您所在的位置: 上海有色 > 有色金属产品库 > 镍钴铁 > 镍钴铁百科

镍钴铁百科

钴镍

2017-06-06 17:50:12

钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工 行业 、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。   一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价 金属 转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他 金属 ,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价 金属 的综合回收利用。   二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。   三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。   四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍 金属 广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等 行业 ,钴镍粉体是现代工业不可缺少的 金属 材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍 金属 ,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。 

铝镍钴

2017-06-06 17:50:12

铝镍钴铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量 金属 元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 铝镍钴磁铁,铝镍钴永磁是由 金属 铝,镍,钴,铁和其他微量 金属 元素构成的一种合金.   铸造工艺   其 金属 成份的构成不同,磁性能也不同,从而用途也不同.铝镍钴永磁有两种不同的生产工艺:铸造和烧结.铸造工艺可以加工生产成不同的尺寸和形状,与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯产品尺寸公差小,铸造可加工性好.在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达500摄氏度以上.铝镍钴磁能积高,温度稳定性好, 价格 与钕铁硼差不多,缺点是矫顽力极低,容易发生退磁,磁路设计不能采用薄片状磁体,且需要先装配再整体充磁。铝镍钴的用途十分广泛,在工业中有着很重要的作用。 

铝镍钴

2017-06-06 17:49:59

铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。铝镍钴磁铁含有铝、镍、钴、铜、铁、钛等材料。按照加工工艺的不同,铝镍钴磁铁又分为铸造型铝镍钴磁铁和烧结型铝镍钴磁铁两类。铸造型的磁性能较高,烧结型的工艺简单,可直接压制成所需的产品。铝镍钴磁铁的优点是其温度系数小,因而受温度变化而引起的磁性能变化很小。铝镍钴磁铁最高工作温度可达450℃&mdash;650℃。故目前仍被广泛应用于仪器、仪表这类要求温度稳定性高的产品中。在开路的工作环境下,铝镍钴磁体的&ldquo;长径比&rdquo;(即长度与直径之比L/D)至少应为4:1。铝镍钴永磁材料的抗锈蚀能力较强,不需进行表面涂层处理。铸造铝镍钴磁性能表牌号剩磁Br矫顽力Hcb最大磁能积( BH )max最大工作温度美国标准IEC<span style="fo

铝镍钴磁铁

2017-06-06 17:50:12

铝镍钴磁铁铝镍钴磁铁也叫做磁钢磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强 金属 ,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金。磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强 金属 ,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金(Any of several hard, strong alloys of iron, aluminum, nickel, cobalt and sometimes copper, niobium, or tantalum, used to make strong permanent magnets.)。其 金属 成分的构成不同,磁性能不同,从而用途也不同,主要用于各种传感器、仪表、电子、机电、医疗、教学、汽车、航空、军事技术等领域。铝镍钴磁铁是最古老的一种磁钢, 被人们称为天然磁体, 虽然他最古老, 但他出色的对高温的适应性, 使其至今仍是最重要的磁钢之一.铝镍钴可以在500℃以上的高温下正常工作, 这是他最大的特点, 另外抗腐蚀性能也比其他的磁体强。铝镍钴磁铁的应用也越来越广泛,从高科技产品到最简单的包装磁,目前应用最为广泛的还是钕铁硼强磁和铁氧体磁铁。 而矫顽力的提高,主要得益于对其本质的认识和高磁晶各向异性化合物的发现,以及制备技术的进步。二十世纪初,人们主要使用碳钢、钨钢、铬钢和钴钢作永磁材料。二十世纪三十年代末,AlNiCo永磁材料开发成功,才使永磁材料的大规模应用成为可能。五十年代,钡铁氧体的出现,既降低了永磁体成本,又将永磁材料的应用范围拓宽到高频领域。到六十年代,稀土钴永磁的出现,则为永磁体的应用开辟了一个新时代。1967年,美国Dayton大学的Strnat等,用粉末粘结法成功地制成SmCo5永磁体,标志着稀土永磁时代的到来。迄今为止,稀十永磁已经历第一代SmCo5,第二代沉淀硬化型Sm2Co17,发展到第三代Nd-Fe-B永磁材料。此外,在历史上被用作永磁材料的还有Cu-Ni-Fe、Fe-Co-Mo、Fe-Co-V、MnBi、A1MnC合金等。这些合金由于性能不高、成本不低,在大多数场合已很少采用。而AlNiCo、FeCrCo、PtCo等合金在一些特殊场合还得到应用。目前Ba、Sr铁氧体仍然是用量最大的永磁材料,但其许多应用正在逐渐被Nd-Fe-B类材料取代。并且,当前稀土类永磁材料的产值已大大超过铁氧体永磁材料,稀土永磁材料的生产已发展成一大 产业 。

镍电解净液钴渣提钴

2019-03-05 09:04:34

镍电解时,阳极中的镍与钴一同电化学溶解进入溶液,在阳极液净化除杂质时,溶液中钴以Co(OH)3方式沉积进入钴渣。钴渣含钴6%-7%,可用来出产氧化钴,也可产出金属钴。所用工艺由钴渣溶解、浸出液净化除杂质、镍钴别离以及制取氧化钴(或金属钴)四部分组成(见图)。    在65-75℃温度下,在硫酸溶液中,参加Na2SO3将Co3+还原成CO2+并溶解:                2Co(OH)3+Na2SO3+2H2SO4====2CoSO4+Na2SO4+5H2O    溶出液在95℃,参加NaClO3将Fe2+氧化水解沉积除掉。除铁液进萃取槽,用P204萃取剂除铜和剩下铁,除铜后液再以P507别离镍钴,含钴有机相用溶液反萃取得到含Co75g/L左右的COCl2溶液。此溶液既可以在不溶阳极电解槽中隔阂电解出产金属镍;也可以用草酸沉钴然后煅烧出产氧化钴粉。电解的技能条件是:电流密度400A/m2,槽电压3-4V,电解温度60℃,电流效率94%。

湿法炼镍(钴)-钴溶液的处理

2019-01-24 11:10:25

应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。     美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。     在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。 钴溶液的处理     硫化钴溶液是镍企业湿法冶金车间的原料。这种溶液中含(克/分米3):Co3~50(Ni含量大致在这个范围内变化)、Fe3~20、Cu0.2~0.5。再生含钴废料也溶解于硫酸溶液。过滤后的溶液中,各种金属的浓度同上述浓度相似,取决于原料中的金属含量。     硫酸溶液净除杂后,以氢氧化物形式析出。     某些氢氧化物生成的pH平衡值列于表1。 表1  不同作者的资料提供的金属氢氧化物生成的pH平衡值化合物布里顿费阿尔科夫赫菲茨和罗景扬Co(OH)3 Fe(OH)3 Cu(OH)2 Co(OH)2 Fe(OH)2 Ni(OH)2— 2.0 5.3 6.8 5.5 6.7— 1.63 4.4 6.78 5.62 6.70.9 2.6 4.5 6.4 6.7 7.1     根据表1的资料,高价金属从溶液中析出比低价金属简单得多。这一原理在湿法冶金中得到广泛应用。氧化剂可以是固态、液态和气态。重要的是,氧化剂的氧化电位要比溶液中的金属离子的氧化还原电位高。氧化还原电位可按下式计算:φMe3+/Me2+=φ°Me3+/Me2++RTlnaMe3+(1)NfaMe2+ 式中,aMe3+----氧化离子的活度;aMe2+----还原离子的活度;φ°Me3+/Me2+----25℃温度下的标准电极电位。 表2  氧化还原反应的电极电位反应参加反应的离子活度介质电位(伏)Co3+e←→Co2+Aco3+=aco2+=1—+1.84NiO2+4H++2e←→Ni2++2H2O——+1.77HClO+H++e←→Cl-+H2O—酸性+1.491/2 Cl2←→Cl-acl-=1—+1.35O2+4H++4e←→H2OaH+=1—+1.23ClO-+H2O+2e←→Cl-+2OH-Aclo-=1,aoH-=1碱性+0.94Fe3++e←→Fe2+aFe3+=3.8×10-8酸性+0.771Fe2++3OH+←→Fe(OH)3aFe2+=4×10-4pH=2.5+0.44     某些氧化还原反应的电极电位列于表2。从表2的资料可以看出,氧的作用是可以把Fe2+氧化为为Fe3+。为了使钴、镍、锰变为高化合价,需要采用更强的氧化剂,如气态氯或次氯酸盐等,介质应是酸性的。     氢氧化物的水解分步沉淀,反应如下: 2FeSO4+3Na2CO3+6H2O=2Fe(OH)3+2NaCl+3Na2CO3+2Na2CO3        (2)     此反应在pH=4.0~4.5(溶度积Fe(OH)2=4×10-38)时,随实际生成铁的不溶氢氧化物同时进行: 2CuSO4+2Na2CO3+2H2O=CuCO3·Cu(OH)2+Na2SO4+H2CO3       (3)     铜的碱式碳酸盐沉淀的pH值为5.5。       2CoSO4+Cl2+3Na2CO3+6H2O=2Co(OH)3+2NaCl+2Na2SO4+3H2CO3       (4) pH沉淀=3.0~3.5,溶度积Co(OH)3=2.5×10-43         2MnSO4+2Cl2+4Na2CO3+4H2O=2Mn(OH)4+2Na2SO4+4NaCl+4CO2          (5) Mn(OH)4r pH沉淀=2.5。锰是最难排除的杂质。     为了正确评价从溶液中分步除杂,不仅需要有热力学数据,而且还要了解生成氢氧化物的动力学。     沉淀可在帕秋克浸出槽内进行(配有压缩空气搅拌)或在带有机械搅拌的装置内进行,用孔状过滤器进行固一液分离。

褐铁型红土镍矿提取镍钴新工艺

2019-02-20 15:16:12

该项目针对褐铁型红土镍矿含镍低、含铁高,并富含铬、铝的详细特色,以及高值、综合利用难题,在国际上初次研宣布碱、酸双循环清洁出产新工艺,完成了褐铁型红土镍矿中镍、铁、铬、钴等的综合利用,并从出产源头削减了废弃物的产出和排放,完成了进程的清洁出产。 首要技能特色和立异点如下:(1)初次开宣布红土镍矿碱法焙烧——溶液高效复原提铬新工艺;(2)初次开宣布褐铁型红土镍矿和碱浸提铬渣的高效提取镍钴新工艺,并完成了浸出机理研讨;(3)初次开宣布氢氧化镍钴的均相沉积和浸出剂再生耦合出产硫酸钙晶须新工艺。 实验取得了镍总回收率大于93%,铁精矿含铁大于62%、铁总回收率大于97%,铬总回收率大于94%,钴总回收率大于90%,碱酸再生循环利用率大于90%的成果。具有质料习惯规模广,资源综合利用好,试剂耗费少,设备老练、牢靠等长处。 由院士和闻名教授组成的专家组对该工艺给予了高度评价,共同以为:褐铁型红土镍矿高效综合利用清洁出产新工艺属严重原始立异,碱、酸双循环清洁出产工艺流程构思新颖,镍、铁、铬、钴首要技能指标到达国际领先水平。

中国镍钴消费现状

2019-01-03 10:44:18

2004 年中国镍消费量突破 14 万吨,见表 1。近几年镍的消费量变化情况见图1。表1   2004年中国的镍消费量(吨)图1  1998年~2004年中国镍的消费量 2005年,中国镍的消费量预计达到17万吨。在中国镍消费结构中,不锈钢占51.3%,电池占8.4%,电镀占26%,有色合金占8.5%,其他占5.8%。而根据 Barclay的数据,在国际市场上,不锈钢占镍消费量约为 65%,有色合金占12%,电镀占8%,化学品和其他5%,其他占10%。中国及世界镍的消费结构见图2。图2  中国及世界(右)镍的消费结构 中国镍消费结构与世界镍消费结构存在差异的主要原因是中国制造业耗镍量高于世界其他国家和地区,在未来几年,这种差异会仍然存在。 1998 年至 2003 年中国钴消费量的年均增长速度约为 20.7%。近年中国电子产业的迅猛发展,带动了钴的消费量的增加,2004年中国钴的消费量接近9000t,预计2005年钴的消费量接近10000t。中国钴的消费结构见图3。图3  中国钴的消费结构

镍钴提取冶金概况

2019-02-21 15:27:24

现在镍提取冶金的工业进程,以火法和湿法精粹进程相结合的工艺占干流。1996年国际镍产品的结构示于表1,其间只要和镍铁合金是完全由火法冶金出产的。 表1  1996年国际镍产品结构产品名称阴极镍镍块通用镍(粗镍)镍铁合金算计产值/万t38.510.67.3102793.5份额/%41.2911.347.8110.6928.88100.00     在镍的资源利用上,现在以硫化矿为主,约占55%。镍铁合金基本上来自氧化矿的加工。     1996年国际产钴2.8万t,从镍铜体系中提钴占了很大份额,其次是从钴硫精矿、砷钴矿和氧化矿。因为钴大都伴生在其他矿藏中,档次低,回收率一般都较低,尤其是选矿回收率。     湿法冶金是镍钴提取冶金的重要组成部分,一般包含三个进程:浸取进程、净化和分离地程、产品进程。

钴铁和金属钴的牌号及用途

2018-12-10 14:19:47

1735年,瑞典教授发现和分离出了金属钴,并指出钴能染蓝色,且描述了钴的性质。1802年,特纳尔德开始从化学和冶金方面,对钴的化合物进行了较多的研究。1912年,在加拿大德洛罗熔化和精炼公司的第一家重要的钴冶炼厂投产,至1940年加拿大一直是世界上领先的钴生产国家。1924年,加丹加(现属刚果(民))成了最大的钴生产地,加丹加矿业联合公司投产了潘达的电熔炼车间,1926年扎伊尔伊户的年产3500t的铜钴精炼厂投产。1926年,德国杜伊斯堡铜冶炼厂,用来源不同的黄铁矿灰渣生产3t钴,到1965年达到1400t,几乎占世界总产量的8%。1952年,首次在挪威的克里斯蒂安松生产出了电解钴。1956年,才由美国矿山局制得了纯度为99.99%的钴。钴可以提高钢的固相线温度,并能扩大γ相区。钴在高合金钢中可提高奥氏体的淬火稳定性。钴是含钨工具钢的一个重要成分,因为它可提供必要的热硬度,并可提高高温切削效率,经常采用的含钨快速切削钢含Co5%-15%。在磁性合金中,添加3%-40%Co可以提高饱和磁化强度,产生明显的晶体各向异性,并阻止残余奥氏体的形成。钴可提高AlNiCo合金的饱和磁化强度,且可改善剩磁感应。   无线电电子管中的灯丝,除必须具有良好的电阻外,耐热性能也要好,这种灯丝除含有镍铁钛外还含有钴。钴铬铁合金Co50Cr30Fe20在铸造状态下可不用热处理,因而可以用来作耐持久负荷,且还要受腐蚀影响的部件。可锻型的这种合金,在相同条件下可耐更大的负荷。   钴基合金是一些以无铁或低铁的钨镍钼钴合金。一种常用的司太特合金的成分为Cr25%,Ni11%,W7.5%及余量Co。生产钟表和精密仪表用发条,采用含Co40%,Cr20%,Ni15%,C7%及B0.04%的合金。必须在高温下工作的弹簧,用含Co52%,Cr20%,W15%,Fe2%及C0.15%的钴合金制造。要求导电性良好的弹簧,由含Be1%-3%和Co1%-2%的铜合金制成。   钴在硬质合金中用作添加剂。用H2还原的钴粉(3%-25%),在球磨机中用高熔点金属的碳化物或复合碳化物研磨,在研磨中得到的钴由于其晶体构造而要比镍或铁细得多。添加石蜡之类可使压制坯更密实,烧结时暂时生成富钴的碳化物混晶。钴根据温度而要溶解部分碳化物。冷却时碳化物再次析出。在形状相同的弥散碳化物相和钴基体间将发生紧密的聚结和良好的凝聚。添加TiC(即TiC-WC混晶)可显著改进钢的切削性能。再加例如8%TaC在负荷相同时可延长寿命一倍。从烧结温度迅速冷却到凝固点之下,可使硬度和密度达到最大值。   一般认为,钴和镍在铸铁中的应用相似,有轻微的石墨化作用。 钴可以提高钢的固相线温度,并能扩大γ相区。钴在高合金钢中可提高奥氏体的淬火稳定性。钴是含钨工具钢的一个重要成分,因为它可提供必要的热硬度,并可提高高温切削效率,经常采用的含钨快速切削钢含Co5%-15%。在磁性合金中,添加3%-40%Co可以提高饱和磁化强度,产生明显的晶体各向异性,并阻止残余奥氏体的形成。钴可提高AlNiCo合金的饱和磁化强度,且可改善剩磁感应。   无线电电子管中的灯丝,除必须具有良好的电阻外,耐热性能也要好,这种灯丝除含有镍铁钛外还含有钴。钴铬铁合金Co50Cr30Fe20在铸造状态下可不用热处理,因而可以用来作耐持久负荷,且还要受腐蚀影响的部件。可锻型的这种合金,在相同条件下可耐更大的负荷。   钴基合金是一些以无铁或低铁的钨镍钼钴合金。一种常用的司太特合金的成分为Cr25%,Ni11%,W7.5%及余量Co。生产钟表和精密仪表用发条,采用含Co40%,Cr20%,Ni15%,C7%及B0.04%的合金。必须在高温下工作的弹簧,用含Co52%,Cr20%,W15%,Fe2%及C0.15%的钴合金制造。要求导电性良好的弹簧,由含Be1%-3%和Co1%-2%的铜合金制成。   钴在硬质合金中用作添加剂。用H2还原的钴粉(3%-25%),在球磨机中用高熔点金属的碳化物或复合碳化物研磨,在研磨中得到的钴由于其晶体构造而要比镍或铁细得多。添加石蜡之类可使压制坯更密实,烧结时暂时生成富钴的碳化物混晶。钴根据温度而要溶解部分碳化物。冷却时碳化物再次析出。在形状相同的弥散碳化物相和钴基体间将发生紧密的聚结和良好的凝聚。添加TiC(即TiC-WC混晶)可显著改进钢的切削性能。再加例如8%TaC在负荷相同时可延长寿命一倍。从烧结温度迅速冷却到凝固点之下,可使硬度和密度达到最大值。   一般认为,钴和镍在铸铁中的应用相似,有轻微的石墨化作用。 钴铁的牌号及化学成分名称 牌号 化学成分% Co Fe Ni Cu Mn S C Ca ≤ 钴铁FeCo8518-818-80.80.020.050.010.02 金属钴Co9795-99<1.52.50.020.020.010.01 纯钴Co99>99<0.20.60.04 0.040.06 钴粉Co99>99<0.050.30.0010.015  0.015电解钴Co99.5>99.5<0.070.30.0030.0150.0050.01

湿法炼镍(钴)-制取硫酸镍

2019-01-24 11:10:25

应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。     美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。    在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。 制取硫酸镍     在送来湿法冶金处理的溶液中,镍含量比估含量高出几倍。镍既可以从原生原料进入溶液,也可以从再生原料进入溶液。在钴沉淀后,它在溶液中的浓度为20~50克/分米3。为了在硫酸盐中以NiSO4·7H2O形式提出镍,这个浓度是不够的,因此先要用苏打(Na2CO3)从硫酸盐中沉淀镍。沉淀物清洗过滤后溶于浓硫酸中。这样可获得几乎是饱和的硫酸盐溶液,内含150~170克/分米3的镍。硫酸盐溶液用镍粉置换脱铜: Cu2++Ni=Ni2++Cu                  (1)     用所谓黑色氢氧化物理学----Ni(OH)3净化铁和钴。 Fe2+(Co)+Ni(OH)3=Fe(Co)(OH)3+Ni2+               (2) 溶液要净化到其中含镍10克/分米3、含钴不大于0.10~0.15克/分米3、含铁不大于0.002克/分米3。     将含160克/分米3镍、酸化至4~5克/分米3H2SO4的净化溶液送入真空结晶器内,在0.4兆帕压力、210~240℃的温度下,用蒸气蒸发。蒸发至含镍为195克/分米3时,符合比重1.64~1.65克/分米3。     NiSO4·7H2O的结晶不断地在真空结晶不断地在真空结晶槽内进行。所得矿浆送入离心机使晶体同母液分离。含120克/分米3镍的母液再次除去铁和铜并重新使其蒸发,当氯和镁的杂质积存起来时,送去生产黑色氢氧化物。硫酸镍经脱水后含2~3%的水分。将其在80℃的温度下通入蒸气干燥,符合技术规范的商品硫酸盐供应用户。

废金属:钴铁和金属钴的牌号及用途

2018-12-10 14:19:22

1735年,瑞典教授发现和分离出了金属钴,并指出钴能染蓝色,且描述了钴的性质。1802年,特纳尔德开始从化学和冶金方面,对钴的化合物进行了较多的研究。1912年,在加拿大德洛罗熔化和精炼公司的第一家重要的钴冶炼厂投产,至1940年加拿大一直是世界上领先的钴生产国家。1924年,加丹加(现属刚果(民))成了最大的钴生产地,加丹加矿业联合公司投产了潘达的电熔炼车间,1926年扎伊尔伊户的年产3500t的铜钴精炼厂投产。1926年,德国杜伊斯堡铜冶炼厂,用来源不同的黄铁矿灰渣生产3t钴,到1965年达到1400t,几乎占世界总产量的8%。1952年,首次在挪威的克里斯蒂安松生产出了电解钴。1956年,才由美国矿山局制得了纯度为99.99%的钴。钴可以提高钢的固相线温度,并能扩大γ相区。钴在高合金钢中可提高奥氏体的淬火稳定性。钴是含钨工具钢的一个重要成分,因为它可提供必要的热硬度,并可提高高温切削效率,经常采用的含钨快速切削钢含Co5%-15%。在磁性合金中,添加3%-40%Co可以提高饱和磁化强度,产生明显的晶体各向异性,并阻止残余奥氏体的形成。钴可提高AlNiCo合金的饱和磁化强度,且可改善剩磁感应。   无线电电子管中的灯丝,除必须具有良好的电阻外,耐热性能也要好,这种灯丝除含有镍铁钛外还含有钴。钴铬铁合金Co50Cr30Fe20在铸造状态下可不用热处理,因而可以用来作耐持久负荷,且还要受腐蚀影响的部件。可锻型的这种合金,在相同条件下可耐更大的负荷。   钴基合金是一些以无铁或低铁的钨镍钼钴合金。一种常用的司太特合金的成分为Cr25%,Ni11%,W7.5%及余量Co。生产钟表和精密仪表用发条,采用含Co40%,Cr20%,Ni15%,C7%及B0.04%的合金。必须在高温下工作的弹簧,用含Co52%,Cr20%,W15%,Fe2%及C0.15%的钴合金制造。要求导电性良好的弹簧,由含Be1%-3%和Co1%-2%的铜合金制成。   钴在硬质合金中用作添加剂。用H2还原的钴粉(3%-25%),在球磨机中用高熔点金属的碳化物或复合碳化物研磨,在研磨中得到的钴由于其晶体构造而要比镍或铁细得多。添加石蜡之类可使压制坯更密实,烧结时暂时生成富钴的碳化物混晶。钴根据温度而要溶解部分碳化物。冷却时碳化物再次析出。在形状相同的弥散碳化物相和钴基体间将发生紧密的聚结和良好的凝聚。添加TiC(即TiC-WC混晶)可显著改进钢的切削性能。再加例如8%TaC在负荷相同时可延长寿命一倍。从烧结温度迅速冷却到凝固点之下,可使硬度和密度达到最大值。   一般认为,钴和镍在铸铁中的应用相似,有轻微的石墨化作用。 钴可以提高钢的固相线温度,并能扩大γ相区。钴在高合金钢中可提高奥氏体的淬火稳定性。钴是含钨工具钢的一个重要成分,因为它可提供必要的热硬度,并可提高高温切削效率,经常采用的含钨快速切削钢含Co5%-15%。在磁性合金中,添加3%-40%Co可以提高饱和磁化强度,产生明显的晶体各向异性,并阻止残余奥氏体的形成。钴可提高AlNiCo合金的饱和磁化强度,且可改善剩磁感应。   无线电电子管中的灯丝,除必须具有良好的电阻外,耐热性能也要好,这种灯丝除含有镍铁钛外还含有钴。钴铬铁合金Co50Cr30Fe20在铸造状态下可不用热处理,因而可以用来作耐持久负荷,且还要受腐蚀影响的部件。可锻型的这种合金,在相同条件下可耐更大的负荷。   钴基合金是一些以无铁或低铁的钨镍钼钴合金。一种常用的司太特合金的成分为Cr25%,Ni11%,W7.5%及余量Co。生产钟表和精密仪表用发条,采用含Co40%,Cr20%,Ni15%,C7%及B0.04%的合金。必须在高温下工作的弹簧,用含Co52%,Cr20%,W15%,Fe2%及C0.15%的钴合金制造。要求导电性良好的弹簧,由含Be1%-3%和Co1%-2%的铜合金制成。   钴在硬质合金中用作添加剂。用H2还原的钴粉(3%-25%),在球磨机中用高熔点金属的碳化物或复合碳化物研磨,在研磨中得到的钴由于其晶体构造而要比镍或铁细得多。添加石蜡之类可使压制坯更密实,烧结时暂时生成富钴的碳化物混晶。钴根据温度而要溶解部分碳化物。冷却时碳化物再次析出。在形状相同的弥散碳化物相和钴基体间将发生紧密的聚结和良好的凝聚。添加TiC(即TiC-WC混晶)可显著改进钢的切削性能。再加例如8%TaC在负荷相同时可延长寿命一倍。从烧结温度迅速冷却到凝固点之下,可使硬度和密度达到最大值。   一般认为,钴和镍在铸铁中的应用相似,有轻微的石墨化作用。 钴铁的牌号及化学成分名称牌号化学成分%CoFeNiCuMnSCCa≤钴铁FeCo8518-818-80.80.020.050.010.02 金属钴Co9795-99<1.52.50.020.020.010.01 纯钴Co99>99<0.20.60.04 0.040.06 钴粉Co99>99<0.050.30.0010.015  0.015电解钴Co99.5>99.5<0.070.30.0030.0150.0050.01

从含钴磁钢渣中制取镍钴制品

2019-02-11 14:05:44

一、概述       金属磁性材料广泛应用于国防和国民经济各部门,如雷达、电表、电机、自动化外表及医疗器械等,特别是含有镍、钴14%~34%合金的永磁材料。冶炼、浇涛、加工过程中产出的废渣、废品和磨屑是很好的提钴、镍的质料。处理这些质料与处理原矿比较,冶炼办法简略,加工成本低,金属收回率高。       现在处理含钴、镍磁钢废料的工艺如下:       (一)硫酸溶解、参加硝酸以进步溶解速度,溶后液用黄铁矾法除铁,深化除铝等杂质、或次法沉钴,完成钴镍别离。能够出产相应的镍、钴氧化物、碳酸盐,或深加工成相应的镍钴盐类。磁钢渣处理工艺流程图见图1。    图1  磁钢渣处理工艺流程       (二)选用萃取法替代沉钴工艺,如P204-Na盐萃取除杂质,P204-Na盐萃取别离镍、钴。亦可选用脂肪酸萃取除铁、铝、P204-Na盐萃取别离工艺。因为萃取工艺有价金属收回率高,劳动条件好,产品质量优秀,操作技能条件易把握等特色,越来越得到出产供应商注重。       P204-Na盐萃取除杂质,P204-Na萃取别离镍、钴以及制取相应的镍钴制品的工艺类同于可伐合金处理工艺,请拜见本网站的(从废可伐合金中制取钴镍制品)。       镍钴含量低的废磁钢渣可与镍磷铁一重用火法冶炼,经吹炼制成镍阳极板后再电解精粹,请拜见本网站的(用镍磷铁出产电解镍)。       二、质料       (一)五号磁钢废料、坩埚皮等成分如下(%):  CoNiFeCu其它~201350215      (二)磁钢磨屑成分如下(%)  CoNiFeCu15~179~1625~502~3SiO2CaOAl2O3H2O40.57~821       三、技能操作条件       (一)酸溶       磁钢渣磨屑含有砂轮碎屑及少数油污,处理前须先行除油,经过磁选机去掉磨屑中非磁成分。       1、除油       将磨屑置于炉中直火加热,直到无油烟冒出即为合格。       温度   300℃±    时刻1~2h       2、磁选       磁钢磨屑为钴、镍、铁等永磁体细末,具有磁性,其间搀杂着少数砂轮磨屑碳化硅和机械搀杂的其它非磁性物质。磁选机的磁场强度为95493A/m,依据状况可磁选1~2次,选后磁性物质组成实例如下(%):  CoNiFeCuAl2O3SiO22012452153       磁选后磁性部分钴、镍含量与磁钢品种有关。       3、酸浸       液固比,一般操控溶后液金属离子浓度总和为120g/L,液固比取(8~10)∶1。       配酸,硫酸、用量为理论量的1.2倍。       温度,反应是放热反应,温度操控在90~95℃。       硝酸参加量,在酸溶温度下,硝酸分解成Nox(即黄烟),硝酸参加量和参加速度一般取决于物料性质及硝酸收回回来溶解的量,一般每吨磁钢废料参加95%浓硝酸100~200kg。       反应时刻,视磁钢废料粒度及硝酸用量为4~8h。       终占pH值,1.0~1.5。       氮氧化物吸收一般办法如下:       (1)水吸收,空气氧化,Nox气体经过多段吸收,操作妥当,烟囟排气看不见黄色。吸收后稀硝酸回来溶解。既消除环境污染又节省了硝酸。       (2)用稀碱液吸收,生成亚,可减轻Nox损害,但吸收后液不能回来重用。       一般酸溶时镍、钴收回率右到达95%~98%。       (二)黄钠铁矾法除铁       用量,为含铁量的0.35~0.4倍。       氧化温度   85℃       氧化时刻   1h,坚持2h。       沉矾操控温度  ≥95℃       沉矾pH值    1.5~2       沉矾时刻     3~4h       中和剂Na2CO3浓度  7%~10%       矾渣过滤速度   0.5m3/(m2·h)       热水洗刷次数   2次       热水∶矾渣  2L∶1kg       钴镍收回率   97%~98%       (三)归纳除杂质       操控pH值  4~5。       温度   70~80℃       Na2CO3中和剂浓度   80g/L       过滤速度0.3~0.5m3/(m2·h)       (四)镍钴制品出产       1、沉积氢氧化钴       选用次法氧化沉积钴,镍别离,次沉钴条件如下:       酸度   开端   pH=1.5~2.5              过程中pH=2.0              结尾pH=2~2.5       温度,50~60℃,结尾进步至60~70℃(驱氯)       时刻  4~6h       产品  Co(OH)3,经过滤、洗刷后Co/Ni≥7∶1,沉钴后液含Co,0.4~0.5g/L。       钴渣枯燥后其成分实例如下(%):  CoNiFeCuAl45≤4.5≤0.5≤1≤1       2、沉积碱式碳酸镍       沉钴后液用Na2CO3直接沉积碱式碳酸镍。       温度,85℃       结尾pH值,8~9       Na2CO3浓度150g/L       时刻   4h       趁热过滤,热水洗刷2次,洗水∶碱式碳酸镍2L∶1kg       枯燥后碱式碳酸镍成分实例如下(%)  NiCoFeAlCu45≤1≤0.1≤1≤1       四、产品       (一)粗氢氧化钴       实例,Co   45%   Ni≤4.5%       (二)粗氢氧化镍       实例,Ni   45%   Co≤1%       五、技能经济指标       (一)收回率,Ni   86.35%    Co   85.17%       (二)首要材料耗费(以处理每吨磁钢渣计)       H2SO4(93%)1t       HCL(35%)1.5t       HNO3(65%)0.25t       Na2CO3  0.32t       NaOH    0.5t       NaClO3  0.1t           0.1t       (三)水、电、汽耗费       水     200t       电     2000kW·h       蒸气   70t

菲律宾矿业(镍钴)资源概况

2018-12-11 14:37:18

(一)镍矿    1、储量及分布     截止至1996年,菲律宾镍矿总储量达到11亿公吨。其中,已探明储量10亿吨,占总储量的93.72%。平均品质范围在0.23%-2.47%。可期储量5630万吨,占5.17%,品质范围在0.36%-1.24%。还有1210万吨为可能储量,品质范围在0.23%-2.27%(注:总储量为探明的储量、可期储量和可能储量之和)。按地质分类,菲镍矿多为红土带(占99%)。由于大部分镍矿处在浅土层,易于开采且成本低。 从地区分布看,集中在Davao Oriental和Palawan,储量分别为4.757亿吨(占总储量43.69%)和4.071亿吨(占总储量37.38%)。其它有较大规模镍矿藏的省还有Surigao del Norte和Zambales。    2、产量     1998年镍矿生产创近10年新高,产量约96万吨,产值7.93亿比索;1993年为低谷,产量只有34.68万吨,产值3.5亿比索。 由于不利天气因素,1990、1991两年镍矿生产的产量、产值出现下降。虽然1992年镍矿产量增加了6.6%,但随后的一年生产非常消极,产量和产值分别下降了41.6%和41.14%,这主要是因为Taganito矿业公司生产暂时停止,以及Rio tuba镍矿公司、Hinatuan矿业公司产量不足。从1994年至1998年,生产开始恢复,并保持了增长势头。1995年增长最快,产量和产值分别增长50.88%和59.00%,主要是Taganito矿业公司、Rio tuba镍矿公司的生产有所改善。 www.metal114.cn     3、出口     镍矿出口在1995年取得最快的增长,出口数量达到65.69万吨,较1994年增长45.07%。当年出口收入达到6.92亿比索,即2630万美元。这主要是由于对日本出口的快速增长。     4、价格    1994年镍矿价格最低,平均价格为795比索/吨。1989年镍矿价格最高,平均价格为1420比索,较1988年的917比索增长54.85%。     5、主要生产商     从1986年Nonoc镍矿公司停产以来,只有Rio Tuba镍矿公司,Hinatuan矿业公司和Taganito矿业公司三家镍矿生产商维持到现在。去年,Cagdianao矿业公司镍矿正式投产。此外,Philnico工业公司在Surigao del Norte省,Hinatuan在Manicani岛的镍矿项目正在筹划中。     6、开采方法、产量和加工技术     这些公司采用露天开采,日产量为1200吨。Nonoc镍矿精炼厂曾是菲律宾唯一的镍矿精炼厂,采用铵基碳酸盐浸出法,用于处理350万吨含1.2%镍、0.12%钴和37%铁的红土层和蛇纹石矿石。现在正在引进一种低能耗,低污染和高产出的新技术,压力酸浸出法。   (二)钴矿    据菲矿产和地质科学局的官员介绍,钴矿是一种伴生矿,只有1986年以前数据可供参考。在1979年至1986年的八年间,菲钴矿产量总计5400吨。

铜钴镍分离工艺实例

2019-01-21 18:04:37

处理硫化铜镍矿,一般采用选矿、熔炼和吹炼获得高冰镍,然后再用浮选法使铜镍分离,铜、镍精矿再分别送冶炼产出金属铜和金属镍,在冶炼过程中综合回收钴和铂族元素,某铜镍硫化矿的原则工艺流程如下:详见流程图:          品位较高的铜镍矿可以直接送去冶炼获得高冰镍,只有贫的铜镍矿才进行选矿。浮选获得的铜镍混合精矿经过冶炼得出的高冰镍,其分离方法有熔炼法、水冶法和浮选法,而浮选法是较经济且有效的方法之一,我国某铜镍矿系采用浮选法分离高冰镍。该厂的高冰镍的物相组成是硫化镍(Ni3S2)、硫化铜〔(Cu2S2)2FeS+Cu2S〕、合金(Cu—Ni—Fe)、金属铜(Cu)以及少量的磁铁矿(Fe3O4)和残渣。其中硫化镍和硫化铜的含量占90%以上。因此,铜镍分离的关键是硫化镍和硫化铜的分离。高冰镍经磨碎后,铜镍硫化物的粒子互相解离,在强碱性溶液中(PH12~12.5),加入丁黄药进行浮选。此时硫化镍被抑制,硫化铜上浮,达到分离的目的。这一新工艺成功的被应用,使我国铜镍分离技术达到了国际先进水平。

湿法冶金处理镍钴镁矿

2019-03-06 10:10:51

一、工艺流程简述 按着浸出工艺的要求对镍钴矿石进行破碎、磨细,然后进行浸出,镍、钴、铜、镁被溶解进入浸出液,杂质铁、硅基本上不被溶解仍留在渣中,经过浸出使方针金属镍、钴、铜、镁与杂质铁、硅等别离,使浸出液得到开始净化,浸出渣经洗刷,一洗液送净化,二洗液、三洗液回来洗渣。浸出液经净化除杂获净化液和净化渣,方针金属保留在溶液中,杂质入渣,经过净化,使方针金属与杂质进一步别离,浸出液纯度进一步进步。操控必定条件,往净化液中参加硫化剂,使硫酸铜转化为不溶于硫酸溶液的硫化铜入沉积固相,镍、钴、镁不构成硫化沉积仍留在沉铜母液中。往沉铜母液中参加硫化剂,可溶的镍、钴硫酸盐转化为不溶的硫化物入沉积固相,硫酸镁不与硫化剂效果,仍留在镍钴母液中。往沉积镍钴母液中加碳酸氢铵(或碳酸钠)可溶的硫酸镁与碳酸氢铵效果生成不溶的碱式碳酸镁。 简言之,首要进行酸浸出,在浸出过程中,镍、钴矿中镍、钴、镁均被溶解以二价离子状况进入浸出液。杂质铁、二氧化硅不溶或少溶留在浸出渣中,经过酸浸使镍、钴、镁与杂质铁、硅等开始别离,然后将浸出液净化除杂,使镍、钴、镁与杂质别离,纯真浸出液,往净化液中参加硫化剂,使可溶的镍、钴、硫酸盐转变为不溶解的硫化物入沉积固相,硫酸镁不与硫化剂效果,仍留在溶液中,经过硫化沉镍、钴,使镍、钴与镁别离,最终在镍、钴沉积母液中参加碳酸盐,使可溶的硫酸镁转变为不溶的碳酸镁。 选用湿法冶金(或称化学选矿)办法归纳收回镍、钴、镁,实验证实是可行的,一般选用酸浸—硫化沉镍钴—碳化沉镁工艺流程。      二、浸出基本原理       浸出基本原理根据镍、钴、镁硅酸盐中镍、钴、镁能溶解于酸溶液中,浸出首要化学反应为: H2(Ni.Mg)SiO4·H2O+H2SO4=(Ni.Mg)SO4+H2SiO3+H2O (Mg.Fe)3[Si2O5](OH)4+3H2SO4=3(Mg.Fe)SO4+2H2SiO3+3H2O        1.硫化沉镍钴基本原理 硫化沉镍、钴的基本原理根据可溶镍钴硫酸盐或盐与硫化剂效果生成不溶的硫化物入沉积固相,首要化学反应为: NiSO4+Na2S=NiS+Na2SO4 NiCl2+Na2S=NiCl2+2NaCl CoSO4+Na2S=CoS+Na2SO4 CoCl+Na2S=CoS+2NaCl       2.碳化沉镁的基本原理 碳化沉镁的基本原理根据镁硫酸盐与碳酸盐效果,生成不溶的碳酸镁入沉积固相,首要化学反应为: MgSO4+Na2CO3=MgCO3+Na2SO4 MgCl2+Na2CO3=MgCO3+2NaCl       3.浸出液的净化 浸出液的净化选用氧化中和水免除杂或许黄钾铁矾法除杂均能到达除杂要求,但中和渣中镍钴含量较黄钾铁矾渣高,镍钴在渣中丢失较黄钾铁矾法高。浸出液中含铁较低时选用氧化中和水解法除杂,浸出液中含铁较高时,选用黄钾铁矾法除杂。       4.硫化沉镍钴  硫化沉镍钴可在室温下弱酸性溶液中进行,取得的化学镍钴(或称钴镍)精矿,可经过调整硫化沉镍、钴条件来调整,化学镍钴矿中镍、钴档次        5. 碳化沉镁 碳化沉镁在加温弱碱性溶液中进行,取得的化学菱镁矿。 三、首要试剂耗费        硫酸(98%)、 碳酸钠(工业级)、 (含Na2S60%)、石灰  、  拌和、需用电 、   加热。 服务项目: 检测、判定检测事务品种地质及化探:普查样品、槽(坑)探样品、钻孔样品、涣散流样品、次生晕样品、原生晕样品等矿石矿藏:铜铅锌矿石、金矿石、钼矿石、钨矿石、钛矿石、锡矿石、锑矿石、铋矿石、矿石、钴矿石、镍矿石、铬矿石、铁矿石、锰矿石、磷矿石、萤石、铝土矿、硫铁矿及岩石全分析等精矿产品:铜精矿、铅精矿、锌精矿、金精矿、锡精矿、锑精矿、钨精矿、钼精矿等矿产品(交易):各种精矿(有利、有害杂质成分)、进口质料及冶炼渣料等冶金产品:质料、辅料、中间产品、金属及合金等环境监测:矿山及选厂排放的废渣、废水、土壤及水质评价(砷、、重金属离子)检测元素金(Au)、银(Ag)、铜(Cu)、铬(Cr)、磷(P)、碳(C)、铅(Pb)、钨(W)、锂(Li)、硫(S)、锌(Zn)、锡(Sn)、钠(Na)、钼(Mo)、钾(K)、铌(Nb)、钒(V)、砷(As)、钽(Ta)、镉(Cd)、锰(Mn)、锑(Sb)、锆(Zr)、钙(Ca)、钛(Ti)、铋(Bi)、铍(Be)、镁(Mg)、铝(Al)、(Hg)、铂(Pt)、镍(Ni)、铁(Fe)、氟(F)、钯(Pd)、钴(Co)、硅(Si)等。矿石物相岩矿判定

氧化镍钴锰锂

2017-06-06 17:49:58

一种新型高比能量锂离子电池正极用氧化镍钴锰锂材料,日前由天津电源研究所研制成功。并获得了信息产业部电子基金的资金支持,随即建成年产200吨氧化镍钴锰锂生产线,在国内率先实现了产业化生产。目前市场上的锂离子电池大多以氧化钴锂为正极,其材料的稳定性和产品的安全性比较差。天津电源研究所针对氧化钴锂存在的突出问题,采用价格相对低廉的镍、锰替代钴,并研发独特的烧结工艺,仅用了一年多时间就成功解决了这一难题。据了解,这种新型材料具有容量高、寿命长、安全系数高、无污染等优点。与氧化钴锂相比,制造成本降低了10%至15%,每克容量由140毫安时可提升到220毫安时,由此不仅提高了产品的安全性能,而且增大了电池容量,一举突破了锂离子电池发展的瓶颈制约。该产品现已得到多家用户的认可,并实现了为出口欧盟的高端电池产品生产厂家供货。为了研制在电性能、安全性和成本价格等三方面均能较好地满足电动汽车需求的锂离子电池,选择了在氧化钴锂中掺杂氧化镍锰钴锂三元材料的方法,研制了新的50Ah动力型锂离子电池。通过对研制电池进行电性能和安全性试验,各项性能均满足电动汽车的技术要求,加上氧化镍锰钴锂三元材料的价格仅为氧化钴锂的50%左右,所以掺杂氧化镍锰钴锂三元材料是解决电动汽车对动力型锂离子电池严格需求的理想途径之一。近期有一种锂离子电池正极材料氧化镍钴锰锂及其制备方法。本发明属于锂离子电池技术领域。锂离子电池正极材料氧化镍钴锰锂为富锂型层状结构,化学成分Li&darr;[1+z]M&darr;[1-x-y]Ni&darr;[x]Co&darr;[y]O&darr;[2],其中0.05&le;z&le;0.2,0.1<x&le;0.80.1<y&le;0.5。制备方法:镍、钴、锰的可溶性盐为原料;氨水或铵盐为络合剂,氢氧化钠为沉淀剂;加水溶性分散剂,加水溶性抗氧化剂或用惰性气体控制和保护;将溶液并流方式加到反应釜反应;碱性处理,陈化,固液分离,洗涤干燥;氧化镍钴锰和锂原材料混合均匀;将混合粉体分三温区烧结得到氧化镍钴锰锂粉体。本发明比容量高,循环特性好,晶体结构理想,生产周期短,功耗低,适合产业化生产等。&nbsp;

中国镍钴金属供应情况

2019-03-04 11:11:26

我国镍产品的出产相对来讲比较会集,以甘肃、吉林、新疆、云南、四川等区域为主。首要出产供应商有:金川集团有限公司,吉林吉恩镍业股份有限公司,新疆有色金属工业(集团)阜康冶炼厂。2004 年我国以矿产品为质料出产的镍量(金属量)约为 8 万 t,其间新疆为3000 t,吉林为5800t,甘肃为71000 t。甘肃(金川)的镍产值占我国镍出产值的88%以上,近年我国镍产值见图1。图1  近年我国镍产值 估计2005年我国的镍产值为10.7万t, 其间新疆为3500 t,吉林为6000 t,甘肃为 91000 t,其他区域为6500t 。见图2。图2  2005年我国镍产值猜测 2004年我国钴产值约7500t,其间金川钴产值为2200t,占29.3%。2005年我国钴产值将保持7500t 的水平,金川钴产值为4000t.  我国已成为全球首要钴出产国之一。

镍钴物料的浸取过程

2019-02-21 08:58:48

浸出工艺是镍钴湿法冶金的第一步,使物猜中的有价金属元素进入溶液,经过别离和净化,并终究取得制品;浸出也是一种别离手法,有利于从浸液和浸渣平分别提取方针元素。含镍钴物料的工业浸出进程首要有三类: 一、常压酸浸(硫酸和); 二、加压氧浸或酸浸; 三、浸。 无论是氧化物料仍是硫化物料都可以选用酸浸工艺处理。在不加氧化剂条件下的浸出,曾在挪威和加拿大使用于高镍锍,镍的浸出率可高达98%以上,铜和贵金属则留在浸渣中,别离效果很好。但是硫化矿藏的简略酸浸将发生,对金属材料有激烈腐蚀效果,工业施行的难度较大。所以硫化矿藏的酸浸一定量的铜离子或铁离子,可显着加速浸出进程。硫酸和介质的挑选对浸出进程有较大影响,尤其是浸出反响器结构原料的挑选。一起,介质的不同也影响出液的别离和净化进程,以及终究产品。读者将在以下不同工业生产实践的论说中体会到这一点。 加压浸出的首要意图是进步反响温度,以此进步浸出速度、缩短浸出周期,并进步浸出率,使常压下难以进行的反响进程可有效地进行。在有氧参加的浸出反响中,加压浸出关于进步反响速度有两层效果。但是,因为在设备出资和日常保护本钱上加压浸出显着高于常压浸出,选用何种工艺较适宜,需经技术经济分析和证明。 浸可直接用于镍钴硫化矿藏,用于氧化矿藏时先要进行复原焙烧,使镍钴呈金属状况。镍钴硫化矿的浸大多在氧压下进行,镍、钴、铜的硫化物氧化溶解,金属以络离子方式进入溶液,硫则生成硫酸,而铁则生成氧化物进入浸渣。 工业上使用的含镍物料的首要浸出进程包含: 1、高镍锍的硫酸氧压浸出; 2、高镍锍的浸出; 3、高镍锍的浸出; 4、镍锍氧压浸; 5、红土矿复原焙烧料的浸; 6、红土矿的高压酸浸。 这些工艺流程将在今后各节平分别论说。某些研讨者以为,硫化矿的直接浸出工艺是现在首要研讨开发方向,特别是某些不适于火法精粹的含砷或高镁精矿。这些新浸出工艺包含硝酸催化的加压浸出、生物浸出、Fe3+、或Cu2+催化的氧气或常压浸出、加压氧化浸出等。

镍钴溶液的分离和净化

2019-01-24 09:36:23

在镍钴湿法生产过程中,从含镍钴溶液到生产出符合一定标准的镍和钴产品,中间必须经过杂质去除(净化)及有价金属元素的分离富集等工序。目前镍钴提取冶金工业上应用的溶液净化和分离富集方法主要有化学沉淀、溶剂萃取和离子交换等三种。 一、化学沉淀法 化学沉淀法是最常用的溶液除杂和分离方法,镍钴提取冶金工业上主要应用水解沉淀、硫化物沉淀、难溶盐沉淀和置换分离等工艺。 (一)水解沉淀 水解沉淀 水解沉淀的原理是不同金属氢氧化物在水中具有不同溶解度或溶度积,因而具有不同的开始沉淀的pH值,通过控制溶液中沉淀pH值,则可将要求从溶液中除去的离子以氢氧化物的形式沉淀,有时需要辅之以氧化还原电位的控制。一些金属氢氧化物25℃的溶度积及根据Eh-pH图获得的开始沉淀的pH值列于表1,供设计水解沉淀净化方案时参考。工业常用的水解沉淀工艺包括氧化水解除铁、氧化水解分离镍和钴等。 表1  某些金属氢氧化物的PKSP及开始沉淀的最低pH值氢氧化物PKsp开始沉淀pH值氢氧化物PKsp开始沉淀pH值Co(OH)343.80.5Cu(OH)219.35.0Sn(OH)456.00.5Fe(OH)215.35.8Sn(OH)227.81.5Zn(OH)216.36.8Fe(OH)338.62.2Pb(OH)214.97.2Pt(OH)235.02.5Ni(OH)218.47.4Pd(OH)231.03.4Co(OH)215.77.5In(OH)333.23.5Ag2O7.718.0Ga(OH)335.23.5Cd(OH)25.268.3Al(OH)332.73.8Mn(OH)213.48.3Ni(OH)34.0Mg(OH)211.39.6 针铁矿法除铁也是一种水解沉淀工艺。形成针铁矿(FeOOH)晶体的主要条件是:低浓度Fe3+、pH=3~5、高温(≥90℃)。常用方法是先将Fe3+还原成Fe2+,然后中和到要求pH值,高温下再使Fe2+缓慢氧化。这样得到的沉淀是FeOOH而不是Fe(OH)3,易于过滤。在镍钴生产中,常用高镍锍作还原剂,空气作氧化剂。形成针铁矿的另一种方式是在大容量已除铁溶液中以喷淋方式加入欲净化除铁溶液,在充分搅拌下,Fe3+总体浓度不高(<1g/L),在空气氧化条件下加入中和剂可形成FeOOH。这样,溶液不用先还原,再氧化。 (二)硫化物沉淀 硫化物沉淀是分离镍、钴、铜等有价金属的常用方法,硫化剂多为Na2S、NaHS和H2S。一般金属硫化物在水中的溶解度都很小,常用于从镍钴溶液中沉淀分离铜,也用于从红土矿浸出液中沉淀分离铜、镍、钴。当用H2S作硫化沉淀时,形成硫化物的平衡pH值取决于该硫化物的活(浓)度积、溶液中金属离子浓度及离子价数。25℃及常压下,H2S沉淀硫化物时的平衡pH值列于表2。 表2  不同离子浓度时形成硫化物的平衡pH(25℃及常压)硫化物CMe=1mol/LCMe=10-4mol/L硫化物CMe=1mol/LCMe=10-4mol/LHgS-15.00-13.00CdS-2.50-0.25Ag2S-14.00-10.60ZnS-0.531.47Cu2S-12.35-8.35CoS0.852.85CuS-6.55-4.55NiS1.243.24SnS-3.00-1.00FeS2.304.30PbS-2.85-0.85MnS3.905.90 (三)难溶盐(化合物)沉淀法 最常用的难溶盐(化合物)沉淀法是黄钠铁矾工艺除铁。黄钠铁矾是两种以上硫酸盐的复盐,通试为Na2Fe6(SO4)4(OH)12或Me+Fe3(SO4)2(OH)6、Me2+Fe6(SO4)4(OH)12,具有结晶好,易过滤的优点。通式中,Me+一般为Na+、K+、NH4+或H3O+,其中以钾钒最稳定,沉降性能最好。 (四)置换沉淀 通常的置换沉淀是电负性金属从溶液中置换出电正性离子,如镍粉除铜。广义上说,置换沉淀还包括固休物料与溶液反应,其中固体中某一元素与溶液中的金属离子交换位置,如利用Ni2S3从溶液中沉淀铜。 二、溶剂萃取分离 溶剂萃取是分离和富集金属离子的常用方法之一,在有色金属湿法冶金领域有着广泛的工业应用,在镍钴提取工业中的应用也正在走向成熟。 溶剂萃取是利用有机相从不相混的液相中把某种物质提取出来的一种分离方法。溶剂萃取法的工艺过程包括萃取、洗涤和反萃三个阶段。萃取是使水相中某些物质转移到有机相,洗涤是使进入有机相的杂质回到水相(洗涤液),反萃是使被萃物质(目标组元)从有机相转移到水相(反萃剂),以便进一步处理成产品。有些萃取剂在萃取前需要进行预处理(如皂化等),以保证萃取条件。 溶剂萃取工艺的关键是萃取剂的选择。除经济效益外,选择萃取剂的基本原则为: 1、选择性好,容易实现金属分离; 2、良好的萃取动力学性能,平衡速度快; 3、大萃取容量,萃取剂用量少; 4、在水相虽的溶解度小,且化学稳定性好; 5、易与稀释剂互溶,混合后具有良好的分相性能,不易产生第三相。 溶剂萃取在镍钴冶金中的应用主要有两方面:一是从主金属溶液中将杂质元素萃取除去,或相反,将主金属离子萃取出来;二是将性质相近的镍和钴分离。 在工业生产中,往往采取多级萃取流程。因有机相和水相流动方式不同,多级萃取又分为逆流萃取、错流萃取和分馏萃取等多种方式,如图1所示,分馏萃取是逆流萃取上加入有机相的洗涤段。图1  萃取流程 a-三级错流萃取;b-三级逆流萃取 F-料液;S-有机相;E-萃取液;R-萃余液 镍钴提取工业中,溶剂萃取主要用于镍和钴的分离,以及分离铜铁等杂质。硫酸介质中常用CYANEX272、P507或N235萃取分离钴和镍,CYANEX272是新开发的萃取剂,其分离系数比P507大-个数量级。杂质(铁、铜、锌)的萃取分离常采用P204。氯化介质中常用铵类萃取剂。一些用于镍钴分离的新萃取正在研究开发中。 三、离子交换 通过离子交换树脂的吸附和解吸,可从溶液中脱除特定的离子。离子交换法一般用来处理低浓度(如浓度小于10-6mol/L)的稀溶液,当溶液浓度较高时(如高于1%),采用这种方法的分离效果不大。离子交换的主要工业应用是微量杂质的深度净化,在镍钴湿法冶金中用于脱铅和锌,以及用于微量铜的脱除。 用于镍钴分离的离子交换工艺的研究也较活跃,提出了一些有潜在工业应用前景的新型离子交换树脂。

钴、镍萃取分离原理与方法

2019-01-31 11:05:59

现在,钴镍冶金质料已由曾经的硫化钴镍矿逐渐转为钴镍杂料、钴镍氧化矿(含钴、镍红土矿)等,处理工艺由传统的火法造锍、湿法别离相结合转为浸出、净化全湿法流程。钴镍质料来历纷歧,浸出液成分杂乱,沉积、离子交换工艺难以完成钻、镍及钴镍与钙、镁等其他杂质离子的别离。溶剂萃取法有挑选性好、金属收回率高、传质速度快等长处,特别依据离子性质差异及萃取理论研制的新萃取剂及萃取系统,更优化了萃取作用。所以,从根本上找出钴、镍性质的差异,分析现有钴、镍别离工艺原理,对新萃取剂和萃取工艺的开发有指导意义。 一、钴、镍性质差异 钴镍原子序数相邻,同为第四周期第Ⅷ族元素,仅外层d电子数不同,这种性质上的差异可用于萃取法别离。 (一)晶体场配位理论分析钴镍性质差异 1、钴镍轨迹简并 钴、镍比较常见的配位数为4和6。配位数为6时,配体呈八面体型。由于配体之间的方位不同,5个轨迹简并为2组,电子与配体顶头挨近的dz2、dx2-y2作用激烈,能量较高,为6Dq;而别的的dxy、dyz、dzx轨迹作用力弱得多,能量较低,为-4Dq。配位数为4时,配体能够构成平面四方形或正四面体构型。萃取剂的分子量较大,分子间存在较大的空间位阻,所以一般为正四面体构型。相同,四面体场亦发作简并,可是与八面体场完全相反,dxy、dyz、dzx轨迹能量较高,为1.78Dq,而dz2、dx2-y2的轨迹能量较低,为-2. 67Dq。 2、钴镍轨迹电子排布 电子在轨迹的排布遵从能量(CFSE)最低准则,其间成对的电子还需求战胜能量为P或P’的成对能。按这个规矩,电子排布与对应能量巨细如表1。 表1  钴镍离子不同配位数时对应的能量能够看出:6配位正八面体的安稳性大于4配位正四面体的安稳性。Ni(Ⅱ)的6配位八面体的安稳性远大于四配位四面体的安稳性,而Co(Ⅱ)的6配位八面体的安稳性仅略强于四配位四面体的安稳性,所以,溶液中Ni(Ⅱ)仅有6配位存在,而Co(Ⅱ)的6配位或4配位都能够存在。 (二)价键理论 价键理论是L.Pauling等于20世纪30年代提出的杂化轨迹理论在配位化学中的使用。按此理论,在构成共价键时,能级相差不远的各轨迹能够构成杂化轨迹,而原子轨迹杂化后可使成键才能增强,因而使生成的“分子”更安稳。构成配位键时,若中心离子供给的轨迹都是最外层轨迹,则构成的络离子称为外轨络离子;若中心离子供给部分次外层轨迹,则构成的络离子称为内轨络离子。 价键理论以为:中心离子与配位原子的电负性相差较大时,倾向于生成外轨型络离子;相差较小时,则倾向于生成内轨型络离子。一般来说,与电负性较大的配位原子,如F、O合作时,常构成外轨型络离子;与电负性较小的配位原子P、As等合作时则构成内轨型络离子;而与N、Cl等合作时,则即有或许构成外轨型络离子也有或许构成内轨型络离子。 Co(Ⅱ)、Ni(Ⅱ)生成外轨型络离子时,假如为4配位,则为sp3杂化,四面体构型;假如是6配位,则为sp3d2杂化,八面体构型。所以,Co(Ⅱ)生成内轨型络离子时,易被氧化为Co(Ⅲ),而Ni(Ⅱ)较安稳,难于氧化。 由上述配位理论可知:1)钴以外轨型配位时,溶液中安稳存在的为Co(Ⅱ);以内轨型配位时,溶液中安稳存在的为Co(Ⅲ);2)不管哪种配位,溶液中Ni(Ⅱ)的安稳性高于Ni(Ⅲ)的安稳性;3)Co(Ⅱ)与电负性较大的配位原子结合易构成四配位合作物,安稳性高于Ni(Ⅱ)的合作物;4)Ni(Ⅱ)与电负性较小的配位原子结合易构成六配位合作物,安稳性高于Co(Ⅱ)对应的合作物。 二、钴、镍的萃取别离 (一)钴、镍的磷(膦)类萃取别离 溶剂萃取法是钴、镍别离的重要办法之一,其别离作用好,金属收率高,对料液适应性强,进程易于自动操控。跟着新萃取剂、萃取系统的开发和萃取理论的逐渐完善,溶剂萃取法在钴镍湿法冶金中的使用越来越广泛。 由晶体场配位理论可知,溶液中Ni(Ⅱ)为6配位时较安稳,而Co(Ⅱ)为4或6配位时安稳性挨近,能够一起存在,在必定条件下还能够彼此转化。现在,广泛选用磷类萃取剂别离钴、镍就是使用此原理。 现在,使用于钴、镍别离的磷(膦)类萃取剂首要有P204、P507和Cyanex272,它们在萃取钴、镍时有较大差异。据报道,用P204、P507、Cyanex272萃取钴、镍时,半萃pH差值别离为0.53、1.43和1.93。明显,萃取别离钴、镍的才能逐渐增强。这种差异缘于3种萃取剂的萃取才能和空间结构,见表2。 表2  3种磷(膦)类萃取剂的比较pka表明萃取剂结合金属离子才能的强弱。明显,P204与金属离子结合才能最强。有机磷(膦)类萃取剂结构通式中的R-P-R’键角可用来衡量空间位阻的巨细。在生成八面体构型的配位化合物时,∠RPR’越大,不同磷酸替代基之间的空间位阻越大,越不利于八面体构型的构成。所以,当萃取剂结合才能下降、而空间位阻增大时,八面体构型难于构成,则其他小分子,如水分子易于参加配位。而四面体构型中,2个有机磷一起配坐落一个中心离子,4个O处于互为笔直的平面中,配体之间作用强度较低,∠RPR’对四面体构型影响不大。 有机磷类萃取别离钴、镍的总反应式可表明为:在萃取剂大大过量条件下,M为Co时,n=2;M为Ni时,n=3。饱满萃取时,不管钴、镍,n=1。钴的萃合物包含四面体和八面体2种构型,而镍仅有八面体构型。四面体萃合物含水量低于八面体萃合物的含水量,有较高的亲油性,所以钴优先进入有机相。 从P204、P507到Cyanex272,酸性逐渐削弱,空间位阻逐渐增大。镍的萃合物一向要坚持八面体构型,而萃取剂与镍构成6配位的难度增大,所以镍的分配比下降。可是,钴萃合物能够转变为四面体构型,补偿了由于萃取剂酸性削弱和空间位阻增大对分配比减小的影响。镍的分配比减小,而钴的分配比根本不变,钴、镍别离作用越来越好。所以,用具有较弱萃取结合强度、较大空间位阻的萃取剂能够较好地完成钴、镍别离。 (二)Co(Ⅱ)的4配位阴离子挑选性合作 电负性较大的配离子配位才能较弱,优先构成外轨型4配位sp3杂化。又由于Co(Ⅱ)优先Ni(Ⅱ)构成4配位,所以挑选一种电负性适宜的配离子,操控适宜的浓度,可优先与Co(Ⅱ)合作,加大钴、镍的萃取别离。 1、SCN-的挑选性合作 SCN-的电负性较大,必定浓度下,与Co2+构成安稳的四面体阴离子合作物Co(SCN)42-,而简直不与Ni2+构成安稳合作物。所以,在该系统中,钴以络阴离子方式存在,镍以水合阳离子方式存在,用MIBK、胺类、季铵盐类萃取剂能够挑选性地从含镍溶液中萃取钴:季铵盐萃取钴的容量与有机相中SCN-的浓度成正比,适用于从低浓度钴溶液中萃取钴。但负载有机相中的钴需用NH3-NH4 HCO3溶液反萃取,而反萃取液中的钴、需求专门的设备收回,生产本钱较大。 2、Cl-的挑选性合作 当Cl-质量浓度为200~250 g/L时,90%左右的Co(Ⅱ)以CoCl42-方式存在,Cu2+、Fe3+、Zn2+等金属离子也构成合作阴离子CuCl42-、FeCl4-、ZnCl42-,而Ni2+仍然以水合阳离子[Ni(H2O)62+]方式存在。选用胺(铵)类萃取剂能够将合作阴离子萃取,完成与镍的别离。 该工艺别离作用好,萃取剂报价低廉,与硫化钴、镍矿氯化浸出联接顺畅,20世纪60~70年代树立的镍、钴厂多选用该系统。比较有代表性的有:加拿大鹰桥公司在挪威克里斯蒂安松的镍厂,使用叔胺从氯化物系统中别离钴、镍;国内的成都电冶厂、福州冶炼厂等都选用氯化物系统以N235萃取别离钴、镍。 (三)钴氧化为内轨络离子 依据价键理论,当Co(Ⅱ)、Ni(Ⅱ)与电负性较低的配离子结合时,Co(Ⅱ)简单氧化,生成十分安稳的内轨型Co(Ⅲ)配离子,而该离子假如亲油则生成安稳的萃合物被优先萃取,假如亲水则不被萃取。 1、-铵系统 NH3能够与Co(Ⅱ)构成外轨型合作物Co(NH3)62+,由于1个3d电子跃迁到5s轨迹,该合作物很简单被氧化成愈加安稳的内轨型合作物Co(NH3)63+,见表3。 表3  钴、镍合作物的安稳常数(18~25℃,i=0.1)在-铵系统中,操控的浓度和溶液电位即可确保溶液中的钴、镍别离以Co(NH3)63+和Ni(NH3)62+方式存在。由于Co(NH3)63+的安稳常数为Ni(NH3)62+的1026.13倍,所以挑选一种与镍合作才能比NH3强的螯合萃取剂就能够替代Ni(NH3)62+中的NH3而挑选性萃取镍。 1987年,澳大利亚的昆士兰公司选用汉高公司的LIX84-I萃取剂直接从空气氧化后的含钴、镍的性溶液中挑选性萃取镍,然后选用硫酸盐溶液反萃取,得到的硫酸镍溶液通过电积得到高品质阴极镍。溶液中剩下的钴用H2S沉积得到CoS产品。 2、螯合萃取系统 用螯合萃取剂萃取钴、镍时,易呈现钴中毒现象,由于构成的Co2+螯合物很简单被氧化成Co3+螯合物。Co3+螯合物十分安稳,难于被酸直接反萃取,需求在复原条件下反萃取。但由于反萃取需求很多复原剂,并且Co3+对萃取剂有必定的分化作用,所以该办法没有得到大规模使用。 (四)Ni(Ⅱ)的6配位协同萃取 镍的6配位萃合物的安稳性和疏水性较高,但空间位阻较大,所以在萃取进程中需求参加某些替代结合水的协萃剂。 1、酸性萃取剂与非螯合肟类协同萃取 南非矿藏工艺协会研讨发现,在烷基磷酸类(DEH-PA)中参加非螯合性2-乙基己基肟(EHO)对镍有很大的协萃作用,可是对钴的影响要小得多。协萃机理为:EHO供给孤对电子的才能强于H2O或DEHPA,能够轻易地将它们替代,使镍到达安稳的6配位构型。环烷酸与异十三醛肟相同也有很强的协萃效应,使镍的pH0.5左移2.8,钴的pH0.5左移1.8,钴、镍的半萃pH值扩大到1.2,能够将钴、镍完全分隔。酸性萃取剂与非螯合性萃取剂协同萃取钴、镍,萃取速率快,不存在钴被氧化问题。 2、酸性萃取剂与螯合肟类协同萃取 磷酸类、羧酸类、磺酸类萃取剂中参加必定量的LIX63,对钴、镍的萃取有较强的协同作用,并且酸性萃取剂的酸性越强,E-pH线左移越多,协同作用就越强。该系统的不足之处在于镍的萃取、反萃取速率较慢,反萃取需求必定的酸度,而LIX63在强酸性条件下会降解。这2个问题一向没有得到本质上的处理,所以20世纪90年代后期,该系统仍未得到使用。然后开发的抗降解烷基甲基胺与DNNS协同萃取系统显现了优异的功能,仅仅本钱较高而未完成产业化。 澳大利亚开发出了羧酸萃取剂与螯合肟类萃取剂协同萃取工艺:选用酸性很弱的羧酸萃取剂与羟肟类萃取剂协同萃取,下降了羟肟降解速率;操控萃取剂浓度,可加速萃取和反萃取速率;萃取进程没有呈现钴中毒现象。但不足之处是钴、镍别离系数不算很大,别离进程需求较多级数的洗刷。萃取镍时,LIX63为萃取剂,羧酸为协萃剂;萃取钴时,羧酸为萃取剂,LIX63为协萃剂。 三、结束语 跟着优质钴镍硫化矿资源的逐渐干涸,钴镍氧化矿的开发使用越来越受注重,加压酸浸、硫酸堆浸技能已成为钴、镍湿法冶金的干流技能,所以亟需开发能直接从较高酸度系统中萃取钴镍的工艺(DSX),并且最好对钙、镁等有抑萃作用。首要研讨方向为:1)开发新的萃取剂,特别是螯合萃取剂,这或许是未来直接从含钙镁溶液中萃取钴、镍的首选萃取剂;2)开发新的萃取系统,跟着萃取理论,特别是协萃理论的开展,研讨萃取剂的协同作用,使到达较好的别离作用;3)开发新的萃取设备,某些钴、镍萃取进程的热力学数值很好,可是动力学速率慢,需求新的萃取设备强化萃取进程。

初始溶液中钴铁摩尔比对钴取代FE3O4中铁的影响

2018-12-10 14:19:22

初始溶液中钴铁摩尔比对钴取代FE3O4中铁的影响.pdf

黑镍的制备和除钴

2019-01-24 09:37:16

合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。     除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。 表1  除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31 表2  钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5

富钴铁锰壳:地质、资源和技术

2019-02-21 10:13:28

富钴铁锰壳生成于全球大洋的海山、海脊、海台,那里数百万年来水流不断冲刷岩石,因而没有堆积物。这些富钴铁锰壳从周围严寒的海水中堆积到岩底上,构成最厚达250毫米厚的铺砌层。富钴铁锰壳之所以重要,首要是因为这或许是钴的来历,一起也因为其间含有钛、铈、镍、铂、锰、、碲、钨、铋、锆等其他金属。富钴铁锰壳生成于水深400至4000米处,最厚、含钴量最高的矿壳生成于水深800至2500米处。矿壳的散布和厚度受地崩等重力进程、堆积物外层、水下和水面礁石以及水流的影响。 矿壳在各式各样的底面岩石上生成,因而用遥感数据难以区别矿壳和底层,而遥感数据是开展勘探技能的一个重要方面。幸亏矿壳的伽马辐射高得多,因而据此能够将两者加以区别。矿壳的物理特征包含均匀孔隙度高(60%),均匀表面面积极大(每克300平方米),成长速度极慢(每一百万年1~6毫米)。这些特征有助于将许多有经济价值的金属从海水里吸到矿壳表面。 矿壳由水合软铁矿(氧化锰)和大方纤铁矿(氧化铁)构成,厚的矿壳还有一定量的碳酸氟磷灰石(CFA),大都矿壳都含有少数石英和长石。水合软铁矿一般吸收的元素包含钴、镍、锌和;氧化铁吸收的有铜、铅、钛、钼、砷、钒、钨、锆、铋和碲。 大块矿壳的钴含量最高为1.7%,镍含量最高为1.1%,铂含量最高为百万分之一点三。就大片海洋水域而言,矿壳的均匀含钴量达0.5%至1%,因而矿壳成为陆地和海岸外最丰厚的潜在钴矿。在大陆边际和接近西太平洋火山弓弧处,矿壳的钴、镍、钛和铂含量削减,而硅和铝含量添加。矿壳生成处的水越深,水合软铁矿相关元素削减,铁和铜添加。在矿壳中钴、铈、、钛、铅、碲和铂的高集度很高,高于其他金属之上,因为这些金属经氧化反响生成较为安稳、较不活动的化合物。稀土元素一般为0.1%至0.3%不等,连同其他水成元素、钴、锰、镍等等,均来自海水。铈是一种稀土元素,在矿壳中高集度很高,具有重要的经济潜力。 矿壳在其上成长的海山和海脊阻止海洋水体活动,然后发生许多由海山引发的水流,相对自海山向外的水流而言,这种水流的能量一般较强。在海山峰端外沿,这些水流的效应最强,那里的矿壳最厚。这种海山特有的水流还增强涡流混合,形成上升流,然后增强了初级生成率。这些物理进程对海山生物群落发生了影响,而不同的海山有不同的生物群落。海山群落的特征是,在矿壳最厚、含钴量高的当地,密度相对较低,差异相对较小,海山群落构成的决定因素是:水流形状、地势、底部堆积和岩石形状及掩盖规模、海山巨细、水深以及氧气最少区的巨细和规模。如要编写关于环境影响的文件,现有常识是不行的,需求更好地了解海山生态体系及群落。 约有40次研讨调查飞行是专门研讨富钴壳的,研讨工作首要由德国、日本、美国、大韩民国、俄罗斯联邦、我国和法国进行。所估量的40次调查不包含作者不知道的由苏联(后因由俄罗斯联邦)和我国进行的一些调查。但从1981年至2001年约42次调查飞行的状况来看,每艘调查船及实地科学研讨费用估量约为3 200万美元,陆上研讨费用估量约为4 200万美元,投资总额约为7 400万美元。 矿壳挖掘技能的研讨与开发刚刚起步。矿壳散布详图尚缺,对小型海山地势也尚无全面了解,但这些关于拟定最为恰当的采矿战略是不可或缺的。实地勘探作业一般是制作海束水深图、衍生反向散射和斜角图,编制地震概略,同时用以挑选采样点。进行调查时,在每一海山挖泥取样和抽取岩心15~20份。随后,用摄像机进行调查,判定壳、岩和堆积类型和散布状况,如有或许,还判定壳厚度。因为底部声测信标许多,需有大型拖曳设备,搜集的样品也许多,因而这些勘探活动需求用大型、设备精巧的研讨船舶。在勘探的高级阶段进行定点调查时,拟运用深水拖曳侧扫描声纳,包含宽带测深技能,并可运用系联线遥控车,借以制作和标划小规模的地势。可采用挖泥取样,抽取岩心,用遥控车勘察,并用一种尚待研发的用具进行短距离取样等办法对堆积物进行广泛的取样。伽玛放射丈量将判定壳厚度,并判定薄堆积层下有无矿壳存在。要了解海山环境,需求运用流量仪系泊设备,需求进行生物抽样和调查。 现己制定的12条矿壳勘探挖掘原则如下: 一、“区域”原则: (一)浅于1000~1500米的大火山机体; (二)2000万年以上的火山机体; (三)顶部没有大型环礁或礁石的火山结构; (四)底部水流强、且不断的区域; (五)开展完善的浅海氧气最少区; (六)不受许多河蚀岩屑和风成岩屑影响的区域。 二、定点原则: (七)平整小规模地势; (八)峰端平顶、峰脊线低点和斜道; (九)斜坡安稳; (十)当地无火山活动; (十一)均匀含钴量≥0.8%; (十二)壳均匀厚度≥40毫米。 从技能上来说,矿壳挖掘比锰结核挖掘更为困难。挖掘锰结核之所以相对简单,是因为锰结核下面是软质堆积层,而矿壳则与基底岩石或紧或松连在一起。为了挖掘成功,有必要使壳脱离基底岩石,因为基底岩石会大大下降矿石等级。矿壳挖掘或许有五种作业办法:碎裂、破坏、进步、接取和别离。拟议的矿壳挖掘办法是运用海底爬行车,用液压管升降体系和电缆与水面的采矿船联合。采矿机自行推动,速度每秒钟约20厘米。在根本采矿状况下,物料经过量为1000000t∕y。在这种状况下,合理的采矿才能为碎裂功率80%,基底岩石在矿壳中的掺混率25%。提议用于挖掘矿壳的一些具有创造性的新体系包含:用喷水器使壳脱离基底;现场过滤技能;用声波使壳脱离基底。这些主张给人带来期望,但有待进一步研讨。 矿壳所含金属对世界经济的重要性从其消费办法中清楚明了。锰、钴和镍的首要用处是制作钢,这些金属使钢具有特性。钴还用于电力、通讯、航空、发动机和东西制作工业。镍也用于化工厂、炼油厂、电器和机动车。钴是铜矿挖掘的副产品,因而,钴的直销与对铜的需求密切相关。碲的景象也相同,碲是铜和金挖掘的副产品。因为直销不安稳,厂商只得寻求钴和碲的替代品,成果曩昔十年中钴和碲的商场添加很有限,因而报价较低。假如这些金属的其他丰厚的来历得到开发,在产品中从头运用这两种金属的积极性就会随之添加,商场就会扩展。 最近经判定,矿壳除含有锰、钴、镍、铜和铂以外,还含有或许使人们更有积极性挖掘的其他金属。例如,钛的价值仅次于钴,铈的价值高于镍,锆的价值与镍适当,碲的价值近乎是铜的两倍。上述分析假定对每种金属都能研讨出经济上可行的冶金提炼办法。 依据等第、总吨数和海洋条件,中赤道太平洋区域矿壳挖掘潜力最大,约翰斯顿岛专属经济区(美国)、马绍尔群岛和中太平洋山的国际水域特别如此,但法属波利尼西亚、基里巴斯和密克罗尼西亚联邦的专属经济区也应予以考虑。 在矿壳中发现的许多金属对保持现代工业社会功率、进步21世纪生活水平至关重要。人们日益认识到,富钴壳是重要的潜在资源。因而需求经过研讨、勘探和技能开发,添补关于矿壳挖掘各方面问题的信息距离。

黑镍氧化中和水解法除钴

2019-02-13 10:12:44

在铁族元素(包含Fe、Co和Ni)的三价氢氧化物中,其间以Ni(OH)3的氧化性最强,Co(OH)3次之,Fe(OH)3的氧化性最弱。用Ni(OH)3可使Co2+氧化成Co3+。      在工业生产上,黑镍(FeOOH)是Ni(OH)3的安稳形状。因为氢氧化亚镍[Ni(OH)2]的顔色为暗绿色,而氢氧化镍[Ni(OH)3和NiOOH]为黑色,故得名“黑镍”。黑镍像Cl2相同,它可作氧化剂用于中和水免除钴。其反响如下: NiOOH+Co2++H2O=Ni2++Co(OH)3      作为电解液净化沉钴所需的黑镍是用电解法制取的。电解阳极氧化Ni(OH)2法的根本进程是,从电解液净化系统抽出部分净化后液,参加沉积出Ni(OH)2,将Ni(OH)2矿浆放入电解槽内通入直流电,Ni(OH)2在阳极上发作氧化反响: Ni(OH)2-e=NiOOH+H+      Ni(OH)2电解氧化成NiOOH的机理现在还不彻底清楚。但一般以为氧化进程发作在固相即Ni2+无需进入溶液能够发作氧化,也就是说在Ni(OH)2颗粒触摸到阳极时才干氧化。电解氧化槽必须加强拌和,促进Ni(OH)2颗粒与阳极磕碰。电解氧化槽的阳极材料为外长始极片,阴极材料可用镍铬丝或不锈钢网,用鼓入空气的办法拌和电解氧化槽中的矿浆。下表为电解氧化槽技能操作条件。 下表“黑镍”电解氧化槽技能操作条件项目单位 电解液成分 NaOH0.1~0.15mol/L Ni30g/L电解液温度℃50槽电压V2.3阳极电流密度A/m220电流效率%~50     芬兰哈贾伐尔塔精粹厂选用“黑镍”氧化水免除钴是在两个容积为120m3的空气拌和槽中以两段逆流方法进行的。在榜首段净化除钴的进程中,溶液与现已部分起反响的NiOOH触摸,溶液中50%左右的钴发作沉积。矿浆送主动压滤机过滤,滤渣经酸洗后送另外厂收回钴,滤液送第二段净化除钴。在第二段反响槽内参加新的NiOOH。      用NiOH除钴,因为它的反就产品是镍离子,与电解液主成分共同,不会污染所处理的溶液。此外,用NiOOH除钴,因为它的氧化能力强,因而能一起除净溶液中残留的微量杂制质,如铜、铁、锰、砷等,起到深度净化的意图。

钴镍催化剂和钴铝催化剂的回收利用

2019-01-21 18:04:55

一、钴镍催化剂的回收利用(碱浸法) 在含Al2O3的废脱硫催化剂中加入Na2CO3。Na2CO3∕Al2O3的摩尔比为1.5~4,煅烧到1150℃以上,把煅烧后的产物浸到热水中搅拌进≥0.1mol∕L的H2SO4中,从而脱出镍和钴来。 二、钴铝催化剂的回收利用(碱熔融法) 将61%的含Co3O4∕AI3O3废催化剂添加3.5%的纯碱,在1100℃下熔融,将熔块破碎后在80~90℃下用10倍的水浸取1h,过滤后滤饼中含95.8% Co3O4,干燥后还原则成金属钴,钴的收率在95%以上,滤液中含钴0.6mg。

选铁尾矿回收低品位磷、钛、钴技术

2019-01-24 09:35:03

中国北方河北丰宁三赢公司的丰宁招兵沟低品位磷矿属变质型矿床,磁铁矿(含钛磁铁矿)-磷灰石型矿石。其特点为中品位磁铁矿、低品位磷矿与低品位钛铁矿、超低品位硫钴等共生。为使招兵沟铁磷矿中的磷、钛、硫钴等资源得到合理的综合回收利用,开展了从磁选尾矿中选矿回收磷、钛、硫钴的实验室选矿试验研究,确定了合理的综合回收选矿工艺流程。 根据实验室选矿试验研究成果,改扩建了原矿处理能力为30万t/a老选厂,新建了原矿处理能力为300万t/a的新选厂,综合回收招兵沟铁磷矿中的磁铁、磷、钛铁、硫钴矿物。确定了常温无碱浮选回收磷矿物、合理的重-磁选联合工艺回收钛铁矿物、浮选工艺回收硫钴矿物的选矿工艺路线。 一、矿石性质 河北省丰宁县招兵沟铁磷矿矿石类型较为简单,主要矿石矿物为磁铁矿、钛铁矿、磷灰石等。脉石矿物主要有辉石、角闪石、黑云母、斜长石等。 矿石结构主要为中粒半自形粒状结构、花岗变晶结构,其次有片柱状变晶结构、陨铁结构、平行连晶结构、固溶体结构。矿石构造主要为块状构造、片麻状、条带状、网状构造。矿石自然类型一般为斑杂状钛磁铁矿石、斑杂状磁铁矿矿石、块状钛磁铁矿矿石、块状磁铁矿矿石、片麻状磁铁磷灰石矿石和片麻状钛磁铁磷灰石矿石。 矿石工业类型可分为钛磁铁磷灰石矿石、磁铁矿矿石、钛磁铁矿矿石和磁铁磷灰石矿石。 矿石中含TFe 10%~20%、含P2O5品位平均为3%±,含TiO2 5%±;铁与钛及磷的含量一般成正比关系。磷、钛、硫钴品位较低。 该矿一直以选铁为主,对选铁尾矿中的其他有用组分未能综合回收,可回收利用的低品位磷、钛、钴等作为尾矿抛弃。由于该矿矿石结晶较好,适宜采用阶段磨矿阶段选矿的综合回收工艺,其选铁尾矿中的主要元素含量见表1。 表1  选铁尾矿多项分析结果二、磷的综合回收 磷矿浮选采用的AW-10捕收剂,该药剂不仅无毒、无污染,而且还有很好的生物降解性能,有利于环境保护。该成果解决了浮选矿浆需要加入大量的碳酸钠调整矿浆pH值的问题;降低了浮选温度,实现了常温浮选,对节约能源、降低选矿成本做出了很大贡献。依据试验确定的工艺流程,设计建成了处理能力30万t/a原矿的磷浮选车间,并于2005年9月投产,生产出了高品质的磷精矿。工业调试改造后确定了磁选尾矿经旋流器脱水,一段开路磨矿,磨细度.074mm(-200目)含量50%±5,一次粗选一次扫选二次精选、中矿顺序返回的常温浮选工艺流程(图1)。图1  磷回收生产数质量流程 工业生产采用常温浮选工艺回收磷矿物,浮选矿浆不需要加温、加碱。浮选药剂均为常规、无毒、无污染的产品。浮选药剂制度简单,仅加入了水玻璃调整剂和浮选捕收剂。 流程考查指标为:入选原矿品位P2O5 3.84%,磷精矿品位P2O5 37.88%、Fe2O3 1.50%、MgO 0.96%,磷精矿回收率95.49%。 采用的选磷捕收剂AW-10,是合理开发利用招兵沟磷矿这一易选磷灰石,提高企业经济效益的关键。该捕收剂必须具备原料来源广、价廉、无毒、选择性及捕收能力好等特点,并能克服使用氧化石腊皂类的捕收剂价高,泡沫粘、精矿不易后处理等缺陷。捕收剂主要由两部分组成,第一部分(占80%)采用化工、油脂厂废料作原料,变废料为有用产品,因此也减少了相关行业造成的环境污染。但单独作为捕收剂用量较高,矿浆粘性大。第二部分(占20%)是一种阴离子型活性助剂,具有增溶、分散、乳化、发泡和润湿渗透作用,能显著促进脂肪酸类捕收剂的高度分散溶解,从而增加主体捕收剂被目的矿物吸附的浓度,降低选择性好的捕收剂为达到浮选必须的临界胶束浓度而需要的用量,使得主体捕收剂在较宽的介质中和较低的温度下具有良好的分散溶解性。该助剂还具有发泡性能好、泡沫性脆的特点。因而采用AW-10捕收剂能够实现招兵沟磷矿常温、无碱浮选,并且精矿沉淀浓缩性能好。另外,该活性助剂有很好的生物降解性能,对矿山实际产生尾矿水的分析结果(表2)表明:尾矿水中的COD含量较上一生产工序磁选尾矿水,降低了将近一半。在捕收剂中引入该助剂后,极大减轻了水质污染,有利于环境保护。 表2  尾矿水水质主要分析结果(mg/L)三、钛的综合回收 丰宁铁磷矿中的伴生钛铁矿,结晶程度较好、粒度较粗大。根据其矿石性质、选矿规模、设备投资、选矿成本以及环境保护等因素,确定采用重-磁选工艺综合回收该矿中的钛铁矿。工艺路线为:螺旋溜槽抛尾→摇床粗选→钛铁粗精矿→磨矿[磨矿细度为 工业生产流程考查指标为:入选品位TiO2 7.02%、磨矿细度图2  钛回收生产数质量流程 该选矿工艺流程及设备简单、动力消耗少,综合回收利用有很好的经济效益,符合国家矿产资源利用和发展循环经济的政策。 四、钴的综合回收 丰宁招兵沟磷铁矿中的钴,主要和硫铁矿共生在一起。黄铁矿结晶较好、粒度较粗大、可选性较好,属易选矿石。硫钴选矿的技术路线为浮选,工艺流程为一次粗选三次精选,中矿顺序返回(图3)。采用选硫化矿常规选矿药剂:硫酸、丁基黄药、2#油。图3  钴回收生产数质量流程 该工艺工业生产流程指标为:选铁、磷、钛后的尾矿品位为Co 0.0073%、S有效0.20%,精矿品位Co 0.3691%、S有效39.31%,尾矿品位Co 0.0051%、S有效0.053%;精矿产率按Co计算0.60%、按S有效计算0.37%;Co回收率30.34%、S有效回收率72.72%。五、结论 通过对研究成果在招兵沟铁磷矿选矿厂的实施,综合回收了国家有限的磷、钛铁、钴等资源,减少了全选厂的尾矿排放量10%以上,选矿过程无环境污染,符合我国可持续发展战略对磷矿和磷肥工业立足国内资源的要求;符合国家资源与环境及循环经济政策。 丰宁县招兵沟铁磷矿采用浮选工艺回收磷矿物,采用重—磁选工艺回收钛矿物,浮选回收钴,企业经济效益显著。对资源综合回收利用,有效扩展资源储量,发展循环经济起到了行业科技示范作用。

中国镍钴工业科技攻关开始转型

2019-03-14 11:25:47

连振祥由曩昔重视探寻进步资源归纳开发使用的新工艺、新设备,到开端进行新能源、新材料等战略性新兴工业的科研攻关,我国镍钴工业在岁末年初进入了科技攻关转型期。12月20日,来自我国科研机构、高等院校和厂商界的400余名专家、学者,聚集我国“镍都”甘肃金昌市,举行我国镍钴工业开展史上的又一次科技盛会——第19次金川科技攻关大会。记者了解到,与会专家学者中,仅我国工程院和我国科学院院士就有7位,触及粉末冶金、矿物学、有色金属冶金、矿床地质、有机化学等范畴。 “这次会议对我国镍钴铂族金属工业以及相关新材料工业的科学开展具有重要意义。”我国有色金属[0.23 0.00%]工业协会会长康义说。 因为镍产值居全球第四位、钴产值居全球第二位,甘肃金川集团公司无可争议地成为我国“镍老迈”。本次大会由我国有色金属工业协会和甘肃省一起主办。“本次科技大会,寻求金川在‘十二五’期间全面进入与镍铜钴主业相关的新能源、新材料、节能环保、现代配备制作等战略型新兴工业范畴所急需的技能支撑。”甘肃金川集团公司董事长杨志强介绍。 此间与会的一些专家学者认为,第19次金川科技攻关大会,也可以说是我国镍钴工业科研结构方向调整的动员会。 从1959年金川镍矿正式开建议,我国镍钴工业便与“金川”这个姓名紧密联系在一起。作为世界闻名的多金属共生的大型硫化铜镍矿之一,金川镍矿占我国国内已探明储量的70%以上,伴生元素有20余种。开发金川,不只开发了一个特大型镍矿,一起也连带开发了一个大型铜矿、一个大型钴矿以及一个大型贵金属矿。 “建厂初期,金川在较短时间内打通了出产流程,填补了我国镍钴出产技能和工艺的空白。”杨志强说,“其时尽管甩掉了我国贫镍的帽子,奠定了我国镍钴出产工艺技能体系的初始根底。可是,在资源的开发使用上技能依然很落后。” 记者了解到,从1972年开端,到2009年,我国科技和冶金部分环绕金川资源开发使用举行的科技大会,先后就有18次。 “在1978年3月的全国科技大会上,金川被列为全国三大矿产资源归纳使用基地之一。”金川集团公司副总经理武浚介绍说,“之后,我国政府有关部分安排国内50多家科研院校的数百名科技人员,环绕金川资源的开发与归纳使用,进行了全国范围内的持续数十年的跨体系、跨职业、多学科的科技联合攻关。” 数十年的科技攻关,霸占了限制我国镍钴工业开展的矿山建造和出产进度缓慢、镍铜金属选冶收回率低,伴生金、银及铂族金属归纳收回水平低下以及环境保护差等许多技能难题,使我国镍金属产值和质量逐年稳步增长,资源归纳使用水平大幅进步。 现在,金川特大型杂乱坑采矿山的采矿和高镁镍贫矿的选别技能到达职业领先水平,镍闪速熔炼和富氧顶吹熔炼、硫化镍加压浸出和羰化法精粹技能取得重大打破,我国彻底把握了镍冶炼成套配备的集成技能,具有了世界领先的工业化才能,构成了我国镍钴工业开展壮大、世界竞争力不断增强的新优势。 “第19次科技攻关大会行将揭开新一轮科技攻关的前奏。”杨志强说,“这既是我国镍钴工业50年科技联合攻关的持续、深化和开展,一起也是全面进步我国镍钴铂族金属工业技能水平的新办法。” 记者在会议上了解到,在“十二五”规划行将施行前夕举行的这次科技攻关大会,主要就改造进步我国镍钴工业传统工业,培养新材料、精深加工和新能源配备制作等战略性新兴工业等进行联合攻关,推进我国镍钴工业由资源耗费性向生态环保型转型晋级。我国科学院院士叶大年说,单就是金川尾矿和冶炼渣的二次使用研讨,就可认为我国一切的硫化矿山供给技能学习。 会上,我国5家厂商和16家高等院校及研讨院所结成镍钴资源归纳使用产学研战略联盟,就金川矿区深边部地质找矿、进步贵金属收回率、镍钴冶炼技能体系优化及产品优化、镍铜冶炼渣资源化经济使用、金川尾矿资源归纳使用、镍钴新材料的研制及工业化研讨等方面进行攻关,以处理我国镍钴资源归纳使用的关键技能和节能降耗的共性问题。 “经过科技联合攻关,完成金川集团开展战略性新兴工业,建造新式储能材料和二次电池产品研制和出产基地,建造以太阳能储热和发电为主的新能源配备研制和制作基地和规划、有色金属精深加工基地的战略目标。”武浚说。 “这次会议对构建我国镍钴及稀贵金属工业科技工作的新格局必将发生深远的影响。”甘肃省科技厅厅长张天理说, 据了解,现在金川集团公司已构成镍15万吨、铜40万吨、钴1万吨、化工产品252万吨的出产才能。2010年,供应收入将打破900亿元。   (miki)

昆士兰镍业公司的独家产钴法

2019-02-21 10:13:28

2009年全球钴产值约58000吨,其间大约有37%(即22000吨)是镍采矿的副产品,而硫化镍矿和红土镍矿各占一半。8%来自铜和贵金属采矿的副产品,其他55%是原生钴矿。因而从微观上来讲,钴的直销不仅仅取决于其基本面,很大程度上还受镍和铜商场的影响。关于昆士兰镍业公司(QNI)来讲,对钴商场的营销将添加镍工厂的附加值,钴的供应收入可部分抵消镍的出产成本,不论怎么核算,钴是QNI重要的收入,QNI将持续致力于出产和直接供应高品质的钴产品。 一、镍副产品钴怎么发生 有两种镍矿能够用来出产镍和副产的钻-硫化镍矿和红土镍矿,60%的镍产值来自于硫化镍矿,其间的钴含量很低,如前所述,大约有一半的副产钴来自于硫化镍矿,别的一半来自红土镍矿。红土镍矿进一步能够分为腐殖土矿和褐铁矿断层。腐殖土矿的含钴量较低,首要用于出产镍铁,并不收回钴,只要少数的腐殖土矿被加工成冰镍,并进一步冶炼成金属镍。褐铁矿断层含有较为丰厚的钴,大部分加工这类镍矿工艺的都收回钴,有两种不同的湿法工艺处理褐铁矿,QNI的雅布鲁精粹厂选用Caron工艺,古巴的MoaBay和澳大利亚的Minera选用加压浸出工艺。铁矿镍矿项目是Inco坐落新喀里多尼亚的Goro项目,Sherritte坐落马达加斯加的Ambavotory项目和榜首量子的Ravensthorpe项目,一切这些项目均选用加压浸出技能和湿法冶金精粹工艺,金属钴作为副产品出产出来,这三个项目达产后的副产金属钴的属量累计可达1万吨。因而未来来自镍副产的钴产值份额将添加。 二、QNI简介 QNI是国际上三个选用Caron工艺处理褐铁矿石的厂商之一,别的两个别离坐落古巴和巴西。 QNI具有并运营坐落澳大利亚东海岸的雅布鲁精粹镍厂,现已有36年出产钴的前史。雅布鲁于1974年运用当地Greenvale的红土镍矿开端出产镍和钴,因为雅布鲁精粹厂接近Townswill港,因而很简单购买从海外进口的质料。1986年从海外购进了榜首批质料,1995年,当地的Greenvale矿干涸,雅布鲁只能处理从新喀里多尼亚、印尼和菲律宾进口的镍矿。 曩昔36年里,雅布鲁精粹厂几易其手,开端的具有者是Metals Exploration和Freeport Sulphur的一个合资厂商,下一个具有者是Mr.Alan Bond,一个澳大利亚厂商家,曾以赢得美洲杯帆船竞赛而闻名,当他的公司破产后,就将该公司以QNI的姓名在澳大利亚股票交易所上市,在Billiton和BHP兼并之前,QNI并入Billiton的镍分部。2009年BHBP出售雅布鲁,雅布鲁被澳大利亚别的一个闻名的厂商家Cliver Palmer教授买走。Cliver Palmer先生是澳大利亚闻名的亿万富翁,具有25年从事矿产资源开发和交易的阅历,其兴办的Mineralogy公司与我国国有厂商中信太平洋公司成功协作,Mineralogy公司具有坐落西澳Pilbara区域的国际 上首要的磁铁矿,中信太平洋现已开端每年从西澳向我国出口2500万吨铁矿石的交易。 雅布鲁前史上别的一个值得一提的事情是2007年的扩建。2004年3月其时的业主BHBP宣告将加快开发坐落西澳的Raventhorpe项目,这个项目的开发分为两部分,一座新矿山和加工厂,出产镍钴氢氧化物中间产品,一般称之为MHP,雅布鲁的扩建就是为了处理来自Raventhorpe的MHP,扩建内容包含将镍的精粹产能从3.2万吨/年增至7.6万吨/年,简直仿制了当时的镍钴出产线。榜首批运往雅布鲁的MHP大约在2007年12月份,终究一批于2009年头,就在BHBP封闭了Raventhorpe矿和加工厂之后,扩建的产能现在搁置着。 三、雅布鲁厂现状 在Cliver Palmer先生的指导下,雅布鲁现在的首要精力会集在运用褐铁矿有用出产镍和钴,别的一些曾经由BHBP供给的效劳也悉数转交过来,包含镍矿收购、枯燥、设备修理以及商场营销。QNI是Townswill区域最大的私营厂商,有1000个雇员,一切的工人和管理层悉数从BHBP搬运过来,因而出产经营部队很安稳。镍产品是首要的收入来历,首要销往不锈钢厂,按现在的镍价,年收入大约为6亿美元,按现在的钴价,钴的收入大约8000万美元,因而钴的产值占雅布鲁总供应收入的10%~15%。 四、雅布鲁的工艺 QNI从新喀里多尼亚、印尼和菲律宾购买红土镍矿,每年大约350万吨,含镍1.5%,钴0.15%,铁35%~40%,湿度大约30%~35%。这些矿每1~1.5周运回一次,每次装船量大约4~5万吨。 矿在Townswill港指定库房卸货,然后被运往雅布鲁精粹厂。运至工厂后,这些矿露天堆积,运用Townswill区域枯燥的气候天然枯燥,下一步这些矿运往反转窖持续枯燥,并进一步破坏。磨细的矿在浸湿法冶炼提取镍钴之前需在复原气氛中焙烧。 尔后进入后端的金属精粹阶段。 含有很多的镍和钴的浸出液经过数次过滤除杂工序,钴终究在液中提取别离。值得一提的是,工厂的这部分工艺是咱们称之为改进Caron法的首要原因,溶剂萃取厂运用液代替传统的酸液提取金属,这个办法是QNI自己创造的,而且是出产出现在QNI钴产品的榜首步。 经过ASX回路,提纯的镍溶液蒸馏别离成为碳酸镍,在反转窑里生成氧化镍,终究复原成金属镍,钴液被送入钴分厂进一步加工。 五、QNI钴产品 1988年曾经,QNI的钴产值首要是以混合镍钴硫化物的方式出售,1989~1997年期间首要以硫化钴方式出售,尔后以QNI级钴产品出售。1986年起,QNI开端逐渐运用进口镍矿,1995年开端悉数用进口镍矿。从1995年开端,QNI的钴产值大起伏添加,首要原因是进口镍矿中含钴量较干涸的本地矿Greenvale高。 2005~2008年期间,镍精粹厂的样式处理量大起伏下降,QNI将其注意力搬运到精粹厂的扩建。如前所述,QNI每年处理350万吨镍矿,含钴0.1%,湿基钴金属量约3500吨。因而钴的收回率大约只要50%。2009年QNI进口了一些钴含量较高的镍矿,而且进步了钴的收回率,因而估计2010年QNI的钴产值将到达2200吨。 1974年QNI刚开端投产时出产不纯的镍钴硫化物,含镍28%,钴14%。1989年,当浸出产线初度引进到雅布鲁时,不纯的钴硫化物中间产品出产成含钴40%、镍2%的产品,可是面对一系列问题,钴的纯度,环保,有限的客户根底,价格对商场价的扣头等。 1990年头,QNI开端一系列的项目战胜这些难题,逐渐形成出产钴终究产品的主意。 经过多年实验室的研究工作和商场营销,QNI决议出产提纯的化学品质料,而不是寻求传统的金属钴出产线。 QNI级钴出产线全面建成投产之前两年,1995年,QNI建立了一个卫星厂,1996年彻底完结。尔后该工厂一向运营。 QNI级钴首要由氢氧化钴和四氧化三钴组成,该产品由提纯的钴溶液蒸气生成,到现在为止,没有一家公司出产和供应这种产品。产品形状为黑色粉末,可代替部分需求溶解金属钴的应用领域,比方能够出产硫酸钴/氯化钴/硝酸钴、氢氧化钴、草酸钴和氧化钴。在300℃以上高温能够很经济地转化为四氧化三钴。此外还能够用于染色珠光体、电子零部件和磁性材料方面。 六、未来 从QNI出产QNI级钴现已近12年了,未来还将持续出产这种产品,并经过进步收回率来添加一些产值。如前所述,雅布鲁具有7.5万吨镍产能,其间有4.5万吨为Raventhorpe而预备的产能现在还搁置,假如能为这部分搁置产能找到适宜的中间产品作质料的话,则钴产值相应还能进步1000~1500吨。 至于钴商场自身,镍出产厂商还将在直销环节发挥重要的效果,因而未来几年钴的产值将持续稳步添加。这关于钴顾客来讲是一个十分活跃的音讯,镍出产厂商也将是钴职业一个安稳长时间的直销商,而且这将有助于钴消费职业开宣布更多的含钴材料。

镍钴净化液萃取分离工艺的研究

2019-01-31 11:05:59

目录 榜首章 文献总述 1.1 化学沉积别离镍钴 1.2 溶剂萃取法别离镍钴 1.2.1 胺类萃取剂 1.2.2 磷(膦)酸类萃取剂 1.2.3 酮肟类萃取剂 1.2.4 萃取剂组合及其他萃取别离技能 1.2.5 溶剂浮选 1.2.6 双水相系统溶剂别离技能 1.2.7 液膜萃取 1.3 离子交流树脂法别离镍钴 1.4 聚合物-盐-水液-固萃取(非有机溶剂液固萃取)法别离镍钴 1.5 电反萃取法别离镍钴 1.6 本研讨的含义与内容 1.6.1 本研讨的含义 1.6.2 本研讨的内容 第二章 P507萃取别离镍钴溶液工艺的研讨 2.1 试验部分 2.1.1 试验原理 2.1.2 试验质料与仪器 2.1.3 萃取试验办法与进程 2.1.4 反萃试验办法与进程 2.1.5 正交试验办法与进程 2.2 萃取单要素试验成果与评论 2.2.1 萃取时刻对镍钴萃取率的影响 2.2.2 水相pH对镍钴萃取率的影响 2.2.3 P507皂化率对镍钴萃取率的影响 2.2.4 比较O/A对镍钴萃取率的影响 2.3 反萃单要素试验成果与评论 2.3.1 反萃时刻对镍钴反萃率的影响 2.3.2 反萃比较A1/O1对镍钴反萃率的影响 2.4 正交试验成果与评论 2.4.1 萃取正交试验成果 2.4.2 萃取试验成果极差分析 2.5 本章小结 第三章 模仿三级逆流萃取工艺研讨 3.1 试验办法与进程 3.2 试验成果与评论 3.2.1 萃取率的改变 3.2.2 反萃率的改变 3.2.3 各级萃余液中镍钴比的改变 3.2.4 各级反萃液中钴镍比的改变 3.3 本章小结 第四章 定论与展望 4.1 定论 4.2 展望 参考文献 榜首章 文献述 因为钴、镍的化学性质十分类似,在矿床中常共生、伴生,因此在各种含钴废渣中常有镍,如镍冶炼转炉渣、铜冶炼含钴转炉渣、镍精粹含钴渣等;在各种特殊合金材料、电池材料、催化剂中,也都一起含有钴和镍;并且跟着钴与镍资源的日益干涸,对它们的别离与收回就显得十分重要。钴、镍别离首要有化学沉积法和溶剂萃取法,其他还有树脂法法、双水相法、聚合物-盐-水液-固萃取(非有机液固萃取)法、氧化复原法和电反萃取法。 1.1 化学沉积别离镍钴 依据钴、镍化合物的溶度积差异能够完结化学沉积别离。详细选用何种沉积办法首要取决于溶液中的镍钴比,对镍低钴高的溶液可用硫化沉积除掉镍,对镍高钴低的溶液可用氧化水解沉积除掉钴,沉积法不太合适钴、镍浓度大致适当的溶液[1]。 性硫酸盐溶液中的钴、镍别离能够选用络合物法,分为可溶钴络合物法和不溶钴络合物法。可溶钴络合物法别离钴、镍是运用三价钴五络合物在酸性溶液中比硫酸镍络合物安稳来完结的。在不溶钴络合物法中,钴以六络合物盐的办法从性硫酸镍的溶液中沉积,到达与镍别离的意图[2]。 因为Ni2 +与NH3构成合作物的安稳性比Co2+强,并且在NH3-NH4Cl介质中,Co2+更易构成Co(NH4)2Cl4难溶的蓝绿色复盐沉积与 Ni2+别离,所以在必定浓度下的 NH3-NH4Cl 系统中可到达Co2 +、Ni2 +别离的意图。岳松[3]用硫酸、和硝酸溶解废高磁合金钢,并将 Fe2 +氧化为 Fe3+,先用黄铁矾法除掉大部分铁 ,再用尿素除掉少数的铁及铝、钛、铜;终究在NH3-NH4Cl系统中别离钴、镍,并制成相应的盐,钴、镍的收回率别离为81.5 %、89.7 %。何显达等[4]探讨了用纯碱-混合液从人工金刚石催化剂酸洗废液中别离收回镍、钴和锰在纯碱0.1mol/L、2.5mol/L、pH=10的条件下,镍的收回率为99%以上,钴的收回率为95%左右,锰以碳酸锰办法收回。该办法反响速度快,金属归纳收回率高。 当溶液中钴高镍低时,如除掉CoCl2溶液中的少数镍时,可用Co粉加硫粉置换除镍。 别离了铁后的钴镍混合溶液可用氧化剂Co2+氧化成Co,Co3+敏捷水解发作Co(OH)3沉积,因其溶度积很小,在较低pH值及恰当的氧化剂作用下即可发作Co(OH)3沉积而在pH较低的条件下镍不发作类似的反响,然后到达别离钴、镍的意图。钴、镍别离的合适酸度应在pH=3以下,因为Co3+水解会使水相pH下降,不利于Co(OH)3的生成。选用碱性氧化剂可中和Co3+水解发作的H+,因此在氧化别离进程中pH值无显着改变,反响简略操控,pH值有显着升高即为反响结尾,合适的氧化剂为NaClO[5]。 可是,沉积法因在别离钴、镍时挑选性低,一般需求杂乱溶解和沉积作业,钴、镍产品纯度低且出产本钱高级缺陷 ,约束了其运用规模。 1.2 溶剂萃取法别离镍钴 溶剂萃取技能因为具有高挑选性、高收回率、流程简略、操作接连化和易于完结自动化等长处,已成为钴、镍别离的首要办法,但该法需求接连多级操作。现已完结工业运用的萃取剂有脂肪酸、季(叔)胺、磷(膦)类、螯合型萃取剂等。别的包含浮选、双水相萃取以及液膜萃取技能。 1.2.1 胺类萃取剂 在氯化物系统中,钴、镍的萃取别离首要运用胺类萃取剂,最常用的有叔胺和季铵盐。运用Co2+与Cl-生成的阴离子合作物比Ni2+与Cl-生成的阴离子合作物的安稳性高得多的特色,萃取钴氯络阴离子完结钴、镍别离。 包福毅等[6]挑选N235 (叔胺)-异辛醇-260#火油萃取系统,离心萃取器作为萃取设备,进行了萃取平衡试验、台架试验和半工业试验,得到的CoCl2溶液含Co量大于120g/ L,Co/ Ni>10000,钴收率大于97 %。周斌[7]等研讨用N235萃取别离废旧镉镍电池中的钴、镍,用水作为反萃取剂,经过二级反萃,能够使钴的反萃取率到达99.6 %。周学玺等[8]进行了与出产规模适当的出产性试验,成果标明,季胺氯化物可从含4~5 mol/ L 氯离子的溶液中有用地萃取钴,而几乎不萃取镍,可在常温下操作,与叔胺比较具有许多优越性。 1.2.2 磷(膦)酸类萃取剂 磷(膦)酸类萃取剂适用于硫酸盐溶液中钴、镍的别离,运用最广泛,现已开展到了第三代产品。20世纪60年代初,选用二 (2-乙基己基)磷酸(D2 EHPA或 P204),70年代日本推出2-乙基己基磷酸-2乙基己基脂(PC288A或HEHEHP,P507),80年代美国胺公司(现为CYTEC公司)组成新一代萃取剂二(2、4、4-三甲基戊基)(Cyanex272) ,这三种萃取剂酸性顺次削弱而别离钴、镍才能逐次增强。其他还有5709(基(1-甲基-庚基)酯)、PT5050等等。 张愈祖等[9]选用电化学溶解、P204萃取除杂、P204萃取别离镍、钴的工艺流程,对钴、铜、铁含量均高的合金废料块进行了归纳收回,制得了优质的氧化钴粉、铜粉及镍粉等。牛聪伟等[10]以P204作萃取剂,研讨了用非平衡溶剂萃取法从性硫酸盐溶液中别离钴、镍,在水相中添加适量的(NH4)2S2O8或让料液在空气中天然氧化,均可使钴(Ⅱ)氧化成动力学惰性合作物——钴(Ⅲ)配离子。此刻钴的萃取速率较慢,而镍的萃取速率较快,操控两相混合时刻,用非平衡溶剂萃取法可有用别离钴、镍。用稀硫酸溶液从负载有机相中反萃镍,镍反萃率可达99%以上。 江丽等[11]介绍了运用二次电池出产进程中发作的废泡沫式镍极板以P507作萃取剂出产硫酸镍的工艺技能,在料液pH值为4.0,P507体积分数为25%、皂化率为60%,比较1∶1,室温,平衡时刻1min,经一级萃取可完结钴、镉与镍的高效别离,工艺简略。李立元[12]等叙说 P507在光磷公司草酸钴分厂钴、镍别离系统中的运用,成果标明,工艺技能目标优于P204。曹南星[13]研讨了用P507萃取工艺别离硫酸钴、镍溶液中的钴与镍,经过箱式萃取槽扩展萃取试验证明 P507比P204具有更优秀的别离钴、镍的功能。它能制取低镍的钴盐溶液和低钴的镍盐溶液。彭毅等[14]介绍了攀枝花硫钴精矿浸出溶液镍、钴别离及钴产品制备的试验研讨。钴、镍别离选用P507萃取,钴的萃取率大于99.5 %,镍的萃取率在 0.01%以下。 吴涛等[15]介绍了Cyanex272萃取剂在新疆阜康冶炼厂出产中的运用,实践证明,Cyanex272对镍、钴别离才能优于P204和 P507。它的化学安稳性好,水溶性小,能够适用于镍、钴改变规模较大的各种硫酸盐和氯化物溶液。 徐志昌等[16]介绍了5709对镍钴及其他杂质阳离子的溶剂萃取,引荐的萃取参数有平衡水相pH5.1,5709质量分数10%火油溶液,萃取温度为50~55℃。王成彦[17]选用PT5050萃取剂,别离和富集镍矿浸液中的铜、镍、钴,选用二级萃取,溶液中铜、镍的萃取率可达99.15 %以上,钴不被萃取,经三级低酸挑选性反萃镍,镍的反萃率达99%以上,用沉积萃余液中的钴,钴的沉积率大于96 %。 刘兴芝等[18]组成了二(2-乙基己基) 单硫代磷酸(D2 EHMTPA),在试验条件下能够完结恣意酸度下的Co(Ⅱ)、Ni(Ⅱ)别离,特别是关于高镍含量、低钴含量的硫酸混合溶液,在较低酸度下萃取Co(Ⅱ),其萃取率达99%以上,较高酸度反萃取,升高温度别离作用更佳,其萃取Co(Ⅱ)的才能要高于P507和P204。 1.2.3 酮肟类萃取剂 蒋训雄等[19]用Lix84(2-羟基-5-壬基乙酮肟)的火油溶液作萃取剂,从大洋多金属结核的催化复原浸溶液中挑选性共萃铜和镍,而钴等留在萃余液中。      来雅文等[20]研讨了氧化钴矿石浸出液中钴、镍和铜的萃取别离,浸取液用Lix984(2-羟基-5-十二烷基肟与2-羟基-5-壬基乙酮肟的体积比为1∶1 的混合物)、三癸基甲基氯化铵和正痛苦别离萃取铜、钴和镍,萃取率别离为99.4 %、98.6%以及98.1 %。 李全民等[21]研讨发现在(NH4)2SO4存鄙人,丁二酮肟与镍生成的螯合物沉积能够被萃取浮选在乙醇与水两相之间,钴与丁二酮肟生成的螯合物被乙醇萃取,Fe(Ⅲ)留在水相中,完结了同一系统中三相别离Ni(Ⅱ)、Co(Ⅱ)、Fe(Ⅲ),成果满足。 1.2.4 萃取剂组合及其他萃取别离技能 为了进步别离功率、简化别离工艺等,许多研讨者采取了萃取剂组合的办法进行了研讨和工业运用。 Marek Majdan[22,23]研讨了基胺氯化物-磷酸三丁酯和三-正辛基甲基胺氯化物-磷酸三辛酯氧化物系统中的钴、镍离子萃取行为,也报导了钴、镍离子在硫酸盐-甲基三辛基胺-火油336(三-正辛基甲基胺氯化物)-系统中的别离作用,Co/ Ni达103~104。 于惠芬等[24]建立了用P204-N205-火油-HCl-H2SO4液膜系统别离富集高纯稀土氧化物中铜、钴、镍、钙、镁等杂质元素的办法。方成开等[25]研讨了从钴、镍废料电溶溶液中收回钴与镍,选用的流程为电溶溶液先用针铁矿法除铁,然后用P204萃取除杂,再用7401(季胺氯化物)萃取别离钴、镍,终究用碳酸盐沉积钴、镍,钴、镍收回率均达99%。 周炳珍【[26]选用硫酸溶解预先焙烧的钐钴粉,化学中和法除稀土、铁和钙、镁后用P204萃取铜、锰、锌等杂质,再用P507萃取别离镍和钴,制得的氯化钴溶液用来制备高纯氯化钴,钴收回率大于90%。谌可颂[27]用酸浸某厂抛弃炉渣后,浸出液选用铁粉置换法收回别离铜、黄钠铁矾法除铁、NaF法除钙镁、P204深度除杂和P507别离镍钴,除杂率达99.5%以上,浸出液中铜、镍、钴收回率均超越94%。张多默等[28]研讨了P204、P507、Cyanex272混合萃取剂别离镍、钴、铜,成果标明:选用P204与P507的混合萃取剂一步萃取循环别离镍、钴、铜溶液,技能及经济上均合理可行。李龙泉等[29]用EDTA(运用其对钴、镍同的配位才能)作为掩蔽剂,运用P507液将共存的微量钴、镍一步别脱离,一起富集了20min就能够收回95%以上的钴离子。 M.J.Barroso等[30]报导了以阳离子表面活性剂十六烷基三甲基胺的化物与作为活动相在柱中用色层别离法进行了Ni(Ⅱ)、Co(Ⅱ)、Cu(Ⅱ)的别离与分析研讨。 1.2.5 溶剂浮选     浮选即泡沫浮选,是很共同的液固气三相别离办法。它是依据各种物料的表面性质的差异,在浮选剂的作用下,借助于气泡的浮力,从物料悬浊液平分选物料的进程。M.A.Kabil等[31]报导了用均油酸表面活性剂和 4-基基作为捕集剂对Ni(Ⅱ)、Co(Ⅱ)、Cu(Ⅱ)的混合物进行浮选别离。董慧茹等[32]以双硫腙为捕集剂,甲基异丁基酮(MIBK)为浮选溶剂,别离富集自来水和工业用水水中Pb(Ⅱ)、Ni(Ⅱ)和Co(Ⅱ),金属离子的富集倍数为37。     1.2.6 双水相系统溶剂别离技能     双水相萃取是两种水溶性不同的聚合物或许一种聚合物和无机盐的混合溶液,在必定的浓度下,系统就会天然分红互不相容的两相。被别离物质进入双水相系统后因为表面性质、电荷间作用和各种作用力(如憎水键、氢键和离子键)等要素的影响,在两相间的分配系数不同,导致其在上下相的浓度不同到达别离的意图。     邓凡政等[33]用硫酸钾作萃取剂,探讨了在聚乙二醇(PEG)2000-硫酸钠-硫酸钾双水相系统中Co(Ⅱ)、Ni(Ⅱ)、Mo(Ⅵ)等金属离子的萃取行为,操控必定条件,完结了Co(Ⅱ)与Ni(Ⅱ)、Co(Ⅱ)与Mo(Ⅵ)及Co(Ⅱ)与Ni(Ⅱ)、Mo(Ⅵ)混合离子的定量别离。     1.2.7 液膜萃取     液膜技能是20世纪60年代鼓起的一门别离技能,液膜具有比表面大、渗透性强、高挑选性和定向性、别离功率高级特色,既简洁又快速,是一种很好的别离办法。包含支撑液膜、 整体液膜和乳化液膜, 但支撑液膜不安稳及膜寿命短,乳化液需求制乳和破乳。国外研讨支撑液多些 ,处理的首要问题是避免液膜流失和延伸运用寿命,但用于镍、钴别离的研讨报导不多。C1audio P. Ribeiro Jr[34]用Cyanex 302作为载体选用液膜萃取法模仿工业浸出液进行了提取钴和镍、钴别离的研讨,钴的提取率为60%,挑选性为494。     1.3 离子交流树脂法别离镍钴 离子交流树脂法是运用离子交流剂-树脂与试液中的离子发作交流反响进行别离的办法。离子交流法可分为分批法(静态)和柱上法(动态)两种根本类型。离子交流树脂用于收回钴、镍具有如下长处:除杂作用好,腐蚀性小,操作环境较好,环境污染较少,操作简洁,易完结机械化、自动化,加工本钱低,一起,产品质量优秀。有螯合树脂、萃淋树脂、特种无机离子交流树脂、β-环糊精包结树脂构成的超分子系统、 阳离子交流树脂等。有的仅仅试验室研讨,还未完结工业化;有的已不同程度在工业上得到了运用[35]。现在,工业上收回、别离钴、镍离子,首要办法仍是选用溶剂萃取法,离子交流树脂法根本上用于分析。因此,研讨开发高效、可用于工业化的离子交流树脂,找到充分发挥离子交流树脂的最佳条件,是科研工作者往后尽力的方向。 刘扬中等[36]选用添加配位剂基乙酸于料液中,以替代传统的树脂转型办法,在pH=3.40时色谱柱中5g树脂能够将1600μg的钴、镍比为1~100的金属彻底别离。姜传福等[37]用717型阴离子交流树脂别离钴、镍,在9mol/L中, Ni2 +不构成络阴离子,Co2 +生成络阴离子[CoCl4]2 -而被树脂吸附,Ni2 +不被吸附,使钴、镍别离。 1.4 聚合物-盐-水液-固萃取(非有机溶剂液固萃取)法别离镍钴     聚合物-盐-水液-固萃取系统又称为非有机溶剂液固萃取系统,是近十余年来发现并开宣布的一种新的萃取系统,与传统的有机溶剂液-液萃取比较,该系统不运用挥发性有机溶剂,具有安全、分相敏捷、操作简洁等特色,具有宽广的运用远景。 林秋月等[38]研讨了Tween 80水溶液在(NH4)2SO4存鄙人,水溶性螯合剂 1-(2-偶氮)-2-酚-磺酸与金属离子螯合物在该系统中两相间的分配行为;成果标明,Pd(Ⅱ)、Co(Ⅱ)在pH2.0~3.5缓冲溶液中可被 Tween 相彻底萃取,而Zn(Ⅱ)、Cd(Ⅱ)、Mn(Ⅱ)、A1 (Ⅲ)根本上不被萃取。在不同pH条件下完结了Pd(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ)、Cd(Ⅱ) 、Mn(Ⅱ)、Al(Ⅲ) 混合离子的定量萃取别离。杜重麟等[39]研讨标明在pH 5.0~7.0的缓冲溶液中,Co(Ⅱ)和Ni(Ⅱ)均与亚硝基R盐构成安稳的合作物,在Tween 80-硫酸钠液-固萃取系统中,都能被Tween 80 固相萃取,参加HCl进步溶液的酸度,Co(Ⅱ)进入Tween 80固相被萃取,而Ni(Ⅱ)留在水相不被萃取,然后完结两者的别离。 1.5 电反萃取法别离镍钴 电反萃技能是把离子交流、萃取、膜别离进程结合在一起的一种新的别离办法。弱酸性油相萃取剂经过吸附了金属离子的离子交流柱 ,油相顺次萃出树脂相中的各种金属离子,不同萃出部分的油相用充填床电渗析进行电反萃 ,收回金属离子,油相萃取剂可重复运用。 莫剑雄等[40]提出当低浓度混合金属离子的水溶液经过离子床后,用油相 Na型萃取剂把树脂床中金属离子进行“有机解吸”并开端别离,再经H型树脂床进一步别离,顺次流出E-H,E2-Me1,E2-Me2等油相液体。此油相液体再选用电反萃技能到达收回获得含酸量少而金属离子浓度高的水溶液,并使萃取剂再生,回复到E-H型。据此进行了试验,得到了相关数据。 1.6 本研讨的含义与内容 1.6.1 本研讨的含义     钴、镍是贵金属,重要的战略质料,但资源匮乏。其间钴多以伴生办法散布于硫化物,砷化物和氧化物等矿藏中,因此首要是从选别其它金属的副产品中归纳收回。钴是旨在高温合金、硬质合金、磁性合金和含钴化合物的重要质料,被广泛的运用于国防、原子能、航天、电子等工业以及高温磁性合金等高科技领域。镍是Ni-Cd,Ni-H电池、硬质合金的重要成分,是奥氏体不锈钢、超高轻度结构钢的重要组员,镍在合金中显着地添加材料的强度和抗蚀性,广泛运用于航空、化工及电讯等方面。镍不仅以金属态很多运用,并且以化合物态,广泛运用于国民经济的各个领域。 跟着现代工业的开展以及国内外市场对铜、钴、镍需求量的添加,促进人们对从各种废料中提取这些元素进行深化研讨。而经过净化除杂后的镍钴溶液的别离,亦是冶金工作者一向进行研讨的课题。本文经过试验,断定了镍钴溶液萃取别离的工艺流程,并断定了其工艺条件。 1.6.2 本研讨的内容 本研讨旨在探究以P507作为萃取剂,对硫酸镍钴溶液进行萃取别离的最佳工艺条件,首要研讨内容有; (1) 经过前期的探究试验和比照试验,断定镍钴溶液萃取别离的根本工艺流程,找出进程的首要影响要素。 (2)进行单要素试验调查镍钴萃取率的改变规则,断定较佳的反响条件。 (3)在单要素试验的根底上规划并进行正交试验,结合调查各要素对钴萃取率及镍钴比的影响,断定镍钴萃取别离的最优反响条件。 (4)在正交试验的根底上进行三级模仿逆流萃取试验,检测三级萃取后的镍钴别离率。 第二章 P507萃取别离镍钴溶液工艺的研讨 2.1 试验部分 2.1.1 试验原理 本试验选用磷酸类萃取剂P507对镍钴溶液进行萃取别离,P507 为2-乙基- 己基磷酸单(2-乙基-己基)脂,简称HL,是一种酸性磷型萃取剂,具有杰出的萃取功能,用于某些金属的萃取别离。P507对各种金属萃取才能不同,次序为:Fe3+> Zn2+>Cu2+≈Mn2+≈Ca2+>Co2+>Mg2+>Ni2+。因此在必定的pH值下可完结有用别离,除杂后液送至P507萃取别离Ni、Co。 P507酸性磷酸酯萃取剂是一种无色通明较粘稠液体,分子量为307,相对密度为0.973(室温下),P507需求预先皂化并用260#火油稀释至必定份额,一起为了避免萃取进程中呈现乳化现象,有机相中还需参加必定量的TBP作为消乳化剂。 P507对镍钴溶液萃取别离的作用遭到萃取时刻、水相pH值、P507的预先皂化率及比较O/A等要素的影响。 2.1.2 试验质料与仪器 试验质料如表2.1所示。 表2.1 化学试剂一览表称号分子式等级出产商硫酸镍NiSO4.7H2OAR天津市试剂三厂硫酸钴CoSO4.6H2OAR天津市试剂三厂P507C14H34OPOOHAR洛阳中达化工有限公司TBP(C4H9O)3POAR洛阳中达化工有限公司260#溶剂油AR洛阳中达化工有限公司NaOHAR上海山甫化工有限公司硫酸H2SO4CP昆明腾跃化工试剂厂碳酸钠Na2CO3CP昆明腾跃化工试剂厂    试验仪器如表2.2所示。                     表2.2 试验仪器一览表设备称号设备类型出产单位PHB-1型pH计SK-II上海雷磁电子仪器厂恒温振荡器ZWKD-01江苏金坛仪器厂电子天平FC104上海金科天平仪器厂300ml锥形瓶成都蜀牛化学设备厂500ml分液漏斗成都蜀牛化学设备厂烧杯成都蜀牛化学设备厂量筒成都蜀牛化学设备厂移液管成都蜀牛化学设备厂洗耳球成都蜀牛化学设备厂 2.1.3 萃取试验办法与进程 (1)用2.79gNiSO4.7H2O 与1.19gCoSO4.6H2O试剂制造含镍5g/L,含钴2g/L的模仿溶液100ml。 (2)用30mlP507、5mlTBP以及65ml260#溶剂油制造100ml的有机相溶液。 (3)用10mol/L的NaOH溶液对有机相溶液中的P507进行皂化,皂化率为65%,皂化时刻为20min。 (4)皂化完结后,用少数清水洗刷有机相,洗刷后别离去掉水相,确保有机相溶液的pH坚持在7.0左右。 (5)将100ml P507与100ml模仿溶液参加300ml锥形瓶中放入恒温25oC的振荡器震动7min后取出。 (6)反响后的液体参加500ml分液漏斗中静置10min后开端萃取别离。 (7)别离完结后用100ml浓度为20g/L的H2SO4溶液对负载有机相进行洗刷。 (8)对萃余液和洗刷液中的镍钴含量进行分析,得出镍钴的萃取率。 为了断定水相pH、P507皂化率、比较O/A以及萃取时刻等四个要素对镍钴萃取率的影响,先进行单要素试验。为了得到牢靠的成果,每个要素取四个水平,表2.3为萃取单要素试验组织表。表2.3 萃取单要素试验组织表因子水平1234水相pH3.544.55P507皂化率(%)55606570比较(O/A)0.511.52萃取时刻(min)579102.1.4 反萃试验办法与进程 (1)用工业硫酸制造2.4mol/L的H2SO4溶液100ml。 (2)将100mlH2SO4溶液与100ml负载有机相溶液参加300ml锥形瓶中,放入恒温25oC 的振荡器中震动7min后取出。 (3)反响后的液体参加500ml分液漏斗中静置10min后开端萃取别离。 (4) 对萃余液中的镍钴含量进行分析,得到镍钴的反萃率。 为了断定反萃比较比较A1/O1以及反萃时刻两个要素对镍钴反萃率的影响,先进行单要素试验,每个要素取三个水平。表2.4为反萃单要素试验组织表。 表2.4 反萃单要素试验组织表因子水平123反萃比较(A1/O1)11.52反萃时刻(min)5792.1.5 正交试验办法与进程 由单要素试验成果可知,用30%P507+5%TBP+ 65%260#溶剂混合有机相对含Ni为5g/L,含钴为2g/L的镍钴溶液进行萃取别离的较佳工艺条件为:反响时刻7min,料液pH为4.5,比较O/A为1.5,P507皂化率为65%。 为进一步优化P507对镍钴溶液萃取别离的工艺条件,在上述各要素的较佳水平邻近组织一个四要素三水平的正交试验[41],选用L9(34)正交表,调查P507皂化率(D,%)、料液pH(B)、反响时刻(A,min)、比较O/A(C)对镍钴别离率的影响。正交试验的要素水平见表2.5。试验组织如表2.6所示。 表2.5 正交试验水平表水平因子  A 萃取时刻(min)B 水相pH C  比较(O/A)  D P507皂化率(%)1541.560274.52653952.570表2.6 正交试验组织表试验号因子A 萃取时刻(min)B 水相pHC 比较(O/A)D P507皂化率(%)1541.560254.52653552.570474270574.52.5606751.5657942.565894.51.570995260 2.2 萃取单要素试验成果与评论 2.2.1 萃取时刻对镍钴萃取率的影响  溶液体积100ml,萃取时刻别离取5min、7min、9min、10min,用H2SO4溶液与Na2CO3溶液调节水相pH至4.5,比较O/A=1:1,P507皂化率为65%,萃取完结后静置10min进行别离,别离完结后以体积比8:1的份额用20g/L的H2SO4溶液对有机相进行洗刷,成果如图2.1所示。 由图2.1可知,镍钴的萃取率均跟着萃取时刻的添加而添加,其间镍萃取率添加较快,钴萃取率添加较慢。在5min时,镍的萃取率最低,但钴的萃取率达不到90%;萃取时刻为7min时,镍的萃取率较低,而钴的萃取率也较高;9min和10min时,钴的萃取率无显着改变,而镍的萃取率却添加较大,为了确保杰出的别离率,可断定萃取时刻为7min。图2.1 萃取时刻对镍钴萃取率的影响     2.2.2 水相pH对镍钴萃取率的影响     溶液体积100ml,用H2SO4溶液与Na2CO3溶液调节水相pH别离至3.5、4.0、4.5、5,萃取时刻为7min,比较O/A=1:1,P507皂化率为65%,萃取完结后静置10min进行别离,别离完结后以体积比8:1的份额用20g/L的H2SO4溶液对有机相进行洗刷,成果如图2.2所示。    图2.2 水相pH对镍钴萃取率的影响     由图2.2可知,在pH=3.5时,镍萃取率偏高,而钴得萃取率偏低。钴的萃取率跟着pH的添加而添加,在pH=4.5左右时,镍的萃取率较低,而钴的萃取率已在90%以上,在pH=5时,镍的萃取率又添加,故开端断定反响合适的pH为4.5。     2.2.3 P507皂化率对镍钴萃取率的影响      溶液体积100ml,用10mol/L的NaOH溶液对P507进行皂化,皂化率别离为55%、60%、65%、70%,萃取时刻为7min,比较O/A=1:1,萃取完结后静置10min进行别离,试验成果如图2.3所示。  图2.3  P507皂化率对镍钴萃取率的影响      由图2.3可知,在55%-70%规模内,跟着皂化率的添加,镍钴的萃取率都跟着皂化率的添加而添加。在60%-70%规模内,钴萃取率添加较为缓慢,而镍的萃取率添加较快。在皂化率为65%左右时钴的萃取率挨近最高峰,而镍的萃取率继续添加,故断定P507皂化率为65%。     2.2.4 比较O/A对镍钴萃取率的影响     镍钴溶液体积坚持不变,改变有机相体积使比较别离为0.5、1、1.5、2。萃取时刻为7min,水相pH调至4.5,P507皂化率为65%,萃取完结后静置10min进行别离,别离完结后以体积比8:1的份额用20g/L的H2SO4溶液对有机相进行洗刷,试验成果如图2.4所示。  图2.4 比较O/A对镍钴萃取率的影响 由图2.4可知,在O/A=0.5时,钴的萃取率很低,而镍的萃取率较高,在比较为1时钴的萃取率到达了90%以上,跟着比较的添加,钴的萃取率无显着改变,而镍的萃取率逐步下降,此次试验阐明比较越高,镍钴别离率越好,因为O/A=1.5时镍钴别离作用现已到达了开端别离钴萃取率在90%以上、镍萃取率在10%以下的工艺要求,出于经济考虑,断定此工艺条件为O/A=1.5。 2.3 反萃单要素试验成果与评论 2.3.1 反萃时刻对镍钴反萃率的影响 影响镍钴反萃的要素有两个:反萃比较A1/O1(浓度为2.4mol/L的H2SO4溶液与萃余相体积之比)与反萃时刻。已知有机相中含Co量为1.96g/L,含Ni量为0.04g/L。开端断定反萃比较为1:1,别离取反萃时刻为5min、7min、9min、10min,成果如图2.5所示。    由图2.5可知,在反萃时刻为5min是,钴的反萃率较高而镍的反萃率较低,在5min-7min段内,镍的萃取率添加较快,在7min是镍钴的反萃率附近,之后钴的萃取率无显着改变而镍的萃取率经过缓慢添加后又缓慢下降,故断定次工艺的最佳反萃时刻为7min。 2.3.2 反萃比较A1/O1对镍钴反萃率的影响 取反萃时刻为7min,有机相体积坚持为100ml不变,在A1/O1别离为1、1.5、2的条件下,试验成果如图2.6所示。                             s图2.5 反萃时刻对镍钴反萃率的影响     由图2.6可知,镍钴的反萃率均跟着反萃比较A1/O1的添加而添加,但起伏并不显着,事实上在反萃比较A1/O1=1的时分镍钴的反萃率均在97%以上,到达了工艺要求,从经济要素考虑,断定最佳反萃比较A1/O1为1。  图2.6反萃比较A1/O1对镍钴反萃率的影响 2.4 正交试验成果与评论 2.4.1 萃取正交试验成果 本次正交试验的成果如表2.7所示。 表2.7 正交试验成果记载表试验号     萃取率(%)     反萃率(%)CoNiCoNi180.517.7098.7698.77291.508.2091.894.85392.659.7090.6694.85489.809.2292.9884.6593.707.6190.0794.74696.751.2098.7196.67792.658.4492.2894.79896.104.5898.8697.82991.509.2294.5497.61 2.4.2 萃取试验成果极差分析 本试验的极差分析表如表2.8所示。表中Y1为试验目标,0≤Y1≤1。Y1越大,标明镍的萃取率越低,钴的萃取率越高,镍钴别离作用越好。 由表2.8可知,各要素对镍钴萃取率的影响由大到小顺次是:水相pH(B)、萃取时刻(A)、P507皂化率(D)、比较O/A(C)。而最优试验条件则为A2B2C1D2。 表2.8 萃取正交试验成果分析表试验号因子Co萃取率(%)Ni萃取率(%)试验目标Y1ABCD萃取时刻(min)水相pH比较(O/A)P507皂化率(%)1541.56080.507.700.118254.526591.508.200.1273552.57092.659.700.37447427089.809.220.314574.52.56093.707.600.5306751.56596.101.200.9807942.56592.658.440.448894.51.57096.753.800.84799526091.509.220.367k10.3060.2930.6480.338k20.6080.6010.3690.618k30.5230.5730.4500.511R0.302 0.3070.2790.280    2.5 本章小结 本章总结了本次试验的原理,质料和仪器设备,并对试验产品的首要技能指 标以及分析办法进行了描绘。 影响本试验作用的四个首要要素别离是反响时刻,料液pH值和比较O/A和P507的皂化率。 据此规划了一个四要素的单要素试验,由单要素试验成果可知,用P507与TBP、206#溶剂油混合有机相对硫酸镍钴溶液进行萃取别离的较佳反响条件为反响时刻7min,料液pH为4.5,比较O/A为1.5,P507皂化率为65%。在此工艺条件下一级萃取后钴的萃取率可到达96.75%,镍的萃取率在1.2%以下,镍钴别离杰出。 而用浓度为2.4mol/L的H2SO4溶液对萃取后的含钴负载有机相进行反萃时,所断定的影响要素首要有两个:反萃时刻与反萃比较A1/O1。经过探究性试验后,规划了一个二要素的单要素试验,由单要素试验可知,用浓度为2.4mol/L的H2SO4 溶液对经过P507萃取后的含钴负载有机相进行反萃的较佳反响条件为反萃时刻7min,反萃比较为A1/O1=1。在此工艺条件下钴的反萃率为98.88%,镍的反萃率为98.75%,镍钴收回率高。 在单要素试验的根底上进行正交试验,对用P507萃取别离镍钴溶液的工艺进行了优化研讨,得到以下定论: (1)试验成果钴的最高萃取率为96.75%,镍的最低萃取率为1.2%。 (2)依据极差分析成果可知,各要素对镍钴别离率的影响由大到小顺次是:水相pH、萃取时刻、P507皂化率、比较O/A。 (3)经过对正交试验和比照验证试验成果的分析,并归纳考虑产品中镍钴比和H2SO4溶液以及有机相的消耗量等要素,终究断定P507萃取别离镍钴溶液的最优工艺条件为:水相pH为4.5、萃取时刻为7min、P507皂化率为65%、比较O/A为1.5。 第三章 模仿三级逆流萃取工艺研讨 在进行了正交优化试验,确立了最佳工艺条件之后,为了验证本工艺在工业上的可行性,规划了一个模仿三级逆流萃取试验。 模仿三级逆流萃取试验的理念是选用节省本钱,简化工艺流程的办法,查验本工艺在出产上的可行性与作用。 3.1 试验办法与进程 模仿三级逆流萃取试验的试验进程如下: (1)取6个分液漏斗,别离编号1,2,3,4,5,6。 (2)向1号分液漏斗中,参加萃取液(质料液)和萃取剂,摇匀,萃取7min后分相。萃取相为一级逆流萃取产品P1,萃余相移到2号分液漏斗中。 (3)向2号分液漏斗中参加新的萃取剂,萃取5min后分相。萃取相移到4号分液漏斗中,萃余相移到3号分液漏斗中。 (4)在3号和4号分液漏斗中别离参加新的萃取剂和萃取液进行萃取。 (5)3号分液漏斗分相后的萃取相移到5号分液漏斗中,萃余相为三级逆流萃取的萃余相E3。 (6)4号分液漏斗分相后的萃取相为二逆流萃取产品P2,萃余相移到5号分液漏斗中。 (7)5号分液漏斗萃取分相后的萃取相移到6号分液漏斗中,萃余相为二级逆流萃取的萃余相E2。在6号分液漏斗中参加新的萃取液进行萃取,分相后萃取相为三级逆流萃取产品P3,萃余相为一级逆流萃取的萃余相E1。 该流程的试验流程图如图4.1所示。 本试验所选用的工艺条件为:萃取进程中水相pH为4.5、萃取时刻为7min、P507皂化率为65%、比较O/A为1.5。反萃进程中反萃时刻为7min,反萃比较O1/A1=1。图3.1 模仿三级逆流萃取模型图     3.2 试验成果与评论     3.2.1 萃取率的改变     模仿三级逆流萃取各级中镍钴的萃取率如表4.1所示。 表3.1 三级逆流萃取进程中各萃取级对镍钴的萃取率萃取级数Co萃取率(%)Ni萃取率(%)1963.4298.30.4399.950.02 由表3.1可知,钴在榜首级的萃取率即到达了96%以上,三级萃取往后,钴的萃取率可到达99.95以上。 镍的萃取率在榜首级较高,到达了3%,而在三级萃取往后,也就降到了0.02%,故可知三级逆流萃取往后,镍钴得到了很大的别离。 3.2.2 反萃率的改变 模仿三级逆流萃取各级中镍钴的反萃率如表4.2所示。 表3.2 三级逆流萃取进程中各萃取级对镍钴的萃取率萃取级数Co反萃率(%)Ni反萃率(%)19899.84298.599.96310099.98 由表3.2可知,钴在榜首级的反萃率即到达了98%以上,三级萃取往后,钴的萃取率可到达100%。 而镍的反萃率一向较高,三级萃取往后,有99.9%以上的镍被反萃出来,镍的收回率添加。 3.2.3 各级萃余液中镍钴比的改变 别离对萃余相E1、E2、E3进行分析,检测其镍钴比(质量浓度之比)。成果如图3.2所示。 由图3.2可知,在经过三级萃取之后,萃余相中Ni/Co越来越大,三级萃余相E3中镍钴比到达了1600以上,镍钴别离杰出。  图3.2 模仿三级逆流萃取各级萃余相的镍钴比 3.2.4 各级反萃液中钴镍比的改变 别离对有机相P1、P2、P3进行分析,检测其钴镍浓度比。成果如图3.3所示。 由图3.3可知,在经过三级萃取之后,有机相中Co/Ni越来越大,三级负载有机相P3中钴镍比到达了2000,镍钴别离杰出。 图3.3 模仿三级逆流萃取各级有机相的钴镍比3.3 本章小结 本章依据第二章的单要素试验与正交试验成果,规划模仿了有工业参考价值的三级逆流萃取试验。试验成果如下: (1)三级逆流萃取产品萃余相中钴的萃取率为99.95%,而镍的萃取率为0.02%,钴镍别离杰出。 (2)经过三级反萃,钴的反萃率可到达100%,而镍的反萃率可到达99.95%。 终究产品中钴的收回率在99.95%×100%=99.95以上,镍的收回率在(100%-0.02%)+0.02%×99.98%=99.96%以上。 经过模仿三级逆流萃取,可知选用本工艺萃取别离镍钴溶液在工业上是可行的。 第四章 定论与展望 4.1 定论 本研讨探究了P507萃取别离镍钴溶液的工艺,得到以下首要定论: (1)经过单要素试验,断定了合适的萃取反响条件为:水相pH为4.5、萃取时刻为7min、P507皂化率为65%、比较O/A为1.5。在此条件下钴的萃取率可到达95.5%,镍的萃取率为1%。而合适的反萃条件为:比较O1/A1为1.72,反萃时刻为7min,钴的反萃率可到达98.88%,镍的反萃率可到达98.75%。 (2)以单要素试验为根底,进行正交试验,试验成果钴的最高萃取率为96.75%,镍的最低萃取率为1.2%。依据正交试验的极差分析成果可知,各要素对镍钴别离率的影响由大到小顺次是:水相pH、萃取时刻、P507皂化率、比较O/A。 (3)经过三级逆流萃取试验,钴的萃取率为99.95%,镍的萃取率为0.02%,钴镍别离杰出。经过三级逆流反萃试验,钴的反萃率为100%,镍的反萃率为99.95%。 (4)经过正交试验和模仿三级逆流萃取试验,并归纳考虑产品中镍钴比和H2SO4溶液以及有机相的消耗量等要素,终究断定P507萃取别离镍钴溶液的最优工艺条件为:水相pH为4.5、萃取时刻为7min、P507皂化率为65%、比较O/A为1.5。 4.2 展望 本文所探究的P507萃取别离镍钴溶液的工艺处理了镍钴等有价金属难以收回运用的的难题,该办法的首要特色如下: (1)运用溶剂萃取的办法,镍钴别离率大大进步,反响时刻仅7min左右,减少了能耗。并且本试验选用的有机相可再生运用,减轻了厂商的经济负担。 (2)工艺进程简略,无“三废”及副产品发作,且具有反响易于操控,可在常温下进行,完结了镍钴元素的高度别离。 (3)有机相可循环再生运用,洗刷与反萃所运用的H2SO4易于得到。 (4)流程简略,操作便利,易于进行自动化操控,能够进步劳动功率、节省人力本钱。     总归,P507萃取别离镍钴溶液的办法具有许多优秀的特性,是收回镍钴等有价金属的一种切实可行的办法,经过更深化的研讨之后必定能够获得很好的运用。但因为时刻有限,对工艺条件的研讨还不行深化,尤其是萃取进程中发作的乳化与泡沫的机理还不是很清楚。加强对萃取进程的机理研讨,有助于为萃取工艺的进一步优化指明方向。