钨的应用及市场
2019-03-05 09:04:34
一、钨的使用 钨是银白色金属,熔点高达3 400℃;钨的硬度大、密度高、高温强度好。钨首要用于出产硬质合金和钨铁。钨与铬、钼、钴组成耐热耐磨合金用于制造刀具、金属表层硬化材料、燃气拉机叶片。钨与钽、铌、钼等组成难熔合金。钨铜和钨银合金用于电触摸材料。高密度的钨镍铜合金用作防辐射的防护屏,钨丝、钨棒、钨片用于制造电灯泡、电子管的部件和电弧焊的电极。钨的一些化合物可作荧光剂、颜料、染料等。钨及其合金广泛用于电子、电光源、航天以及兵器(火箭喷管、芯)。见表1。 我国钨的消费结构如下。 1980-1985年期间,炼钢用钨占61%,硬质合金占28%,化学制品占9%,钨材占2%。1986-1991年期间,炼钢用钨占48%,硬质合金占40%,化学制品占8%,钨材占4%。1991-1995年期间,炼钢用钨占36%,硬质合金占50%,化学制品占9%,钨材占5%。从发展趋势看,炼钢用钨呈下降趋势,硬质合金用钨呈上升趋势,化学制品和钨材用钨改变较小。 二、钨的商场 美国、日本、西欧是国际钨的首要消费国,算计占国际总消费量的60%-65%,但这些国家钨精矿产量只能满意需求量的12%一15%,大多靠进口满意需要,因此也是最重要的钨进口国,我国是国际上最大的钨直销国,这些国家也是我国钨的最大商场。见表2和表3。 现在我国已由单一出口钨精矿转向多种产品出口,包含钨铁、硬质合金、氧化钨、钨基合金、钨材、钨丝及钨的精密产品。现在我国从事钨湿法冶炼的工厂已达150多家,年产仲钨酸铵(APT)才能已达6万吨,年产值约3万吨,国内消费近1万吨外,其他供出口。我国最大的仲钨酸铵出产厂商是厦门钨品厂。
氧化铝空心球砖的应用
2018-12-28 09:57:29
氧化铝空心球砖主要用作1800℃以下的高温工业窑炉内衬,例如耐火材料、电子、陶瓷工业的高温窑炉内衬砖;高温热工设备的保温隔热层,例如石油化工工业气化炉、造气炉、炭黑工业反应炉、冶金工业感应电炉的隔热砖。在上述领域中应用可节能20%~30%。这种砖用作高温窑炉内衬,烘烤时升温速度不能太快,否则将产生裂纹,降低强度和使用寿命;因其显气孔率高,故不能用于接触熔渣的部位,否则将因熔渣的渗透而损坏。
有色金属
2019-05-27 10:11:36
金属品种繁复,一般把金属分为黑色金属和有色金属两大类。黑色金属包含铁、锰、铬及它们的合金。除铁、锰、铬以外的八十三种金属都叫做有色金属。有色金属的分类,各个国家并不彻底一致。大致 上按其比重、多少钱、在地壳中的储量及散布状况、被 人们发现和运用的迟早等分为五大类1)轻有色金 属;2)重有色金属;3)稀有金属;4)贵金属;5) 半金属。
昆钢球团生产线提高生球成球率的研究与应用
2019-01-24 17:45:41
酸性球团矿配加高碱度烧结矿是公认的比较合理的高炉炉料结构。为进一步优化高炉炉料结构,提高入炉品位,降低冶炼成本,替代昂贵的进口球团,昆明钢铁股份有限公司(以下简称昆钢)于2004年7月22日建成投产了一条120万t/a链蓖机-回转窑酸性氧化球团生产线。受原料条件、设计缺陷、设备故障、经验贫乏等影响,投产初期成球率仅达30%左右,严重制约了产量水平。为此,昆钢联合中南大学开展了大量的试验研究和现场调研工作,并先后组织开展了4个阶段的工艺改造和技术攻关,取得了明显成效,昆钢球团生产线的生球成球率提高到了60%以上,并顺利达产。
一、成球率低的原因分析
(一)单矿种造球试验研究
昆钢球团生产线设计用料结构为“30%大红山铁精矿+70%巴西MBR球团精粉”,但由于受外部资源和运输条件的限制,投产后大部分时间的实际用料结构为“25%-33%巴西MBR球团精粉+67%-75%省内混合精矿”,其中省内混合精矿的构成比较复杂,主要由大红山精矿、曼南坎精矿、易门铜精矿浮选厂的含铁尾矿,以及其他粗颗粒精矿经二次磨矿后的产品等几种原料构成。易门选厂浮选铜矿后的副产品受浮选药剂的影响,成球性较差;巴西MBR球团精粉粒度组成比较均匀、细粒级含量少,也属于难成球物料;其他省内精矿粒度均较粗,小于0.074mm粒级含量只有50%左右,成球性能也不理想。经中南大学烧结球团研究所造球试验测定,昆钢球团生产线所使用的几种物料的静态成球性指数均较低,属于弱成球性或无成球性物料,详见表1。
表1 昆钢球团生产线铁精矿静态成球性能铁精矿最大毛细水/%最大分子水/%毛细水迁移速率/(mm·min-1)K值巴西
铜尾
曼南坎
大红山
小红山
再磨
疆锋16.29
15.63
15.68
14.06
14.09
16.18
15.861.19
1.29
4.34
2.11
3.32
2.24
4.6610.40
2.61
4.05
2.82
1.94
3.58
8.220.08
0.09
0.38
0.18
0.31
0.16
0.42
(二)现场混合料造球试验研究
在实验室条件下进行造球试验,研究不同生产原料条件下的造球性能和提高生产成球率的技术措施。主要精矿样品有预配精矿(生产中没有经过高压辊磨的铁精矿,即预配料精矿)、辊磨精矿(生产中经过高压辊磨处理后的铁精矿)、强混精矿(生产中经强力混合机处理后的铁精矿,已经混合有一定量的膨润土)。造球试验结果见表2。
表2 混合料造球试验结果矿种试验条件试验结果膨润土用量/%造球水分/%造球时间/min落下强度/(次·0.5m-1)落下强度/(次·1m-1)抗压强度/(N·个-1)爆裂温度/℃预配精矿
辊磨精矿
强混精矿2.5
2.0
2.59.0
8.6
8.010
14
103.4
3.0
3.60.6
0.5
0.211.8
13.7
14.5437
535
418
研究表明,经过不同种类混合铁精矿的合理搭配以后,单种铁精矿造球性能的不足之处能够得到一定程度的弥补。预精矿和强混精矿的膨润土用量须达到2.5%以上时生球落下强度才能达到3.0次/0.5m以上;辊磨精矿的膨润土用量须达到2.0%以上时生球落下强度才能达到3.0次/0.5m以上。
(三)不同精矿预处理方式的造球试验研究
在相同原料条件下,预精矿分别经过高压辊磨、强力混合、润磨后的造球试验结果见表3。试验过程中膨润土的用量为2.0%,造球时间为10min。
表3 不同精矿预处理方式的造球试验比较试验条件试验结果膨润土种类膨润土用量/%造球水分/%造球时间/min落下强度/(次·0.5m-1)落下强度/(次·1m-1)抗压强度/(N·个-1)爆裂温度/℃预精
辊精
强混
预润KN2
KN2
KN2
KN22.0
2.0
2.0
2.08.8
9.6
9.4
8.610
10
10
102.4
3.3
4.4
9.70.3
0.6
0.7
1.910.3
11.0
10.6
12.2
铁精矿经过高压辊磨、强力混合、润磨后,生球的落下强度均会有不同程度的提高。相比较而言,采用润磨预处理方式对提高生球落下强度的作用较好,但会对生球的爆裂温度产生一定影响。
(四)生产工艺流程考查
昆钢球团生产线的成球率按单位时间内的球团成品矿量除以球盘投料量计,国内其他企业一般按球盘出球量除以球盘投料量计,两者大约相差30个百分点。因此,球团成球率不但与原料的物理、化学性质、准备方法、物料的表面性质和亲水性、造球设备及工艺参数、生球质量等密切有关,而且与生球的转运次数、转运高度、链蓖机-回转窑热工制度等同样关系密切。在试验研究的基础上,昆钢和中南大学又组织专人重点考查了造球机→链蓖机转运过程中的生球粒度、强度的变化,以及预热球、焙烧球质量。根据考查结果,得出导致昆钢球团生产线成球率较低的主要原因有:①铁精矿成球性能差(如巴西矿、铜尾精等),导致造球过程中混合料成球、长大困难;②造球水分过高(10.5%),导致造球过程中球团发生兼并长大,使生球落下强度、抗压强度、爆裂温度较低;③造球机内刮刀位置、加水位置与加水方式不当,导致球盘内球团分级不明显;④生产工艺中生球的转运次数多、转运点落差大,导致强度本来不佳的合格生球在运输过程中被破碎;⑤链蓖机操作参数不合理,抽风干燥I、Ⅱ的风温、风速过高,料层透气性差造成干燥过程中的生球爆裂量大。
二、提高生球成球率的生产实践
(一)优化原料结构
由于原料供应情况的变化,对球团原料结构先后进行了多次调整,详见表4。
表4 球团用料结构对比%序号巴西大红山优精曼南坎罗精1
2
3
433.65
24.58
26.32
5.3532.21
32.16
26.60
81.5434.14
32.22
21.25
5.75
11.04
25.83
6.22
1.14
单种铁精矿的造球性能一般不是最理想的,必须经过配矿,使原料结构获得优化。根据昆钢铁矿资源造球性能、焙烧性能的研究结果,在生产实践中对铁精矿的配比进行了调整。第1阶段的用料结构基本上是采用了巴西、大红山和优精各三分之一的用料模式;第2阶段的用料结构中逐步增加了试验造球效果较好的省内曼南坎铁精矿用量,总用料种类达到了4种;第3阶段进一步增加了省内曼南坎铁精矿用量,适当降低了大红山和优精矿的配比;第4阶段的主要特点是提升自产大红山矿的用量,逐步停止昂贵的巴西铁精矿的使用,省内自产精矿的使用量达到了90%~100%,总用料种类一度达到创纪录的5种。
除了原料结构发生变化以外,省内铁精矿的质量也逐步得到改善,球团用铁精矿主要物化性质如表5所示。
表5 球团用精矿的物化性质%品种序号ωTFeωSiO2ωH2O<0.074mm粒级含量<0.045mm粒级含量大红山
优 精
巴 西
曼南坎
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
463.18
63.76
64.49
62.85
60.89
61.54
60.12
62.20
66.79
67.40
67.14
67.13
61.60
61.60
61.11
59.507.81
7.28
5.90
7.23
7.39
7.78
7.63
7.72
1.45
1.55
1.81
1.80
5.64
8.58
7.10
7.207.56
7.57
8.84
9.03
9.99
9.67
9.40
9.52
6.97
8.35
8.46
9.10
9.30
9.20
9.30
9.6064.01
77.15
89.39
90.42
84.36
92.10
85.81
88.60
88.40
88.36
85.39
84.68
71.80
71.80
75.50
76.40
87.80
60.75
60.39
59.12
58.12
57.40
58.90
60.40
(二)降低生球转运冲击
1、降生球转运落差。利用检修停机先后对生球转运胶带机进行了多次降落差改造:D101皮带头轮降低约50mm,并增加了溜料板降低生球跌落速度D102皮带头轮降低约100mm; D103皮带头轮降低约100mm;通过减小摆式布料皮带头轮直径降低落差约200mm;D102至D103、宽皮带至小球辊筛、小球辊筛至链蓖机等落点增加了溜料板。
2、降胶带机转速。降低皮带转速,可以改变生球抛落轨迹,降低抛落速度,减小生球跌落冲击力,从而保护生球减少破裂。先后把D101B~H等胶带电机(1450r/min )更换成低转速电机(960r/min),皮带转速从1.2 m/s降至0.8m/s。
3、胶带机托辊加密。对D103皮带上托辊进行了加密,每两组托辊之间增加一组托辊,相当于托辊密度增加了1倍。托辊增加后,生球在皮带上形成的堆积更稳定,减少了生球之间的相对运动,从而降低了生球破坏量,提高了成球率。
4、定期清筛制度。为提高辊式筛分机的筛分效率,保证合格生球不进入返球中,制定了相关的操作维护制度。一是要求造球工适时清理筛辊间的积料,保持辊子间隙畅通,避免合格生球从大球辊筛进入大球中或粉末从小球辊筛进入链蓖机;二是定期检查辊筛间隙变化程度,发现因辊子磨损严重或辊子轴承座位移引起间隙变大则视情况进行调整或更换辊子。
(三)优化造球工艺制度
1、倾角与转速调整。造球盘的倾角和转速直接影响混合料在盘内的运行轨迹和停留时间,不同性质的原料适宜的转速和倾角也不同。昆钢球团造球盘的转速是通过更换不同直径的传动皮带轮调整的,投产初期仅能选择4种转速:7.0、7.5、8.0、8.5r/min。通过生产实践,确定7.5r/min为适宜值。然后通过调整倾角来与转速匹配。4个阶段的生产实践证明,造球盘内生球粒度周期性地变大变小时就必须调整倾角,改变混合料在盘内的运行轨迹和成球时间,使物料在母球区、长球区的分配更加合理,稳定生球粒度和出球量。尽管原料变化频繁、变化幅度大,通过调整倾角都能避免粉末出盘、造出合格生球,稳步提高成球率。
2、刮刀结构及位置调整。针对造球机存在的盘面运转不平稳、盘底粗糙且分台、电动边刮刀磨损严重且所在位置不利于物料在球盘内合理分区等问题,将电动底刮刀改用耐磨陶瓷刀头并增大与盘面的接触面积。另外由于旋转边刮刀安装位置不太合理(钟表的1:30左右位置),起不到分流和导流的作用,研究后取消了旋转边刮刀,在圆盘正上方位置增加固定边刮刀,刮刀与盘边角度可调,盘内物料运行轨迹和分布更加合理了,母球区、长球区物料的分配也更适宜,球盘出粉明显减少、生球量和生球质量有明显提高。
3、球盘边高调整。昆钢氧化球团生产线投产初期,受原料条件及高压辊磨机效果差的影响,混合料粒度及粒度组成较差,其小于0.074mm粒级和小于0.045mm粒级的含量仅达70%和40%。为延长混合料成球时间,提高成球率,于2005年将造球盘边高从600mm增至700mm。改造后,出盘粉末明显减少,生球强度明显提高。
4、加水管形状及位置调整。实际生产中,造球盘的倾角、转速、边高及刮刀是相对固定的,改变加水管形状及加水位置成为改善生球质量、提高成球率的主要手段。通过考察学习,试验不同长度、不同管径、不同出水孔径、不同出水孔密度的加水管,试验用三通管把压缩空气和水混合形成雾化水加入造球盘,试验把几个加水管放在不同位置组合等,取得了一些宝贵的实践经验。但结果表明,不同配矿方案,不同原料条件都需要适当调整加水管位置甚至更换不同形状的加水管。为方便调整,目前备有3种以上不同形状的加水管,且加水管位置未固定。
5、加料方式调整。通过长期观察和试验,在向球盘输送物料的拖料秤头部增加松料装置,同时降低拖料秤上物料的堆高,使物料呈松散状布到造球盘内,一定程度上实现由线布料向面布料的调整,增大了新料与母球的接触面积,进一步提高了成球速度。
(四)热工制度的优化
根据生产情况,对热工制度进行优化,具体调整情况如表6所示。
表6 球团生产热工制度的调整序号鼓干段温度/℃抽干I段温度/℃抽干Ⅱ段温度/℃预热段/℃窑头/℃1
2
3
4299.83
334.48
348.09
358.33349.20
366.10
358.06
359.02594.90
580.55
585.72
579.20974.90
945.84
961.05
923.321017.60
1147.68
1067.90
932.46
从第2阶段开始逐步降低了抽风干燥I、ll段的温度水平,第4阶段又适当下调了预热段和窑头的温度水平。
(五)加强原料的预处理
为了充分发挥高压辊磨对原料预处理的作用,降低高压辊磨机进料量和进料水分,消除膨润土和预热球对高压辊磨机的影响,在第2阶段对返球系统进行了改造。改造后,返球和粉尘不再进入高压辊磨机,其进料量降至200t/h左右,进料水分降至8.5%~9.0%,膨润土和预热球对高压辊磨机的影响也随之消除。同年请德国专家进行现场调试,辊磨机工作压力和工作电流分别提高至约60×105 Pa和400A,达到额定参数。改造和调试完成后,辊磨效果及混合料成球性明显提高,精矿小于0.074mm粒级和小于0.045mm粒级的质量分数可提高5%~8%,成球率提高约5%。
(六)其他工艺参数的优化
除了对原料结构、热工制度进行优化外,还对其他一些工艺参数进行调整,具体情况详见表7。
表7 过程参数调整情况序号混合料过程参数生球链篦机料高/mm作业率/%成球率/%H2O/%<0.074mm粒级含量/%H2O/%落下/(次·个-1)1
2
3
48.94
9.07
8.93
8.6079.01
83.57
86.42
94.0610.50
10.02
9.91
9.918
10
9
9200
161
161
16161.04
74.80
73.55
88.6434.32
50.58
57.16
66.32
从表7可以看出,由于原料结构的调整,以及省内精矿细度的提高,混合料中小于0.074mm粒级的含量明显增加。生球水分也逐步降低,为提高生球质量以及后续工序的优化提供了条件。另外,考虑到生球水分偏大、链蓖机鼓风干燥温度偏高、料层透气性不理想等实际情况,2005年5月份球团利用检修,将链蓖机侧板高度从200mm降低到160mm。
(七)实施效果
昆钢120万t/a氧化球团生产线各个阶段成球率的变化情况详见图1。从图1中可以看出,由于试验研究充分、原因分析准确、整改措施有力,昆钢120万t/a氧化球团生产线的实际成球率从投产初期的34.32%,提高到了第4阶段的66.32%,提高了32个百分点,提高幅度为93.24%。 三、结论
现场工艺考查以及试验研究结果表明,造成昆钢120万t/a氧化球团生产线投产初期成球率偏低的主要原因是原料结构不合理、单种铁料造球性能差、造球工艺制度不尽合理、生球转运落差过大,以及预热焙烧制度欠优化等,通过4个阶段的技术改造和生产实践,这些问题绝大部分得到了整改落实。由于试验研究充分、原因分析准确、整改措施有力,昆钢120万t/a氧化球团生产线的实际成球率从投产初期的34.32%提高到了66.32%,平均提高了32个百分点,提高幅度达到93.24%。
钨铜合金的性能
2019-05-27 10:11:36
钨铜合金 英文名称tungstencopper alloy 功能 钨和铜组成的合金。常用合金的含铜量为10%~50%。合金用粉末冶金办法制取,具有很好的导电导热性,较好的高温强度和必定的塑性。在很高的温度下,如3000℃以上,合金中的铜被液化蒸腾,很多吸收热量,下降材料表面温度。所以这类材料也称为金属发汗材料。 应用范围 钨铜合金有较广泛的应用范围,主要是用来制作抗电弧烧蚀的高压电器开关的触头和火箭喷管喉衬、尾舵等高温构件,也用作电制作的电极、高温模具以及其他要求导电导热功能和高温运用的场合。
铬锰钨抗磨铸铁磨球的研制及工业生产技术和应用
2019-01-25 10:19:13
球磨机磨球的使用量很大,我国年消耗磨球在100万吨以上,因此,磨球的用材一直为人们所关注。国内外在水泥行业已普遍使用高铬铸铁磨球,主要化学成分大致为:碳 2.0-2.8% 铬 12-16% 钼 0.1-2%等。 高铬铸铁是目前性价比最好的耐磨材料,在磨球使用上主要用于干磨,只要进一步提高它的耐蚀性和韧性,就能制作适合干湿磨条件的磨球,技术的关键是如何提高耐蚀性和韧性,铬锰钨抗磨铸铁在技术上很好地解决了这个问题。铬锰钨抗磨铸铁在高铬铸铁的基础上,提高锰含量,用锰代替碳化物中的铬,使碳化物中部分铬转移到基体中,从而提高基体的耐蚀性,加入钨使晶粒细化,增加硬质点从而提高韧性,锰与钨的同时加入更好地提高了材料的淬透性,通过适当的热处理在确保材料具有优良抗磨性的前提下,韧性和耐蚀性比传统的详尽成分的高铬白口铸贴有一定的提高,通过调整Cr--Mn—W抗磨铸铁的化学成分,进一步优化热处理工艺,寻求出一个能够适应干湿磨机磨球的材质。 铬锰钨高铬抗磨铸铁磨球经过在不同工矿条件下的使用表明:以锰代替钼、镍等金属添加少量钨,通过合适的热处理工艺,生产的铬锰钨高铬抗磨铸铁磨球,它在不同工矿介质条件下均表现出优良的耐磨性能,能适用于不同的干湿磨机,与其它合金铸球相比社会经济效益显著,已达到世界先进水平。
钢铜合金双金属滑动轴承制造技术情况分析
2019-05-27 10:11:36
滑动轴承是用来支撑轴并接受轴上载荷的零件,一般是由耐磨材料制成。金属滑动轴承,其结构有单一金属的,两层以上复合多层金属的轴承,具有结构简略,体积小;制作便利、成本低;噪音低、作业平稳;承载力大;能习惯各种不同的作业介质和环境条件,它在与公民的日子、加工和科研作业有着密切关系的各种运动组织中运用极为遍及,因此滑动轴承的用途和数量巨大。滑动轴承在运用上,按其所能接受的载荷方向及种类可分为 (1)双金属径向滑动轴承; (2)双金属径向加止推一体滑动轴承; (3)双金属轴向止推滑动轴承; (4)双金属特种形状的滑动轴承; (5)双金属固体光滑滑动轴承等五大类。 1.现有烧结双金属滑动轴承的制作技能简介 钢—铜金属复合轴瓦材料、轴套、止推轴承环、止推轴套的制作,现在,在国内、包含国外公司在我国树立的独资与合资公司,这些产品都是以粉末烧结法制作为主,选用粉末烧结法,先制作出金属复合轴承材料,有板块的条料和卷带材料,不管是选用那种材材料,要做成上述轴承零件,都需求对金属复合轴承材料依据不同的轴承产品,进行专门的各种切削深制作来完结如轴瓦、轴套、止推轴承环、止推轴套等产品制作的全过程。这种传统的材料去除制作办法,不只材料利用率低(40~65%不等),还费裁切制作的设备和工装模具、人力。费工、费料、费设备,这显然是传统毛坯成形技能带来的坏处,与当今的节材、节能、树立金属节省型社会的方针要求极不相容。 2.自主百科产权的少无切削的钢—铜合金烧结双金属滑动轴承 为了节省贵重的铜资源,咱们从1986年起,试用烧结—摆辗技术,制作出了业界第一个近净形成型的金属复合材料轴承零件(双金属止推轴承盘,以钢材代替了原零件98%以上的铜合金),这项技能于1988年以“减摩轴承复合材料的加工技术办法”,笔者申请了我国发明专利,该项目1991年被列为国家级火炬计划项目[1],北京市严重科技成果推行项目[2]。 又经过了二十余年的尽力选用烧结—摆辗法,完结了对烧结双金属滑动轴承各个种类制作技能的全面改造,到到2012年,全面实现了从材料到双金属滑动轴承的少无切削制作。 自主百科产权的少无切削烧结双金属滑动轴承系列产品有 (1)双金属径向滑动轴承;(全体轴瓦、轴套近形材、净形零件) (2)双金属止推滑动轴承;(止推轴承盘、环、片近净形零件) (3)双金属径向加止推一体滑动轴承;(整圆翻边止推轴套近净形零件) (4)双金属特种形状滑动轴承;(凹凸V型、半圆凹球形、不规则形、尺度超大型) (5)双金属固体光滑滑动轴承(无油自光滑型)等五大种类。 3.近净成形技能 近净成形技能即近终成形(NearNetShape)少切削、精细成形技能,是指零件成形后,仅需少数制作或不再制作,就可用作机械构零件直接装机运用的成形技能。咱们选用近净成形技能 (1)创始了烧结金属复合轴承材料及产品制作的一种新模式。在机械通用零部件制作业中,完毕了我国在这项制作范畴上几十年一贯制的仿照前史。 (2)填补了钢—铜合金烧结双金属滑动轴承产品近净成形(NearNetShape)制作空缺。 (3)社会经济技能效益明显 1)产品材料利用率都达到了近百分之百,很多节省了铜合金材料和钢板、钢带等有色和黑色金属材料资源。 2)制作的首要设备2台套,省机床、省人工、占地面积小,免去了对材料的很多裁切及其它切削制作,加工效率高,完结零件材料或零件的均匀工时是2~7秒/件。 3)处理了一些专项产品——如超厚钢背、异形、及超大尺度双金属轴承零件材料、零件的工业性大批量制作加工的技能难题。 4)对环境无污染。 5)契合机械基础件的十二五规划,是业界发展方向之一。
钨在合金领域的应用
2018-09-17 10:15:40
钢铁钨的硬度很高,钨的密度接近黄金,因而能够提高钢的强度、硬度和耐磨性,是一种重要的合金元素,被广泛应用于各种钢材的生产中,常见的含钨钢材有高速钢、钨钢以及具有高的磁化强度和矫顽磁力的钨钴磁钢等,这些钢材主要用于制造各种工具,如钻头、铣刀、拉丝模、阴模和阳模等。碳化钨基硬质合金钨的碳化物具有高耐磨性和难熔性,其硬度则接近金刚石,因而常被用于一些硬质合金中。目前碳化钨基硬质合金是钨最大的消费领域,这种硬质合金是将碳化钨微米级粉末和金属粘合剂(如钴、镍、钼)在真空炉或 H₂ 还原炉中烧结而成的粉末冶金制品。碳化钨基硬质合金是大体上可分为碳化钨—钴、碳化钨—碳化钛—钴、碳化钨—碳化钛—碳化钽(铌)—钴及钢结硬质合金等四类,这些碳化钨基硬质合金主要用于制造切削工具、矿山工具和拉丝模等。热强和耐磨合金钨的熔点是所有金属中最高的,硬度也很高,因而常被用来生产热强和耐磨合金,例如钨和铬、钴、碳的合金常用来生产诸如航空发动机的活门、涡轮机叶轮等高强耐磨的零件,而钨和其它难熔金属(如钽、铌、钼、铼)的合金常来生产诸如航空火箭的喷管、发动机等高热强度的零件。高比重合金由于钨的密度高,硬度高,因而成为了制作高比重合金的理想材料,这些高比重合金按组成特性及用途分为W-Ni-Fe、W-Ni-Cu、W-Co、W-WC-Cu、W-Ag等主要系列,这类合金具有比重大、强度高、吸收射线能力强、导热系数大、热膨胀系数小、导电性能良好、可焊性和加工性良好等特性,被广泛应用在航天、航空、军事、石油钻井,电器仪表、医学等行业,如制造装甲、散热片、控制舵的平衡锤以及诸如闸刀开关、断路器、点焊电极等的触头材料。
球磨铸铁标准
2019-03-18 08:36:58
Q450铁素体球墨铸铁 0~100℃线胀系数α1:11.2×10^(-6)/K 0~200℃线胀系数α1:12.2×10^(-6)/K 0~500℃线胀系数α1:13.5×10^(-6)/K参考资料:球墨铸铁 GB/T 1348-1988球磨铸铁标准①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。 钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如铆螺专用的30CrMnSi钢,钢号表示为ML30CrMnSi。 6.低合金高强度钢 ①钢号的表示方法,基本上和合金结构钢相同。 ②对专业用低合金高强度钢,应在钢号最后标明。例如16Mn钢,用于桥梁的专用钢种为“16Mnq”,汽车大梁的专用钢种为“ 16MnL”,压力容器的专用钢种为“16MnR”。 7.弹簧钢 弹簧钢按化学成分可分为碳素弹簧钢和合金弹簧钢两类,其钢号表示方法,前者基本上与优质碳素结构钢相同,后者基本上与合金结钢相同。
铁精矿的成球机理---精矿粉的成球
2019-01-25 15:49:24
(一)精矿粉成球的机理 颗粒极细的精矿粉,被水润湿到合适的程度,在外力的作用下,会聚集成为一定大小的球。成球过程大致可分为三个步骤:精矿粉成核是成球的第一步。矿粉颗粒被水润湿,首先在其表面形成薄膜水,见图1(a);若进一步润湿,并且被润湿的颗粒有机会相接触,在触点处形成毛细水,靠毛细管的作用力,使两个或较多的颗粒连系起来,形成小球,见图1(b)和(c),继续增加水,以并在机械力的作用下,小球内部颗粒重新排列,进一步密集,形成比较坚实稳定的小球,见图1(d),一般称之为母球。母球的形成过程,即精矿粉的成核过程。母球仍然是多孔的,它内部包含有固体、液体和气体三个相,它的稳定性取决于矿粉的粒度和粒度组成,以及颗粒的形状和亲水性。 生球长大,是成球的第二步。母球在滚动过程中,彼此碰撞,使得内部颗粒之间毛细管形状发生变化,颗粒排列密集,毛细管收缩,蜂窝状毛细水变为饱和毛细水,一部分水被挤到母球表面上来,这时母球可以三种机理长大。母球水分较高,而且塑性较好,它们互相结合在一起,使生球迅速长大,见图2(a)。被称做聚结机理;在工业生产中如果将一大批湿料倾入造球机中,或者精矿粉粒度极细,亲水性极强,母球多靠聚结机理长大,在生产中将湿料均匀不断地加进造球机,表面含水较高的母球,在滚动中遇到矿粉,便将矿粉粘在表层,小球互相碰撞,将新粘上的一层湿矿粉压紧,毛细管中的水,被挤到表面上来,又可粘结新的一层矿粉,如果水分不足,可以向小球表面洒水,如此返复,使母球长大,见图2(b),被称做成层机理;此外小球在造球机中运动,总有少数球由于强度不够,水分较低等原因,发生破损及开裂,产生的碎片,粘附在另一个球上,见图2(c),被称做磨剥转移机理。总之由细粒精矿到生成母球,再到具有一定尺寸的生球,其成长机理,不外以上三种。至于以哪一种机理为主,则取决于原料的性质和造球工艺条件。 当母球长大到要求的尺寸,应当停止补充加水润湿,使生球在造球机内滚动一定时间,由于相互碰撞的结果,使生球内部颗粒排列得更加紧密,为成球的第三步。生球滚动过程中机械力的作用会使内部颗粒发生选择性的按最大接触面排列,颗粒相互靠近,毛细管直径缩小,甚至可以达到颗粒表面薄膜水层相互连接。在这种情况下,颗粒之间的分子作用力,毛细管作用力以及摩擦阻力综合作用,使生球具有很高的机械强度。以上所述生球成长的三个步骤,在生产中实际同时发生于同一造球机中。[next] (二)影响精矿成球的因素 影响精矿成球的因素很多,概括起来,可分为两类,一是原料的自然性质,二是造球工艺条件。 (1)原料的自然性质。造球原料的自然性质中,以颗粒表面的亲水性、颗粒形状,对其成球性影响最大。颗粒表面亲水性愈高,固相与液相界面的接触角愈小,颗粒容易被水润湿,薄膜水和毛细水含量高,毛细水的迁移速度也高,从而成球性好。根据测定的结果,铁矿粉和造球常用的添加剂的最大分子水和毛细水的含量。 细磨物料的成球性可以用成球性指数表示,见公式(1) 式中 Wƒ———最大分子水含量,%; Wm———毛细水含最,%。 K=0.20~0.35 物料属弱成球性, K=0.35~0.60 物料属中成球性, K=0.60~0.80 物料属良成球性, K>0。80 物料属优成球性。 铁矿粉的成球性以褐铁矿最好,磁铁矿最差。除它们的亲水性不同外,颗粒的形状也有关系,如褐铁矿颗粒呈针状、片状,比表面积大,而且疏松多孔,所以其湿容量大,成球性好。 (2)原料的粒度与粒度组成。原料的粒度和粒度组成,对于其成球性影响很大。粒度小,比表面积大,成球性好。原料具有合适的粒度组成,可使颗粒排列紧密,毛细管平均直径缩小,颗粒之间的结合力增大。各种原料都有其适宜的造球粒度,例如造球用的磁铁矿,其粒度上限不应大于0.2mm,而-200网目的粒级应占80%以上。国外有些球团矿厂,为了使原料的粒度达到要求,对铁精矿再度磨细。 原料中微细粒级(-0.01mm)的含量,对其成球性有重要影响,它填充在较大颗粒之间的空隙中,使颗粒之间的毛细管直径缩小。而且增加颗粒问的靡擦阻力。当然并非粒度愈细愈好,因为磨矿耗费大量电能,过细会导致生产成本升高。况且粒度愈细,毛细管直径愈小,水在颗粒间的迁移速度下降,从而使成球速度降低。 (3)原料的水份。原料含水份多少,对于成球影响很大。对于不同的原料,生球有不同的适宜水份。例如用磁铁矿精矿造成的生球,一般含水份8~10%,此时生球的成球率高,强度也好。在正常生产条件下,经常维持原料含水份略低于生球的适宜水份,为造球时补加水份留有余地。 若原料含水过低,虽然在造球时可以洒水补充,但成球速度慢,生产率降低,而且往往由于洒水不均匀,使生球脆弱。 原料含水过高,给造球带来极大困难,使生球粒度不均匀,互相粘结、形成大块。在这种情况下,必须将原料预先干烘,降低其中水份。 造球时,原料适宜水份波动范围因原料的不同而异。例如磁铁矿精矿造球,对于水份的波动最为敏感,所以对于不同的原料,适宜的水份应当用实验方法确定。[next] (4)添加物的影响。在造球原料中配加某些添加物,可以改善物料的成球性。常用的添加剂有皂土、消石灰、石灰石等。它们的亲水性和成球性指数,均优于铁矿粉。 皂土是造球常用的添加剂。它能改善精矿粉的成球性,提高生球的强度,更重要的是它能提高生球的爆裂温度。一般球团矿配料中加0.6~1.2%皂土,便有明显的作用。 皂土又名膨润土,它的主要矿物是蒙脱石,其化学结构式为:Al2(Si4O10)(OH)2,含Al2O328.3%、SiO266.7%,属于羟基组分的H2O5%.蒙脱石是一种呈层状结构的铝硅酸盐,由硅氧四面体和铝氧八面体平行链结,组成单位晶胞,见图3垂直叠置,呈层状结构。 蒙脱石晶体内部常发生不等价阳离子的同晶置换。在硅氧四面体中,Si+4可以被Al+3代替,在铝氧八面体中Al+3可被Fe+2、Mg+2置换,因而使结构带有负电荷。 蒙脱石常带负电荷,它能够吸附阳离子,自然界中常被它吸附的有Ca+2、Mg+2、Na+和K+等。吸附Ca+2为主的称做钙基膨润土,吸附Na+为主的叫做钠基膨润土。蒙脱石吸附的这些阳离子,可以按以下的原则相互交换。 介质中浓度高的阳离子,可以交换浓度低的阳离子; 介质浓度相同时,高价阳离子能交换低价阳离子; 介质浓度以及阳离子价相同时,离子半径大者,能交换半径小者。 基于上述原则,在实际生产中,可以根据需要,将膨润土改型。例如可以使钙基膨润土改为钠基膨润土。 蒙脱石有很强的吸水能力。除了象一般固态矿物表面吸附水分子以外,还有大量的层间内表面吸附水。钙基膨润土随着吸水量增加,晶层间距扩大,但达到21.4Ao便不能再增加,钠基膨润土可以继续吸水膨胀,甚至呈分离状态,所以钠基膨润土在造球中的作用更为明显。 消石灰是生产熔剂性球团矿时常用的添加剂,其化学分子式为Ca(OH)2.。它由生石灰(CaO为主)遇水消化而生成,比表面积大。消石灰的颗粒表面带负电荷,而水分子有偶极性,所以它可以吸附水分子,周围仍呈负电性。它有很强的亲水性和天然的粘结力,从而改善物料的成球性。不过消石灰的比重小,配加量不宜过多,否则按体积计,它在物料中占的比例过大,使毛细水迁移速度降低,影响成球速度。此外在大规模工业生产中,难以做到生石灰消化充分同时又保持其水份稳定而不结成大块,故多改用石灰石粉。 石灰石粉的主要成分为CaCO3。细磨石灰石粉的亲水性和粘结力虽然不及消石灰,但是它的颗粒表面粗糙,亲水性较磁铁矿粉好,所以配料中加入细磨的石灰石粉,对于造球性的改善有帮助。 近几年来世界各国都开始研究有机添加剂,用以代替皂土。因为皂土虽然能有效地改善物料的成球性,但是含SiO2高达60%以上,会降低球团矿的含铁品位,增加冶炼时的渣量,此外皂土还带来高炉最不希望的碱金属。目前已用于工业生产的有机添加剂为荷兰公司制造的佩利多(PERIDUR)XC-3,只要配加0.5%,便可显示出效果。经济效果与加皂土相似,但它不会带来SiO2,而这一点对于生产直接还原用的球团矿非常重要。[next] (5)造球工艺的影响。造球工艺对成球的影响可以概括为设备与操作两方面。 在造球设备方面,包括造球机的转速、倾斜角度、造球盘的边高等。西欧和我国的球团矿厂常用圆盘造球机。圆盘的直径大小不等,但倾斜角度一般在45°~50°之间。倾角固定时,造球盘的速度可在一定范围内调节,以造球盘的周边切线速度计,经常保持在1.0~2.0m/sec之间。周速过小,物料上升不到圆盘韵上部区域,一方面造球盘的面积得不到充分利用,另一方面生球在盘内滚动获得的位能低,因而滚动时动能小,球与球相互碰撞的机械作用力小,因而成球慢,生球的强度低。若周速过大,由于离心力作用,物料抛向边缘,跟随造球盘旋转,中心出现无料区,滚动成球的作用受到破坏,甚至无法成球。造球盘的倾角较大,要求较高的圆周速度,使盘内物料滚动次数增加,有利于提高生球的产量和增加它的强度。 造球盘的边高与其直径有关,直径5.5米的大型造球盘边高600~650毫米,边高影响造球盘的充填率,造球机的边高大,倾角小,在给料不变的条件下,物料在造球盘中停留时间长,有利于提高生球的强度。 刮料板的位置也很重要,它将粘在造球盘上的物料刮下,保持适当的底料厚度,避免粘料过多,加重驱动马达的负荷。此外刮板还起疏导料流的作用,使成核区和长大区分开,以便于控制生球的成长。 在工艺操作方面,影响成球的因素有:加水和加料的方法、造球时间控制等。正常情况下,造球物料的水份应控制在略低于适宜造球的水份,造球时补加少量水,以控制母球的形成和生球长大。补加水的大部分以滴状加在成核区,以形成母球,少部分以雾状喷淋在生球成长区,帮助母球迅速长大。 加料的方式也必须兼顾生成母球和母球长大,要防止形成过多的母球。在保证生球达到要求尺寸的前提下,应使母球的生成速度与生球的长大速度达到平衡。 滚动成球的时间,与对球团矿粒度的要求,以及原料成球的难易有关。球团矿的粒度大,要较长的造球时间;原料成球性差,造球时间也会延长。一般的规律是:延长造球时间,有利于提高生球的强度,特别对于粒度很细的原料,更须要较长的造球时间,才能使生球具有更高的强度。 (三)生球品质的控制 生球不是最终产品,但是它的品质,在很大程度上决定了下一步焙烧工序能否顺利进行,以及成品球团矿的品质。对生球品质的基本要求是:粒度合适而且均匀,机械强度高,在进入下步工序前,不应破裂,热稳定性好。 生球的粒度直接决定成品球团矿的尺寸,而成品球团矿的粒度,受高炉冶炼过程约束。过去球团矿的粒度较大,近几年来,为了改善高炉内的还原过程,球团矿的粒度大多在9~12毫米范围之内。生球焙烧过程中,会发生体积收缩,但生球的粒度也不能太大。此外生球的粒度愈小,造球机的生产率愈高。 生球从造球机出来,经过皮带输送机,到达焙烧设备。在焙烧设备中球团堆成一定厚度的床层。生球要有足够的抗压和抗落下冲击的强度。必须经过抗压和落下试验。 抗压强度的测定:通常取10~20个生球,用弹簧称或天平,测定其压裂的公斤数,并取其平均值及标准偏差。 抗冲击强度的测定:取生球10个,自0.5米高处自由落在钢板或橡胶板上,返复跌落,直至裂纹或溃破。累计每个球的不破落下次数,取平均值及标准偏差。 利用球团开始爆裂的温度表示生球的热稳定性。一般不应低于300℃。因为生球含水份甚高,焙烧前须经烘干,如果烘干时发生爆裂,则不仅损失了球团矿,而且影响下步焙烧工序的顺利进行。测定生球爆裂温度的办法有静态和动态两种。所谓静态,即在没有热气流条件下测定。动态即以指定温度的热气流,以一定流速通过生球,视其开始发生爆裂的温度。显然后者更接近实际,但测出的结果一般均低于前者。 生球的爆裂温度高,表明可以用较高温度的热气流烘干生球,从而使设备可以达到更高的生产率。 生球的水分测定:一般取一定数量的生球试样,用烘干法测定其水分。水分的适宜与稳定,代表造球操作的水平,而且只有水分适宜和稳定,生球的品质才有保证。