钴镍
2017-06-06 17:50:12
钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工
行业
、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。 一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价
金属
转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他
金属
,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价
金属
的综合回收利用。 二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。 三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。 四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍
金属
广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等
行业
,钴镍粉体是现代工业不可缺少的
金属
材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍
金属
,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。
钼合金的加工
2019-01-25 13:36:45
钼和钼合金可采用真空熔炼和粉末冶金方法制成进一步加工的坯料,其加工方法除与纯钼一样可经旋锻和拉拔成棒和丝材之外,也可用锻造、热挤压和轧制等方法进行深加工。采用粉末冶金方法制取的坯料,由于晶粒结构细且均匀,可直接投入深加工。真空熔炼法制得的坯料必须首先进行热挤压,改变其组织结构后才能进行深加工。 钼合金的加工技术规范中,和纯钼相比,它的加热次数多,加工压力大。如钼合金锻造时为保证得到细晶粒组织,在1250~1400℃变形时,每道次变形量要大于15%。由于钼合金的再结晶温度比纯钼高300~500℃,因而合金的变形加工温度应当比纯钼的高一些。在轧制时,为了获得优质板材,在轧制开始时,每一道次的压下量要相当大,才能使金属沿整个截面的变形尽可能均匀。关于钼和钼合金的深加工技术的详细知识,需要者望参阅文献《钼合金》(冶金工业出版社,北京,1984年)。
铝镍钴
2017-06-06 17:50:12
铝镍钴铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量
金属
元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 铝镍钴磁铁,铝镍钴永磁是由
金属
铝,镍,钴,铁和其他微量
金属
元素构成的一种合金. 铸造工艺 其
金属
成份的构成不同,磁性能也不同,从而用途也不同.铝镍钴永磁有两种不同的生产工艺:铸造和烧结.铸造工艺可以加工生产成不同的尺寸和形状,与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯产品尺寸公差小,铸造可加工性好.在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达500摄氏度以上.铝镍钴磁能积高,温度稳定性好,
价格
与钕铁硼差不多,缺点是矫顽力极低,容易发生退磁,磁路设计不能采用薄片状磁体,且需要先装配再整体充磁。铝镍钴的用途十分广泛,在工业中有着很重要的作用。
铝镍钴
2017-06-06 17:49:59
铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。铝镍钴磁铁含有铝、镍、钴、铜、铁、钛等材料。按照加工工艺的不同,铝镍钴磁铁又分为铸造型铝镍钴磁铁和烧结型铝镍钴磁铁两类。铸造型的磁性能较高,烧结型的工艺简单,可直接压制成所需的产品。铝镍钴磁铁的优点是其温度系数小,因而受温度变化而引起的磁性能变化很小。铝镍钴磁铁最高工作温度可达450℃—650℃。故目前仍被广泛应用于仪器、仪表这类要求温度稳定性高的产品中。在开路的工作环境下,铝镍钴磁体的“长径比”(即长度与直径之比L/D)至少应为4:1。铝镍钴永磁材料的抗锈蚀能力较强,不需进行表面涂层处理。铸造铝镍钴磁性能表牌号剩磁Br矫顽力Hcb最大磁能积( BH )max最大工作温度美国标准IEC<span style="fo
铝镍钴磁铁
2017-06-06 17:50:12
铝镍钴磁铁铝镍钴磁铁也叫做磁钢磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强
金属
,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金。磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强
金属
,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金(Any of several hard, strong alloys of iron, aluminum, nickel, cobalt and sometimes copper, niobium, or tantalum, used to make strong permanent magnets.)。其
金属
成分的构成不同,磁性能不同,从而用途也不同,主要用于各种传感器、仪表、电子、机电、医疗、教学、汽车、航空、军事技术等领域。铝镍钴磁铁是最古老的一种磁钢, 被人们称为天然磁体, 虽然他最古老, 但他出色的对高温的适应性, 使其至今仍是最重要的磁钢之一.铝镍钴可以在500℃以上的高温下正常工作, 这是他最大的特点, 另外抗腐蚀性能也比其他的磁体强。铝镍钴磁铁的应用也越来越广泛,从高科技产品到最简单的包装磁,目前应用最为广泛的还是钕铁硼强磁和铁氧体磁铁。 而矫顽力的提高,主要得益于对其本质的认识和高磁晶各向异性化合物的发现,以及制备技术的进步。二十世纪初,人们主要使用碳钢、钨钢、铬钢和钴钢作永磁材料。二十世纪三十年代末,AlNiCo永磁材料开发成功,才使永磁材料的大规模应用成为可能。五十年代,钡铁氧体的出现,既降低了永磁体成本,又将永磁材料的应用范围拓宽到高频领域。到六十年代,稀土钴永磁的出现,则为永磁体的应用开辟了一个新时代。1967年,美国Dayton大学的Strnat等,用粉末粘结法成功地制成SmCo5永磁体,标志着稀土永磁时代的到来。迄今为止,稀十永磁已经历第一代SmCo5,第二代沉淀硬化型Sm2Co17,发展到第三代Nd-Fe-B永磁材料。此外,在历史上被用作永磁材料的还有Cu-Ni-Fe、Fe-Co-Mo、Fe-Co-V、MnBi、A1MnC合金等。这些合金由于性能不高、成本不低,在大多数场合已很少采用。而AlNiCo、FeCrCo、PtCo等合金在一些特殊场合还得到应用。目前Ba、Sr铁氧体仍然是用量最大的永磁材料,但其许多应用正在逐渐被Nd-Fe-B类材料取代。并且,当前稀土类永磁材料的产值已大大超过铁氧体永磁材料,稀土永磁材料的生产已发展成一大
产业
。
镍电解净液钴渣提钴
2019-03-05 09:04:34
镍电解时,阳极中的镍与钴一同电化学溶解进入溶液,在阳极液净化除杂质时,溶液中钴以Co(OH)3方式沉积进入钴渣。钴渣含钴6%-7%,可用来出产氧化钴,也可产出金属钴。所用工艺由钴渣溶解、浸出液净化除杂质、镍钴别离以及制取氧化钴(或金属钴)四部分组成(见图)。 在65-75℃温度下,在硫酸溶液中,参加Na2SO3将Co3+还原成CO2+并溶解: 2Co(OH)3+Na2SO3+2H2SO4====2CoSO4+Na2SO4+5H2O 溶出液在95℃,参加NaClO3将Fe2+氧化水解沉积除掉。除铁液进萃取槽,用P204萃取剂除铜和剩下铁,除铜后液再以P507别离镍钴,含钴有机相用溶液反萃取得到含Co75g/L左右的COCl2溶液。此溶液既可以在不溶阳极电解槽中隔阂电解出产金属镍;也可以用草酸沉钴然后煅烧出产氧化钴粉。电解的技能条件是:电流密度400A/m2,槽电压3-4V,电解温度60℃,电流效率94%。
湿法炼镍(钴)-钴溶液的处理
2019-01-24 11:10:25
应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。
美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。
在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。
钴溶液的处理
硫化钴溶液是镍企业湿法冶金车间的原料。这种溶液中含(克/分米3):Co3~50(Ni含量大致在这个范围内变化)、Fe3~20、Cu0.2~0.5。再生含钴废料也溶解于硫酸溶液。过滤后的溶液中,各种金属的浓度同上述浓度相似,取决于原料中的金属含量。
硫酸溶液净除杂后,以氢氧化物形式析出。
某些氢氧化物生成的pH平衡值列于表1。
表1 不同作者的资料提供的金属氢氧化物生成的pH平衡值化合物布里顿费阿尔科夫赫菲茨和罗景扬Co(OH)3
Fe(OH)3
Cu(OH)2
Co(OH)2
Fe(OH)2
Ni(OH)2—
2.0
5.3
6.8
5.5
6.7—
1.63
4.4
6.78
5.62
6.70.9
2.6
4.5
6.4
6.7
7.1
根据表1的资料,高价金属从溶液中析出比低价金属简单得多。这一原理在湿法冶金中得到广泛应用。氧化剂可以是固态、液态和气态。重要的是,氧化剂的氧化电位要比溶液中的金属离子的氧化还原电位高。氧化还原电位可按下式计算:φMe3+/Me2+=φ°Me3+/Me2++RTlnaMe3+(1)NfaMe2+
式中,aMe3+----氧化离子的活度;aMe2+----还原离子的活度;φ°Me3+/Me2+----25℃温度下的标准电极电位。
表2 氧化还原反应的电极电位反应参加反应的离子活度介质电位(伏)Co3+e←→Co2+Aco3+=aco2+=1—+1.84NiO2+4H++2e←→Ni2++2H2O——+1.77HClO+H++e←→Cl-+H2O—酸性+1.491/2 Cl2←→Cl-acl-=1—+1.35O2+4H++4e←→H2OaH+=1—+1.23ClO-+H2O+2e←→Cl-+2OH-Aclo-=1,aoH-=1碱性+0.94Fe3++e←→Fe2+aFe3+=3.8×10-8酸性+0.771Fe2++3OH+←→Fe(OH)3aFe2+=4×10-4pH=2.5+0.44
某些氧化还原反应的电极电位列于表2。从表2的资料可以看出,氧的作用是可以把Fe2+氧化为为Fe3+。为了使钴、镍、锰变为高化合价,需要采用更强的氧化剂,如气态氯或次氯酸盐等,介质应是酸性的。
氢氧化物的水解分步沉淀,反应如下:
2FeSO4+3Na2CO3+6H2O=2Fe(OH)3+2NaCl+3Na2CO3+2Na2CO3 (2)
此反应在pH=4.0~4.5(溶度积Fe(OH)2=4×10-38)时,随实际生成铁的不溶氢氧化物同时进行:
2CuSO4+2Na2CO3+2H2O=CuCO3·Cu(OH)2+Na2SO4+H2CO3 (3)
铜的碱式碳酸盐沉淀的pH值为5.5。
2CoSO4+Cl2+3Na2CO3+6H2O=2Co(OH)3+2NaCl+2Na2SO4+3H2CO3 (4)
pH沉淀=3.0~3.5,溶度积Co(OH)3=2.5×10-43
2MnSO4+2Cl2+4Na2CO3+4H2O=2Mn(OH)4+2Na2SO4+4NaCl+4CO2 (5)
Mn(OH)4r pH沉淀=2.5。锰是最难排除的杂质。
为了正确评价从溶液中分步除杂,不仅需要有热力学数据,而且还要了解生成氢氧化物的动力学。
沉淀可在帕秋克浸出槽内进行(配有压缩空气搅拌)或在带有机械搅拌的装置内进行,用孔状过滤器进行固一液分离。
中国镍钴消费现状
2019-01-03 10:44:18
2004 年中国镍消费量突破 14 万吨,见表 1。近几年镍的消费量变化情况见图1。表1 2004年中国的镍消费量(吨)图1 1998年~2004年中国镍的消费量
2005年,中国镍的消费量预计达到17万吨。在中国镍消费结构中,不锈钢占51.3%,电池占8.4%,电镀占26%,有色合金占8.5%,其他占5.8%。而根据 Barclay的数据,在国际市场上,不锈钢占镍消费量约为 65%,有色合金占12%,电镀占8%,化学品和其他5%,其他占10%。中国及世界镍的消费结构见图2。图2 中国及世界(右)镍的消费结构
中国镍消费结构与世界镍消费结构存在差异的主要原因是中国制造业耗镍量高于世界其他国家和地区,在未来几年,这种差异会仍然存在。
1998 年至 2003 年中国钴消费量的年均增长速度约为 20.7%。近年中国电子产业的迅猛发展,带动了钴的消费量的增加,2004年中国钴的消费量接近9000t,预计2005年钴的消费量接近10000t。中国钴的消费结构见图3。图3 中国钴的消费结构
镍钴提取冶金概况
2019-02-21 15:27:24
现在镍提取冶金的工业进程,以火法和湿法精粹进程相结合的工艺占干流。1996年国际镍产品的结构示于表1,其间只要和镍铁合金是完全由火法冶金出产的。
表1 1996年国际镍产品结构产品名称阴极镍镍块通用镍(粗镍)镍铁合金算计产值/万t38.510.67.3102793.5份额/%41.2911.347.8110.6928.88100.00
在镍的资源利用上,现在以硫化矿为主,约占55%。镍铁合金基本上来自氧化矿的加工。
1996年国际产钴2.8万t,从镍铜体系中提钴占了很大份额,其次是从钴硫精矿、砷钴矿和氧化矿。因为钴大都伴生在其他矿藏中,档次低,回收率一般都较低,尤其是选矿回收率。
湿法冶金是镍钴提取冶金的重要组成部分,一般包含三个进程:浸取进程、净化和分离地程、产品进程。
湿法炼镍(钴)-制取硫酸镍
2019-01-24 11:10:25
应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。
美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。 在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。
制取硫酸镍
在送来湿法冶金处理的溶液中,镍含量比估含量高出几倍。镍既可以从原生原料进入溶液,也可以从再生原料进入溶液。在钴沉淀后,它在溶液中的浓度为20~50克/分米3。为了在硫酸盐中以NiSO4·7H2O形式提出镍,这个浓度是不够的,因此先要用苏打(Na2CO3)从硫酸盐中沉淀镍。沉淀物清洗过滤后溶于浓硫酸中。这样可获得几乎是饱和的硫酸盐溶液,内含150~170克/分米3的镍。硫酸盐溶液用镍粉置换脱铜:
Cu2++Ni=Ni2++Cu (1)
用所谓黑色氢氧化物理学----Ni(OH)3净化铁和钴。
Fe2+(Co)+Ni(OH)3=Fe(Co)(OH)3+Ni2+ (2)
溶液要净化到其中含镍10克/分米3、含钴不大于0.10~0.15克/分米3、含铁不大于0.002克/分米3。
将含160克/分米3镍、酸化至4~5克/分米3H2SO4的净化溶液送入真空结晶器内,在0.4兆帕压力、210~240℃的温度下,用蒸气蒸发。蒸发至含镍为195克/分米3时,符合比重1.64~1.65克/分米3。
NiSO4·7H2O的结晶不断地在真空结晶不断地在真空结晶槽内进行。所得矿浆送入离心机使晶体同母液分离。含120克/分米3镍的母液再次除去铁和铜并重新使其蒸发,当氯和镁的杂质积存起来时,送去生产黑色氢氧化物。硫酸镍经脱水后含2~3%的水分。将其在80℃的温度下通入蒸气干燥,符合技术规范的商品硫酸盐供应用户。
从含钴磁钢渣中制取镍钴制品
2019-02-11 14:05:44
一、概述
金属磁性材料广泛应用于国防和国民经济各部门,如雷达、电表、电机、自动化外表及医疗器械等,特别是含有镍、钴14%~34%合金的永磁材料。冶炼、浇涛、加工过程中产出的废渣、废品和磨屑是很好的提钴、镍的质料。处理这些质料与处理原矿比较,冶炼办法简略,加工成本低,金属收回率高。
现在处理含钴、镍磁钢废料的工艺如下:
(一)硫酸溶解、参加硝酸以进步溶解速度,溶后液用黄铁矾法除铁,深化除铝等杂质、或次法沉钴,完成钴镍别离。能够出产相应的镍、钴氧化物、碳酸盐,或深加工成相应的镍钴盐类。磁钢渣处理工艺流程图见图1。
图1 磁钢渣处理工艺流程
(二)选用萃取法替代沉钴工艺,如P204-Na盐萃取除杂质,P204-Na盐萃取别离镍、钴。亦可选用脂肪酸萃取除铁、铝、P204-Na盐萃取别离工艺。因为萃取工艺有价金属收回率高,劳动条件好,产品质量优秀,操作技能条件易把握等特色,越来越得到出产供应商注重。
P204-Na盐萃取除杂质,P204-Na萃取别离镍、钴以及制取相应的镍钴制品的工艺类同于可伐合金处理工艺,请拜见本网站的(从废可伐合金中制取钴镍制品)。
镍钴含量低的废磁钢渣可与镍磷铁一重用火法冶炼,经吹炼制成镍阳极板后再电解精粹,请拜见本网站的(用镍磷铁出产电解镍)。
二、质料
(一)五号磁钢废料、坩埚皮等成分如下(%):
CoNiFeCu其它~201350215
(二)磁钢磨屑成分如下(%)
CoNiFeCu15~179~1625~502~3SiO2CaOAl2O3H2O40.57~821
三、技能操作条件
(一)酸溶
磁钢渣磨屑含有砂轮碎屑及少数油污,处理前须先行除油,经过磁选机去掉磨屑中非磁成分。
1、除油
将磨屑置于炉中直火加热,直到无油烟冒出即为合格。
温度 300℃± 时刻1~2h
2、磁选
磁钢磨屑为钴、镍、铁等永磁体细末,具有磁性,其间搀杂着少数砂轮磨屑碳化硅和机械搀杂的其它非磁性物质。磁选机的磁场强度为95493A/m,依据状况可磁选1~2次,选后磁性物质组成实例如下(%):
CoNiFeCuAl2O3SiO22012452153
磁选后磁性部分钴、镍含量与磁钢品种有关。
3、酸浸
液固比,一般操控溶后液金属离子浓度总和为120g/L,液固比取(8~10)∶1。
配酸,硫酸、用量为理论量的1.2倍。
温度,反应是放热反应,温度操控在90~95℃。
硝酸参加量,在酸溶温度下,硝酸分解成Nox(即黄烟),硝酸参加量和参加速度一般取决于物料性质及硝酸收回回来溶解的量,一般每吨磁钢废料参加95%浓硝酸100~200kg。
反应时刻,视磁钢废料粒度及硝酸用量为4~8h。
终占pH值,1.0~1.5。
氮氧化物吸收一般办法如下:
(1)水吸收,空气氧化,Nox气体经过多段吸收,操作妥当,烟囟排气看不见黄色。吸收后稀硝酸回来溶解。既消除环境污染又节省了硝酸。
(2)用稀碱液吸收,生成亚,可减轻Nox损害,但吸收后液不能回来重用。
一般酸溶时镍、钴收回率右到达95%~98%。
(二)黄钠铁矾法除铁
用量,为含铁量的0.35~0.4倍。
氧化温度 85℃
氧化时刻 1h,坚持2h。
沉矾操控温度 ≥95℃
沉矾pH值 1.5~2
沉矾时刻 3~4h
中和剂Na2CO3浓度 7%~10%
矾渣过滤速度 0.5m3/(m2·h)
热水洗刷次数 2次
热水∶矾渣 2L∶1kg
钴镍收回率 97%~98%
(三)归纳除杂质
操控pH值 4~5。
温度 70~80℃
Na2CO3中和剂浓度 80g/L
过滤速度0.3~0.5m3/(m2·h)
(四)镍钴制品出产
1、沉积氢氧化钴
选用次法氧化沉积钴,镍别离,次沉钴条件如下:
酸度 开端 pH=1.5~2.5
过程中pH=2.0
结尾pH=2~2.5
温度,50~60℃,结尾进步至60~70℃(驱氯)
时刻 4~6h
产品 Co(OH)3,经过滤、洗刷后Co/Ni≥7∶1,沉钴后液含Co,0.4~0.5g/L。
钴渣枯燥后其成分实例如下(%):
CoNiFeCuAl45≤4.5≤0.5≤1≤1
2、沉积碱式碳酸镍
沉钴后液用Na2CO3直接沉积碱式碳酸镍。
温度,85℃
结尾pH值,8~9
Na2CO3浓度150g/L
时刻 4h
趁热过滤,热水洗刷2次,洗水∶碱式碳酸镍2L∶1kg
枯燥后碱式碳酸镍成分实例如下(%)
NiCoFeAlCu45≤1≤0.1≤1≤1
四、产品
(一)粗氢氧化钴
实例,Co 45% Ni≤4.5%
(二)粗氢氧化镍
实例,Ni 45% Co≤1%
五、技能经济指标
(一)收回率,Ni 86.35% Co 85.17%
(二)首要材料耗费(以处理每吨磁钢渣计)
H2SO4(93%)1t
HCL(35%)1.5t
HNO3(65%)0.25t
Na2CO3 0.32t
NaOH 0.5t
NaClO3 0.1t
0.1t
(三)水、电、汽耗费
水 200t
电 2000kW·h
蒸气 70t
菲律宾矿业(镍钴)资源概况
2018-12-11 14:37:18
(一)镍矿 1、储量及分布 截止至1996年,菲律宾镍矿总储量达到11亿公吨。其中,已探明储量10亿吨,占总储量的93.72%。平均品质范围在0.23%-2.47%。可期储量5630万吨,占5.17%,品质范围在0.36%-1.24%。还有1210万吨为可能储量,品质范围在0.23%-2.27%(注:总储量为探明的储量、可期储量和可能储量之和)。按地质分类,菲镍矿多为红土带(占99%)。由于大部分镍矿处在浅土层,易于开采且成本低。 从地区分布看,集中在Davao Oriental和Palawan,储量分别为4.757亿吨(占总储量43.69%)和4.071亿吨(占总储量37.38%)。其它有较大规模镍矿藏的省还有Surigao del Norte和Zambales。 2、产量 1998年镍矿生产创近10年新高,产量约96万吨,产值7.93亿比索;1993年为低谷,产量只有34.68万吨,产值3.5亿比索。 由于不利天气因素,1990、1991两年镍矿生产的产量、产值出现下降。虽然1992年镍矿产量增加了6.6%,但随后的一年生产非常消极,产量和产值分别下降了41.6%和41.14%,这主要是因为Taganito矿业公司生产暂时停止,以及Rio tuba镍矿公司、Hinatuan矿业公司产量不足。从1994年至1998年,生产开始恢复,并保持了增长势头。1995年增长最快,产量和产值分别增长50.88%和59.00%,主要是Taganito矿业公司、Rio tuba镍矿公司的生产有所改善。 www.metal114.cn 3、出口 镍矿出口在1995年取得最快的增长,出口数量达到65.69万吨,较1994年增长45.07%。当年出口收入达到6.92亿比索,即2630万美元。这主要是由于对日本出口的快速增长。 4、价格 1994年镍矿价格最低,平均价格为795比索/吨。1989年镍矿价格最高,平均价格为1420比索,较1988年的917比索增长54.85%。 5、主要生产商 从1986年Nonoc镍矿公司停产以来,只有Rio Tuba镍矿公司,Hinatuan矿业公司和Taganito矿业公司三家镍矿生产商维持到现在。去年,Cagdianao矿业公司镍矿正式投产。此外,Philnico工业公司在Surigao del Norte省,Hinatuan在Manicani岛的镍矿项目正在筹划中。 6、开采方法、产量和加工技术 这些公司采用露天开采,日产量为1200吨。Nonoc镍矿精炼厂曾是菲律宾唯一的镍矿精炼厂,采用铵基碳酸盐浸出法,用于处理350万吨含1.2%镍、0.12%钴和37%铁的红土层和蛇纹石矿石。现在正在引进一种低能耗,低污染和高产出的新技术,压力酸浸出法。 (二)钴矿 据菲矿产和地质科学局的官员介绍,钴矿是一种伴生矿,只有1986年以前数据可供参考。在1979年至1986年的八年间,菲钴矿产量总计5400吨。
铜钴镍分离工艺实例
2019-01-21 18:04:37
处理硫化铜镍矿,一般采用选矿、熔炼和吹炼获得高冰镍,然后再用浮选法使铜镍分离,铜、镍精矿再分别送冶炼产出金属铜和金属镍,在冶炼过程中综合回收钴和铂族元素,某铜镍硫化矿的原则工艺流程如下:详见流程图:
品位较高的铜镍矿可以直接送去冶炼获得高冰镍,只有贫的铜镍矿才进行选矿。浮选获得的铜镍混合精矿经过冶炼得出的高冰镍,其分离方法有熔炼法、水冶法和浮选法,而浮选法是较经济且有效的方法之一,我国某铜镍矿系采用浮选法分离高冰镍。该厂的高冰镍的物相组成是硫化镍(Ni3S2)、硫化铜〔(Cu2S2)2FeS+Cu2S〕、合金(Cu—Ni—Fe)、金属铜(Cu)以及少量的磁铁矿(Fe3O4)和残渣。其中硫化镍和硫化铜的含量占90%以上。因此,铜镍分离的关键是硫化镍和硫化铜的分离。高冰镍经磨碎后,铜镍硫化物的粒子互相解离,在强碱性溶液中(PH12~12.5),加入丁黄药进行浮选。此时硫化镍被抑制,硫化铜上浮,达到分离的目的。这一新工艺成功的被应用,使我国铜镍分离技术达到了国际先进水平。
湿法冶金处理镍钴镁矿
2019-03-06 10:10:51
一、工艺流程简述
按着浸出工艺的要求对镍钴矿石进行破碎、磨细,然后进行浸出,镍、钴、铜、镁被溶解进入浸出液,杂质铁、硅基本上不被溶解仍留在渣中,经过浸出使方针金属镍、钴、铜、镁与杂质铁、硅等别离,使浸出液得到开始净化,浸出渣经洗刷,一洗液送净化,二洗液、三洗液回来洗渣。浸出液经净化除杂获净化液和净化渣,方针金属保留在溶液中,杂质入渣,经过净化,使方针金属与杂质进一步别离,浸出液纯度进一步进步。操控必定条件,往净化液中参加硫化剂,使硫酸铜转化为不溶于硫酸溶液的硫化铜入沉积固相,镍、钴、镁不构成硫化沉积仍留在沉铜母液中。往沉铜母液中参加硫化剂,可溶的镍、钴硫酸盐转化为不溶的硫化物入沉积固相,硫酸镁不与硫化剂效果,仍留在镍钴母液中。往沉积镍钴母液中加碳酸氢铵(或碳酸钠)可溶的硫酸镁与碳酸氢铵效果生成不溶的碱式碳酸镁。
简言之,首要进行酸浸出,在浸出过程中,镍、钴矿中镍、钴、镁均被溶解以二价离子状况进入浸出液。杂质铁、二氧化硅不溶或少溶留在浸出渣中,经过酸浸使镍、钴、镁与杂质铁、硅等开始别离,然后将浸出液净化除杂,使镍、钴、镁与杂质别离,纯真浸出液,往净化液中参加硫化剂,使可溶的镍、钴、硫酸盐转变为不溶解的硫化物入沉积固相,硫酸镁不与硫化剂效果,仍留在溶液中,经过硫化沉镍、钴,使镍、钴与镁别离,最终在镍、钴沉积母液中参加碳酸盐,使可溶的硫酸镁转变为不溶的碳酸镁。
选用湿法冶金(或称化学选矿)办法归纳收回镍、钴、镁,实验证实是可行的,一般选用酸浸—硫化沉镍钴—碳化沉镁工艺流程。 二、浸出基本原理
浸出基本原理根据镍、钴、镁硅酸盐中镍、钴、镁能溶解于酸溶液中,浸出首要化学反应为:
H2(Ni.Mg)SiO4·H2O+H2SO4=(Ni.Mg)SO4+H2SiO3+H2O
(Mg.Fe)3[Si2O5](OH)4+3H2SO4=3(Mg.Fe)SO4+2H2SiO3+3H2O
1.硫化沉镍钴基本原理
硫化沉镍、钴的基本原理根据可溶镍钴硫酸盐或盐与硫化剂效果生成不溶的硫化物入沉积固相,首要化学反应为:
NiSO4+Na2S=NiS+Na2SO4
NiCl2+Na2S=NiCl2+2NaCl
CoSO4+Na2S=CoS+Na2SO4
CoCl+Na2S=CoS+2NaCl
2.碳化沉镁的基本原理
碳化沉镁的基本原理根据镁硫酸盐与碳酸盐效果,生成不溶的碳酸镁入沉积固相,首要化学反应为:
MgSO4+Na2CO3=MgCO3+Na2SO4
MgCl2+Na2CO3=MgCO3+2NaCl
3.浸出液的净化
浸出液的净化选用氧化中和水免除杂或许黄钾铁矾法除杂均能到达除杂要求,但中和渣中镍钴含量较黄钾铁矾渣高,镍钴在渣中丢失较黄钾铁矾法高。浸出液中含铁较低时选用氧化中和水解法除杂,浸出液中含铁较高时,选用黄钾铁矾法除杂。
4.硫化沉镍钴
硫化沉镍钴可在室温下弱酸性溶液中进行,取得的化学镍钴(或称钴镍)精矿,可经过调整硫化沉镍、钴条件来调整,化学镍钴矿中镍、钴档次
5. 碳化沉镁
碳化沉镁在加温弱碱性溶液中进行,取得的化学菱镁矿。
三、首要试剂耗费
硫酸(98%)、 碳酸钠(工业级)、 (含Na2S60%)、石灰 、 拌和、需用电 、 加热。
服务项目: 检测、判定检测事务品种地质及化探:普查样品、槽(坑)探样品、钻孔样品、涣散流样品、次生晕样品、原生晕样品等矿石矿藏:铜铅锌矿石、金矿石、钼矿石、钨矿石、钛矿石、锡矿石、锑矿石、铋矿石、矿石、钴矿石、镍矿石、铬矿石、铁矿石、锰矿石、磷矿石、萤石、铝土矿、硫铁矿及岩石全分析等精矿产品:铜精矿、铅精矿、锌精矿、金精矿、锡精矿、锑精矿、钨精矿、钼精矿等矿产品(交易):各种精矿(有利、有害杂质成分)、进口质料及冶炼渣料等冶金产品:质料、辅料、中间产品、金属及合金等环境监测:矿山及选厂排放的废渣、废水、土壤及水质评价(砷、、重金属离子)检测元素金(Au)、银(Ag)、铜(Cu)、铬(Cr)、磷(P)、碳(C)、铅(Pb)、钨(W)、锂(Li)、硫(S)、锌(Zn)、锡(Sn)、钠(Na)、钼(Mo)、钾(K)、铌(Nb)、钒(V)、砷(As)、钽(Ta)、镉(Cd)、锰(Mn)、锑(Sb)、锆(Zr)、钙(Ca)、钛(Ti)、铋(Bi)、铍(Be)、镁(Mg)、铝(Al)、(Hg)、铂(Pt)、镍(Ni)、铁(Fe)、氟(F)、钯(Pd)、钴(Co)、硅(Si)等。矿石物相岩矿判定
氧化镍钴锰锂
2017-06-06 17:49:58
一种新型高比能量锂离子电池正极用氧化镍钴锰锂材料,日前由天津电源研究所研制成功。并获得了信息产业部电子基金的资金支持,随即建成年产200吨氧化镍钴锰锂生产线,在国内率先实现了产业化生产。目前市场上的锂离子电池大多以氧化钴锂为正极,其材料的稳定性和产品的安全性比较差。天津电源研究所针对氧化钴锂存在的突出问题,采用价格相对低廉的镍、锰替代钴,并研发独特的烧结工艺,仅用了一年多时间就成功解决了这一难题。据了解,这种新型材料具有容量高、寿命长、安全系数高、无污染等优点。与氧化钴锂相比,制造成本降低了10%至15%,每克容量由140毫安时可提升到220毫安时,由此不仅提高了产品的安全性能,而且增大了电池容量,一举突破了锂离子电池发展的瓶颈制约。该产品现已得到多家用户的认可,并实现了为出口欧盟的高端电池产品生产厂家供货。为了研制在电性能、安全性和成本价格等三方面均能较好地满足电动汽车需求的锂离子电池,选择了在氧化钴锂中掺杂氧化镍锰钴锂三元材料的方法,研制了新的50Ah动力型锂离子电池。通过对研制电池进行电性能和安全性试验,各项性能均满足电动汽车的技术要求,加上氧化镍锰钴锂三元材料的价格仅为氧化钴锂的50%左右,所以掺杂氧化镍锰钴锂三元材料是解决电动汽车对动力型锂离子电池严格需求的理想途径之一。近期有一种锂离子电池正极材料氧化镍钴锰锂及其制备方法。本发明属于锂离子电池技术领域。锂离子电池正极材料氧化镍钴锰锂为富锂型层状结构,化学成分Li↓[1+z]M↓[1-x-y]Ni↓[x]Co↓[y]O↓[2],其中0.05≤z≤0.2,0.1<x≤0.80.1<y≤0.5。制备方法:镍、钴、锰的可溶性盐为原料;氨水或铵盐为络合剂,氢氧化钠为沉淀剂;加水溶性分散剂,加水溶性抗氧化剂或用惰性气体控制和保护;将溶液并流方式加到反应釜反应;碱性处理,陈化,固液分离,洗涤干燥;氧化镍钴锰和锂原材料混合均匀;将混合粉体分三温区烧结得到氧化镍钴锰锂粉体。本发明比容量高,循环特性好,晶体结构理想,生产周期短,功耗低,适合产业化生产等。
钨钴合金
2017-06-06 17:50:12
钨钴合金是什么?钨钴合金又称碳化钨-钴硬质合金。碳化钨和
金属
钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类
金属
陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。这类
金属
陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨金是世界上少有的一种
有色
矿产品,年
产量
很低,用途非常广泛,主要用于铸造配料用原料。钨金来源于一种白色砂型矿体,矿线特别微小,经过采掘、研磨、水重选、提炼等多道工艺,得到品位达到95%以上的钨矿粉,再经过高温电炉提炼成型生产出的成品才是钨金。钨金的熔点:3500℃。目前钨矿主要分布在中国和俄罗斯,中国现在是世界上最大的钨金出口国。钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。钨钴合金镀层的外观接近铬镀层,且镀液分散能力及覆盖能力好.在此研究了钨酸钠、硫酸钴、添加剂、电流密度及pH值对镀层钨含量及性能的影响.钨钴合金具有很好的耐蚀、耐热和耐磨性能,应用前景好.钨钴合金主要性质: 通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类主要用途: 用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等 经国家有关权威检测中心检测,抽样基数126件块砖型,样品数量13件抽样数。钨钴合金主要指标: 分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。更多有关钨钴合金请详见于上海
有色
网
钨钴合金
2017-06-06 17:50:12
钨钴合金钨钴合金又称碳化钨-钴硬质合金。碳化钨和
金属
钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类
金属
陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。钨是属于
有色金属
,也是重要的战略
金属
,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的
金属
,熔点极高,硬度很大。钨钴合金镀层的外观接近铬镀层,且镀液分散能力及覆盖能力好.在此研究了钨酸钠、硫酸钴、添加剂、电流密度及pH值对镀层钨含量及性能的影响.钨钴合金具有很好的耐蚀、耐热和耐磨性能,应用前景好. 售价70000元/千克 W含量83.36%,Co含量9.56%,C含量5.44%,硬度HRA为87。钨钴合金可用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨钴合金陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。
铜钴合金
2017-06-06 17:50:09
铜钴合金是铜和钴所组成的合金.其中钴是具有光泽的钢灰色
金属
,熔点1493℃、比重8.9,比较硬而脆,钴是铁磁性的,在硬度、抗拉强度、机械加工性能、热力学性质、的电化学行为方面与铁和镍相类似。加热到1150℃时磁性消失。钴的化合价为2价和3价。在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细
金属
钴粉在空气中能自燃生成氧化钴。 钴在地壳中的平均含量为0.001%(质量),海洋中钴总量约23亿吨,自然界已知含钴矿物近百种,但没有单独的钴矿物,大多伴生于镍、铜、铁、铅、锌、银、锰、等硫化物矿床中,且含钴量较低。 全世界已探明钴
金属
储量148万吨,中国已探明钴
金属
储量仅47万吨。分布于全国24个省(区),其中主要有甘肃、青海、山东、云南、湖北、青海、河北和山西。这七个省的合计储量占全国总保有储量的71%,其中以甘肃储量最多,占全国的28%。此外,安徽、四川、新疆等省(区)也有一定的储量。 世界钴
产量
1986年达到顶峰3万吨,以后不断下降,到1989年只有2.5万吨左右。扎伊尔和赞比亚是最大的钴生产国,其
产量
约占世界总
产量
的70%。 钴在地壳中的平均含量为0.001%(质量),海洋中钴总量约23亿吨,自然界已知含钴矿物近百种,但没有单独的钴矿物,大多伴生于镍、铜、铁、铅、锌、银、锰、等硫化物矿床中,且含钴量较低。 全世界已探明钴
金属
储量148万吨,中国已探明钴
金属
储量仅47万吨。分布于全国24个省(区),其中主要有甘肃、青海、山东、云南、湖北、青海、河北和山西。这七个省的合计储量占全国总保有储量的71%,其中以甘肃储量最多,占全国的28%。此外,安徽、四川、新疆等省(区)也有一定的储量。 世界钴
产量
1986年达到顶峰3万吨,以后不断下降,到1989年只有2.5万吨左右。扎伊尔和赞比亚是最大的钴生产国,其
产量
约占世界总
产量
的70%。有一种铜钴镍合金---白铜.呈白色.铜镍二元合金称简单白铜.三元以上合金称复杂白铜.含钴的白铜就属于复杂白铜.工业应用中常分为结构白铜和电工白铜.前者力学性能和耐腐蚀性能好.色泽美观.用于制造精密机械.化工机械和船舶构件,后者一般有良好的导热性和导电性.主要有锰铜.康铜和考铜等.用于制造精密电工仪器.变阻器.精密电阻.热电偶等.钴的主要用途是制造各种合金.钴合金的硬度很高.含钨78-88%.钴6-15%与碳5-6%的合金称为超硬合金.在1000℃时也不会失去原来的硬度.可用来制造切削工具,由钴35%.铬35%.钨15%.铁13%与碳2%组成的[钨铬钴合金".也是用来制造高速切削刀具.钻头的硬质合金.钴合金还具有磁性.所谓永久磁铁.便是由钴15%.铬 5-9%.钨1%和碳组成的钴钢.有些磁性合金中.钴的含量甚至高达49%.另外在一些耐热.耐酸的合金中.也常用到钴. 以钴为基加入其他合金元素形成的合金。铜钴合金是其中的一种。范围内具有较高的强度和良好的抗热疲劳性能,适用于制作喷气发动机、燃气轮机等高负荷的耐热部件。
钴铜合金
2017-06-06 17:50:08
铍钴铜合金(Beryllium cobalt copper ) 型号:ANK-2 Mogel:ANK 标准:ASTM-C17500 Standard :ASTM-C17500 产品应用:各种滚焊机 、点焊机 、对焊机等焊接用电极。 铍钴铜合金 ,加工性良好 , 可锻造成各种形狀的零件 , 铍钴铜的強度.耐磨性比鉻锆銅合金物理性能更佳 , 可做焊接机 器零部件及焊接嘴及点焊焊接材料 。 铍钴铜合金技术参数:电导率(%IACS)≈55 ,硬度(HV) ≈210, 软化温度(℃)≈610 可以提供棒材、板材,超大件及各类异型件需客户提供图纸。主要参数(Main Date ) 密度:g/cm3(8.9) 抗拉强度:MPa(650) 硬度HV(≥250) 延伸率%(55) 导电率%IACS(55) 導熱率W/m.k(195) 软化温度℃(≥700)
中国镍钴金属供应情况
2019-03-04 11:11:26
我国镍产品的出产相对来讲比较会集,以甘肃、吉林、新疆、云南、四川等区域为主。首要出产供应商有:金川集团有限公司,吉林吉恩镍业股份有限公司,新疆有色金属工业(集团)阜康冶炼厂。2004 年我国以矿产品为质料出产的镍量(金属量)约为 8 万 t,其间新疆为3000 t,吉林为5800t,甘肃为71000 t。甘肃(金川)的镍产值占我国镍出产值的88%以上,近年我国镍产值见图1。图1 近年我国镍产值
估计2005年我国的镍产值为10.7万t, 其间新疆为3500 t,吉林为6000 t,甘肃为 91000 t,其他区域为6500t 。见图2。图2 2005年我国镍产值猜测
2004年我国钴产值约7500t,其间金川钴产值为2200t,占29.3%。2005年我国钴产值将保持7500t 的水平,金川钴产值为4000t. 我国已成为全球首要钴出产国之一。
铬钼合金钢管规格标准
2019-03-15 10:05:15
铬钼合金管
铬钼合金管是无缝钢管的一种,其性能要比一般的无缝钢管高很多,因为这种钢管里面含 Cr 比较多,其耐高温,耐低温,耐腐蚀的性能是其他无缝钢管比 不上的,所以合金管在石油,化工,电力,锅炉等行业的用途比较广泛. 铬钼合金管纯化氢的原理是,在 300—500℃下,把待纯化的氢通入 铬 钼合金管的一侧时,氢被吸附在铬钼合金管壁上,由于钯的 4d 电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为 1.5×10m,而钯的晶格常数为 3.88×10-10 m(20时),故可通过铬钼合金管,在钯的作用下质子又与电子结合并重新形成氢分子,从铬钼合金管的另一侧逸出.在铬钼合金管表面,未被离解 的气体是不能透过的,故可利用铬钼合金管获得高纯氢.
铬钼合金钢管标准:GB5310-1995、GB17396-1998、DIN17175-79、GB6479-2000、GB9948-88
铬钼合金钢管主要用途:石油、化工、电力、锅炉行业的耐高温、耐低温、耐腐蚀用无缝钢管
铬钼合金钢管规格
ф 14x2 ф 219.1x18 ф 323.9x10 ф 16x3 ф 219.1x22 ф323.9x12 ф 18x2x7.1M ф 219.1x25 ф 323.9x13 ф 25.4x3x5 ф 219.1x28x6 ф 323.9x13.5 ф 28x4 ф 219.1x26 ф 323.9x16 ф 31.8x4x12M ф 219.1x30 ф 323.9x17.5 ф 38x4x7 ф 219.1x36 ф 323.9x20 ф 38x4.5 ф 273x7 ф 323.9x25x12Mф 38x6 ф 273 ф 323.9x26 ф 42x3.5 ф 273x12 ф 323.9x30 ф 42x4 ф 273x16 ф 323.9x32 ф 42x5 ф 273x20 ф 323.9x42 ф 42x5.5 ф 273x22.2 ф 355.6x11 ф 45x4 ф 273x26 ф 355.6x38 ф 48x4 ф 273x28 ф 355.6x36x3Mф 48x5x6M ф 273x32 ф 335.6x40 ф 48x5.5 ф 273x36 ф 355.6x40x1.6M铬钼合金钢管规格ф 51x4 ф 159x14 ф 323.9x10 ф 57x3 ф 159x18 ф323.9x12 ф 57x4 ф 159x18x8-12 ф 323.9x13 ф57x5 ф 159x20 ф 323.9x13.5 ф57x6 ф 159x25 ф 323.9x16 ф60.3x5 ф 168x5 ф 323.9x17.5 ф60.3x6 ф 168.3x7.11 ф 323.9x20 ф60.3x6.5 ф 168.3x8 ф 323.9x25x12Mф 60.3x8 ф 168.3x10 ф 323.9x26 ф 60.3x8.5 ф 168.3x12 ф 323.9x30 ф 60.3x10 ф 168.3x16x12M ф 323.9x32 ф 73x5.2x6 ф 168.3x18 ф 323.9x42 ф76x4 ф 168.3x22x12M ф 355.6x11 ф76.2x6 ф 194x6 ф 355.6x38 ф76.3x8 ф 193.7x8 ф 355.6x36x3Mф76.3x10 ф 193.7x10 ф 335.6x40
镍钴物料的浸取过程
2019-02-21 08:58:48
浸出工艺是镍钴湿法冶金的第一步,使物猜中的有价金属元素进入溶液,经过别离和净化,并终究取得制品;浸出也是一种别离手法,有利于从浸液和浸渣平分别提取方针元素。含镍钴物料的工业浸出进程首要有三类:
一、常压酸浸(硫酸和);
二、加压氧浸或酸浸;
三、浸。
无论是氧化物料仍是硫化物料都可以选用酸浸工艺处理。在不加氧化剂条件下的浸出,曾在挪威和加拿大使用于高镍锍,镍的浸出率可高达98%以上,铜和贵金属则留在浸渣中,别离效果很好。但是硫化矿藏的简略酸浸将发生,对金属材料有激烈腐蚀效果,工业施行的难度较大。所以硫化矿藏的酸浸一定量的铜离子或铁离子,可显着加速浸出进程。硫酸和介质的挑选对浸出进程有较大影响,尤其是浸出反响器结构原料的挑选。一起,介质的不同也影响出液的别离和净化进程,以及终究产品。读者将在以下不同工业生产实践的论说中体会到这一点。
加压浸出的首要意图是进步反响温度,以此进步浸出速度、缩短浸出周期,并进步浸出率,使常压下难以进行的反响进程可有效地进行。在有氧参加的浸出反响中,加压浸出关于进步反响速度有两层效果。但是,因为在设备出资和日常保护本钱上加压浸出显着高于常压浸出,选用何种工艺较适宜,需经技术经济分析和证明。
浸可直接用于镍钴硫化矿藏,用于氧化矿藏时先要进行复原焙烧,使镍钴呈金属状况。镍钴硫化矿的浸大多在氧压下进行,镍、钴、铜的硫化物氧化溶解,金属以络离子方式进入溶液,硫则生成硫酸,而铁则生成氧化物进入浸渣。
工业上使用的含镍物料的首要浸出进程包含:
1、高镍锍的硫酸氧压浸出;
2、高镍锍的浸出;
3、高镍锍的浸出;
4、镍锍氧压浸;
5、红土矿复原焙烧料的浸;
6、红土矿的高压酸浸。
这些工艺流程将在今后各节平分别论说。某些研讨者以为,硫化矿的直接浸出工艺是现在首要研讨开发方向,特别是某些不适于火法精粹的含砷或高镁精矿。这些新浸出工艺包含硝酸催化的加压浸出、生物浸出、Fe3+、或Cu2+催化的氧气或常压浸出、加压氧化浸出等。
镍钴溶液的分离和净化
2019-01-24 09:36:23
在镍钴湿法生产过程中,从含镍钴溶液到生产出符合一定标准的镍和钴产品,中间必须经过杂质去除(净化)及有价金属元素的分离富集等工序。目前镍钴提取冶金工业上应用的溶液净化和分离富集方法主要有化学沉淀、溶剂萃取和离子交换等三种。
一、化学沉淀法
化学沉淀法是最常用的溶液除杂和分离方法,镍钴提取冶金工业上主要应用水解沉淀、硫化物沉淀、难溶盐沉淀和置换分离等工艺。
(一)水解沉淀
水解沉淀
水解沉淀的原理是不同金属氢氧化物在水中具有不同溶解度或溶度积,因而具有不同的开始沉淀的pH值,通过控制溶液中沉淀pH值,则可将要求从溶液中除去的离子以氢氧化物的形式沉淀,有时需要辅之以氧化还原电位的控制。一些金属氢氧化物25℃的溶度积及根据Eh-pH图获得的开始沉淀的pH值列于表1,供设计水解沉淀净化方案时参考。工业常用的水解沉淀工艺包括氧化水解除铁、氧化水解分离镍和钴等。
表1 某些金属氢氧化物的PKSP及开始沉淀的最低pH值氢氧化物PKsp开始沉淀pH值氢氧化物PKsp开始沉淀pH值Co(OH)343.80.5Cu(OH)219.35.0Sn(OH)456.00.5Fe(OH)215.35.8Sn(OH)227.81.5Zn(OH)216.36.8Fe(OH)338.62.2Pb(OH)214.97.2Pt(OH)235.02.5Ni(OH)218.47.4Pd(OH)231.03.4Co(OH)215.77.5In(OH)333.23.5Ag2O7.718.0Ga(OH)335.23.5Cd(OH)25.268.3Al(OH)332.73.8Mn(OH)213.48.3Ni(OH)34.0Mg(OH)211.39.6
针铁矿法除铁也是一种水解沉淀工艺。形成针铁矿(FeOOH)晶体的主要条件是:低浓度Fe3+、pH=3~5、高温(≥90℃)。常用方法是先将Fe3+还原成Fe2+,然后中和到要求pH值,高温下再使Fe2+缓慢氧化。这样得到的沉淀是FeOOH而不是Fe(OH)3,易于过滤。在镍钴生产中,常用高镍锍作还原剂,空气作氧化剂。形成针铁矿的另一种方式是在大容量已除铁溶液中以喷淋方式加入欲净化除铁溶液,在充分搅拌下,Fe3+总体浓度不高(<1g/L),在空气氧化条件下加入中和剂可形成FeOOH。这样,溶液不用先还原,再氧化。
(二)硫化物沉淀
硫化物沉淀是分离镍、钴、铜等有价金属的常用方法,硫化剂多为Na2S、NaHS和H2S。一般金属硫化物在水中的溶解度都很小,常用于从镍钴溶液中沉淀分离铜,也用于从红土矿浸出液中沉淀分离铜、镍、钴。当用H2S作硫化沉淀时,形成硫化物的平衡pH值取决于该硫化物的活(浓)度积、溶液中金属离子浓度及离子价数。25℃及常压下,H2S沉淀硫化物时的平衡pH值列于表2。
表2 不同离子浓度时形成硫化物的平衡pH(25℃及常压)硫化物CMe=1mol/LCMe=10-4mol/L硫化物CMe=1mol/LCMe=10-4mol/LHgS-15.00-13.00CdS-2.50-0.25Ag2S-14.00-10.60ZnS-0.531.47Cu2S-12.35-8.35CoS0.852.85CuS-6.55-4.55NiS1.243.24SnS-3.00-1.00FeS2.304.30PbS-2.85-0.85MnS3.905.90
(三)难溶盐(化合物)沉淀法
最常用的难溶盐(化合物)沉淀法是黄钠铁矾工艺除铁。黄钠铁矾是两种以上硫酸盐的复盐,通试为Na2Fe6(SO4)4(OH)12或Me+Fe3(SO4)2(OH)6、Me2+Fe6(SO4)4(OH)12,具有结晶好,易过滤的优点。通式中,Me+一般为Na+、K+、NH4+或H3O+,其中以钾钒最稳定,沉降性能最好。
(四)置换沉淀
通常的置换沉淀是电负性金属从溶液中置换出电正性离子,如镍粉除铜。广义上说,置换沉淀还包括固休物料与溶液反应,其中固体中某一元素与溶液中的金属离子交换位置,如利用Ni2S3从溶液中沉淀铜。
二、溶剂萃取分离
溶剂萃取是分离和富集金属离子的常用方法之一,在有色金属湿法冶金领域有着广泛的工业应用,在镍钴提取工业中的应用也正在走向成熟。
溶剂萃取是利用有机相从不相混的液相中把某种物质提取出来的一种分离方法。溶剂萃取法的工艺过程包括萃取、洗涤和反萃三个阶段。萃取是使水相中某些物质转移到有机相,洗涤是使进入有机相的杂质回到水相(洗涤液),反萃是使被萃物质(目标组元)从有机相转移到水相(反萃剂),以便进一步处理成产品。有些萃取剂在萃取前需要进行预处理(如皂化等),以保证萃取条件。
溶剂萃取工艺的关键是萃取剂的选择。除经济效益外,选择萃取剂的基本原则为:
1、选择性好,容易实现金属分离;
2、良好的萃取动力学性能,平衡速度快;
3、大萃取容量,萃取剂用量少;
4、在水相虽的溶解度小,且化学稳定性好;
5、易与稀释剂互溶,混合后具有良好的分相性能,不易产生第三相。
溶剂萃取在镍钴冶金中的应用主要有两方面:一是从主金属溶液中将杂质元素萃取除去,或相反,将主金属离子萃取出来;二是将性质相近的镍和钴分离。
在工业生产中,往往采取多级萃取流程。因有机相和水相流动方式不同,多级萃取又分为逆流萃取、错流萃取和分馏萃取等多种方式,如图1所示,分馏萃取是逆流萃取上加入有机相的洗涤段。图1 萃取流程
a-三级错流萃取;b-三级逆流萃取
F-料液;S-有机相;E-萃取液;R-萃余液
镍钴提取工业中,溶剂萃取主要用于镍和钴的分离,以及分离铜铁等杂质。硫酸介质中常用CYANEX272、P507或N235萃取分离钴和镍,CYANEX272是新开发的萃取剂,其分离系数比P507大-个数量级。杂质(铁、铜、锌)的萃取分离常采用P204。氯化介质中常用铵类萃取剂。一些用于镍钴分离的新萃取正在研究开发中。
三、离子交换
通过离子交换树脂的吸附和解吸,可从溶液中脱除特定的离子。离子交换法一般用来处理低浓度(如浓度小于10-6mol/L)的稀溶液,当溶液浓度较高时(如高于1%),采用这种方法的分离效果不大。离子交换的主要工业应用是微量杂质的深度净化,在镍钴湿法冶金中用于脱铅和锌,以及用于微量铜的脱除。
用于镍钴分离的离子交换工艺的研究也较活跃,提出了一些有潜在工业应用前景的新型离子交换树脂。
钴、镍萃取分离原理与方法
2019-01-31 11:05:59
现在,钴镍冶金质料已由曾经的硫化钴镍矿逐渐转为钴镍杂料、钴镍氧化矿(含钴、镍红土矿)等,处理工艺由传统的火法造锍、湿法别离相结合转为浸出、净化全湿法流程。钴镍质料来历纷歧,浸出液成分杂乱,沉积、离子交换工艺难以完成钻、镍及钴镍与钙、镁等其他杂质离子的别离。溶剂萃取法有挑选性好、金属收回率高、传质速度快等长处,特别依据离子性质差异及萃取理论研制的新萃取剂及萃取系统,更优化了萃取作用。所以,从根本上找出钴、镍性质的差异,分析现有钴、镍别离工艺原理,对新萃取剂和萃取工艺的开发有指导意义。
一、钴、镍性质差异
钴镍原子序数相邻,同为第四周期第Ⅷ族元素,仅外层d电子数不同,这种性质上的差异可用于萃取法别离。
(一)晶体场配位理论分析钴镍性质差异
1、钴镍轨迹简并
钴、镍比较常见的配位数为4和6。配位数为6时,配体呈八面体型。由于配体之间的方位不同,5个轨迹简并为2组,电子与配体顶头挨近的dz2、dx2-y2作用激烈,能量较高,为6Dq;而别的的dxy、dyz、dzx轨迹作用力弱得多,能量较低,为-4Dq。配位数为4时,配体能够构成平面四方形或正四面体构型。萃取剂的分子量较大,分子间存在较大的空间位阻,所以一般为正四面体构型。相同,四面体场亦发作简并,可是与八面体场完全相反,dxy、dyz、dzx轨迹能量较高,为1.78Dq,而dz2、dx2-y2的轨迹能量较低,为-2. 67Dq。
2、钴镍轨迹电子排布
电子在轨迹的排布遵从能量(CFSE)最低准则,其间成对的电子还需求战胜能量为P或P’的成对能。按这个规矩,电子排布与对应能量巨细如表1。
表1 钴镍离子不同配位数时对应的能量能够看出:6配位正八面体的安稳性大于4配位正四面体的安稳性。Ni(Ⅱ)的6配位八面体的安稳性远大于四配位四面体的安稳性,而Co(Ⅱ)的6配位八面体的安稳性仅略强于四配位四面体的安稳性,所以,溶液中Ni(Ⅱ)仅有6配位存在,而Co(Ⅱ)的6配位或4配位都能够存在。
(二)价键理论
价键理论是L.Pauling等于20世纪30年代提出的杂化轨迹理论在配位化学中的使用。按此理论,在构成共价键时,能级相差不远的各轨迹能够构成杂化轨迹,而原子轨迹杂化后可使成键才能增强,因而使生成的“分子”更安稳。构成配位键时,若中心离子供给的轨迹都是最外层轨迹,则构成的络离子称为外轨络离子;若中心离子供给部分次外层轨迹,则构成的络离子称为内轨络离子。
价键理论以为:中心离子与配位原子的电负性相差较大时,倾向于生成外轨型络离子;相差较小时,则倾向于生成内轨型络离子。一般来说,与电负性较大的配位原子,如F、O合作时,常构成外轨型络离子;与电负性较小的配位原子P、As等合作时则构成内轨型络离子;而与N、Cl等合作时,则即有或许构成外轨型络离子也有或许构成内轨型络离子。
Co(Ⅱ)、Ni(Ⅱ)生成外轨型络离子时,假如为4配位,则为sp3杂化,四面体构型;假如是6配位,则为sp3d2杂化,八面体构型。所以,Co(Ⅱ)生成内轨型络离子时,易被氧化为Co(Ⅲ),而Ni(Ⅱ)较安稳,难于氧化。
由上述配位理论可知:1)钴以外轨型配位时,溶液中安稳存在的为Co(Ⅱ);以内轨型配位时,溶液中安稳存在的为Co(Ⅲ);2)不管哪种配位,溶液中Ni(Ⅱ)的安稳性高于Ni(Ⅲ)的安稳性;3)Co(Ⅱ)与电负性较大的配位原子结合易构成四配位合作物,安稳性高于Ni(Ⅱ)的合作物;4)Ni(Ⅱ)与电负性较小的配位原子结合易构成六配位合作物,安稳性高于Co(Ⅱ)对应的合作物。
二、钴、镍的萃取别离
(一)钴、镍的磷(膦)类萃取别离
溶剂萃取法是钴、镍别离的重要办法之一,其别离作用好,金属收率高,对料液适应性强,进程易于自动操控。跟着新萃取剂、萃取系统的开发和萃取理论的逐渐完善,溶剂萃取法在钴镍湿法冶金中的使用越来越广泛。
由晶体场配位理论可知,溶液中Ni(Ⅱ)为6配位时较安稳,而Co(Ⅱ)为4或6配位时安稳性挨近,能够一起存在,在必定条件下还能够彼此转化。现在,广泛选用磷类萃取剂别离钴、镍就是使用此原理。
现在,使用于钴、镍别离的磷(膦)类萃取剂首要有P204、P507和Cyanex272,它们在萃取钴、镍时有较大差异。据报道,用P204、P507、Cyanex272萃取钴、镍时,半萃pH差值别离为0.53、1.43和1.93。明显,萃取别离钴、镍的才能逐渐增强。这种差异缘于3种萃取剂的萃取才能和空间结构,见表2。
表2 3种磷(膦)类萃取剂的比较pka表明萃取剂结合金属离子才能的强弱。明显,P204与金属离子结合才能最强。有机磷(膦)类萃取剂结构通式中的R-P-R’键角可用来衡量空间位阻的巨细。在生成八面体构型的配位化合物时,∠RPR’越大,不同磷酸替代基之间的空间位阻越大,越不利于八面体构型的构成。所以,当萃取剂结合才能下降、而空间位阻增大时,八面体构型难于构成,则其他小分子,如水分子易于参加配位。而四面体构型中,2个有机磷一起配坐落一个中心离子,4个O处于互为笔直的平面中,配体之间作用强度较低,∠RPR’对四面体构型影响不大。
有机磷类萃取别离钴、镍的总反应式可表明为:在萃取剂大大过量条件下,M为Co时,n=2;M为Ni时,n=3。饱满萃取时,不管钴、镍,n=1。钴的萃合物包含四面体和八面体2种构型,而镍仅有八面体构型。四面体萃合物含水量低于八面体萃合物的含水量,有较高的亲油性,所以钴优先进入有机相。
从P204、P507到Cyanex272,酸性逐渐削弱,空间位阻逐渐增大。镍的萃合物一向要坚持八面体构型,而萃取剂与镍构成6配位的难度增大,所以镍的分配比下降。可是,钴萃合物能够转变为四面体构型,补偿了由于萃取剂酸性削弱和空间位阻增大对分配比减小的影响。镍的分配比减小,而钴的分配比根本不变,钴、镍别离作用越来越好。所以,用具有较弱萃取结合强度、较大空间位阻的萃取剂能够较好地完成钴、镍别离。
(二)Co(Ⅱ)的4配位阴离子挑选性合作
电负性较大的配离子配位才能较弱,优先构成外轨型4配位sp3杂化。又由于Co(Ⅱ)优先Ni(Ⅱ)构成4配位,所以挑选一种电负性适宜的配离子,操控适宜的浓度,可优先与Co(Ⅱ)合作,加大钴、镍的萃取别离。
1、SCN-的挑选性合作
SCN-的电负性较大,必定浓度下,与Co2+构成安稳的四面体阴离子合作物Co(SCN)42-,而简直不与Ni2+构成安稳合作物。所以,在该系统中,钴以络阴离子方式存在,镍以水合阳离子方式存在,用MIBK、胺类、季铵盐类萃取剂能够挑选性地从含镍溶液中萃取钴:季铵盐萃取钴的容量与有机相中SCN-的浓度成正比,适用于从低浓度钴溶液中萃取钴。但负载有机相中的钴需用NH3-NH4 HCO3溶液反萃取,而反萃取液中的钴、需求专门的设备收回,生产本钱较大。
2、Cl-的挑选性合作
当Cl-质量浓度为200~250 g/L时,90%左右的Co(Ⅱ)以CoCl42-方式存在,Cu2+、Fe3+、Zn2+等金属离子也构成合作阴离子CuCl42-、FeCl4-、ZnCl42-,而Ni2+仍然以水合阳离子[Ni(H2O)62+]方式存在。选用胺(铵)类萃取剂能够将合作阴离子萃取,完成与镍的别离。
该工艺别离作用好,萃取剂报价低廉,与硫化钴、镍矿氯化浸出联接顺畅,20世纪60~70年代树立的镍、钴厂多选用该系统。比较有代表性的有:加拿大鹰桥公司在挪威克里斯蒂安松的镍厂,使用叔胺从氯化物系统中别离钴、镍;国内的成都电冶厂、福州冶炼厂等都选用氯化物系统以N235萃取别离钴、镍。
(三)钴氧化为内轨络离子
依据价键理论,当Co(Ⅱ)、Ni(Ⅱ)与电负性较低的配离子结合时,Co(Ⅱ)简单氧化,生成十分安稳的内轨型Co(Ⅲ)配离子,而该离子假如亲油则生成安稳的萃合物被优先萃取,假如亲水则不被萃取。
1、-铵系统
NH3能够与Co(Ⅱ)构成外轨型合作物Co(NH3)62+,由于1个3d电子跃迁到5s轨迹,该合作物很简单被氧化成愈加安稳的内轨型合作物Co(NH3)63+,见表3。
表3 钴、镍合作物的安稳常数(18~25℃,i=0.1)在-铵系统中,操控的浓度和溶液电位即可确保溶液中的钴、镍别离以Co(NH3)63+和Ni(NH3)62+方式存在。由于Co(NH3)63+的安稳常数为Ni(NH3)62+的1026.13倍,所以挑选一种与镍合作才能比NH3强的螯合萃取剂就能够替代Ni(NH3)62+中的NH3而挑选性萃取镍。
1987年,澳大利亚的昆士兰公司选用汉高公司的LIX84-I萃取剂直接从空气氧化后的含钴、镍的性溶液中挑选性萃取镍,然后选用硫酸盐溶液反萃取,得到的硫酸镍溶液通过电积得到高品质阴极镍。溶液中剩下的钴用H2S沉积得到CoS产品。
2、螯合萃取系统
用螯合萃取剂萃取钴、镍时,易呈现钴中毒现象,由于构成的Co2+螯合物很简单被氧化成Co3+螯合物。Co3+螯合物十分安稳,难于被酸直接反萃取,需求在复原条件下反萃取。但由于反萃取需求很多复原剂,并且Co3+对萃取剂有必定的分化作用,所以该办法没有得到大规模使用。
(四)Ni(Ⅱ)的6配位协同萃取
镍的6配位萃合物的安稳性和疏水性较高,但空间位阻较大,所以在萃取进程中需求参加某些替代结合水的协萃剂。
1、酸性萃取剂与非螯合肟类协同萃取
南非矿藏工艺协会研讨发现,在烷基磷酸类(DEH-PA)中参加非螯合性2-乙基己基肟(EHO)对镍有很大的协萃作用,可是对钴的影响要小得多。协萃机理为:EHO供给孤对电子的才能强于H2O或DEHPA,能够轻易地将它们替代,使镍到达安稳的6配位构型。环烷酸与异十三醛肟相同也有很强的协萃效应,使镍的pH0.5左移2.8,钴的pH0.5左移1.8,钴、镍的半萃pH值扩大到1.2,能够将钴、镍完全分隔。酸性萃取剂与非螯合性萃取剂协同萃取钴、镍,萃取速率快,不存在钴被氧化问题。
2、酸性萃取剂与螯合肟类协同萃取
磷酸类、羧酸类、磺酸类萃取剂中参加必定量的LIX63,对钴、镍的萃取有较强的协同作用,并且酸性萃取剂的酸性越强,E-pH线左移越多,协同作用就越强。该系统的不足之处在于镍的萃取、反萃取速率较慢,反萃取需求必定的酸度,而LIX63在强酸性条件下会降解。这2个问题一向没有得到本质上的处理,所以20世纪90年代后期,该系统仍未得到使用。然后开发的抗降解烷基甲基胺与DNNS协同萃取系统显现了优异的功能,仅仅本钱较高而未完成产业化。
澳大利亚开发出了羧酸萃取剂与螯合肟类萃取剂协同萃取工艺:选用酸性很弱的羧酸萃取剂与羟肟类萃取剂协同萃取,下降了羟肟降解速率;操控萃取剂浓度,可加速萃取和反萃取速率;萃取进程没有呈现钴中毒现象。但不足之处是钴、镍别离系数不算很大,别离进程需求较多级数的洗刷。萃取镍时,LIX63为萃取剂,羧酸为协萃剂;萃取钴时,羧酸为萃取剂,LIX63为协萃剂。
三、结束语
跟着优质钴镍硫化矿资源的逐渐干涸,钴镍氧化矿的开发使用越来越受注重,加压酸浸、硫酸堆浸技能已成为钴、镍湿法冶金的干流技能,所以亟需开发能直接从较高酸度系统中萃取钴镍的工艺(DSX),并且最好对钙、镁等有抑萃作用。首要研讨方向为:1)开发新的萃取剂,特别是螯合萃取剂,这或许是未来直接从含钙镁溶液中萃取钴、镍的首选萃取剂;2)开发新的萃取系统,跟着萃取理论,特别是协萃理论的开展,研讨萃取剂的协同作用,使到达较好的别离作用;3)开发新的萃取设备,某些钴、镍萃取进程的热力学数值很好,可是动力学速率慢,需求新的萃取设备强化萃取进程。
黑镍的制备和除钴
2019-01-24 09:37:16
合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。
除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。
表1 除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31
表2 钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5
黑镍氧化中和水解法除钴
2019-02-13 10:12:44
在铁族元素(包含Fe、Co和Ni)的三价氢氧化物中,其间以Ni(OH)3的氧化性最强,Co(OH)3次之,Fe(OH)3的氧化性最弱。用Ni(OH)3可使Co2+氧化成Co3+。
在工业生产上,黑镍(FeOOH)是Ni(OH)3的安稳形状。因为氢氧化亚镍[Ni(OH)2]的顔色为暗绿色,而氢氧化镍[Ni(OH)3和NiOOH]为黑色,故得名“黑镍”。黑镍像Cl2相同,它可作氧化剂用于中和水免除钴。其反响如下:
NiOOH+Co2++H2O=Ni2++Co(OH)3
作为电解液净化沉钴所需的黑镍是用电解法制取的。电解阳极氧化Ni(OH)2法的根本进程是,从电解液净化系统抽出部分净化后液,参加沉积出Ni(OH)2,将Ni(OH)2矿浆放入电解槽内通入直流电,Ni(OH)2在阳极上发作氧化反响:
Ni(OH)2-e=NiOOH+H+
Ni(OH)2电解氧化成NiOOH的机理现在还不彻底清楚。但一般以为氧化进程发作在固相即Ni2+无需进入溶液能够发作氧化,也就是说在Ni(OH)2颗粒触摸到阳极时才干氧化。电解氧化槽必须加强拌和,促进Ni(OH)2颗粒与阳极磕碰。电解氧化槽的阳极材料为外长始极片,阴极材料可用镍铬丝或不锈钢网,用鼓入空气的办法拌和电解氧化槽中的矿浆。下表为电解氧化槽技能操作条件。
下表“黑镍”电解氧化槽技能操作条件项目单位 电解液成分 NaOH0.1~0.15mol/L
Ni30g/L电解液温度℃50槽电压V2.3阳极电流密度A/m220电流效率%~50 芬兰哈贾伐尔塔精粹厂选用“黑镍”氧化水免除钴是在两个容积为120m3的空气拌和槽中以两段逆流方法进行的。在榜首段净化除钴的进程中,溶液与现已部分起反响的NiOOH触摸,溶液中50%左右的钴发作沉积。矿浆送主动压滤机过滤,滤渣经酸洗后送另外厂收回钴,滤液送第二段净化除钴。在第二段反响槽内参加新的NiOOH。
用NiOH除钴,因为它的反就产品是镍离子,与电解液主成分共同,不会污染所处理的溶液。此外,用NiOOH除钴,因为它的氧化能力强,因而能一起除净溶液中残留的微量杂制质,如铜、铁、锰、砷等,起到深度净化的意图。
钴镍催化剂和钴铝催化剂的回收利用
2019-01-21 18:04:55
一、钴镍催化剂的回收利用(碱浸法)
在含Al2O3的废脱硫催化剂中加入Na2CO3。Na2CO3∕Al2O3的摩尔比为1.5~4,煅烧到1150℃以上,把煅烧后的产物浸到热水中搅拌进≥0.1mol∕L的H2SO4中,从而脱出镍和钴来。
二、钴铝催化剂的回收利用(碱熔融法)
将61%的含Co3O4∕AI3O3废催化剂添加3.5%的纯碱,在1100℃下熔融,将熔块破碎后在80~90℃下用10倍的水浸取1h,过滤后滤饼中含95.8% Co3O4,干燥后还原则成金属钴,钴的收率在95%以上,滤液中含钴0.6mg。
从含钴废料及铜钴合金中提取钴的方法
2019-02-11 14:05:44
国际钴资源比较丰富,2005年国际钴储量为700万t,储量根底为1300万t。国际钴储量会集散布于刚果(金)、澳大利亚、古巴、赞比亚、新喀里多尼亚、俄罗斯和加拿大等,储量总和约占国际总储量的95%以上。我国钴资源贫乏,钴矿档次均匀仅0.02%,单个高的为0.05%~0.08%,而刚果(金)和赞比亚的铜钴矿,钴档次为0.1%~0.5%,高的到达2%~3%。因为钴矿档次偏低,矿石组成杂乱,所以收回工艺比较杂乱,出产本钱高,钴收回率低。近年来,我国镍、铜、钴的消费大幅增加,但受矿产资源条件限制,我国铜、钴矿石的出产增加缓慢,铜、钴矿产品进口量逐渐上升,供求矛盾日益突出。
铜钴合金是现在刚果(金)钴铜矿石深加工产品的首要方式之一,也是我国往后从非洲进口的首要钴质料之一,因而,研讨从铜钴合金或含钴废猜中收回钴、铜有着重要意义。
钴废料品种许多,首要有废高温合金、废硬质合金、废磁性合金、废可伐合金、废催化剂和废二次电池材料等。钴废料成分比较杂乱,一般含有铜、新、猛、镍、镉等有价金属。
铜钴合金有2种,一种是在铜冶炼进程中经转炉吹炼得到的转炉渣再经电炉复原熔炼水淬而得到的合金,其间含Cu、Co、Fe、Mn、Si等元素(现在,作为钴质料的铜钴合金许多从刚果(金)、赞比亚、扎伊尔输入),另一种是熔炼氧化钴矿和钴精矿的富铜产品。在电炉内,用焦炭复原氧化钴矿产出2种合金,密度较大的为红合金(铜质量分数约为89%,钴质量分数4%~15%),较轻的为铜钴合金(铜质量分数约15%,钴质量分数约42%,铁质量分数约34%)。2种铜钴合金中其他元素含量均较低。
一、火法工艺
依据含钴质猜中各元素与氧的亲和力的巨细,可选用火法别离有关元素。有关元素对氧亲和力的巨细次序为A1>Si>V>Mo>Cr>C>P>Fe>Co>Ni>Cu,因而,将钴含量低的物料在电弧炉中高温熔化,再鼓风吹炼造渣,使与氧亲和力比Co大的杂质不同程度地氧化而进入炉渣,一起取得含Ni和Co的镍阳极。镍阳极经隔阂电解得电镍,钴进入阳极液。此办法适合于处理含镍、钴的合金废料。
彭忠东,等选用造渣熔炼-浸出工艺处理Cu-Co-Fe合金,在1300℃下增加10%CaCO3造渣焙烧,然后用硫酸溶液恒温90℃拌和浸出5h,钴浸出率为95%;而削减CaCO3用量一半,一起增加5%Na2SO3,在相同温度下造渣焙烧后,用浓硫酸浸出,钴浸出率可进步到97%。火法工艺比较繁琐。
二、湿法工艺
(一)浸出
关于富钴合金,可选用酸法浸出、氧化浸出、电化学溶解法和微生物浸出法浸出。
1、酸法浸出。用硫酸、硝酸、均可将钴合金中的金属转入溶液,化学反响为:
2H++Me=Me2++H2↑
(Me表明Co、Fe等金属)。
当有氧存在时,金属铜和其他生动金属与酸反响生成金属离子,进入溶液:
2H++Me+O2=Me2++H2O
(Me表明Cu等金属)。
当硫酸初始浓度为6mol/L,浸出温度为100℃,浸出时刻为6h,液固体积质量比为5∶1时,钴、镍浸出率别离到达95.37%和96.73%。
2、氧化浸出。在用稀硫酸浸出时,往溶液中通入可强化浸出进程,进步金属浸出率,但简略溢出,构成环境污染,并且在各种物料氯化浸出液中都含有3~5g/L的钴需求收回。
3、电化学溶解法。以硫酸介质作电解液,合金作阳极、铜板作阴极,当电流通过期,阳极中的金属和金属硫化物按下式反响,钴转入溶液:
Me(Co,Fe,Cu)-2e=Me2+(Co,Fe,Cu)
CoS-2e=CO2++S。
4、微生物浸出法。微生物浸出是运用某些微生物或其代谢产品对某些矿藏进行氧化、复原、溶解、吸附等,使钴转入溶液。微生物浸出法适用于处理贫矿、尾矿、炉渣等,其出资少,金属提取率高,无污染。选用氧化亚铁硫杆菌浸出首要矿藏为水钴锰矿(钴质量分数0.0054%)的矿石,在pH=2.5、铁总质量浓度3g/L、m(Fe3+)/m(Fe2+)=1∶1、液固体积质量比4∶1、温度26℃条件下,钴、锰浸出率别离是88.6%和67.2%。再针对细菌浸出液含锰高的特色,用Na2CO3调pH至4左右沉积铁,选用沉积钴即可较好地别离钴锰,终究得到硫酸钴溶液。
(二)从含钴溶液中除铁(锰)
钴浸出液中含有铁、锰等金属离子,一般选用氧化中和法、黄钠铁矾法、针铁矿法等去除。
1、氧化中和法。调整溶液pH并增加C12、NaC1O3、HNO3等强氧化剂,将铁、锰等贱价态离子氧化成高价态离子,使构成沉积。化学反响为:
2Fe2++Cl2+6H2O=2Fe(OH)3 ↓+6H++2C1-
3Mn2++Cl2+4H2O=Mn3O4↓+8H++2C1-。
2、黄钠铁矾法。黄钠铁矾法是使三价铁从含有K+、Na+、NH4+等离子的硫酸盐溶液中以淡黄色的结晶化合物,即M2Fe6(SO4)4 (OH)12方式沉积(M表明K+、Na+、NH4+、Pb(I)、Ag+、H3O+等)。此法适用于从含有硫酸根离子的溶液中净化除铁。
3、针铁矿法。将溶液pH调至2.0左右,参加复原剂将其间的Fe3+复原为Fe2+,然后缓慢参加氧化剂,坚持必定的pH,使Fe2+渐渐氧化成Fe3+,构成针铁矿沉积。所构成的针铁矿为棕色针状晶体,其组成为α-FeOOH,属斜方晶系,溶解度很小,并且不带结晶水,过滤功能杰出。
(三)溶液的净化及镍、钴别离
1、萃取法。溶剂萃取法因为具有高选择性、直收率高、流程简略、操作接连、易于完成自动化等长处,已成为提取钴的首要办法。萃取剂的品种许多,我国前期用于镍、钴别离的萃取剂是P204,后改用P507。但P204关于从硫酸镍溶液中去除钙、铁、铜等杂质元素的作用均优于P507,因而二者可合作运用,前者用于除杂,后者用于镍、钴别离,作用很好。P204和P507的一起缺陷是三价铁的反萃取比较困难,加拿大鹰桥公司和法国勒阿弗尔厂都选用TBP(磷酸三丁酯)萃取除铁工艺。5709是核工业北京化工冶金研讨院研讨组成的膦类萃取剂,其功能与P507类似,但其对钙的适应才能优于P507,并且有必定的萃取铅的才能,报价低于P507,是一种功能优秀的萃取剂。
在介质中,可选用N235萃取 FeC13,再用P204萃取除杂P507萃取别离钴、镍,得到的镍、钴溶液既能够出产相应的盐或化合物,也能够出产电镍和电钴。
在协同萃取研讨中,羧酸酯和烷基是最有期望的萃取钴的萃取剂。实验证明,以Versaticl0+10%+Cl2+脂肪族稀释剂为萃取剂,在镍、钴和其他金属混合系统中,可显着改进镍、钴的萃取选择性。
2、液。文献[1]介绍,以P507为活动载体的Span-80表面活性剂膜,在pH为4.2~5.3范围内,能够从含钴、镍的工业废水中提取别离钴、镍,别离作用较好。文献[2]介绍,用EDTA、NH4F和巯基丁二酸等掩蔽搅扰离子,以HDTHP、L113B,液体白腊、磺化火油和内相为2.5 mol/L HCl的水溶液等液膜别离黄铁矿、烟灰、炉渣和含钴废催化剂中的钴,钴提取率均在91%以上。
(四)脱硅
因为合金中含有许多硅,酸性条件下氧化浸出时,许多硅会进入溶液,构成硅酸。当硅酸含量到达必守时则构成硅胶。硅胶一旦构成,即对出产构成严重影响,使溶液无法过滤,乃至导致整个出产中止。
现在的惯例做法是将钴、铜等有价金属转入溶液,将硅等杂质留在浸出渣中;别的一种做法是在强碱性溶液中,钴、铜、镍等金属以氢氧化物方式彻底沉积,硅则以硅酸钠方式进入溶液,完成金属与硅的别离。将别离得到的金属氢氧化物用酸溶解,则溶液中简直不含硅。这种办法的缺陷是本钱较高,不引荐直接选用。
注释:
[1] 李玉萍,王献科。液提取氯化钴[J]。我国钼业,2002,26(2):28-30。
[2] 包福毅。溶剂萃取在镍钴湿法冶金中使用的发展[J]。有色金属:冶炼部分,1995(2):12-6。
钨钴合金价格
2017-06-06 17:50:12
钨钴合金
价格钨钴合金
价格
近期的
走势
随着
有色金属
板块的涨价而随之上涨。钨钴合金又称碳化钨-钴硬质合金。碳化钨和
金属
钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类
金属
陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。钨钴合金陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。 钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。钨是稀有高熔点
金属
,属于元素周期表中第六周期(第二长周期)的VIB族。钨是一种银白色
金属
,外形似钢。钨的熔点高,蒸气压很低,蒸发速度也较小。钨的化学性质很稳定,常温时不跟空气和水反应,不加热时,任何浓度的盐酸、硫酸、硝酸、氢氟酸以及王水对钨都不起作用,当温度升至80°—100°C 时,上述各种酸中,除氢氟酸外,其它的酸对钨发生微弱作用。常温下,钨可以迅速溶解于氢氟酸和浓硝酸的混合酸中,但在碱溶液中不起作用。有空气存在的条件下,熔融碱可以把钨氧化成钨酸盐,在有氧化剂(NaNO3、NaNO2、KClO3、PbO2)存在的情况下,生成钨酸盐的反应更猛烈。高温下能与氯、溴、碘、碳、氮、硫等化合,但不与氢化合。钨钴合金
价格
在上涨中,原因是最近的
有色金属
上涨促使钨钴合金
价格
的上涨。钨是属于
有色金属
,也是重要的战略
金属
,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的
金属
,熔点极高,硬度很大。
中国镍钴工业科技攻关开始转型
2019-03-14 11:25:47
连振祥由曩昔重视探寻进步资源归纳开发使用的新工艺、新设备,到开端进行新能源、新材料等战略性新兴工业的科研攻关,我国镍钴工业在岁末年初进入了科技攻关转型期。12月20日,来自我国科研机构、高等院校和厂商界的400余名专家、学者,聚集我国“镍都”甘肃金昌市,举行我国镍钴工业开展史上的又一次科技盛会——第19次金川科技攻关大会。记者了解到,与会专家学者中,仅我国工程院和我国科学院院士就有7位,触及粉末冶金、矿物学、有色金属冶金、矿床地质、有机化学等范畴。
“这次会议对我国镍钴铂族金属工业以及相关新材料工业的科学开展具有重要意义。”我国有色金属[0.23 0.00%]工业协会会长康义说。
因为镍产值居全球第四位、钴产值居全球第二位,甘肃金川集团公司无可争议地成为我国“镍老迈”。本次大会由我国有色金属工业协会和甘肃省一起主办。“本次科技大会,寻求金川在‘十二五’期间全面进入与镍铜钴主业相关的新能源、新材料、节能环保、现代配备制作等战略型新兴工业范畴所急需的技能支撑。”甘肃金川集团公司董事长杨志强介绍。
此间与会的一些专家学者认为,第19次金川科技攻关大会,也可以说是我国镍钴工业科研结构方向调整的动员会。
从1959年金川镍矿正式开建议,我国镍钴工业便与“金川”这个姓名紧密联系在一起。作为世界闻名的多金属共生的大型硫化铜镍矿之一,金川镍矿占我国国内已探明储量的70%以上,伴生元素有20余种。开发金川,不只开发了一个特大型镍矿,一起也连带开发了一个大型铜矿、一个大型钴矿以及一个大型贵金属矿。
“建厂初期,金川在较短时间内打通了出产流程,填补了我国镍钴出产技能和工艺的空白。”杨志强说,“其时尽管甩掉了我国贫镍的帽子,奠定了我国镍钴出产工艺技能体系的初始根底。可是,在资源的开发使用上技能依然很落后。”
记者了解到,从1972年开端,到2009年,我国科技和冶金部分环绕金川资源开发使用举行的科技大会,先后就有18次。
“在1978年3月的全国科技大会上,金川被列为全国三大矿产资源归纳使用基地之一。”金川集团公司副总经理武浚介绍说,“之后,我国政府有关部分安排国内50多家科研院校的数百名科技人员,环绕金川资源的开发与归纳使用,进行了全国范围内的持续数十年的跨体系、跨职业、多学科的科技联合攻关。”
数十年的科技攻关,霸占了限制我国镍钴工业开展的矿山建造和出产进度缓慢、镍铜金属选冶收回率低,伴生金、银及铂族金属归纳收回水平低下以及环境保护差等许多技能难题,使我国镍金属产值和质量逐年稳步增长,资源归纳使用水平大幅进步。
现在,金川特大型杂乱坑采矿山的采矿和高镁镍贫矿的选别技能到达职业领先水平,镍闪速熔炼和富氧顶吹熔炼、硫化镍加压浸出和羰化法精粹技能取得重大打破,我国彻底把握了镍冶炼成套配备的集成技能,具有了世界领先的工业化才能,构成了我国镍钴工业开展壮大、世界竞争力不断增强的新优势。
“第19次科技攻关大会行将揭开新一轮科技攻关的前奏。”杨志强说,“这既是我国镍钴工业50年科技联合攻关的持续、深化和开展,一起也是全面进步我国镍钴铂族金属工业技能水平的新办法。”
记者在会议上了解到,在“十二五”规划行将施行前夕举行的这次科技攻关大会,主要就改造进步我国镍钴工业传统工业,培养新材料、精深加工和新能源配备制作等战略性新兴工业等进行联合攻关,推进我国镍钴工业由资源耗费性向生态环保型转型晋级。我国科学院院士叶大年说,单就是金川尾矿和冶炼渣的二次使用研讨,就可认为我国一切的硫化矿山供给技能学习。
会上,我国5家厂商和16家高等院校及研讨院所结成镍钴资源归纳使用产学研战略联盟,就金川矿区深边部地质找矿、进步贵金属收回率、镍钴冶炼技能体系优化及产品优化、镍铜冶炼渣资源化经济使用、金川尾矿资源归纳使用、镍钴新材料的研制及工业化研讨等方面进行攻关,以处理我国镍钴资源归纳使用的关键技能和节能降耗的共性问题。
“经过科技联合攻关,完成金川集团开展战略性新兴工业,建造新式储能材料和二次电池产品研制和出产基地,建造以太阳能储热和发电为主的新能源配备研制和制作基地和规划、有色金属精深加工基地的战略目标。”武浚说。
“这次会议对构建我国镍钴及稀贵金属工业科技工作的新格局必将发生深远的影响。”甘肃省科技厅厅长张天理说,
据了解,现在金川集团公司已构成镍15万吨、铜40万吨、钴1万吨、化工产品252万吨的出产才能。2010年,供应收入将打破900亿元。 (miki)