获得重大突破的要害。4、膜别离法膜别离法是运用液膜能够挑选性地透过离子并在水相富集而到达别离的意图。Jerzy等选用支撑液膜和大块液膜做载体 ,D2EHPA做萃取剂别离钴和镍 ,探讨了溶液酸度 、膜离子载体浓度、金属离子浓度对别离成果的影响。 Li Longquan等研讨了乳化液在硫酸系统中别离钴、镍的进程。他们选用 EDTA作为掩蔽剂掩蔽料液中的镍离子,以P204的乳化液膜作为载体从硫酸盐系统中收回钴。通过调查 pH值、别离时刻等要素,断定了最佳的别离条件。 虽然膜别离法具有高的挑选性和传质快等长处,但因膜的稳定性差、本钱较高级原因,现在还处于实验室中试阶段。5、电解法钴电解是在酸性钴盐溶液中进行的。电解液的组成、浓度、酸度、温度、电流密度等条件应该严格控制。因为溶液中的Cu2+,Cu+,Sn2+,Ni2+,Pb2+,As3+等杂质离子的电势比钴高(正)或许和钴挨近,在电解时会与Co2+一起分出;电势比钴更低(负)的金属离子如 Fe,Mn,Zn,Na等杂质离子的存在对钴的质量影响不大,但含量较高也会带来必定的损害。因而要严格控制溶液中的杂质离子含量。 净化后的钴溶液中溶解的少数萃取剂会添加金属钴的杂质含量经活性炭处理得到的电积钴中的 C,O,N,H含量大大下降,见表3所示。 表3  活性炭处理后电积钴的杂质含量(×10-4%)注:① 溶解的有机相用经6 mol/L的HCl处理过的活性炭除掉,经电解、EBM后得到的数据;② 进程相似Example 2经电积得到数据,运用的活性炭未经酸处理;③ 进程相似 Example 2,经电积得到数据,溶液未经活性炭处理。 Isshiki等选用聚乙烯电解槽,用直径为1 mm的高纯钴丝(99.998%)做 阴极,用铂板做阳极,电解高纯 COC12溶液得到直径 5 rain的钴棒。 Shindo等选用离子交流法除掉溶液中的杂质,然后经屡次电解和电子束熔炼得到金属钴 。屡次电解和电子束熔炼后的杂质含量见表4。 由表4能够看出,电解能够别离 Ni,Fe,K,U,Th等杂质,屡次电解精粹能够进一步下降杂质含量;电解精粹后的电子束熔炼能够有用去除Na杂质。 表4  钴电解精粹和电子束熔炼后的杂质含量(二)钻金属精粹为脱除金属钴中剩余的碱金属杂质和部分气 体杂质 ,电解得到的金属钴还需要通过火法精粹。常用的办法有电子束熔炼 、区域熔炼等。区域熔 炼是依据杂质元素在液态和固态平分配系数的差 别,使金属得到提纯。可是 ,对分配系数挨近 1 的元素,如 Fe,Ni,Co,Cr,Mn,A1,Cu,Si很难用区域熔炼法相互提纯。电子束悬浮区熔是制 备高纯金属常用的办法,它能够成长完好的单晶,显着进步金属的 RRR值,如表 5所示。通过区域 熔炼后 ,金属钴的 RRR值分别由236和 116进步到 334和 245。 表5  不同工艺下杂质含量及RRR值的改变(×10-4%)注:A,CoCl2质料;B,氢复原钻;C,电解+6次电子束悬浮区域熔炼;D,氢复原+4次电子束悬浮区域熔炼;E,氢复原+8次电子束悬浮区域熔炼 ;F,氢复原-处理+4次电子束悬浮区域熔炼。 Miller等运用真空脱气烧结法使金属钴中的Zn,Cd,S,O,C等杂质元素含量显着下降,成果如表6所示。 由表6能够看出,真空脱气烧结法能够有用地脱除金属中的 C,O,N等非金属杂质 ,但关于金属杂质作用并不显着。 表6  真空烧结脱气作用(×10-4%)三、结语 单一的提纯办法无法满意制备 5N以上高纯钴的要求。溶剂萃取法对大多数金属离子有很好的作用的,但对 Ni,Cu,Zn等金属离子的别离作用相对较差;膜别离法存在稳定性差 、本钱高的缺陷。离子交流和萃取色层法对别离性质附近的元素上作用杰出 ,但存在容量低一级问题。火法精粹进程中,区域熔炼可去除金属钴中的碱金属、碱土金属和气体杂质,并有利于生成纯度高、值大的完好钴单晶。因而,制备 5N以上的高纯钴合理的工艺流程为:首要选用离子交流或萃取色层法除掉钴盐溶液中的镍、铜、铁、锌等杂质,然后选用电解进一步除掉 Ni,Fe,K,U,Th等杂质得到高纯金属钴,终究选用区域熔炼除掉其间的碱金属和蒸气压较大的杂质,得到晶型完好的高纯钴产品。

用含锌铅烟灰制备氧化锌的技术

2019-02-21 11:21:37

氧化锌广泛应用于橡胶、涂料、陶瓷、化工、医药、玻璃和电子等职业,跟着工业的飞速发展,国内对氧化锌的需求量日益添加。用低档次含锌物料出产活性氧化锌,既可充分利用锌资源,又可下降出产本钱,因而,现在该研讨范畴反常活泼,归纳利用低档次氧化矿、次氧化矿、锌渣、烟灰等的研讨逐步引起厂商注重。烟灰是铅、锌冶金进程的一种中间产品,是由回转窑蒸发、贫化处理铅鼓风炉渣等含锌物料发作的,其成分杂乱,除含锌、铅外还含有较多的砷、锑等杂质。因为其处理难度大,本钱高,不能直接作为湿法炼锌的质料。但因为其锌含量高,且易于浸出进人溶液,因而,可用作制取氧化锌粉末产品。     处理烟灰现有的办法有酸浸法和配合法两种。酸浸法是以粗氧化锌或锌矿砂为质料,与稀酸混合反响后,经除杂、中和、枯燥和煅烧制得氧化锌。该法除杂量大,工艺杂乱,本钱高,并且废水量大,处理困难,对环境有污染。配合法是以粗氧化锌或脱硫用过的锌触媒焙烧物为质料,用-碳酸氢铵溶液作浸出剂,经浸出、除杂净化、蒸沉锌、洗刷枯燥和煅烧等工艺进程制得活性氧化锌。该法设备出资少,杂质少,可是流程长,并且只适应于富含ZnO的物料,若物料中含有必定量的ZnS,则该法不能直接选用,需用氧化剂先预处理烟灰,将硫化锌转化为氧化锌。因而,实验研讨了用预处理烟灰,然后用溶液浸出,终究制得得氧化锌粉末产品。     一、实验部分     (一)实验质料     实验用烟灰取自广西某工厂,其粒度为65~76μm,首要化学成分见表1。 表1  烟灰的化学成分%ZnPbFeAsCdSbSiS49.8626.890.750.800.030.110.51.81     (二)实验办法     先用水将干烟灰调制成液固体积质量比为1∶1的烟灰浆,然后用3%预处理一段时刻,再在必定温度下参加必定量溶液拌和浸出,然后离心过滤,滤液恰当稀释并拌和一段时刻后再离心过滤,二次滤液作为浸出剂回来浸出,滤饼为氢氧化锌,洗刷、烘干、锻烧后得纯洁的氧化锌粉末。     二、成果与评论     (一)体积分数及预处理温度对锌浸出率的影响     在不同温度下,往100g烟灰浆(液固体积质量比1∶1)中参加必定量,拌和60min后,在60℃温度下,参加3mol/L溶液浸出2h,调查体积分数及预处理温度对烟灰中锌浸出率的影响,成果见表2。 表2  体积分数及预处理温度对锌浸出率的影响实验编号体积分数/%预处理温度/℃锌浸出率/%112538.24232555.67352556.71414040.33534060.01654061.24     从表2能够看出:体积分数增大,锌浸出率升高;在25℃下,当体积分数从1%添加到3%时,锌浸出率进步17%;体积分数从3%增大至5%时,锌浸出率仅进步1%;当温度升高至40℃时,体积分数从1%增大至3%,锌浸出率进步近20%,并且氧化锌吸附的SO2被氧化成硫酸锌,对环境不形成污染。能够以为:温度对锌浸出率影响不明显,体积分数为3%比较适合。     (二)温度对锌浸出率的影响     在25℃下,用3%预处理烟灰,然后用3mol/L溶液在不同温度下浸出1.5h。实验成果如图1所示。图1  浸出温度对烟灰中锌漫出率形晌     从图1看出:随浸出温度升高,锌浸出率呈线性升高。室温下,锌浸出率只要30.22%,而当温度升高到95℃时,锌浸出率到达89.31%。归纳考虑,浸出温度以85℃为宜。     (三)浓度对锌浸出率的影晌     在25℃下,用3%预处理烟灰,然后在85℃下,用不同浓度的溶液浸出1.5h。实验成果如图2所示。图2  浓度对锌浸出率的影响     从图2看出:随浓度增大,锌浸出率进步,特别是浓度从2mol/L增大至5mol/L,锌浸出率进步了46.54%,到达97%。这是因为烟灰中锌与碱发作反响,生成锌酸钠进入溶液: 2NaOH+ZnO=Na2ZnO2+H2O。     可是,当浓度增大至6mol/L后,锌浸出率仅添加0.52%,不能到达100%,这可能是烟灰中的锌被包裹起来而无法与碱触摸的原因。     (四)浸出时刻对锌浸出率的影响     在25℃下,用3%预处理烟灰,然后在85℃下用3mol/L溶液浸出,调查浸出时刻对锌浸出率的影响。成果如图3所示。图3  浸出时刻对锌浸出率的影响     从图3可知:随反响时刻添加,锌浸出率进步。浸出0.5~1.5h,锌浸出率从73.81%进步至96.92%;但浸出1.5h之后,锌浸出率进步缓慢。所以,浸出时刻以1.5h为最佳。     (五)验证实验     在25℃下,用3%预处理烟灰,然后在85℃下用5mol/L溶液浸出1.5h, 锌浸出率和浸出渣中锌和铅的质量分数见表3。 表3  碱浸出烟灰验证实验成果实验编号锌浸出率/%浸出渣中ωB/%ZnPbAs196.923.9145.330.02297.033.4245.20<0.01396.984.0145.280.01497.133.6646.21<0.01     从表3可知:归纳实验条件下,锌浸出率在97%左右,浸出渣中锌质量分数在3%~4%之间,铅质量分数45%左右,简直不含As。浸出渣可进入铅体系提取铅,完成资源归纳利用。     (六)氧化锌的制备     将上述碱浸出液降温至25℃、稀释1倍,拌和0.5h后离心过滤,滤饼烘干,氢氧化锌沉积率为72.3%。沉积物的XRD分析成果表明其物相组成首要为ZnO;化学分析成果表明,ZnO质量分数为99.58%,Pb0质量分数为0.12%,基本上到达直接法一级品要求。     三、定论     含锌烟灰经在常温下预氧化处理后用溶液浸出,可将其间的97%的锌转入溶液,然后经沉积、过滤、烘干,可制得氧化锌粉末。该办法所得ZnO粉末纯度较高,为充分利用含锌烟灰供给了一条有效途径。

钛液的制备

2019-02-13 10:12:38

在硫酸法钛出产中,第一步就是先把固体的钛铁矿经过酸分化制备成可溶性钛的硫酸盐溶液,一起钛铁矿中的铁和大部分金属杂质也变成可溶性的硫酸盐,以便今后将各种杂质别离。因为偏铁酸亚铁(钛铁矿)是一种弱酸弱碱盐,用强酸(H2SO4)与它反响基本上是不可逆的,反响能够进行得比较彻底。     钛铁矿的酸分化(简称酸解)有干法和湿法。干法是把磨细后的钛铁矿与硫酸混合进行加热、焙炒,待分化完结后加水稀释浸取,取得钛的硫酸盐溶液。该法不能进行大规模的工业化出产,现在在实验室中制备钛的硫酸盐溶液有时还用这种办法。     湿法就是现在遍及选用的硫酸法。湿法从开展的前史来看,曾有过5种不同办法:即液相法、固相法、两相法、加压法和接连法。     液相法:反响一直在液相状态下进行。在这里,硫酸(有用酸)浓度与钛总含量之比值非常重要叫做酸比值,一般以F来表明。选用55%~65%的硫酸酸比值较高(F值3~3.2),所以得到的钛液绝大部分以正硫酸钛—Ti(SO4)2的方式存在。该办法因为反响时间太长,耗酸、耗蒸汽多,加上F值太高形成今后水解困难,水解率低,工业出产一般不选用此法。实验证明液相法的硫酸浓度即便只要10%,也能取得硫酸钛溶液,但反响时间更长,因为10%硫酸的沸点只要10℃,在98℃下反响8h,酸解率只要30%。     两相法:两相法选用的硫酸浓度为65%~80%,F值操控在1.8~2.2之间,操作时先把硫酸加热至120℃左右,然后参加矿粉持续拌和加热到150~200℃,主反响3h,反响物为糊状物,接着冷却、加水浸取坚持必定的悬浮液浓度,至酸解率到达85%~90%时停止。两相法虽比液相法耗用硫酸少,但反响时间长,酸解率低仍不经济。     固相法:该法是现在硫酸法钛工厂遍及选用的办法,因为它与前两种办法比较具有反响温度高、反响进程短、耗用硫酸少的长处。用这种办法出产的硫酸浓度一般在85%~95%,反响剧烈、敏捷,因为浓硫酸的沸点高,最高反响温度可高达200~250℃,反响一般在5~15min内即可完结,反响放出很多的热,因而动力较省,耗酸也较少,F值一般操控1.7~2.1,所得产品为多孔的固相物,简单加水浸取,酸解率一般能够到达95%以上。     加压法:选用20%~50%浓度的稀硫酸,在一耐腐蚀的受压设备中进行,一般出产人工金红石或电焊条用的金红石有时选用此种办法。     接连法:该法运用和20%硫酸的混合酸,先制得半流体状的反响物,然后再高温固化。加压法、接连法对反响设备的原料要求很高,操作杂乱,在工业化钛出产中没有采用。

湿法炼镍(钴)-钴溶液的处理

2019-01-24 11:10:25

应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。     美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。     在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。 钴溶液的处理     硫化钴溶液是镍企业湿法冶金车间的原料。这种溶液中含(克/分米3):Co3~50(Ni含量大致在这个范围内变化)、Fe3~20、Cu0.2~0.5。再生含钴废料也溶解于硫酸溶液。过滤后的溶液中,各种金属的浓度同上述浓度相似,取决于原料中的金属含量。     硫酸溶液净除杂后,以氢氧化物形式析出。     某些氢氧化物生成的pH平衡值列于表1。 表1  不同作者的资料提供的金属氢氧化物生成的pH平衡值化合物布里顿费阿尔科夫赫菲茨和罗景扬Co(OH)3 Fe(OH)3 Cu(OH)2 Co(OH)2 Fe(OH)2 Ni(OH)2— 2.0 5.3 6.8 5.5 6.7— 1.63 4.4 6.78 5.62 6.70.9 2.6 4.5 6.4 6.7 7.1     根据表1的资料,高价金属从溶液中析出比低价金属简单得多。这一原理在湿法冶金中得到广泛应用。氧化剂可以是固态、液态和气态。重要的是,氧化剂的氧化电位要比溶液中的金属离子的氧化还原电位高。氧化还原电位可按下式计算:φMe3+/Me2+=φ°Me3+/Me2++RTlnaMe3+(1)NfaMe2+ 式中,aMe3+----氧化离子的活度;aMe2+----还原离子的活度;φ°Me3+/Me2+----25℃温度下的标准电极电位。 表2  氧化还原反应的电极电位反应参加反应的离子活度介质电位(伏)Co3+e←→Co2+Aco3+=aco2+=1—+1.84NiO2+4H++2e←→Ni2++2H2O——+1.77HClO+H++e←→Cl-+H2O—酸性+1.491/2 Cl2←→Cl-acl-=1—+1.35O2+4H++4e←→H2OaH+=1—+1.23ClO-+H2O+2e←→Cl-+2OH-Aclo-=1,aoH-=1碱性+0.94Fe3++e←→Fe2+aFe3+=3.8×10-8酸性+0.771Fe2++3OH+←→Fe(OH)3aFe2+=4×10-4pH=2.5+0.44     某些氧化还原反应的电极电位列于表2。从表2的资料可以看出,氧的作用是可以把Fe2+氧化为为Fe3+。为了使钴、镍、锰变为高化合价,需要采用更强的氧化剂,如气态氯或次氯酸盐等,介质应是酸性的。     氢氧化物的水解分步沉淀,反应如下: 2FeSO4+3Na2CO3+6H2O=2Fe(OH)3+2NaCl+3Na2CO3+2Na2CO3        (2)     此反应在pH=4.0~4.5(溶度积Fe(OH)2=4×10-38)时,随实际生成铁的不溶氢氧化物同时进行: 2CuSO4+2Na2CO3+2H2O=CuCO3·Cu(OH)2+Na2SO4+H2CO3       (3)     铜的碱式碳酸盐沉淀的pH值为5.5。       2CoSO4+Cl2+3Na2CO3+6H2O=2Co(OH)3+2NaCl+2Na2SO4+3H2CO3       (4) pH沉淀=3.0~3.5,溶度积Co(OH)3=2.5×10-43         2MnSO4+2Cl2+4Na2CO3+4H2O=2Mn(OH)4+2Na2SO4+4NaCl+4CO2          (5) Mn(OH)4r pH沉淀=2.5。锰是最难排除的杂质。     为了正确评价从溶液中分步除杂,不仅需要有热力学数据,而且还要了解生成氢氧化物的动力学。     沉淀可在帕秋克浸出槽内进行(配有压缩空气搅拌)或在带有机械搅拌的装置内进行,用孔状过滤器进行固一液分离。

高纯钴的制备

2018-12-10 14:19:22

高纯钴的制备.pdf

黑镍氧化中和水解法除钴

2019-02-13 10:12:44

在铁族元素(包含Fe、Co和Ni)的三价氢氧化物中,其间以Ni(OH)3的氧化性最强,Co(OH)3次之,Fe(OH)3的氧化性最弱。用Ni(OH)3可使Co2+氧化成Co3+。      在工业生产上,黑镍(FeOOH)是Ni(OH)3的安稳形状。因为氢氧化亚镍[Ni(OH)2]的顔色为暗绿色,而氢氧化镍[Ni(OH)3和NiOOH]为黑色,故得名“黑镍”。黑镍像Cl2相同,它可作氧化剂用于中和水免除钴。其反响如下: NiOOH+Co2++H2O=Ni2++Co(OH)3      作为电解液净化沉钴所需的黑镍是用电解法制取的。电解阳极氧化Ni(OH)2法的根本进程是,从电解液净化系统抽出部分净化后液,参加沉积出Ni(OH)2,将Ni(OH)2矿浆放入电解槽内通入直流电,Ni(OH)2在阳极上发作氧化反响: Ni(OH)2-e=NiOOH+H+      Ni(OH)2电解氧化成NiOOH的机理现在还不彻底清楚。但一般以为氧化进程发作在固相即Ni2+无需进入溶液能够发作氧化,也就是说在Ni(OH)2颗粒触摸到阳极时才干氧化。电解氧化槽必须加强拌和,促进Ni(OH)2颗粒与阳极磕碰。电解氧化槽的阳极材料为外长始极片,阴极材料可用镍铬丝或不锈钢网,用鼓入空气的办法拌和电解氧化槽中的矿浆。下表为电解氧化槽技能操作条件。 下表“黑镍”电解氧化槽技能操作条件项目单位 电解液成分 NaOH0.1~0.15mol/L Ni30g/L电解液温度℃50槽电压V2.3阳极电流密度A/m220电流效率%~50     芬兰哈贾伐尔塔精粹厂选用“黑镍”氧化水免除钴是在两个容积为120m3的空气拌和槽中以两段逆流方法进行的。在榜首段净化除钴的进程中,溶液与现已部分起反响的NiOOH触摸,溶液中50%左右的钴发作沉积。矿浆送主动压滤机过滤,滤渣经酸洗后送另外厂收回钴,滤液送第二段净化除钴。在第二段反响槽内参加新的NiOOH。      用NiOH除钴,因为它的反就产品是镍离子,与电解液主成分共同,不会污染所处理的溶液。此外,用NiOOH除钴,因为它的氧化能力强,因而能一起除净溶液中残留的微量杂制质,如铜、铁、锰、砷等,起到深度净化的意图。

2018-04-19 17:41:48

钴是灰色硬质金属,它的居里点(失去磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发生氧化作用,极细粉末状钴会自动燃烧。钴能溶于稀酸,在浓硝酸中会形成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发生剧烈反应。 

钴的电解精炼

2019-01-24 09:36:35

金川公司采用可溶阳极和阴极隔膜电解法生产电钴。生产使用12个电解槽,规格为2060mm×790mm×860mm,使用2个槽造液。电解液为氯化物体系,阴极新液的化学成分列于表1。 表1  钴电解新液的成分    (g∕L)钴电解时的主要技术条件如下: 阳极规格及片数:        500mm×230mm×40mm,每槽22块 同极中心距:            180mm 始极片规格及片数:     540mm×520mm,每槽10块 电解温度:              55~65℃ 电流密度              300~400A∕m2 槽电压:              1.6~2.2V 电解液循环量:        16~220ml∕(min·袋) 阴阳极区液面差:      30~50mm 阴极周期:            3天 钴电解阳极液的成分:阳极液和造液一起进行净化除杂,然后作为阴极新液返回电解。主要除杂作业为除镍、除铜、除铅和除铁。净化除杂的主要工艺条件列于表2。 表2  电解钴阳极液除杂主要工艺条件净化渣压滤除去,含钴铁渣返回与镍系统钴渣一起进行浆化、还原溶解。经过净化处理,溶液达到生产电钴的阴极液的要求,即:Co>100g∕L,Fe<0.001g∕L,Cu≤0.003g∕L,Pb≤0.0003g/L,Zn≤0.007g∕L。

从钴的砷化矿中提钴的方法

2019-01-31 11:06:04

一、砷化钴精矿的湿法冶金流程 湿法处理砷钴精矿要以法国的尤琴钴厂的舍日诺-库鲁曼法和诺贝尔-波载法较好,其工艺流程见图1。图1  法国砷钴精矿的处理流程 舍日诺-库鲁曼法是精确操控欢腾焙烧的条件,使砷以As2O3蒸发除掉。砷化物的氧化反响主要按下式进行:一同也有部分反响继续进行而生成钴。高温文大的气-固界面利于As2O3蒸发并促进盐分化。因而欢腾焙烧在原则上可以用快速加热促进精矿脱砷。将产出的贫砷烧渣氯化拌和浸出。浸出液经中和、净化,使贵金属、重金属、溶液中剩下的铁沉积,溶液中的钴用电解或加压氢复原制得钴粉。也可加苏打沉积出Co(OH)2,再经煅烧成Co2O3。 依据诺贝尔-波载法,选用硫酸、硝酸混合液溶解,砷可进入溶液。经过冷却,大部分砷、脉石进入一次浸出渣,与含有大部分钴(钴一次浸出率为88%~92%)的溶液别离。用93℃的水溶解出As2O3,经冷却结晶出As2O3,枯燥后出售。滤渣进行二次浸出,可使钴总浸出率达99.5%。在pH值较低的时分用氯和石灰石沉积铁,溶液中的砷便跟铁一同沉积下来。纯钴液用氯和苏打使其呈三价钴状况沉积,然后将Co(OH)3再处理成钴盐和氧化钴。 二、砷化钴矿的高压湿法冶金流程 本世纪五十年代,关于砷钴矿的高压湿法冶金流程的研讨较多,我国、美国做的作业更多。下面介绍美国曾一度出产过的加菲尔德钴精粹厂的高压酸浸流程和纽伯钴厂的高压碱浸流程。 (一)砷化钴矿的高压酸浸流程。加菲尔德钴精粹厂处理黑乌区域的砷钴矿。1955年12月底按高压酸浸及高压氢复原法出产,遇到酸浸高压釜配件的防腐质料问题,钴粉质量也差,1957年11月又用电解法替代高压氯复原法出产金属钴,其工艺流程见图2。图2  砷化钴矿的高压酸浸流程 (二)砷化钴矿高压碱浸流程。纽伯钴厂是1957年建成的实验厂,日处理加拿大安大略省的砷钴矿与精矿30~60吨。选用高压碱浸(西尔法Sillmethod)出产Co2O3粉。其质料成分为(%):Co12、Ni3.0、Cu1.0、As45、Fe19、S20、Ag3000~4500克∕吨。将砷以Ca3(AsO4)2从出产流程中除掉是其特色。 三、砷钴精矿的火法-涅法联合处理流程 这种流程是适应性较广的老办法。二次世界大战前西德的哥斯拉钴厂用该法处理摩洛哥,加拿大和缅甸的砷钴矿。加拿大德洛诺钴厂也是选用该法出产的老供应商。 我国某钴厂曾处理从摩洛哥进口的砷钴矿,其化学成分为(%):Co9~l4、As40~60、Ni1.3~5、Fe5~10、Cu0.03~1、S1~5、MnO 0.4~1。该厂曩昔对摩洛哥砷钴矿的处理流程见图3。 在出产中发现这个流程太长,钴液不断稀释而使处理溶液量添加,设备容积大,产出较多的渣和液。因而曾研讨用国产P204萃取脱除杂质和萃取别离镍、钴,用反萃制取CoCl2溶液,此溶液用一般办法制得合适硬质合金要求的纯氧化钴粉。图3  我国某厂砷钴矿处理流程

二氧化锆的相变及其制备

2019-03-08 11:19:22

物理性质 纯洁的ZrO2为白色粉末,含有杂质时略带黄色或灰色,增加显色剂还可显现各种其它色彩。一般含有少数的氧化铪,难以别离,可是对氧化锆的功能没有显着的影响。二氧化锆的相变 氧化锆是一种特殊的材料,增韧的办法,首要是使用氧化锆的相变才干到达的!氧化锆有三种晶相,分别为单斜晶相、四方晶相和立方晶相,三者之间的改变联系如下:因为在单斜相向四方相改变的时分会发作较大的体积改变,冷却的时分又会向相反的方向发作较大的体积改变,简略构成产品的开裂,约束了纯氧化锆在高温范畴的使用。 可是增加安稳剂今后,四方相能够在常温下安稳,因此在加热今后不会发作体积的骤变,大大拓宽了氧化锆的使用规模。市场上用来做安稳剂的质料首要是氧化钇。 二氧化体的首要制备办法 1.中和沉淀法长处:设备工艺简略,出产本钱低价,且易于取得纯度较高的纳米级超细粉体,因此被广泛选用。 缺陷:没有解决超细粉体的硬聚会问题,粉体的涣散性差,烧结活性低。 2.锆盐水解法长处:操作简洁。 缺陷:反响时刻较长(>48小时),耗能较大,所得粉体也存在聚会现象。 3.锆醇盐水解法长处:(1)简直全为一次粒子,聚会很少; (2)粒子的巨细和形状均一; (3) 化学纯度和相结构的单一性好。 缺陷:质料制备工艺较为杂乱,本钱较高。 以上三种办法的后工序都是煅烧,其温度越高,则粉体的晶粒度越大,聚会程度越高。这是因为煅烧升温进程当完成了从非晶态改变为晶态的成核进程今后便开端了晶粒长大阶段,而且晶粒中成晶结构单元的涣散速度随温度升高而增大,彼此接近的颗粒简略构成聚会。 4.水热法长处:粉料粒度极细,可到达纳米级,粒度散布窄,省去了高温煅烧工序,颗粒聚会程度小。 缺陷:设备杂乱贵重,反响条件较严苛,难于完成大规模工业化出产。 5.溶胶-凝胶法长处:(1)粒度纤细,亚微米级或更细; (2) 粒度散布窄; (3)纯度高,化学组成均匀,可达分子或原子标准; (4)烧成温度比传统办法低400~500℃。 缺陷:(1)质料本钱高且对环境有污染; (2)处理进程的时刻较长; (3)构成胶粒及凝胶过滤、洗刷进程不易控制。 6.微乳液法(反胶束法)长处:可制得 缺陷:出产进程较杂乱,本钱也较高。