硫化镍阳极和始极片阴极的制备
2019-01-25 15:50:04
1、硫化镍阳极的制备 制备硫化镍阳极时,首先将高镍锍浮选产出的硫化镍二次精矿,经反射炉熔化、烧铸、缓冷等工序制成具有一定物理规格的阳极板,供电解精炼生产电镍,同时也除去大约10%的杂质。图1为二次镍精矿熔炼铸工艺流程。 1)熔铸硫化阳极的原 熔铸硫化镍阳极板的主要原料为二次镍精矿,此外还有电解残极板及熔铸返回物,其主要化学成分见表1。表1 熔铸硫化镍阳极板的原料成分(%)原料NiCuFeS二次镍精矿633.51.826阳极碎片6841.724烟尘201.43.58.4
[next]
硫化镍电解的残极率约为25%。电解时残极表面附有阳极泥及一些电解液,为防止炉内发生“放炮”事故,残极也须自然干燥。 返回物料主要为加镍精矿时产生的烟尘、浇铸包上的结壳或浇铸时产生的不合格阳极、喷溅物以及撒落在地面上的金属硫化增生扩物,从炉渣中捡出的金属物料等。 2)燃料 熔化反射炉可用烟煤、粉煤、重油、煤气和天然报导等燃料供热。由于熔化反射炉容量小,炉温度高且系间断作业,故要求燃料发热值高、水分小,这样升温速度快,易于控制和调节。金川公司镍熔铸反射炉采用重油供热,燃料率为每吨阳极板耗重油165kg。 3)熔铸生产操作 熔化反射炉的炉料有粉料和块料。块状物料有残极和经人工破碎为30~50mm的块状不合格阳极,粉状物料是经自然干燥后的二次镍精矿和烟尘,二者按一定比例配料混合后经圆盘给料机和皮带运输机加入反射炉内。原则是先加粉,后加块料。 炉料熔化在高温及微氧化性气氛下进行。炉膛温度一般为1350℃,压力控制为微负压。炉料熔化后,由于密度不同,原料夹带来的小量炉渣、泥沙等渣子浮于镍锍熔体表面,形成熔铸炉渣,需定期扒渣。熔铸炉渣约占入料物料量的6%~10%。烟尘量占入炉物料量的3%~4%。镍的直接回收率为97%左右.总回收率在98%以上。 在硫化镍阳极浇铸时,基本上维持炉内为零压。放出的硫化镍熔体,经流槽流入中间浇铸包,工人控制间断注入直线浇铸机的浇铸模中,浇铸时主要控制熔体温度、模子温度和阳极板的冷却速度。 浇铸后的阳极板在铸模中冷却至650~700℃后取出,置于保温坑内缓慢冷却,以完成βNi3S2—β′Ni3S2的相变。若保温控制不好,阳极板则发脆、易裂,影响电解生产。经48h的缓慢冷却后温度降到150~200℃,此时已完成晶型转变,方能在空气中冷却至室温。 4)硫化镍阳极析的化学反应 为了保证硫化镍阳极有良好的溶解性和阴极电镍的质量,阳极板的各成分都应控制在一定范围内。表2为硫化镍阳极板的化学成分。表2 硫化镍阳极板的化学成分(%)工 厂NiCuCoFeSZnPbⅠ工厂﹥65﹤50.8~1.0﹤1.9﹤25﹤0.004﹤0.005Ⅱ工厂65~70﹤50.61.520~220.01~0.05微量Ⅲ工厂62~653~50.6~0.82.5~3.022~230.025~0.050.03~0.05[next]
阳极板的含硫量对阳极过程有很大影响,S﹤20%时,阳极板在凝固时会析出金属相。在阳极反应中,金属相会优先溶解,产出大量含Ni很高的阳极泥;当含S﹥25%时,阳极板发脆易碎,而且阳极造酸反应严重,也不利于生产。 铜是硫化镍阳极的主要有害杂质。铜以Cu2S形态存在于阳极板中,含铜低时,对硫化镍阳极溶解速度影响很小;当含铜高于10%时,因Cu2S优先于Ni3S2溶解,对硫化镍阳极溶解和电镍质量都有极不利的影响。 阳极板板含铁低时对电解影响很小,但含铁高时会造成阳极化明显加剧,槽电压迅速上升,阳极造酸反应相应加强,严重时会引起阳极钝化。 阳极板还含有一定量的钴及微量的铅、锌等,它们由于含量很少,对阳极溶解影响不大,主要是对溶液净化及阴极沉积物的影响。 2、始极片的制作与加工 1)种板生产 种板槽的生产目的是向生产槽提供作为初始阴极的镍始极片。种板槽除阴极为钛种板外,其电解设备和技术操作条件与成品电解槽相同。种板电解槽数量一般为生产电解槽数量的1/10。阴极,周期为12~24h,阳极周期槽电压上升幅度较大,容易造成阳极钝化,甚至造成阳极冒烟。 种板生产应考虑母板与被沉积金属的晶格参数和热膨胀系数的差异。种板槽的阴极(母板)原用3mm厚的不锈钢板,但由于在不锈钢板表面易发生“烧板”和“粘板”的麻烦,故现被 钛材料代替,因为钛材耐腐蚀性能好,热膨胀系数大,在一定的温养差条件下,始极片易从母析上脱落分离,并且使用周期长,不易发生上述不良现象,一旦发生,经处理后仍可继续使用。 为了防止爆皮、粘板现象发生,必须去掉母板表面的油污、灰尘等脏物。因此钛母板每次下槽前要用65℃发上的热水处理。对于使用了1个朋以上的母板必须进行专门的处理后方可使用。具体办法是在含400~700g/L的H2SO4溶液中浸泡0.5~1min,然后用热水冲洗干净表面即可。 为了防止析出镍包住母板周边,造成始极片难于从母板上剥离下来,必须对种板两侧边缘及底边进行包边处理。目前的办法是用刨有凹槽的木条夹底边,用橡胶条夹侧边,虽然操作简单,但作业过于频繁,且木条消耗大,有待寻求更为适宜的包边方法和包边材料。 2)始极片加工 从钛母板上剥离下来的始极片,由于沉积时间短,厚度薄,刚度差,装电解槽后易于变形,因此下槽前必须进行适当的机械加工及表面处理。 剥离始极片的工作是首先在热水槽中烫洗,除去表面粘附的溶液,剥离下来的始极片再经过对辊压纹机进行平压,然后在剪板机上被剪成880mm×860mm的规格尺寸,再用钉耳机铆上双耳。为了保证下槽后不易翘曲变形,还需经过二次压纹以提高其刚度,最后在浓HCl(32%~35%)溶液中浸泡3~5min以除去表面脏物,再用冷水冲洗后即可下槽 。
金始极片的制造
2019-03-05 12:01:05
金始极片,均选用电解法制取,俗称电解造片。造片是在与电解金相同的或同一电解槽中进行。电解液运用上述制备的氯化金电解液,槽内装入粗金阳极板和纯银阴极板(种板)。
电解造片通常在较低的电流密度和温度下进行。选用的技能条件为:面积电流210~250A∕m2,槽电压0.35~0.4V,并堆叠以5~7V的沟通电(直沟通比1∶3),液温35~50℃,同极距80~100mm。
先将种板擦拭洁净,并经烘热至30~40℃后打上一层极薄而均匀的白腊。在种板边际2~3mm处,一般通过沾蜡处理或用其他材料进行粘边或夹边,以利于始极片的剥离。
通电后,阳极不断溶解,并于阴极种板上分出纯金。经4~5h,即能在种板双面分出厚0.1~0.15mm、重约0.1kg的金片。种板出槽后,再参加已备好的另一批种板持续造片。取出的种板,用水洗净表面粘附的电解液(洗水集中于废液贮槽中)。经凉干后,剥下始极片,先于稀中浸煮3~4h后用水洗净。再于稀硝酸顶用蒸汽(或外加热)浸煮4h左右,取出用水刷洗净并烘(或凉)干,然后剪切成规则尺度的始极片和耳片,经钉耳、拍平、供金电解用。
钴镍
2017-06-06 17:50:12
钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工
行业
、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。 一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价
金属
转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他
金属
,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价
金属
的综合回收利用。 二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。 三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。 四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍
金属
广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等
行业
,钴镍粉体是现代工业不可缺少的
金属
材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍
金属
,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。
铝镍钴
2017-06-06 17:50:12
铝镍钴铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量
金属
元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 铝镍钴磁铁,铝镍钴永磁是由
金属
铝,镍,钴,铁和其他微量
金属
元素构成的一种合金. 铸造工艺 其
金属
成份的构成不同,磁性能也不同,从而用途也不同.铝镍钴永磁有两种不同的生产工艺:铸造和烧结.铸造工艺可以加工生产成不同的尺寸和形状,与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯产品尺寸公差小,铸造可加工性好.在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达500摄氏度以上.铝镍钴磁能积高,温度稳定性好,
价格
与钕铁硼差不多,缺点是矫顽力极低,容易发生退磁,磁路设计不能采用薄片状磁体,且需要先装配再整体充磁。铝镍钴的用途十分广泛,在工业中有着很重要的作用。
铝镍钴
2017-06-06 17:49:59
铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。铝镍钴磁铁含有铝、镍、钴、铜、铁、钛等材料。按照加工工艺的不同,铝镍钴磁铁又分为铸造型铝镍钴磁铁和烧结型铝镍钴磁铁两类。铸造型的磁性能较高,烧结型的工艺简单,可直接压制成所需的产品。铝镍钴磁铁的优点是其温度系数小,因而受温度变化而引起的磁性能变化很小。铝镍钴磁铁最高工作温度可达450℃—650℃。故目前仍被广泛应用于仪器、仪表这类要求温度稳定性高的产品中。在开路的工作环境下,铝镍钴磁体的“长径比”(即长度与直径之比L/D)至少应为4:1。铝镍钴永磁材料的抗锈蚀能力较强,不需进行表面涂层处理。铸造铝镍钴磁性能表牌号剩磁Br矫顽力Hcb最大磁能积( BH )max最大工作温度美国标准IEC<span style="fo
钴镍催化剂和钴铝催化剂的回收利用
2019-01-21 18:04:55
一、钴镍催化剂的回收利用(碱浸法)
在含Al2O3的废脱硫催化剂中加入Na2CO3。Na2CO3∕Al2O3的摩尔比为1.5~4,煅烧到1150℃以上,把煅烧后的产物浸到热水中搅拌进≥0.1mol∕L的H2SO4中,从而脱出镍和钴来。
二、钴铝催化剂的回收利用(碱熔融法)
将61%的含Co3O4∕AI3O3废催化剂添加3.5%的纯碱,在1100℃下熔融,将熔块破碎后在80~90℃下用10倍的水浸取1h,过滤后滤饼中含95.8% Co3O4,干燥后还原则成金属钴,钴的收率在95%以上,滤液中含钴0.6mg。
铝镍钴磁铁
2017-06-06 17:50:12
铝镍钴磁铁铝镍钴磁铁也叫做磁钢磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强
金属
,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金。磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强
金属
,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金(Any of several hard, strong alloys of iron, aluminum, nickel, cobalt and sometimes copper, niobium, or tantalum, used to make strong permanent magnets.)。其
金属
成分的构成不同,磁性能不同,从而用途也不同,主要用于各种传感器、仪表、电子、机电、医疗、教学、汽车、航空、军事技术等领域。铝镍钴磁铁是最古老的一种磁钢, 被人们称为天然磁体, 虽然他最古老, 但他出色的对高温的适应性, 使其至今仍是最重要的磁钢之一.铝镍钴可以在500℃以上的高温下正常工作, 这是他最大的特点, 另外抗腐蚀性能也比其他的磁体强。铝镍钴磁铁的应用也越来越广泛,从高科技产品到最简单的包装磁,目前应用最为广泛的还是钕铁硼强磁和铁氧体磁铁。 而矫顽力的提高,主要得益于对其本质的认识和高磁晶各向异性化合物的发现,以及制备技术的进步。二十世纪初,人们主要使用碳钢、钨钢、铬钢和钴钢作永磁材料。二十世纪三十年代末,AlNiCo永磁材料开发成功,才使永磁材料的大规模应用成为可能。五十年代,钡铁氧体的出现,既降低了永磁体成本,又将永磁材料的应用范围拓宽到高频领域。到六十年代,稀土钴永磁的出现,则为永磁体的应用开辟了一个新时代。1967年,美国Dayton大学的Strnat等,用粉末粘结法成功地制成SmCo5永磁体,标志着稀土永磁时代的到来。迄今为止,稀十永磁已经历第一代SmCo5,第二代沉淀硬化型Sm2Co17,发展到第三代Nd-Fe-B永磁材料。此外,在历史上被用作永磁材料的还有Cu-Ni-Fe、Fe-Co-Mo、Fe-Co-V、MnBi、A1MnC合金等。这些合金由于性能不高、成本不低,在大多数场合已很少采用。而AlNiCo、FeCrCo、PtCo等合金在一些特殊场合还得到应用。目前Ba、Sr铁氧体仍然是用量最大的永磁材料,但其许多应用正在逐渐被Nd-Fe-B类材料取代。并且,当前稀土类永磁材料的产值已大大超过铁氧体永磁材料,稀土永磁材料的生产已发展成一大
产业
。
钨极
2017-06-06 17:50:12
钨极是什么?钨极氩弧焊时常被称为TIG焊,是一种在非消耗性电极和工作物之间产生热量的电弧焊接方式;电极棒、溶池、电弧和工作物临近受热区域都是由气体状态的保护隔绝大气混入,此保护是由气体或混合气体流供应,通常是惰性气体,必须是能提供全保护,因为甚至很微量的空气混入也会污染焊道。钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,起方法构成如图所示。焊接时氩气从焊枪的喷嘴中连续喷出,在电弧周围形成保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝。焊接过程中根据工件的具体要求可以加或者不加填充焊丝。钨极氩弧焊,以人工或自动操作都适宜,且能用于持续焊接、间续焊接(有时称为‘跳焊’)和点焊,因为其电极棒是非消耗性的,故可不需加入熔填
金属
而仅熔合母材
金属
做焊接,然而对于个别的接头,依其需要也许需使用熔填
金属
。钨极氩弧焊是一种全姿势位置焊接方式,且特别适于薄板的焊接—经常可薄至0.005英寸。这种焊接方法由于电弧是在氩气中进行燃烧,因此具有以下优缺点: 1) 氩气具有极好的保护作用,能有效的隔绝周围空气;它本身既不与
金属
起化学反应,也不溶于
金属
,使得焊接过程中的冶金反应简单易控制,因此获得较高质量的焊缝提供良好条件。 2)钨极电弧非常稳定,即使在很小电流情况下(<10A)仍可稳定燃烧,特别适用于薄板材料焊接。 3)热源和填充焊丝可分别控制,因而热输入容易调整所以这种焊接方法可进行全方位焊接,也是实现单面焊双面成型的理想方法。 4)由于填充焊丝不通过电流,故不产生飞溅,焊缝成型美观。 5)交流氩弧焊在焊接过程中能够自动清除焊件表面的氧化膜作用,因此,可成功地焊接一些化学活泼性强的
有色金属
,如铝、镁及合金。 6)钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。因此,熔敷速度小、熔深浅、生产率低。 7)采用氩气较贵,熔敷率低,且氩弧焊机有较复杂,和其他焊接方法(如焊条电弧焊、埋弧焊、CO2&shy;气体保护焊)比较,生产成本较高。8)氩弧周围受气流影响较大,不易室外工作。钨极氩弧焊的特性使其能使用于大多数的
金属
和合金的焊接,可用钨极氩弧焊焊接的
金属
包括碳钢、合金钢、不锈钢、耐热合金、难熔
金属
、铝合金、镁合金、铍合金、铜合金、镍合金、钛合金和锆合金等等。铅和锌很难用钨极氩弧焊方式焊接,这些
金属
的低熔点使焊接控制极端的困难,锌在1663F汽化,而此温度仍比电弧温度低很多,且由于锌的挥发而使焊道不良,表面镀铅、锡、锌、镉或铝的钢和其它在较高温度熔化的
金属
,可用电弧焊接,但需特殊的程序。在镀层的
金属
中的焊道由于“交互合金”的结果。很可能具有低的机械性质为防止在镀层的
金属
焊接中产生交互合金作用,必须将要焊接的区域的表面镀层移除,焊接后在修补。更多有关钨极请详见于上海
有色
网
镍电解净液钴渣提钴
2019-03-05 09:04:34
镍电解时,阳极中的镍与钴一同电化学溶解进入溶液,在阳极液净化除杂质时,溶液中钴以Co(OH)3方式沉积进入钴渣。钴渣含钴6%-7%,可用来出产氧化钴,也可产出金属钴。所用工艺由钴渣溶解、浸出液净化除杂质、镍钴别离以及制取氧化钴(或金属钴)四部分组成(见图)。 在65-75℃温度下,在硫酸溶液中,参加Na2SO3将Co3+还原成CO2+并溶解: 2Co(OH)3+Na2SO3+2H2SO4====2CoSO4+Na2SO4+5H2O 溶出液在95℃,参加NaClO3将Fe2+氧化水解沉积除掉。除铁液进萃取槽,用P204萃取剂除铜和剩下铁,除铜后液再以P507别离镍钴,含钴有机相用溶液反萃取得到含Co75g/L左右的COCl2溶液。此溶液既可以在不溶阳极电解槽中隔阂电解出产金属镍;也可以用草酸沉钴然后煅烧出产氧化钴粉。电解的技能条件是:电流密度400A/m2,槽电压3-4V,电解温度60℃,电流效率94%。
湿法炼镍(钴)-钴溶液的处理
2019-01-24 11:10:25
应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。
美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。
在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。
钴溶液的处理
硫化钴溶液是镍企业湿法冶金车间的原料。这种溶液中含(克/分米3):Co3~50(Ni含量大致在这个范围内变化)、Fe3~20、Cu0.2~0.5。再生含钴废料也溶解于硫酸溶液。过滤后的溶液中,各种金属的浓度同上述浓度相似,取决于原料中的金属含量。
硫酸溶液净除杂后,以氢氧化物形式析出。
某些氢氧化物生成的pH平衡值列于表1。
表1 不同作者的资料提供的金属氢氧化物生成的pH平衡值化合物布里顿费阿尔科夫赫菲茨和罗景扬Co(OH)3
Fe(OH)3
Cu(OH)2
Co(OH)2
Fe(OH)2
Ni(OH)2—
2.0
5.3
6.8
5.5
6.7—
1.63
4.4
6.78
5.62
6.70.9
2.6
4.5
6.4
6.7
7.1
根据表1的资料,高价金属从溶液中析出比低价金属简单得多。这一原理在湿法冶金中得到广泛应用。氧化剂可以是固态、液态和气态。重要的是,氧化剂的氧化电位要比溶液中的金属离子的氧化还原电位高。氧化还原电位可按下式计算:φMe3+/Me2+=φ°Me3+/Me2++RTlnaMe3+(1)NfaMe2+
式中,aMe3+----氧化离子的活度;aMe2+----还原离子的活度;φ°Me3+/Me2+----25℃温度下的标准电极电位。
表2 氧化还原反应的电极电位反应参加反应的离子活度介质电位(伏)Co3+e←→Co2+Aco3+=aco2+=1—+1.84NiO2+4H++2e←→Ni2++2H2O——+1.77HClO+H++e←→Cl-+H2O—酸性+1.491/2 Cl2←→Cl-acl-=1—+1.35O2+4H++4e←→H2OaH+=1—+1.23ClO-+H2O+2e←→Cl-+2OH-Aclo-=1,aoH-=1碱性+0.94Fe3++e←→Fe2+aFe3+=3.8×10-8酸性+0.771Fe2++3OH+←→Fe(OH)3aFe2+=4×10-4pH=2.5+0.44
某些氧化还原反应的电极电位列于表2。从表2的资料可以看出,氧的作用是可以把Fe2+氧化为为Fe3+。为了使钴、镍、锰变为高化合价,需要采用更强的氧化剂,如气态氯或次氯酸盐等,介质应是酸性的。
氢氧化物的水解分步沉淀,反应如下:
2FeSO4+3Na2CO3+6H2O=2Fe(OH)3+2NaCl+3Na2CO3+2Na2CO3 (2)
此反应在pH=4.0~4.5(溶度积Fe(OH)2=4×10-38)时,随实际生成铁的不溶氢氧化物同时进行:
2CuSO4+2Na2CO3+2H2O=CuCO3·Cu(OH)2+Na2SO4+H2CO3 (3)
铜的碱式碳酸盐沉淀的pH值为5.5。
2CoSO4+Cl2+3Na2CO3+6H2O=2Co(OH)3+2NaCl+2Na2SO4+3H2CO3 (4)
pH沉淀=3.0~3.5,溶度积Co(OH)3=2.5×10-43
2MnSO4+2Cl2+4Na2CO3+4H2O=2Mn(OH)4+2Na2SO4+4NaCl+4CO2 (5)
Mn(OH)4r pH沉淀=2.5。锰是最难排除的杂质。
为了正确评价从溶液中分步除杂,不仅需要有热力学数据,而且还要了解生成氢氧化物的动力学。
沉淀可在帕秋克浸出槽内进行(配有压缩空气搅拌)或在带有机械搅拌的装置内进行,用孔状过滤器进行固一液分离。
中国镍钴消费现状
2019-01-03 10:44:18
2004 年中国镍消费量突破 14 万吨,见表 1。近几年镍的消费量变化情况见图1。表1 2004年中国的镍消费量(吨)图1 1998年~2004年中国镍的消费量
2005年,中国镍的消费量预计达到17万吨。在中国镍消费结构中,不锈钢占51.3%,电池占8.4%,电镀占26%,有色合金占8.5%,其他占5.8%。而根据 Barclay的数据,在国际市场上,不锈钢占镍消费量约为 65%,有色合金占12%,电镀占8%,化学品和其他5%,其他占10%。中国及世界镍的消费结构见图2。图2 中国及世界(右)镍的消费结构
中国镍消费结构与世界镍消费结构存在差异的主要原因是中国制造业耗镍量高于世界其他国家和地区,在未来几年,这种差异会仍然存在。
1998 年至 2003 年中国钴消费量的年均增长速度约为 20.7%。近年中国电子产业的迅猛发展,带动了钴的消费量的增加,2004年中国钴的消费量接近9000t,预计2005年钴的消费量接近10000t。中国钴的消费结构见图3。图3 中国钴的消费结构
镍钴提取冶金概况
2019-02-21 15:27:24
现在镍提取冶金的工业进程,以火法和湿法精粹进程相结合的工艺占干流。1996年国际镍产品的结构示于表1,其间只要和镍铁合金是完全由火法冶金出产的。
表1 1996年国际镍产品结构产品名称阴极镍镍块通用镍(粗镍)镍铁合金算计产值/万t38.510.67.3102793.5份额/%41.2911.347.8110.6928.88100.00
在镍的资源利用上,现在以硫化矿为主,约占55%。镍铁合金基本上来自氧化矿的加工。
1996年国际产钴2.8万t,从镍铜体系中提钴占了很大份额,其次是从钴硫精矿、砷钴矿和氧化矿。因为钴大都伴生在其他矿藏中,档次低,回收率一般都较低,尤其是选矿回收率。
湿法冶金是镍钴提取冶金的重要组成部分,一般包含三个进程:浸取进程、净化和分离地程、产品进程。
湿法炼镍(钴)-制取硫酸镍
2019-01-24 11:10:25
应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。
美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。 在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。
制取硫酸镍
在送来湿法冶金处理的溶液中,镍含量比估含量高出几倍。镍既可以从原生原料进入溶液,也可以从再生原料进入溶液。在钴沉淀后,它在溶液中的浓度为20~50克/分米3。为了在硫酸盐中以NiSO4·7H2O形式提出镍,这个浓度是不够的,因此先要用苏打(Na2CO3)从硫酸盐中沉淀镍。沉淀物清洗过滤后溶于浓硫酸中。这样可获得几乎是饱和的硫酸盐溶液,内含150~170克/分米3的镍。硫酸盐溶液用镍粉置换脱铜:
Cu2++Ni=Ni2++Cu (1)
用所谓黑色氢氧化物理学----Ni(OH)3净化铁和钴。
Fe2+(Co)+Ni(OH)3=Fe(Co)(OH)3+Ni2+ (2)
溶液要净化到其中含镍10克/分米3、含钴不大于0.10~0.15克/分米3、含铁不大于0.002克/分米3。
将含160克/分米3镍、酸化至4~5克/分米3H2SO4的净化溶液送入真空结晶器内,在0.4兆帕压力、210~240℃的温度下,用蒸气蒸发。蒸发至含镍为195克/分米3时,符合比重1.64~1.65克/分米3。
NiSO4·7H2O的结晶不断地在真空结晶不断地在真空结晶槽内进行。所得矿浆送入离心机使晶体同母液分离。含120克/分米3镍的母液再次除去铁和铜并重新使其蒸发,当氯和镁的杂质积存起来时,送去生产黑色氢氧化物。硫酸镍经脱水后含2~3%的水分。将其在80℃的温度下通入蒸气干燥,符合技术规范的商品硫酸盐供应用户。
紫铜止水片
2017-06-06 17:50:11
紫铜止水片是由紫铜生产的众多产品中的一种。要了解紫铜止水带,首先来了解下紫铜:紫铜就是铜单质,因其颜色为紫红色而得名。各种性质见铜。紫铜就是工业纯铜,其熔点为1083℃,无同素异构转变,相对密度为8.9,为镁的五倍。比普通钢还重约15%。其具有玫瑰红色,表面形成氧化膜后呈紫色,故一般称为紫铜。它是含有一定氧的铜,因而又称含氧铜。紫铜 因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能,因此也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。CJ系列紫铜止水片,其主要特点有:抗腐蚀能力强;强度高,能承受较大变形;外观轮廓清晰,无裂纹、压折、凹坑。适用于各类高级水工建筑的基础止水、坝身止水、坝顶止水、廊道止水,以及坝体内孔洞止水、厂房止水、溢流面下横缝止水等,是防止疏漏最理想的产品。想要了解更多关于紫铜止水片的信息,请继续浏览上海
有色
网。
钨极氩弧焊
2017-06-06 17:50:12
什么是钨极氩弧焊?钨极氩弧焊时常被称为TIG焊,是一种在非消耗性电极和工作物之间产生热量的电弧焊接方式;电极棒、溶池、电弧和工作物临近受热区域都是由气体状态的保护隔绝大气混入,此保护是由气体或混合气体流供应,通常是惰性气体,必须是能提供全保护,因为甚至很微量的空气混入也会污染焊道。钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,起方法构成如图所示。焊接时氩气从焊枪的喷嘴中连续喷出,在电弧周围形成保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝。焊接过程中根据工件的具体要求可以加或者不加填充焊丝。钨极氩弧焊的适用性: 钨极氩弧焊,以人工或自动操作都适宜,且能用于持续焊接、间续焊接(有时称为‘跳焊’)和点焊,因为其电极棒是非消耗性的,故可不需加入熔填
金属
而仅熔合母材
金属
做焊接,然而对于个别的接头,依其需要也许需使用熔填
金属
。 钨极氩弧焊是一种全姿势位置焊接方式,且特别适于薄板的焊接—经常可薄至0.005英寸。焊接的
金属
;钨极氩弧焊的特性使其能使用于大多数的
金属
和合金的焊接,可用钨极氩弧焊焊接的
金属
包括碳钢、合金钢、不锈钢、耐热合金、难熔
金属
、铝合金、镁合金、铍合金、铜合金、镍合金、钛合金和锆合金等等。铅和锌很难用钨极氩弧焊方式焊接,这些
金属
的低熔点使焊接控制极端的困难,锌在1663F汽化,而此温度仍比电弧温度低很多,且由于锌的挥发而使焊道不良,表面镀铅、锡、锌、镉或铝的钢和其它在较高温度熔化的
金属
,可用电弧焊接,但需特殊的程序。在镀层的
金属
中的焊道由于“交互合金”的结果。很可能具有低的机械性质为防止在镀层的
金属
焊接中产生交互合金作用,必须将要焊接的区域的表面镀层移除,焊接后在修补。钨极氩弧焊的特点:这种焊接方法由于电弧是在氩气中进行燃烧,因此具有以下优缺点: 1) 氩气具有极好的保护作用,能有效的隔绝周围空气;它本身既不与
金属
起化学反应,也不溶于
金属
,使得焊接过程中的冶金反应简单易控制,因此获得较高质量的焊缝提供良好条件。 2)钨极电弧非常稳定,即使在很小电流情况下(<10A)仍可稳定燃烧,特别适用于薄板材料焊接。 3)热源和填充焊丝可分别控制,因而热输入容易调整所以这种焊接方法可进行全方位焊接,也是实现单面焊双面成型的理想方法。 4)由于填充焊丝不通过电流,故不产生飞溅,焊缝成型美观。 5)交流氩弧焊在焊接过程中能够自动清除焊件表面的氧化膜作用,因此,可成功地焊接一些化学活泼性强的
有色金属
,如铝、镁及合金。 6)钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。因此,熔敷速度小、熔深浅、生产率低。 7)采用氩气较贵,熔敷率低,且氩弧焊机有较复杂,和其他焊接方法(如焊条电弧焊、埋弧焊、CO2&shy;气体保护焊)比较,生产成本较高。 8)氩弧周围受气流影响较大,不易室外工作。钨极氩弧焊能应用于广泛厚度范围的
金属
焊接,此方式非常适合于焊接3mm厚以下物件,因为其电弧产生强烈的、集中热量,而产生高焊接速度,使用熔填
金属
能做多道焊接。虽然6.25mm以上的厚度的母材
金属
,通常使用其他焊接方式。但是,需高品质的厚焊件有使用钨极氩弧焊做多层焊接。例如在8m直径的火箭发动器,15mm厚的外壳制造中,以钨极氩弧焊使用填充
金属
做纵向和圆周多道焊接,虽然对此厚的
金属
而言,此焊接方式较慢,但因为焊道的高品质要求,故而使用TIG焊接。钨极氩弧焊可成功的焊接多种“箔厚度”的合金,薄板焊接需要精密的装置固定,对于箔厚度的
金属
。需使用机械或自动焊接,“高温电离子电弧焊接”经常被记为是钨极氩弧焊的一种变化,对于焊接薄板具有更多的优点。
从含钴磁钢渣中制取镍钴制品
2019-02-11 14:05:44
一、概述
金属磁性材料广泛应用于国防和国民经济各部门,如雷达、电表、电机、自动化外表及医疗器械等,特别是含有镍、钴14%~34%合金的永磁材料。冶炼、浇涛、加工过程中产出的废渣、废品和磨屑是很好的提钴、镍的质料。处理这些质料与处理原矿比较,冶炼办法简略,加工成本低,金属收回率高。
现在处理含钴、镍磁钢废料的工艺如下:
(一)硫酸溶解、参加硝酸以进步溶解速度,溶后液用黄铁矾法除铁,深化除铝等杂质、或次法沉钴,完成钴镍别离。能够出产相应的镍、钴氧化物、碳酸盐,或深加工成相应的镍钴盐类。磁钢渣处理工艺流程图见图1。
图1 磁钢渣处理工艺流程
(二)选用萃取法替代沉钴工艺,如P204-Na盐萃取除杂质,P204-Na盐萃取别离镍、钴。亦可选用脂肪酸萃取除铁、铝、P204-Na盐萃取别离工艺。因为萃取工艺有价金属收回率高,劳动条件好,产品质量优秀,操作技能条件易把握等特色,越来越得到出产供应商注重。
P204-Na盐萃取除杂质,P204-Na萃取别离镍、钴以及制取相应的镍钴制品的工艺类同于可伐合金处理工艺,请拜见本网站的(从废可伐合金中制取钴镍制品)。
镍钴含量低的废磁钢渣可与镍磷铁一重用火法冶炼,经吹炼制成镍阳极板后再电解精粹,请拜见本网站的(用镍磷铁出产电解镍)。
二、质料
(一)五号磁钢废料、坩埚皮等成分如下(%):
CoNiFeCu其它~201350215
(二)磁钢磨屑成分如下(%)
CoNiFeCu15~179~1625~502~3SiO2CaOAl2O3H2O40.57~821
三、技能操作条件
(一)酸溶
磁钢渣磨屑含有砂轮碎屑及少数油污,处理前须先行除油,经过磁选机去掉磨屑中非磁成分。
1、除油
将磨屑置于炉中直火加热,直到无油烟冒出即为合格。
温度 300℃± 时刻1~2h
2、磁选
磁钢磨屑为钴、镍、铁等永磁体细末,具有磁性,其间搀杂着少数砂轮磨屑碳化硅和机械搀杂的其它非磁性物质。磁选机的磁场强度为95493A/m,依据状况可磁选1~2次,选后磁性物质组成实例如下(%):
CoNiFeCuAl2O3SiO22012452153
磁选后磁性部分钴、镍含量与磁钢品种有关。
3、酸浸
液固比,一般操控溶后液金属离子浓度总和为120g/L,液固比取(8~10)∶1。
配酸,硫酸、用量为理论量的1.2倍。
温度,反应是放热反应,温度操控在90~95℃。
硝酸参加量,在酸溶温度下,硝酸分解成Nox(即黄烟),硝酸参加量和参加速度一般取决于物料性质及硝酸收回回来溶解的量,一般每吨磁钢废料参加95%浓硝酸100~200kg。
反应时刻,视磁钢废料粒度及硝酸用量为4~8h。
终占pH值,1.0~1.5。
氮氧化物吸收一般办法如下:
(1)水吸收,空气氧化,Nox气体经过多段吸收,操作妥当,烟囟排气看不见黄色。吸收后稀硝酸回来溶解。既消除环境污染又节省了硝酸。
(2)用稀碱液吸收,生成亚,可减轻Nox损害,但吸收后液不能回来重用。
一般酸溶时镍、钴收回率右到达95%~98%。
(二)黄钠铁矾法除铁
用量,为含铁量的0.35~0.4倍。
氧化温度 85℃
氧化时刻 1h,坚持2h。
沉矾操控温度 ≥95℃
沉矾pH值 1.5~2
沉矾时刻 3~4h
中和剂Na2CO3浓度 7%~10%
矾渣过滤速度 0.5m3/(m2·h)
热水洗刷次数 2次
热水∶矾渣 2L∶1kg
钴镍收回率 97%~98%
(三)归纳除杂质
操控pH值 4~5。
温度 70~80℃
Na2CO3中和剂浓度 80g/L
过滤速度0.3~0.5m3/(m2·h)
(四)镍钴制品出产
1、沉积氢氧化钴
选用次法氧化沉积钴,镍别离,次沉钴条件如下:
酸度 开端 pH=1.5~2.5
过程中pH=2.0
结尾pH=2~2.5
温度,50~60℃,结尾进步至60~70℃(驱氯)
时刻 4~6h
产品 Co(OH)3,经过滤、洗刷后Co/Ni≥7∶1,沉钴后液含Co,0.4~0.5g/L。
钴渣枯燥后其成分实例如下(%):
CoNiFeCuAl45≤4.5≤0.5≤1≤1
2、沉积碱式碳酸镍
沉钴后液用Na2CO3直接沉积碱式碳酸镍。
温度,85℃
结尾pH值,8~9
Na2CO3浓度150g/L
时刻 4h
趁热过滤,热水洗刷2次,洗水∶碱式碳酸镍2L∶1kg
枯燥后碱式碳酸镍成分实例如下(%)
NiCoFeAlCu45≤1≤0.1≤1≤1
四、产品
(一)粗氢氧化钴
实例,Co 45% Ni≤4.5%
(二)粗氢氧化镍
实例,Ni 45% Co≤1%
五、技能经济指标
(一)收回率,Ni 86.35% Co 85.17%
(二)首要材料耗费(以处理每吨磁钢渣计)
H2SO4(93%)1t
HCL(35%)1.5t
HNO3(65%)0.25t
Na2CO3 0.32t
NaOH 0.5t
NaClO3 0.1t
0.1t
(三)水、电、汽耗费
水 200t
电 2000kW·h
蒸气 70t
菲律宾矿业(镍钴)资源概况
2018-12-11 14:37:18
(一)镍矿 1、储量及分布 截止至1996年,菲律宾镍矿总储量达到11亿公吨。其中,已探明储量10亿吨,占总储量的93.72%。平均品质范围在0.23%-2.47%。可期储量5630万吨,占5.17%,品质范围在0.36%-1.24%。还有1210万吨为可能储量,品质范围在0.23%-2.27%(注:总储量为探明的储量、可期储量和可能储量之和)。按地质分类,菲镍矿多为红土带(占99%)。由于大部分镍矿处在浅土层,易于开采且成本低。 从地区分布看,集中在Davao Oriental和Palawan,储量分别为4.757亿吨(占总储量43.69%)和4.071亿吨(占总储量37.38%)。其它有较大规模镍矿藏的省还有Surigao del Norte和Zambales。 2、产量 1998年镍矿生产创近10年新高,产量约96万吨,产值7.93亿比索;1993年为低谷,产量只有34.68万吨,产值3.5亿比索。 由于不利天气因素,1990、1991两年镍矿生产的产量、产值出现下降。虽然1992年镍矿产量增加了6.6%,但随后的一年生产非常消极,产量和产值分别下降了41.6%和41.14%,这主要是因为Taganito矿业公司生产暂时停止,以及Rio tuba镍矿公司、Hinatuan矿业公司产量不足。从1994年至1998年,生产开始恢复,并保持了增长势头。1995年增长最快,产量和产值分别增长50.88%和59.00%,主要是Taganito矿业公司、Rio tuba镍矿公司的生产有所改善。 www.metal114.cn 3、出口 镍矿出口在1995年取得最快的增长,出口数量达到65.69万吨,较1994年增长45.07%。当年出口收入达到6.92亿比索,即2630万美元。这主要是由于对日本出口的快速增长。 4、价格 1994年镍矿价格最低,平均价格为795比索/吨。1989年镍矿价格最高,平均价格为1420比索,较1988年的917比索增长54.85%。 5、主要生产商 从1986年Nonoc镍矿公司停产以来,只有Rio Tuba镍矿公司,Hinatuan矿业公司和Taganito矿业公司三家镍矿生产商维持到现在。去年,Cagdianao矿业公司镍矿正式投产。此外,Philnico工业公司在Surigao del Norte省,Hinatuan在Manicani岛的镍矿项目正在筹划中。 6、开采方法、产量和加工技术 这些公司采用露天开采,日产量为1200吨。Nonoc镍矿精炼厂曾是菲律宾唯一的镍矿精炼厂,采用铵基碳酸盐浸出法,用于处理350万吨含1.2%镍、0.12%钴和37%铁的红土层和蛇纹石矿石。现在正在引进一种低能耗,低污染和高产出的新技术,压力酸浸出法。 (二)钴矿 据菲矿产和地质科学局的官员介绍,钴矿是一种伴生矿,只有1986年以前数据可供参考。在1979年至1986年的八年间,菲钴矿产量总计5400吨。
镍回收价格
2017-06-06 17:49:51
镍回收价格在近年来我国对于镍的需求逐日增加的前提下前景还是相当乐观的。 市场交易稳定,电镀级货源升水为70~75美分/磅,熔炼级货源升水为50~55美分/磅。业内人士认为已然接近谷底,2月份买盘增多将使得升水调高。目前附加费是以去年12月份的价格为基价的,买家可以省下17美分/磅。不锈钢行业买家正在耐心等待,买家在2月份重返市场采购的可能性更大,估计那时供应将很充裕,足以满足需求,LME仓库库存数量同比多出数倍。由于预期不锈钢行业买家将利用目前附加费较低的有利时机重返市场采购,预计2月份市场升水趋于上涨。日本市场:2008年进口已切割镍升水大多确定在CIF日本港口25~29美分/磅,以LME现货价为基价。这一价格区间较去年升水有所缩窄,电池和钢铁行业的买家出于对供应的担心支付的升水高出30美分/磅,也有部分买家出的升水不足25美分/磅。部分卖家报出的升水高于30美分/磅,但是买家在得知2007年的升水低出很多的情况之后就不愿意出高价了。也有的卖家2007年成交的升水较低,今年就想出个高价。大多数人认为今年上半年日本市场需求将较为平淡,因为日本不锈钢生产企业自去年7月份以来压缩了产量。日本市场镍供应充裕,但是日本之外的其他地区供应紧张,海外买家出的升水较高。一位西方国家生产商与日本超级合金制造商成交的今年供货升水为35~39美分/磅,比去年高了2美分/磅,用于超级合金的已切割镍升水一般都较高。国内市场:2007年我国进口精炼镍10.5万吨,同比增长8.2%,进口镍精矿1556.3万吨,同比增长311.9%。金川集团电解镍出厂价格上调,其中电解镍(板状)出厂价为23.8万元/吨,电解镍(块状)出厂价为23.42万元/吨。金川公司将出资1550万美元购买澳大利亚FOX资源公司11%的股份。该公司将利用此笔资金开发镍矿。此前金川公司已经购买了澳大利亚ALLEGIANCE镍矿公司的部分股权,并同意出资2.13亿美元收购墨西哥最大的未开发铜锌矿。由中冶东方工程技术有限公司设计的金川公司5000吨镍及镍合金板带材生产线通过初步设计审查。 要想了解镍回收价格及相关行情。快上有色网让你对镍价行情了如指掌。
铜钴镍分离工艺实例
2019-01-21 18:04:37
处理硫化铜镍矿,一般采用选矿、熔炼和吹炼获得高冰镍,然后再用浮选法使铜镍分离,铜、镍精矿再分别送冶炼产出金属铜和金属镍,在冶炼过程中综合回收钴和铂族元素,某铜镍硫化矿的原则工艺流程如下:详见流程图:
品位较高的铜镍矿可以直接送去冶炼获得高冰镍,只有贫的铜镍矿才进行选矿。浮选获得的铜镍混合精矿经过冶炼得出的高冰镍,其分离方法有熔炼法、水冶法和浮选法,而浮选法是较经济且有效的方法之一,我国某铜镍矿系采用浮选法分离高冰镍。该厂的高冰镍的物相组成是硫化镍(Ni3S2)、硫化铜〔(Cu2S2)2FeS+Cu2S〕、合金(Cu—Ni—Fe)、金属铜(Cu)以及少量的磁铁矿(Fe3O4)和残渣。其中硫化镍和硫化铜的含量占90%以上。因此,铜镍分离的关键是硫化镍和硫化铜的分离。高冰镍经磨碎后,铜镍硫化物的粒子互相解离,在强碱性溶液中(PH12~12.5),加入丁黄药进行浮选。此时硫化镍被抑制,硫化铜上浮,达到分离的目的。这一新工艺成功的被应用,使我国铜镍分离技术达到了国际先进水平。
从低品位氧化锰矿中综合回收镍钴
2019-02-21 10:13:28
在电解金属锰的出产中,质料锰矿所含镍钴对电解锰的质量影响很大,是电解锰出产过程有必要脱除的有害元素。而另一方面,跟着不锈钢及电池工业的展开,对镍钴的需求在日积月累。2000年以来,镍钴价一路攀升,镍价曾一度超越18万元/t,钴价在50万元/t以上。2005年钴镍报价有所下降,但进入2006年后全球不锈钢商场开端转暖,欧洲、美国和亚洲的不锈钢厂纷繁调高不锈钢产品的出厂价,导致镍价再度上升并居高不下。我国特钢协会不锈钢分会的数据显现,因为我国太钢、宝钢、酒钢和张家港不锈钢冶炼项目的扩建和新建,估计2007年我国不锈钢粗钢产量将添加150万t,因而国内对镍的需求也会添加。
我国锰资源总量占国际的第4位,但93%的储量为钢铁工业尚无法直接运用的低档次锰矿。跟着钢铁工业展开对锰矿资源需求量的剧增,锰矿需求很多进口,2004年以来进口量在400万t以上。为了充分运用我国的低档次锰矿资源,我国着力展开电解锰工业,2006年我国电解锰产能到达100万t,并开端运用低档次氧化锰出产电解锰。而大多数氧化锰矿中伴生有钴镍,有的乃至含量高达0.1%以上。因而,展开从低档次锰矿中收回钴镍,不但可减缓我国镍钴产品严重的局势,一起也有利于资源的综合运用。
现在收回镍钴的办法很多,首要以湿法为主,但从低档次氧化锰矿中收回钴镍未见报导。本研讨针对广西某地低档次氧化锰矿,选用焙烧-浸出-硫化物沉积法富集其间的镍钴,获得较好作用。此法简洁方便,且本钱低价,适于工业化出产。
一、实验矿样
实验所用矿样为广西某地的低档次氧化锰矿。矿样中首要化学成分的分析成果如表1所示,可见:其间镍含量为3‰,钴含量为0.8‰。
表1 矿样首要化学成分分析成果 %二、实验办法
先选用复原焙烧的办法使氧化锰矿(首要以MnO2方法存在)复原为MnO,再用浓H2SO4在酸、矿质量比=0.55,浸出温度为60℃,液固比为5∶1条件下浸出1h,将过滤得到的滤液作为实验用质料液。
用氧化钙调理质料液的pH值,别离参加Na2S,BaS及MnS,使其间的Ni、Co构成硫化物沉积而得到富集。经过分析质料液及沉积后滤液的Ni、Co含量核算沉积率。
MnS沉积剂是用硫酸锰与反响后,将反响沉积滤出,洗刷,枯燥而制得。
实验过程中运用的均为去离子水。氧化钙、Na2S、BaS均为化学纯。质料液及沉积后滤液的Ni、Co含量选用分光光度法进行分析。
三、实验成果与评论
镍钴在必定pH值规模本身可构成氢氧化物沉积而丢失。因而,在调查用硫化物沉积镍钴之前,首要调查了pH值对镍钴构成氢氧化物丢失的影响,然后用不同的硫化物沉积剂(Na2S,BaS及MnS)来沉积锰矿浸出液中的镍钴,比较各沉积剂的沉积作用,进而断定适宜的沉积剂。
(一)pH值对镍钴构成氢氧化物丢失的影响
用氧化钙将锰矿经复原焙烧-硫酸浸出后得到的质料液调至不同的pH值,测定质料液中的剩下镍、钴含量,以断定各pH值下镍、钴的丢失量。实验成果见图1。图1 pH值对Ni,Co丢失量的影响
■-Ni;○-Co
由图1可知:在不同的pH值下,Ni、Co的丢失量不同。pH值越高,镍、钴的丢失量越大,其间钴的丢失愈加显着。一起,实验还发现,在pH值高于4时,质料液中的锰也构成丢失。这首要是因为镍、钴及锰在碱性条件生成了Ni(OH)2、Co(OH)2及Mn(OH)2沉积。因而,在用硫化物收回镍钴之前,应尽量将pH值调理在2以下的规模内,以削减钴镍及锰的丢失。
(二)硫化物沉积剂的挑选
1、Na2S对镍钴的沉积作用
用氧化钙将质料液调至不同pH值,然后参加Na2S溶液沉积钴镍(参加的Na2S的摩尔量等于钴镍的总摩尔量)。拌和沉积1h后过滤,测定滤液中的镍钴含量,核算镍钴的沉积率,得到图2所示的实验成果。图2 不同pH值下Na2S对Ni,Co的沉积率
■-Ni;○-Co
从图2成果可知:用Na2S沉积镍钴时,镍钴的沉积率与质料液的pH值有相当大的联系,酸性很强时镍钴的沉积作用很差。在pH=1~3的规模内,跟着pH值的升高,钴镍的沉积率明显添加;当pH≥4时,质料液中的钴镍简直彻底沉积。所以,以Na2S作为沉积剂沉积镍钴时,应操控pH在3~4之间为宜。可是,3.1的实验成果现已标明,pH值高于3时,钴的丢失率高于30%,镍的丢失率高于20%。此外,Na2S会向溶液中引进钠离子,关于锰质料液的运用晦气。因而,选用Na2S作为沉积剂收回钴镍是不适宜的。
2、BaS对镍钴的沉积作用
用氧化钙将质料液调至不同pH值,然后参加BaS固体沉积钴镍(力口入的BaS的摩尔量等于钴镍的总摩尔量)。拌和沉积1h后过滤,测定滤液中的镍钴含量,核算镍钴的沉积率,得到图3所示的实验成果。图3 不同pH值下BaS对Ni,Co的沉积率
■-Ni;○-Co
从图3成果可知:用BaS沉积镍钴时,沉积作用与质料液的pH值也有很大的联系。在pH=1~3的规模内,跟着pH值的升高,钴镍的沉积率明显添加;当pH值升高至3~5之间时,钴镍的沉积率均可到达90%左右。
选用硫化作为沉积剂,溶液中不会引进钠离子,但会与硫酸根构成硫酸沉积而与钴镍一起富集于沉积渣中,在后续收回钴镍的过程中还须将硫酸别离。另一方面,依据图3成果,用BaS沉积镍钴时有必要操控质料液的pH值大于4,而3.1的实验成果显现这将引起很大的钴镍及锰的丢失。因而,BaS作为收回钴镍的沉积剂同样是不适宜的。
3、MnS对镍钴的沉积作用
用氧化钙将质料液调至不同pH值,然后参加克己的MnS固体沉积钴镍(力口入的MnS摩尔量等于钴镍的总摩尔量)。拌和沉积1h后过滤,测定滤液中的镍钴含量,核算镍钴的沉积率,得到图4所示的实验成果。图4 不同pH值下MnS对Ni,Co的沉积率
■-Ni;○-Co
从图4成果可知:选用MnS沉积镍钴时,在pH值小于2的条件下,可将质料液中98%以上的钴镍沉积富集,溶液及沉积渣中均不会引进新的杂质离子或其他沉积物。一起,依据3.1的实验成果,在这样低的pH值规模内,不会构成溶液中钴镍及锰的丢失。因而,MnS是从含锰溶液中收回钴镍的较适宜的沉积剂。
四、定论
(一)用硫化物从低档次氧化锰矿经复原焙烧硫酸浸出得到的质料液中沉积富集钴镍时,质料液的初始pH值低于2有利于避免钴镍及锰构成氢氧化物沉积而丢失。
(二)别离以Na2S、BaS、MnS沉积剂沉积镍、钴,在pH值别离大于3.5、4、2时,钴镍的沉积率别离到达97%、86%、99%以上。但Na2S,BaS会在质料液或沉积渣中引进杂质,一起会因需求的溶液初始pH值较高而构成钴镍及锰的丢失,因而不适宜作为收回钴镍的沉积剂。
(三)选用MnS沉积镍钴时,在pH值小于2的条件下,可将质料液中98%以上的钴镍沉积富集,溶液及沉积渣中均不会引进新的杂质,并且不会构成溶液中钴镍及锰的丢失,因而MnS是从含锰溶液中收回钴镍的较适宜的沉积剂。
湿法冶金处理镍钴镁矿
2019-03-06 10:10:51
一、工艺流程简述
按着浸出工艺的要求对镍钴矿石进行破碎、磨细,然后进行浸出,镍、钴、铜、镁被溶解进入浸出液,杂质铁、硅基本上不被溶解仍留在渣中,经过浸出使方针金属镍、钴、铜、镁与杂质铁、硅等别离,使浸出液得到开始净化,浸出渣经洗刷,一洗液送净化,二洗液、三洗液回来洗渣。浸出液经净化除杂获净化液和净化渣,方针金属保留在溶液中,杂质入渣,经过净化,使方针金属与杂质进一步别离,浸出液纯度进一步进步。操控必定条件,往净化液中参加硫化剂,使硫酸铜转化为不溶于硫酸溶液的硫化铜入沉积固相,镍、钴、镁不构成硫化沉积仍留在沉铜母液中。往沉铜母液中参加硫化剂,可溶的镍、钴硫酸盐转化为不溶的硫化物入沉积固相,硫酸镁不与硫化剂效果,仍留在镍钴母液中。往沉积镍钴母液中加碳酸氢铵(或碳酸钠)可溶的硫酸镁与碳酸氢铵效果生成不溶的碱式碳酸镁。
简言之,首要进行酸浸出,在浸出过程中,镍、钴矿中镍、钴、镁均被溶解以二价离子状况进入浸出液。杂质铁、二氧化硅不溶或少溶留在浸出渣中,经过酸浸使镍、钴、镁与杂质铁、硅等开始别离,然后将浸出液净化除杂,使镍、钴、镁与杂质别离,纯真浸出液,往净化液中参加硫化剂,使可溶的镍、钴、硫酸盐转变为不溶解的硫化物入沉积固相,硫酸镁不与硫化剂效果,仍留在溶液中,经过硫化沉镍、钴,使镍、钴与镁别离,最终在镍、钴沉积母液中参加碳酸盐,使可溶的硫酸镁转变为不溶的碳酸镁。
选用湿法冶金(或称化学选矿)办法归纳收回镍、钴、镁,实验证实是可行的,一般选用酸浸—硫化沉镍钴—碳化沉镁工艺流程。 二、浸出基本原理
浸出基本原理根据镍、钴、镁硅酸盐中镍、钴、镁能溶解于酸溶液中,浸出首要化学反应为:
H2(Ni.Mg)SiO4·H2O+H2SO4=(Ni.Mg)SO4+H2SiO3+H2O
(Mg.Fe)3[Si2O5](OH)4+3H2SO4=3(Mg.Fe)SO4+2H2SiO3+3H2O
1.硫化沉镍钴基本原理
硫化沉镍、钴的基本原理根据可溶镍钴硫酸盐或盐与硫化剂效果生成不溶的硫化物入沉积固相,首要化学反应为:
NiSO4+Na2S=NiS+Na2SO4
NiCl2+Na2S=NiCl2+2NaCl
CoSO4+Na2S=CoS+Na2SO4
CoCl+Na2S=CoS+2NaCl
2.碳化沉镁的基本原理
碳化沉镁的基本原理根据镁硫酸盐与碳酸盐效果,生成不溶的碳酸镁入沉积固相,首要化学反应为:
MgSO4+Na2CO3=MgCO3+Na2SO4
MgCl2+Na2CO3=MgCO3+2NaCl
3.浸出液的净化
浸出液的净化选用氧化中和水免除杂或许黄钾铁矾法除杂均能到达除杂要求,但中和渣中镍钴含量较黄钾铁矾渣高,镍钴在渣中丢失较黄钾铁矾法高。浸出液中含铁较低时选用氧化中和水解法除杂,浸出液中含铁较高时,选用黄钾铁矾法除杂。
4.硫化沉镍钴
硫化沉镍钴可在室温下弱酸性溶液中进行,取得的化学镍钴(或称钴镍)精矿,可经过调整硫化沉镍、钴条件来调整,化学镍钴矿中镍、钴档次
5. 碳化沉镁
碳化沉镁在加温弱碱性溶液中进行,取得的化学菱镁矿。
三、首要试剂耗费
硫酸(98%)、 碳酸钠(工业级)、 (含Na2S60%)、石灰 、 拌和、需用电 、 加热。
服务项目: 检测、判定检测事务品种地质及化探:普查样品、槽(坑)探样品、钻孔样品、涣散流样品、次生晕样品、原生晕样品等矿石矿藏:铜铅锌矿石、金矿石、钼矿石、钨矿石、钛矿石、锡矿石、锑矿石、铋矿石、矿石、钴矿石、镍矿石、铬矿石、铁矿石、锰矿石、磷矿石、萤石、铝土矿、硫铁矿及岩石全分析等精矿产品:铜精矿、铅精矿、锌精矿、金精矿、锡精矿、锑精矿、钨精矿、钼精矿等矿产品(交易):各种精矿(有利、有害杂质成分)、进口质料及冶炼渣料等冶金产品:质料、辅料、中间产品、金属及合金等环境监测:矿山及选厂排放的废渣、废水、土壤及水质评价(砷、、重金属离子)检测元素金(Au)、银(Ag)、铜(Cu)、铬(Cr)、磷(P)、碳(C)、铅(Pb)、钨(W)、锂(Li)、硫(S)、锌(Zn)、锡(Sn)、钠(Na)、钼(Mo)、钾(K)、铌(Nb)、钒(V)、砷(As)、钽(Ta)、镉(Cd)、锰(Mn)、锑(Sb)、锆(Zr)、钙(Ca)、钛(Ti)、铋(Bi)、铍(Be)、镁(Mg)、铝(Al)、(Hg)、铂(Pt)、镍(Ni)、铁(Fe)、氟(F)、钯(Pd)、钴(Co)、硅(Si)等。矿石物相岩矿判定
氧化镍钴锰锂
2017-06-06 17:49:58
一种新型高比能量锂离子电池正极用氧化镍钴锰锂材料,日前由天津电源研究所研制成功。并获得了信息产业部电子基金的资金支持,随即建成年产200吨氧化镍钴锰锂生产线,在国内率先实现了产业化生产。目前市场上的锂离子电池大多以氧化钴锂为正极,其材料的稳定性和产品的安全性比较差。天津电源研究所针对氧化钴锂存在的突出问题,采用价格相对低廉的镍、锰替代钴,并研发独特的烧结工艺,仅用了一年多时间就成功解决了这一难题。据了解,这种新型材料具有容量高、寿命长、安全系数高、无污染等优点。与氧化钴锂相比,制造成本降低了10%至15%,每克容量由140毫安时可提升到220毫安时,由此不仅提高了产品的安全性能,而且增大了电池容量,一举突破了锂离子电池发展的瓶颈制约。该产品现已得到多家用户的认可,并实现了为出口欧盟的高端电池产品生产厂家供货。为了研制在电性能、安全性和成本价格等三方面均能较好地满足电动汽车需求的锂离子电池,选择了在氧化钴锂中掺杂氧化镍锰钴锂三元材料的方法,研制了新的50Ah动力型锂离子电池。通过对研制电池进行电性能和安全性试验,各项性能均满足电动汽车的技术要求,加上氧化镍锰钴锂三元材料的价格仅为氧化钴锂的50%左右,所以掺杂氧化镍锰钴锂三元材料是解决电动汽车对动力型锂离子电池严格需求的理想途径之一。近期有一种锂离子电池正极材料氧化镍钴锰锂及其制备方法。本发明属于锂离子电池技术领域。锂离子电池正极材料氧化镍钴锰锂为富锂型层状结构,化学成分Li↓[1+z]M↓[1-x-y]Ni↓[x]Co↓[y]O↓[2],其中0.05≤z≤0.2,0.1<x≤0.80.1<y≤0.5。制备方法:镍、钴、锰的可溶性盐为原料;氨水或铵盐为络合剂,氢氧化钠为沉淀剂;加水溶性分散剂,加水溶性抗氧化剂或用惰性气体控制和保护;将溶液并流方式加到反应釜反应;碱性处理,陈化,固液分离,洗涤干燥;氧化镍钴锰和锂原材料混合均匀;将混合粉体分三温区烧结得到氧化镍钴锰锂粉体。本发明比容量高,循环特性好,晶体结构理想,生产周期短,功耗低,适合产业化生产等。
铈钨极
2017-06-06 17:50:12
铈钨极呈灰色无规则状粉末。用途:用作硬质合金及金刚石锯片等。注:可按用户需要提供其它规格Wc粉,粒度规格-200目,>95%。 合金粉末耐磨喷涂 DG.Fe60 说明:DG.Fe60是高硬度的铁镍铬硅硼合金粉末。自熔性较好,具有较好的耐磨性,是铁基粉末中最硬的一种,用特殊刀具可以切削加工。适用于氧—乙炔火焰或等离子喷焊工艺,推荐用于农业机械、建筑机械、石油、矿山机械等易磨损部位的修复或预防性保护。如耙片、锄齿、石油钻杆接头、刮板轴等。 DG.Fe55 说明:DG.Fe55是高硬度的铁镍铬硅硼合金粉末。自熔性较好,具有较好的耐磨性,用特殊刀具可以切削加工。适用于氧—乙炔火焰或等离子喷焊工艺,推荐用于农业机械、建筑机械、石油、矿山机械等易磨损部位的修复或预防性保护。如耙片、锄齿、石油钻杆接头、刮板轴等。 DG.Fe30 说明:DG.Fe30是中等硬度的铁镍铬硅硼合金粉末。自熔性较好,可塑性好,抗疲劳优良可以锉加工。适用于氧—乙炔火焰或等离子喷焊工艺,常用于承受反复冲击的硬度要求不高的场合。如铁路钢轨擦伤,低塌缺陷的修复,以及齿轮等的修复。 DG.Fe45 说明:DG.Fe45是中等硬度的铁镍铬硅硼合金粉末。自熔性较好,具有较好的耐磨性,可以切削加工。适用于氧—乙炔火焰或等离子喷焊工艺,常用于阀门密封面以及农业、运输、建筑机械的易磨损部位的修复或预防性保护。如齿轮、刮板、、车轴等。 镍粉 镍基粉 F-Y1:-60/+250,-80/+300目,2.5~4.0g/cm3,主要用于焊接材料、金刚石钻头、
金属
溶剂及相关产; F-Y2:-200目,1.6~1.9g/cm3,主要用于粉末冶金零部件、磁性材料、硬质合金等粉末冶金制品; F-Y3:-325目,1.0~1.8g/cm3,主要应用于金刚石工具、摩擦材料、硬质合金、磨料磨具、粉末冶金、电工合金等粉末冶金制品; F-Y4:-400目,0.8~1.5g/cm3,主要应用于电池
行业
、高端硬质合金及粉末冶金产品。 钴粉 钴基粉性状:呈灰色不规则状粉末,在潮湿空气中易氧化。用途:用作硬质合金粘结剂及磁性材料,金刚石锯片刀头等。 纯钨极 W1 W≥99.92 SiO2≤0.03 Fe2O3Al2≤0.03 Mo≤0.01 CaO 钍钨极 WTH-7 W余量 其他杂质成分总的质量分数不大于 0.15% 铈钨极 WCe-20 W余量 CeO1.8-2.2 SiO2≤0.06 Fe2O3AI2O3≤0.02 Mo≤0.01 CaO≤0.01 铈钨极 电子逸出功低,化学稳定性高,允许电流密度大,无放射性,是目前普遍采用的一种电极. 纯钨极 熔点和沸点高,不易融化挥发、烧损,尖端污染少,但电子发射较差,不利于电弧的稳定燃烧。更多有关铈钨极请详见于上海
有色
网
中国镍钴金属供应情况
2019-03-04 11:11:26
我国镍产品的出产相对来讲比较会集,以甘肃、吉林、新疆、云南、四川等区域为主。首要出产供应商有:金川集团有限公司,吉林吉恩镍业股份有限公司,新疆有色金属工业(集团)阜康冶炼厂。2004 年我国以矿产品为质料出产的镍量(金属量)约为 8 万 t,其间新疆为3000 t,吉林为5800t,甘肃为71000 t。甘肃(金川)的镍产值占我国镍出产值的88%以上,近年我国镍产值见图1。图1 近年我国镍产值
估计2005年我国的镍产值为10.7万t, 其间新疆为3500 t,吉林为6000 t,甘肃为 91000 t,其他区域为6500t 。见图2。图2 2005年我国镍产值猜测
2004年我国钴产值约7500t,其间金川钴产值为2200t,占29.3%。2005年我国钴产值将保持7500t 的水平,金川钴产值为4000t. 我国已成为全球首要钴出产国之一。
钴的冶炼回收工艺
2019-01-07 17:37:56
加工生产金属钴和高纯度氧化钴的技术要求高,冶炼流程复杂,加上能耗高和污染等问题,一般不适合民间冶炼。根据不同炼钴原料主要有如下几种冶炼回收工艺。 1.钴土矿冶炼工艺 建国初期,钴土矿主要作为制取氧化钴的原料。工艺流程大体上是将钴土矿用鼓风炉或电弧炉还原熔炼成钴铁,经退火或焙烧后,用酸浸得到含钴溶液,再经净化处理,沉淀出亚硝酸钴钾,然后焙解和粉碎制得工业氧化钴粉。潮州冶炼厂和赣州钴冶炼厂等厂家曾采用此工艺回收过钴。现在已没有厂家利用这种原料生产钴产品了。 2.钴硫精矿的冶炼工艺 国内将含钴的黄铁矿和磁黄铁矿精矿通称钴硫精矿,是国内主要炼钴原料之一。南京钢厂、葫芦岛锌厂、湖北光化磷肥厂和山东淄博钴厂四个厂家利用这种原料。其中葫芦岛锌厂的产品是二号电钴,采用硫酸化焙烧→浸出→脂肪酸脱铁铜→沉钴→还原铸阳极→阳极液净化→隔膜电解的方法,因生产成本高,现已停产。南京钢厂曾采用氧化焙烧——烧渣中温氯化焙烧工艺,湖北光化磷肥厂采用氧化焙烧——烧渣硫酸化焙烧工艺。但由于钴硫精矿含钴太低,一般都小于0.3%,加上回收钴的工艺流程复杂,普遍无利可图,所以,这些厂在生产一段时间后,又停止了生产。山东淄博钴厂利用钴硫精矿和含钴原料生产硫化钴、氧化钴、氯化钴、硫酸钴等产品。 3.砷钴矿冶炼工艺 赣州钴冶炼厂是国内唯一使用这种原料的厂家,原料从摩洛哥进口,该厂采用电炉熔炼→脱砷焙烧→二段浸出除铁砷→Na2S2O3脱铜→沉钴→还原铸阳极→净化→隔膜电解法生产氧化钴和电钴。 4.冶炼副产品中提钴的冶炼工艺 镍电解液净化产出的钴渣为主要原料。甘肃金川有色金属公司的生产流程为钴渣→浸出除铁→二次沉钴→还原铸阳极→阳极液净化→隔膜电解。该公司在许多生产、设计和科研单位的协助下在大量试验研究基础上确定了转炉渣提钴新工艺,该工艺采用电炉贫化获得钴硫,转炉吹炼富钴硫,加压氧化浸出技术,镍、钴、铜的浸出率高,反应速度快,浸出渣沉降性能好,钴的冶炼回收率达50%左右。金川有色金属公司采用硫酸溶解法从镍电解系统净化钴渣中回收钴,钴的回收率达到85%以上,同时,硫酸溶解钴渣还生产纯氧化钴粉。 5.从含钴废料提钴的工艺 二次提钴的工艺较简单,原料便宜,又不一定非要产出金属钴,因此,国内一些厂家已经开始利用含钴废料生产钴产品了。镇江冶炼厂利用各种含钴工业废料及钴硫精矿生产各类钴盐,采用流程为钴原料→净化提纯→合成→各类钴盐。江苏阜宁化工厂利用磁钢熔渣和砂轮磨屑等废料生产钴盐,采用流程为钴原料→酸溶造液→除铁→萃取→结晶。另外,赣州钴冶炼厂处理过废触媒,葫芦岛锌厂处理过磁钢渣,上海和沈阳冶炼厂处理过高温合金。 目前,国内已能利用矿山生产的各种原料生产高纯度电解钴、氧化钴粉和钴盐,生产加工工艺也得到很大发展,溶剂萃取技术在湿法炼钴中普遍得到应用。
镍钴物料的浸取过程
2019-02-21 08:58:48
浸出工艺是镍钴湿法冶金的第一步,使物猜中的有价金属元素进入溶液,经过别离和净化,并终究取得制品;浸出也是一种别离手法,有利于从浸液和浸渣平分别提取方针元素。含镍钴物料的工业浸出进程首要有三类:
一、常压酸浸(硫酸和);
二、加压氧浸或酸浸;
三、浸。
无论是氧化物料仍是硫化物料都可以选用酸浸工艺处理。在不加氧化剂条件下的浸出,曾在挪威和加拿大使用于高镍锍,镍的浸出率可高达98%以上,铜和贵金属则留在浸渣中,别离效果很好。但是硫化矿藏的简略酸浸将发生,对金属材料有激烈腐蚀效果,工业施行的难度较大。所以硫化矿藏的酸浸一定量的铜离子或铁离子,可显着加速浸出进程。硫酸和介质的挑选对浸出进程有较大影响,尤其是浸出反响器结构原料的挑选。一起,介质的不同也影响出液的别离和净化进程,以及终究产品。读者将在以下不同工业生产实践的论说中体会到这一点。
加压浸出的首要意图是进步反响温度,以此进步浸出速度、缩短浸出周期,并进步浸出率,使常压下难以进行的反响进程可有效地进行。在有氧参加的浸出反响中,加压浸出关于进步反响速度有两层效果。但是,因为在设备出资和日常保护本钱上加压浸出显着高于常压浸出,选用何种工艺较适宜,需经技术经济分析和证明。
浸可直接用于镍钴硫化矿藏,用于氧化矿藏时先要进行复原焙烧,使镍钴呈金属状况。镍钴硫化矿的浸大多在氧压下进行,镍、钴、铜的硫化物氧化溶解,金属以络离子方式进入溶液,硫则生成硫酸,而铁则生成氧化物进入浸渣。
工业上使用的含镍物料的首要浸出进程包含:
1、高镍锍的硫酸氧压浸出;
2、高镍锍的浸出;
3、高镍锍的浸出;
4、镍锍氧压浸;
5、红土矿复原焙烧料的浸;
6、红土矿的高压酸浸。
这些工艺流程将在今后各节平分别论说。某些研讨者以为,硫化矿的直接浸出工艺是现在首要研讨开发方向,特别是某些不适于火法精粹的含砷或高镁精矿。这些新浸出工艺包含硝酸催化的加压浸出、生物浸出、Fe3+、或Cu2+催化的氧气或常压浸出、加压氧化浸出等。
镍钴溶液的分离和净化
2019-01-24 09:36:23
在镍钴湿法生产过程中,从含镍钴溶液到生产出符合一定标准的镍和钴产品,中间必须经过杂质去除(净化)及有价金属元素的分离富集等工序。目前镍钴提取冶金工业上应用的溶液净化和分离富集方法主要有化学沉淀、溶剂萃取和离子交换等三种。
一、化学沉淀法
化学沉淀法是最常用的溶液除杂和分离方法,镍钴提取冶金工业上主要应用水解沉淀、硫化物沉淀、难溶盐沉淀和置换分离等工艺。
(一)水解沉淀
水解沉淀
水解沉淀的原理是不同金属氢氧化物在水中具有不同溶解度或溶度积,因而具有不同的开始沉淀的pH值,通过控制溶液中沉淀pH值,则可将要求从溶液中除去的离子以氢氧化物的形式沉淀,有时需要辅之以氧化还原电位的控制。一些金属氢氧化物25℃的溶度积及根据Eh-pH图获得的开始沉淀的pH值列于表1,供设计水解沉淀净化方案时参考。工业常用的水解沉淀工艺包括氧化水解除铁、氧化水解分离镍和钴等。
表1 某些金属氢氧化物的PKSP及开始沉淀的最低pH值氢氧化物PKsp开始沉淀pH值氢氧化物PKsp开始沉淀pH值Co(OH)343.80.5Cu(OH)219.35.0Sn(OH)456.00.5Fe(OH)215.35.8Sn(OH)227.81.5Zn(OH)216.36.8Fe(OH)338.62.2Pb(OH)214.97.2Pt(OH)235.02.5Ni(OH)218.47.4Pd(OH)231.03.4Co(OH)215.77.5In(OH)333.23.5Ag2O7.718.0Ga(OH)335.23.5Cd(OH)25.268.3Al(OH)332.73.8Mn(OH)213.48.3Ni(OH)34.0Mg(OH)211.39.6
针铁矿法除铁也是一种水解沉淀工艺。形成针铁矿(FeOOH)晶体的主要条件是:低浓度Fe3+、pH=3~5、高温(≥90℃)。常用方法是先将Fe3+还原成Fe2+,然后中和到要求pH值,高温下再使Fe2+缓慢氧化。这样得到的沉淀是FeOOH而不是Fe(OH)3,易于过滤。在镍钴生产中,常用高镍锍作还原剂,空气作氧化剂。形成针铁矿的另一种方式是在大容量已除铁溶液中以喷淋方式加入欲净化除铁溶液,在充分搅拌下,Fe3+总体浓度不高(<1g/L),在空气氧化条件下加入中和剂可形成FeOOH。这样,溶液不用先还原,再氧化。
(二)硫化物沉淀
硫化物沉淀是分离镍、钴、铜等有价金属的常用方法,硫化剂多为Na2S、NaHS和H2S。一般金属硫化物在水中的溶解度都很小,常用于从镍钴溶液中沉淀分离铜,也用于从红土矿浸出液中沉淀分离铜、镍、钴。当用H2S作硫化沉淀时,形成硫化物的平衡pH值取决于该硫化物的活(浓)度积、溶液中金属离子浓度及离子价数。25℃及常压下,H2S沉淀硫化物时的平衡pH值列于表2。
表2 不同离子浓度时形成硫化物的平衡pH(25℃及常压)硫化物CMe=1mol/LCMe=10-4mol/L硫化物CMe=1mol/LCMe=10-4mol/LHgS-15.00-13.00CdS-2.50-0.25Ag2S-14.00-10.60ZnS-0.531.47Cu2S-12.35-8.35CoS0.852.85CuS-6.55-4.55NiS1.243.24SnS-3.00-1.00FeS2.304.30PbS-2.85-0.85MnS3.905.90
(三)难溶盐(化合物)沉淀法
最常用的难溶盐(化合物)沉淀法是黄钠铁矾工艺除铁。黄钠铁矾是两种以上硫酸盐的复盐,通试为Na2Fe6(SO4)4(OH)12或Me+Fe3(SO4)2(OH)6、Me2+Fe6(SO4)4(OH)12,具有结晶好,易过滤的优点。通式中,Me+一般为Na+、K+、NH4+或H3O+,其中以钾钒最稳定,沉降性能最好。
(四)置换沉淀
通常的置换沉淀是电负性金属从溶液中置换出电正性离子,如镍粉除铜。广义上说,置换沉淀还包括固休物料与溶液反应,其中固体中某一元素与溶液中的金属离子交换位置,如利用Ni2S3从溶液中沉淀铜。
二、溶剂萃取分离
溶剂萃取是分离和富集金属离子的常用方法之一,在有色金属湿法冶金领域有着广泛的工业应用,在镍钴提取工业中的应用也正在走向成熟。
溶剂萃取是利用有机相从不相混的液相中把某种物质提取出来的一种分离方法。溶剂萃取法的工艺过程包括萃取、洗涤和反萃三个阶段。萃取是使水相中某些物质转移到有机相,洗涤是使进入有机相的杂质回到水相(洗涤液),反萃是使被萃物质(目标组元)从有机相转移到水相(反萃剂),以便进一步处理成产品。有些萃取剂在萃取前需要进行预处理(如皂化等),以保证萃取条件。
溶剂萃取工艺的关键是萃取剂的选择。除经济效益外,选择萃取剂的基本原则为:
1、选择性好,容易实现金属分离;
2、良好的萃取动力学性能,平衡速度快;
3、大萃取容量,萃取剂用量少;
4、在水相虽的溶解度小,且化学稳定性好;
5、易与稀释剂互溶,混合后具有良好的分相性能,不易产生第三相。
溶剂萃取在镍钴冶金中的应用主要有两方面:一是从主金属溶液中将杂质元素萃取除去,或相反,将主金属离子萃取出来;二是将性质相近的镍和钴分离。
在工业生产中,往往采取多级萃取流程。因有机相和水相流动方式不同,多级萃取又分为逆流萃取、错流萃取和分馏萃取等多种方式,如图1所示,分馏萃取是逆流萃取上加入有机相的洗涤段。图1 萃取流程
a-三级错流萃取;b-三级逆流萃取
F-料液;S-有机相;E-萃取液;R-萃余液
镍钴提取工业中,溶剂萃取主要用于镍和钴的分离,以及分离铜铁等杂质。硫酸介质中常用CYANEX272、P507或N235萃取分离钴和镍,CYANEX272是新开发的萃取剂,其分离系数比P507大-个数量级。杂质(铁、铜、锌)的萃取分离常采用P204。氯化介质中常用铵类萃取剂。一些用于镍钴分离的新萃取正在研究开发中。
三、离子交换
通过离子交换树脂的吸附和解吸,可从溶液中脱除特定的离子。离子交换法一般用来处理低浓度(如浓度小于10-6mol/L)的稀溶液,当溶液浓度较高时(如高于1%),采用这种方法的分离效果不大。离子交换的主要工业应用是微量杂质的深度净化,在镍钴湿法冶金中用于脱铅和锌,以及用于微量铜的脱除。
用于镍钴分离的离子交换工艺的研究也较活跃,提出了一些有潜在工业应用前景的新型离子交换树脂。
钴、镍萃取分离原理与方法
2019-01-31 11:05:59
现在,钴镍冶金质料已由曾经的硫化钴镍矿逐渐转为钴镍杂料、钴镍氧化矿(含钴、镍红土矿)等,处理工艺由传统的火法造锍、湿法别离相结合转为浸出、净化全湿法流程。钴镍质料来历纷歧,浸出液成分杂乱,沉积、离子交换工艺难以完成钻、镍及钴镍与钙、镁等其他杂质离子的别离。溶剂萃取法有挑选性好、金属收回率高、传质速度快等长处,特别依据离子性质差异及萃取理论研制的新萃取剂及萃取系统,更优化了萃取作用。所以,从根本上找出钴、镍性质的差异,分析现有钴、镍别离工艺原理,对新萃取剂和萃取工艺的开发有指导意义。
一、钴、镍性质差异
钴镍原子序数相邻,同为第四周期第Ⅷ族元素,仅外层d电子数不同,这种性质上的差异可用于萃取法别离。
(一)晶体场配位理论分析钴镍性质差异
1、钴镍轨迹简并
钴、镍比较常见的配位数为4和6。配位数为6时,配体呈八面体型。由于配体之间的方位不同,5个轨迹简并为2组,电子与配体顶头挨近的dz2、dx2-y2作用激烈,能量较高,为6Dq;而别的的dxy、dyz、dzx轨迹作用力弱得多,能量较低,为-4Dq。配位数为4时,配体能够构成平面四方形或正四面体构型。萃取剂的分子量较大,分子间存在较大的空间位阻,所以一般为正四面体构型。相同,四面体场亦发作简并,可是与八面体场完全相反,dxy、dyz、dzx轨迹能量较高,为1.78Dq,而dz2、dx2-y2的轨迹能量较低,为-2. 67Dq。
2、钴镍轨迹电子排布
电子在轨迹的排布遵从能量(CFSE)最低准则,其间成对的电子还需求战胜能量为P或P’的成对能。按这个规矩,电子排布与对应能量巨细如表1。
表1 钴镍离子不同配位数时对应的能量能够看出:6配位正八面体的安稳性大于4配位正四面体的安稳性。Ni(Ⅱ)的6配位八面体的安稳性远大于四配位四面体的安稳性,而Co(Ⅱ)的6配位八面体的安稳性仅略强于四配位四面体的安稳性,所以,溶液中Ni(Ⅱ)仅有6配位存在,而Co(Ⅱ)的6配位或4配位都能够存在。
(二)价键理论
价键理论是L.Pauling等于20世纪30年代提出的杂化轨迹理论在配位化学中的使用。按此理论,在构成共价键时,能级相差不远的各轨迹能够构成杂化轨迹,而原子轨迹杂化后可使成键才能增强,因而使生成的“分子”更安稳。构成配位键时,若中心离子供给的轨迹都是最外层轨迹,则构成的络离子称为外轨络离子;若中心离子供给部分次外层轨迹,则构成的络离子称为内轨络离子。
价键理论以为:中心离子与配位原子的电负性相差较大时,倾向于生成外轨型络离子;相差较小时,则倾向于生成内轨型络离子。一般来说,与电负性较大的配位原子,如F、O合作时,常构成外轨型络离子;与电负性较小的配位原子P、As等合作时则构成内轨型络离子;而与N、Cl等合作时,则即有或许构成外轨型络离子也有或许构成内轨型络离子。
Co(Ⅱ)、Ni(Ⅱ)生成外轨型络离子时,假如为4配位,则为sp3杂化,四面体构型;假如是6配位,则为sp3d2杂化,八面体构型。所以,Co(Ⅱ)生成内轨型络离子时,易被氧化为Co(Ⅲ),而Ni(Ⅱ)较安稳,难于氧化。
由上述配位理论可知:1)钴以外轨型配位时,溶液中安稳存在的为Co(Ⅱ);以内轨型配位时,溶液中安稳存在的为Co(Ⅲ);2)不管哪种配位,溶液中Ni(Ⅱ)的安稳性高于Ni(Ⅲ)的安稳性;3)Co(Ⅱ)与电负性较大的配位原子结合易构成四配位合作物,安稳性高于Ni(Ⅱ)的合作物;4)Ni(Ⅱ)与电负性较小的配位原子结合易构成六配位合作物,安稳性高于Co(Ⅱ)对应的合作物。
二、钴、镍的萃取别离
(一)钴、镍的磷(膦)类萃取别离
溶剂萃取法是钴、镍别离的重要办法之一,其别离作用好,金属收率高,对料液适应性强,进程易于自动操控。跟着新萃取剂、萃取系统的开发和萃取理论的逐渐完善,溶剂萃取法在钴镍湿法冶金中的使用越来越广泛。
由晶体场配位理论可知,溶液中Ni(Ⅱ)为6配位时较安稳,而Co(Ⅱ)为4或6配位时安稳性挨近,能够一起存在,在必定条件下还能够彼此转化。现在,广泛选用磷类萃取剂别离钴、镍就是使用此原理。
现在,使用于钴、镍别离的磷(膦)类萃取剂首要有P204、P507和Cyanex272,它们在萃取钴、镍时有较大差异。据报道,用P204、P507、Cyanex272萃取钴、镍时,半萃pH差值别离为0.53、1.43和1.93。明显,萃取别离钴、镍的才能逐渐增强。这种差异缘于3种萃取剂的萃取才能和空间结构,见表2。
表2 3种磷(膦)类萃取剂的比较pka表明萃取剂结合金属离子才能的强弱。明显,P204与金属离子结合才能最强。有机磷(膦)类萃取剂结构通式中的R-P-R’键角可用来衡量空间位阻的巨细。在生成八面体构型的配位化合物时,∠RPR’越大,不同磷酸替代基之间的空间位阻越大,越不利于八面体构型的构成。所以,当萃取剂结合才能下降、而空间位阻增大时,八面体构型难于构成,则其他小分子,如水分子易于参加配位。而四面体构型中,2个有机磷一起配坐落一个中心离子,4个O处于互为笔直的平面中,配体之间作用强度较低,∠RPR’对四面体构型影响不大。
有机磷类萃取别离钴、镍的总反应式可表明为:在萃取剂大大过量条件下,M为Co时,n=2;M为Ni时,n=3。饱满萃取时,不管钴、镍,n=1。钴的萃合物包含四面体和八面体2种构型,而镍仅有八面体构型。四面体萃合物含水量低于八面体萃合物的含水量,有较高的亲油性,所以钴优先进入有机相。
从P204、P507到Cyanex272,酸性逐渐削弱,空间位阻逐渐增大。镍的萃合物一向要坚持八面体构型,而萃取剂与镍构成6配位的难度增大,所以镍的分配比下降。可是,钴萃合物能够转变为四面体构型,补偿了由于萃取剂酸性削弱和空间位阻增大对分配比减小的影响。镍的分配比减小,而钴的分配比根本不变,钴、镍别离作用越来越好。所以,用具有较弱萃取结合强度、较大空间位阻的萃取剂能够较好地完成钴、镍别离。
(二)Co(Ⅱ)的4配位阴离子挑选性合作
电负性较大的配离子配位才能较弱,优先构成外轨型4配位sp3杂化。又由于Co(Ⅱ)优先Ni(Ⅱ)构成4配位,所以挑选一种电负性适宜的配离子,操控适宜的浓度,可优先与Co(Ⅱ)合作,加大钴、镍的萃取别离。
1、SCN-的挑选性合作
SCN-的电负性较大,必定浓度下,与Co2+构成安稳的四面体阴离子合作物Co(SCN)42-,而简直不与Ni2+构成安稳合作物。所以,在该系统中,钴以络阴离子方式存在,镍以水合阳离子方式存在,用MIBK、胺类、季铵盐类萃取剂能够挑选性地从含镍溶液中萃取钴:季铵盐萃取钴的容量与有机相中SCN-的浓度成正比,适用于从低浓度钴溶液中萃取钴。但负载有机相中的钴需用NH3-NH4 HCO3溶液反萃取,而反萃取液中的钴、需求专门的设备收回,生产本钱较大。
2、Cl-的挑选性合作
当Cl-质量浓度为200~250 g/L时,90%左右的Co(Ⅱ)以CoCl42-方式存在,Cu2+、Fe3+、Zn2+等金属离子也构成合作阴离子CuCl42-、FeCl4-、ZnCl42-,而Ni2+仍然以水合阳离子[Ni(H2O)62+]方式存在。选用胺(铵)类萃取剂能够将合作阴离子萃取,完成与镍的别离。
该工艺别离作用好,萃取剂报价低廉,与硫化钴、镍矿氯化浸出联接顺畅,20世纪60~70年代树立的镍、钴厂多选用该系统。比较有代表性的有:加拿大鹰桥公司在挪威克里斯蒂安松的镍厂,使用叔胺从氯化物系统中别离钴、镍;国内的成都电冶厂、福州冶炼厂等都选用氯化物系统以N235萃取别离钴、镍。
(三)钴氧化为内轨络离子
依据价键理论,当Co(Ⅱ)、Ni(Ⅱ)与电负性较低的配离子结合时,Co(Ⅱ)简单氧化,生成十分安稳的内轨型Co(Ⅲ)配离子,而该离子假如亲油则生成安稳的萃合物被优先萃取,假如亲水则不被萃取。
1、-铵系统
NH3能够与Co(Ⅱ)构成外轨型合作物Co(NH3)62+,由于1个3d电子跃迁到5s轨迹,该合作物很简单被氧化成愈加安稳的内轨型合作物Co(NH3)63+,见表3。
表3 钴、镍合作物的安稳常数(18~25℃,i=0.1)在-铵系统中,操控的浓度和溶液电位即可确保溶液中的钴、镍别离以Co(NH3)63+和Ni(NH3)62+方式存在。由于Co(NH3)63+的安稳常数为Ni(NH3)62+的1026.13倍,所以挑选一种与镍合作才能比NH3强的螯合萃取剂就能够替代Ni(NH3)62+中的NH3而挑选性萃取镍。
1987年,澳大利亚的昆士兰公司选用汉高公司的LIX84-I萃取剂直接从空气氧化后的含钴、镍的性溶液中挑选性萃取镍,然后选用硫酸盐溶液反萃取,得到的硫酸镍溶液通过电积得到高品质阴极镍。溶液中剩下的钴用H2S沉积得到CoS产品。
2、螯合萃取系统
用螯合萃取剂萃取钴、镍时,易呈现钴中毒现象,由于构成的Co2+螯合物很简单被氧化成Co3+螯合物。Co3+螯合物十分安稳,难于被酸直接反萃取,需求在复原条件下反萃取。但由于反萃取需求很多复原剂,并且Co3+对萃取剂有必定的分化作用,所以该办法没有得到大规模使用。
(四)Ni(Ⅱ)的6配位协同萃取
镍的6配位萃合物的安稳性和疏水性较高,但空间位阻较大,所以在萃取进程中需求参加某些替代结合水的协萃剂。
1、酸性萃取剂与非螯合肟类协同萃取
南非矿藏工艺协会研讨发现,在烷基磷酸类(DEH-PA)中参加非螯合性2-乙基己基肟(EHO)对镍有很大的协萃作用,可是对钴的影响要小得多。协萃机理为:EHO供给孤对电子的才能强于H2O或DEHPA,能够轻易地将它们替代,使镍到达安稳的6配位构型。环烷酸与异十三醛肟相同也有很强的协萃效应,使镍的pH0.5左移2.8,钴的pH0.5左移1.8,钴、镍的半萃pH值扩大到1.2,能够将钴、镍完全分隔。酸性萃取剂与非螯合性萃取剂协同萃取钴、镍,萃取速率快,不存在钴被氧化问题。
2、酸性萃取剂与螯合肟类协同萃取
磷酸类、羧酸类、磺酸类萃取剂中参加必定量的LIX63,对钴、镍的萃取有较强的协同作用,并且酸性萃取剂的酸性越强,E-pH线左移越多,协同作用就越强。该系统的不足之处在于镍的萃取、反萃取速率较慢,反萃取需求必定的酸度,而LIX63在强酸性条件下会降解。这2个问题一向没有得到本质上的处理,所以20世纪90年代后期,该系统仍未得到使用。然后开发的抗降解烷基甲基胺与DNNS协同萃取系统显现了优异的功能,仅仅本钱较高而未完成产业化。
澳大利亚开发出了羧酸萃取剂与螯合肟类萃取剂协同萃取工艺:选用酸性很弱的羧酸萃取剂与羟肟类萃取剂协同萃取,下降了羟肟降解速率;操控萃取剂浓度,可加速萃取和反萃取速率;萃取进程没有呈现钴中毒现象。但不足之处是钴、镍别离系数不算很大,别离进程需求较多级数的洗刷。萃取镍时,LIX63为萃取剂,羧酸为协萃剂;萃取钴时,羧酸为萃取剂,LIX63为协萃剂。
三、结束语
跟着优质钴镍硫化矿资源的逐渐干涸,钴镍氧化矿的开发使用越来越受注重,加压酸浸、硫酸堆浸技能已成为钴、镍湿法冶金的干流技能,所以亟需开发能直接从较高酸度系统中萃取钴镍的工艺(DSX),并且最好对钙、镁等有抑萃作用。首要研讨方向为:1)开发新的萃取剂,特别是螯合萃取剂,这或许是未来直接从含钙镁溶液中萃取钴、镍的首选萃取剂;2)开发新的萃取系统,跟着萃取理论,特别是协萃理论的开展,研讨萃取剂的协同作用,使到达较好的别离作用;3)开发新的萃取设备,某些钴、镍萃取进程的热力学数值很好,可是动力学速率慢,需求新的萃取设备强化萃取进程。
回收电解镍
2017-06-06 17:49:57
国内回收电解镍价格调整后,电解镍价格的反弹,但镍市涨幅一直未能拉大,而此小幅的回升根本不足以带动废不锈钢市场,但总体而言对市场人士信心和市场成交具有一定的促进的作用。废镍的回收利用更大程度上加强了镍的供应度,镍是具有铁磁性的金属元素,它能够高度磨光和抗腐蚀。主要用于合金(如镍钢和镍银)及用作催化剂(如拉内镍,尤指用作氢化的催化剂) ,可用来制造货币等,镀在其他金属上可以防止生锈。国内废镍的价格市场:2009年我国进口精炼镍10.5万吨,同比增长8.2%,进口镍精矿1556.3万吨,同比增长311.9%。金川集团电解镍出厂价格上调,其中电解镍(板状)出厂价为23.8万元/吨,电解镍(块状)出厂价为23.42万元/吨。金川公司将出资1550万美元购买澳大利亚FOX资源公司11%的股份。该公司将利用此笔资金开发镍矿。此前金川公司已经购买了澳大利亚ALLEGIANCE镍矿公司的部分股权,并同意出资2.13亿美元收购墨西哥最大的未开发铜锌矿。由中冶东方工程技术有限公司设计的金川公司5000吨镍及镍合金板带材生产线通过初步设计审查。上海有色网给您及时提供最新回收电解镍价格走势图。更多详情请登入
www.smm.cn
黑镍的制备和除钴
2019-01-24 09:37:16
合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。
除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。
表1 除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31
表2 钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5