您所在的位置: 上海有色 > 有色金属产品库 > 铈钨棒图片 > 铈钨棒图片百科

铈钨棒图片百科

锌锭图片

2017-06-06 17:49:55

以下是小编为您提供的锌锭图片锌锭是指纯锌,当然也会有杂质,但作为锌锭,至少有90%以上的纯度。 锌锭的用途:主要用于压铸合金 电池业 印染业 医药业 橡胶业 化学工业等,锌与其它金属的合金在电镀 喷涂等行业得到广泛的应用.锌具有优良的抗大气腐蚀性能,所以被主要用于钢材和钢结构件的表面镀层(如镀锌板),广泛用于汽车、建筑、船舶、轻工等行业。近年来西方国家开始尝试直接用锌合金板做屋顶覆盖材料,其使用年限可长达120-140年,而且可回收再用,而用镀锌铁板作屋顶材料的使用寿命一般为5-10年。更多有关锌锭图片的咨询,欢迎登陆上海有色网! 

钨棒

2017-12-29 10:47:48

钨棒(英文名称:Tungsten Bar)又叫钨合金棒。钨合金棒(WMoNiFe)与Anviloy 1150是由金属粉末在特定的高温度下炼制而成的,运用特别的高温粉末冶金技能。这样钨合金棒资料的热膨胀系数低,导热功能好和杰出的资料特性。在高温下,钨合金棒作为一个熔点高,热膨胀系数低的资料。钨合金元素的参加进步可加工性,耐性和焊接。资料的功能是建立在制造业钨合金棒消除与其他刀具资料热处理相关的问题。

钨棒

2017-06-06 17:50:12

钨棒是什么?钨是属于 有色金属 ,也是重要的战略 金属 ,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的 金属 ,熔点极高,硬度很大。原子序数74。钢灰色或银白色,硬度高,熔点高,常温下不受空气侵蚀;主要用途是制造灯丝和高速切削合金钢、超硬模具,也用于光学仪器,化学仪器方面 [tungsten;wolfram]——元素符号W.钨棒抽成的丝,可做电灯泡、电子管等里面的灯丝.钨大部分用于生产特种钢。广泛采用的高速钢含有9%——24%的钨、3.8%——4.6%的铬、1%——5%的钒、4%——7%钴、0.7%——1.5%碳。高速钢的特点是在空气中有高的强化回火温度(700——800℃)下,能自动淬火,因此,直到600—650℃它还保持高的硬度和耐磨性。合金工具钢中的钨钢含有0.8%——1.2%的钨;铬钨硅钢含有2%——2.7%的钨;铬钨钢中含有2%——9%的钨;铬钨锰钢中含有0.5%——1.6%的钨。含钨的钢用于制造各种工具:如钻头、铣刀、拉丝模、阴模和阳模,气支工具等零件。钨磁钢是含有5.2%——6.2%的钨、0.68%——0.78%碳、0.3%——0.5%铬的永磁体钢。钨钴磁钢含有11.5%——14.5%的钨、5.5%——6.5%钼、11.5%——12.5%钴的硬磁材料。它们具有高的磁化强度和矫顽磁力。钨的最大的用途,还不是制造灯丝,而是制造钨钢。全世界每年有90%的钨是用于制造钨钢。在我国古代,常有所谓“削铁如泥”的宝刀,《水浒》里说把头发放在“青面兽”杨志的那把宝刀的刀刃上一吹,头发便断成两半。这些传说固然有夸张之处,不过,的确有些刀是格外锋利的。据现代用化学方法分析。原来,在这些钢刀中含有钨!现在,人们便用钨矿和铁矿放在一起,炼成钨钢。钨钢一般含钨9—17%。钨是最耐高温的 金属 。钨钢也继承了钨的这一优良特性。用普通碳素钢做的车刀,加热到250℃以上便变软了,自然也就没法切削 金属 了。然而,钨钢做的车刀,温度高达1000℃,仍然坚硬如故。1900年,人们才第一次在世界博览会上展出用钨钢制造的车刀。然而,由于钨钢车刀具有很大的优越性,便迅速地在工业上得到推广。在短短的五十年间,由于钨钢车刀的使用,使 金属 切削速度增加了二百倍,从每分钟十米增加到两千米以上。现在,炮筒、枪筒也常用钨钢做,因为在连续发射时,会被炮弹、枪弹摩擦得滚烫,但耐热的钨钢依然保持良好的弹性和机械强度。  钨很坚硬,钨纲也很坚硬、锋利。不过,如果用碳化钨和钴粉制成硬质合金,比钨钢还要坚硬,以至可与金刚石比美。这种硬质合金并不是从炼钢炉里炼出来的,而是用 金属 粉末做成的。这种制造方法,叫做“粉末冶金”。在制造时,人们先把碳粉与钨粉混合,加热到1500℃左右,制成碳化钨。然后,再把碳化钨粉与黑色的钴粉混合,模压成一定形状,先加热到1000℃进行预烧。预烧后的合金,进行一些机械加工(因为变硬后几乎无法再加土),再加热到1500℃左右,这时,原先是“一盘散沙”般的黑粉,却烧结成非常结实的硬质合金。我国现在正大力推广使用这种简便的粉末冶金法,制造硬质合金。用这种碳化钨硬质合金制成的刀具,在加工同样的机械零件时,切削速度比钨钢刀具还快十五倍。用这种碳化钨硬质合金制成的模具,可以冲三百多万次,而普通的合金钢模具只能冲五万多次。更可贵的是,由于它不易被磨损,所以冲出来的产品,十分精确。硬质合金现在已广泛地用于我国各工业部门,如制造手表中的零件、化工厂用的高压喷嘴以及制造无缝钢管的顶芯、钻探机的钻头等。更多有关钨棒请详见于上海 有色 网

废铝图片

2017-06-06 17:50:03

废铝图片是各个收购者和供应者对于双方的 交易 之间的比较直观的看到货物废铝的方法之一。废铝对于现在的 金属市场 来说有一定的前景, 市场 内人士分析,对于 有色金属 来说,即便是废铝,在 市场 内未来的几年中仍然应该被看好。以下是一些关于废铝图片:  近几十年来,铝废杂料的回收量飞速增长,铝二次资源在整个铝工业原料中的比重也越来越大。从1950年开始直到今天,再生铝 产量 逐年递增,发达国家原铝与再生铝的占有比已接近或超出1:1。一些发达国家如美国再生铝的年均增长率为6.2%,远远高于同期原铝的0.1%的增长。2000年度,全世界生产再生铝及合金816万吨,占原生铝 产量 的33%。其中美国93%,法国59%,德国89%,日本的再生铝 产量 更是原生铝的186倍。工业发达国家,由于发展较快,寿命的铝材越来越多,回收工作引起重视较少势在必然。各种用途的铝材也就成了废料的不同来源。前面介绍的铝及铝合金的用途中包含了废铝的来源。废铝最大来源大致是汽车交通、废铝饮料罐、废建筑铝材和电器铝材(废铝电线、导电排等)。一些小废铝制品为家用电器、体育用品等级杂品随着再生技术的发展利用率也不断提高。我国目前还没有废铝方面的标准, 但随着我国工业化速度的加快,废杂 有色金属 的回收、贸易以及再生利用 产业 所面临的社会经济环境已发生了重大变化,不仅废杂 有色金属 的品种构成变化较大,而且大量的国外废杂 有色金属 以及各类可利用的废料涌入国门,给我国 有色金属 的生产提供了丰富的原料来源,同时也对再生 有色金属 的生产加工提出了新的要求。更多废铝图片可以登上海 有色 网查询。 

铝锭图片

2017-06-06 17:49:58

铝锭图片可以更直观的帮助你知道铝锭。铝是一种银白色金属,在地壳中含量仅次于氧和硅排在第三位。铝的密度铝锭小,仅为铁的34.61%、铜的30.33%,因此又被称作轻金属。铝是世界上产量和用量都仅次于钢铁的有色金属。铝的密度只有2.7103㎏/m3,约为钢、铜或黄铜密度的1/3左右。由于铝的材质轻,因此常用于制造汽车、火车、地铁、船舶、飞机、火箭、飞船等陆海空交通工具,以减轻自重增加装载量。铝在军工中也有广泛应用。   铝锭分类铝锭按成分不同分重熔用铝锭、高纯铝锭和铝合金锭三种:按形状和尺寸又可分为条锭、圆锭、板锭、T形锭等几种,下面是几种常见的铝锭;   重熔用铝锭--15kg,20kg(≤99.80%Al):   T形铝锭--500kg,1000kg(≤99.80%Al):   高纯铝锭--l0kg,15kg(99.90%~99.999%Al);   铝合金锭--10kg,15kg(Al--Si,Al--Cu,Al--Mg);   板锭--500~1000kg(制板用);   圆 锭--30~60kg(拉丝用)。在我们日常工业上的原料叫铝锭,按国家标准(GB/T 1196-2008)应叫“重熔用铝锭”,不过大家叫惯了“铝锭”。它是用氧化铝-冰晶石通过电解法生产出来的。铝锭进入工业应用之后有两大类:铸造铝合金和变形铝合金。铸造铝及铝合金是以铸造方法生产铝的铸件;变形铝及铝合金是以压力加工方法生产铝的加工产品:板、带、箔、管、棒、型、线和锻件。按照?重熔用铝锭?国家标准,“重熔用铝锭按化学成分分为6个牌号,分别是Al99.85、Al99.80、Al99.70、Al99.60、Al99.50、Al99.00”(注:Al之后的数字是铝含量)。目前,有人叫的“A00”铝,实际上是含铝为99.7%纯度的铝,在伦敦市场上叫“标准铝”。大家都知道,我国在五十年代技术标准都来自前苏联,“A00”是苏联国家标准中的俄文牌号,“A”是俄文字母,而不是英文“A”字,也不是汉语拼音字母的“A”。和国际接轨的话,称“标准铝”更为确切。标准铝就是含99.7%铝的铝锭,在伦敦市场上注册的就是它。铝及铝产品分类1、电解铝的生产过程:铝土矿→氧化铝→电解铝。2、按照铝锭的主成份含量可以分成三类:高级纯铝(铝的含量99.93%-99.999%)、工业高纯铝(铝的含量99.85%-99.90%)、工业纯铝(铝的含量98.0%-99.7%)。3、按照铝锭的市场产品型态可以分成三类:一类是加工材,如板、带、箔、管、棒型、锻件、粉末等;一类是铸造铝合金、盘条线杆电缆等;一类是日常生活中的各类铝制品等。铝工业的真正工业化生产始于1886 年,1956 年全球铝产量开始超过铜跃居有色金属的首位,成为仅次于(钢)铁的第二大金属。近几年全球铝加工业技术和装备水平的提高,特别是中国铝工业的迅速发展,带动了全球铝产量迅猛增长。截止到2004 年末,全球原铝总产量达到了2985 万吨。铝锭生产主要集中在中国、美国、俄罗斯、加拿大、澳洲、巴西、挪威等国家,产量约占全球的60%以上。铝的供应来源除了原铝(铝土矿-氧化铝-电解铝)外,回收铝也占有很高比例。回收铝又分为旧料回收(主要来源是饮料罐和汽车废件)、新料回收(加工过程中的废屑)两种。 通过了解铝锭图片,我们对其有了更深入的了解,之后的操作也会更加的得心应手。 

铈铝

2018-12-29 11:29:12

铈铝就是我们平时说的Ce铝,Ce铝是一种新型的铈(Ce)系纯铝复合涂层。主要包括铈(Ce)系纯铝涂层和环氧乙烯酯漆涂层,所述铈(Ce)系纯铝涂层是以铝为原料,添加铈(Ce)元素的热喷涂层,所述环氧乙烯酯漆涂层为铈Ce铝热喷涂层的封闭层和功能涂层。铈(Ce)系纯铝涂层添加元素铈(Ce)重量百分比为0.05-0.50%(wt),其它杂质铁+铜+硅≤0.30%(wt),余量为铝,还可辅助添加元素镁,系纯铝涂层的制作方法为:加工制作成线材或者粉末用热喷涂技术在钢铁表面制作成Ce铝喷涂层。所述环氧乙烯酯漆涂层为以环氧乙烯酯树脂为原料,添加炭化硅和铝粉或铝粉浆。环氧乙烯酯漆作为Ce系铝涂层的封闭层、中间层和表面层,也还可以其它油漆涂料代替其中的某一层或者全部。  一种铈(Ce)系纯铝复合涂层,主要包括:铈(Ce)系纯铝涂层和环氧乙烯酯漆涂层,其特征在于:所述铈(Ce)系纯铝涂层是以铝为原料,添加铈 (Ce)元素的热喷涂层,所述环氧乙烯酯漆涂层为铈Ce铝热喷涂层的封闭层和功能涂层。

钨棒价格

2017-06-06 17:50:12

钨棒 价格 :产品名称 含量价格涨跌 单位 备注钨棒(磨光) 99.95% 380 平 元/公斤 含税钨棒(黑皮) 99.95% 320 平 元/公斤 含税钨是银白色 金属 ,熔点高达3400。C;钨的硬度大、密度高、高温强度好。钨主要用于生产硬质合金和钨铁。钨与铬、钼、钴等组成耐热耐磨合金用于制作刀具、 金属 表层硬化材料、燃起拉机叶片。钨与钽、铌、钼等组成难熔合金。钨铜和钨银合金用于制作电灯泡、电子管的部件和电弧焊的电极。钨的一些化合物可作荧光剂、颜料、染料等。钨广泛应用于石油和天然气、矿业、电子、 金属 加工、机器设备、重型制造业,这些部门使钨的应用达到总量的85%,其他应用于军事、核能和航空航天工业等。随着经济的发展,科技的进步,中国钨的应用范围正在逐步扩大,产品品种日益增加,极大地满足了国民经济建设和国防军事建设的需要。美国、日本、西欧是世界钨的主要消费国,合计占世界总消费量的60%~65%,但这些国家钨精矿 产量 只能满足需求量的12%~15%,大多靠进口满足需要,因而也是最重要的钨进口国。中国是世界上最大的钨供应国。  钨是属于 有色金属 ,也是重要的战略 金属 ,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的 金属 ,熔点极高,硬度很大。原子序数74。钢灰色或银白色,硬度高,熔点高,常温下不受空气侵蚀;主要用途是制造灯丝和高速切削合金钢、超硬模具,也用于光学仪器,化学仪器方面 [tungsten;wolfram]——元素符号W.钨棒抽成的丝,可做电灯泡、电子管等里面的灯丝.更多有关钨棒 价格 请详见于上海 有色 网

紫铜浮雕图片

2017-06-06 17:50:11

紫铜浮雕产品,是以紫铜为材料制成的工艺品,一般用离子法进行制作。紫铜浮雕图片种类繁多,类型多样。紫铜又称纯铜、红铜。红铜的延展性、导电性和耐腐蚀性很好,其中延展性是铜饰的重要特性。红铜的熔点很高,不易铸造,而良好的延展性弥补了这一缺点,因此能够很容易地加工成各种造型图案。暗红的 金属 光泽使其在表达现代感的同时还具有沉稳、高贵的品质,是铜饰中最常使用的材料。   传统意义上紫铜浮雕也称纯铜浮雕,是用红铜薄板作为基材经过手工錾制而成,故又称锻铜浮雕。锻铜浮雕自二十世纪八十年代以来得到了空前发展,全国各地经济改革、招商引资的浪潮汹涌澎湃,文化搭台、经济唱戏成为各地政府争相仿效的成功手段。铜饰产品因其特有的典雅华贵及几千年深厚铜文化的积淀而大行其道,锻铜浮雕则更是风行全国,小到几个平方米的主体浮雕,大到数百平方米叙事式的铜雕文化长廊,到处洋溢着铜艺文化的气息,彰显着铜艺文化的辉煌。给人已强烈的精神震撼。无疑锻铜浮雕在成功展现地方历史文化、现代文明及经济发展方面功不可没。在宣传地方文化提升地方城市品味的同时,也让相关企业得到了丰厚的回报。   离子导入法紫铜浮雕铸铜工艺是一门新型的电化学工艺。二十世纪八十年代我国自欧洲引进,作为辅助工艺生产一些特种型号及不规则界面工业产品,九十年代被引入工艺品 行业 一炮打红,用离子导入工艺生产的铜工艺品纯度较红铜高,精度更好,无盲孔,沉积速度、光亮程度容易把握。生产过程中基本上不产生污染,这在电化学工艺上是很少见的。另外一个方面离子导入法生产工艺品基本建设投资小,劳动强度低,用工省,对专业水平要求不高,这对资金薄弱的投资者尤为重要。下面是一张紫铜浮雕图片:  想要了解更多关于紫铜浮雕图片的信息,请继续浏览上海 有色 网。

纯铜图片

2017-06-06 17:50:05

纯铜呈现紫红色,目前网络上纯铜图片很多,但大多数是黄铜,还有一些是白铜。    纯铜是一种坚韧、柔软、富有延展性的紫红色而有光泽的 金属 ,又被称为紫铜。铜的颜色很像金,但发红,铜离子的颜色为蓝色。有剧毒,不过,用特定加工法加工的铜没有毒。    铜在干燥空气中安定,可保持 金属 光泽。但在潮湿空气中,表面会生成一层铜绿(碱式碳酸铜,分子式:Cu2(OH)2CO3),保护内层的铜不再被氧化。    含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3Cu(OH)2,深蓝色的石青2CuCO3Cu(OH)2,赤铜矿Cu2O,辉铜矿Cu2S等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到 金属 铜。黄铜是铜与锌的合金,因色黄而得名。黄铜的机械性能和耐磨性能都很好,可用于制造精密仪器、船舶的零件、枪炮的弹壳等。黄铜敲起来声音好听,因此锣、钹、铃、号等乐器都是用黄铜制做的。    铜与锡的合金叫青铜,因色青而得名。青铜一般具有较好的耐腐蚀性、耐磨性、铸造性和优良的机械性能。用于制造精密轴承、高压轴承、船舶上抗海水腐蚀的机械零件以及各种板材、管材、棒材等。青铜还有一个反常的特性——“热缩冷胀”,用来铸造塑像,冷却后膨胀,可以使眉目更清楚。    白铜是铜与镍的合金,其色泽和银一样,银光闪闪,不易生锈。常用于制造硬币、电器、仪表和装饰品。以下是纯铜图片: 

铈钨电极

2017-06-06 17:50:12

铈钨电极是在钨基中添加稀土氧化铈经过粉末冶金和压延磨抛工序制作而成的钨电极产品,是我国最早生产的无放射性钨电极产品,该产品的特点是在低电流条件下有着优良的起弧性能,维弧电流较小。因此,它常用于管道,不锈钢制品和细小精密部件的焊接。在低电流直流条件下或电极直径在2.0mm以下,铈钨电极是钍钨电极的首选替代品。牌号、成份、色标、逸出功  Model   牌号  Added   Impurity   掺杂质  Impurity   quantity%   掺杂量% Other Impurities%   其他杂质量% Tungsten%钨% Electric   discharged   power   电子逸出功  Color   sign色标 WC20 CeO2 1.80-2.20 <0.20 余量   The rest 2.7-2.8 灰Grey 其优点是铈钨极的X射线剂量及抗氧化性能比钍钨极有较大改善;电子逸出功比钍钨极约低10%,故引弧更容易,电弧稳定性更好。另外铈钨极化学稳定性好,阴极斑点小,压降低、烧损少等,因此是目前TIG焊中应用最广的一种钨极。 常用钨极的化学成分及牌号 纯钨极 W1 W≥99.92 SiO2≤0.03 Fe2O3Al2≤0.03 Mo≤0.01 CaO 钍钨极 WTH-7 W余量 其他杂质成分总的质量分数不大于 0.15%.铈钨极 WCe-20 W余量 CeO1.8-2.2 SiO2≤0.06 Fe2O3AI2O3≤0.02 Mo≤0.01 CaO≤0.01 铈钨极 电子逸出功低,化学稳定性高,允许电流密度大,无放射性,是目前普遍采用的一种电极. 纯钨极 熔点和沸点高,不易融化挥发、烧损,尖端污染少,但电子发射较差,不利于电弧的稳定燃烧。 钍钨极 电子发射能力强,允许电流密度高,电弧燃烧较稳定,但钍元素具有一定放射性,推广应用受到一定影响. 锆钨极 对必须防止电极污染基体 金属 的特殊条件下,可以选用这种钨极。这电极的尖端易保持半球形,适于交流焊接。更多有关铈钨电极请详见于上海 有色 网

铈钨极

2017-06-06 17:50:12

铈钨极呈灰色无规则状粉末。用途:用作硬质合金及金刚石锯片等。注:可按用户需要提供其它规格Wc粉,粒度规格-200目,>95%。 合金粉末耐磨喷涂 DG.Fe60 说明:DG.Fe60是高硬度的铁镍铬硅硼合金粉末。自熔性较好,具有较好的耐磨性,是铁基粉末中最硬的一种,用特殊刀具可以切削加工。适用于氧—乙炔火焰或等离子喷焊工艺,推荐用于农业机械、建筑机械、石油、矿山机械等易磨损部位的修复或预防性保护。如耙片、锄齿、石油钻杆接头、刮板轴等。 DG.Fe55 说明:DG.Fe55是高硬度的铁镍铬硅硼合金粉末。自熔性较好,具有较好的耐磨性,用特殊刀具可以切削加工。适用于氧—乙炔火焰或等离子喷焊工艺,推荐用于农业机械、建筑机械、石油、矿山机械等易磨损部位的修复或预防性保护。如耙片、锄齿、石油钻杆接头、刮板轴等。 DG.Fe30 说明:DG.Fe30是中等硬度的铁镍铬硅硼合金粉末。自熔性较好,可塑性好,抗疲劳优良可以锉加工。适用于氧—乙炔火焰或等离子喷焊工艺,常用于承受反复冲击的硬度要求不高的场合。如铁路钢轨擦伤,低塌缺陷的修复,以及齿轮等的修复。 DG.Fe45 说明:DG.Fe45是中等硬度的铁镍铬硅硼合金粉末。自熔性较好,具有较好的耐磨性,可以切削加工。适用于氧—乙炔火焰或等离子喷焊工艺,常用于阀门密封面以及农业、运输、建筑机械的易磨损部位的修复或预防性保护。如齿轮、刮板、、车轴等。 镍粉 镍基粉 F-Y1:-60/+250,-80/+300目,2.5~4.0g/cm3,主要用于焊接材料、金刚石钻头、 金属 溶剂及相关产; F-Y2:-200目,1.6~1.9g/cm3,主要用于粉末冶金零部件、磁性材料、硬质合金等粉末冶金制品; F-Y3:-325目,1.0~1.8g/cm3,主要应用于金刚石工具、摩擦材料、硬质合金、磨料磨具、粉末冶金、电工合金等粉末冶金制品; F-Y4:-400目,0.8~1.5g/cm3,主要应用于电池 行业 、高端硬质合金及粉末冶金产品。 钴粉 钴基粉性状:呈灰色不规则状粉末,在潮湿空气中易氧化。用途:用作硬质合金粘结剂及磁性材料,金刚石锯片刀头等。 纯钨极 W1 W≥99.92 SiO2≤0.03 Fe2O3Al2≤0.03 Mo≤0.01 CaO 钍钨极 WTH-7 W余量 其他杂质成分总的质量分数不大于 0.15% 铈钨极 WCe-20 W余量 CeO1.8-2.2 SiO2≤0.06 Fe2O3AI2O3≤0.02 Mo≤0.01 CaO≤0.01 铈钨极 电子逸出功低,化学稳定性高,允许电流密度大,无放射性,是目前普遍采用的一种电极. 纯钨极 熔点和沸点高,不易融化挥发、烧损,尖端污染少,但电子发射较差,不利于电弧的稳定燃烧。更多有关铈钨极请详见于上海 有色 网

铈钨电极

2017-06-06 17:50:13

铈钨电极是在钨基中添加稀土氧化铈经过粉末冶金和压延磨抛工序制作而成的钨电极产品,是我国最早生产的无放射性钨电极产品,该产品的特点是在低电流条件下有着优良的起弧性能,维弧电流较小。因此,它常用于管道,不锈钢制品和细小精密部件的焊接。在低电流直流条件下或电极直径在2.0mm以下,铈钨电极是钍钨电极的首选替代品。牌号、成份、色标、逸出功 Model 牌号  Added Impurity 掺杂质  Impurity quantity% 掺杂量% Other Impurities% 其他杂质量% Tungsten%钨% Electric  discharged  power 电子逸出功  Color  sign色标  WC20 CeO2 1.80-2.20 <0.20 余量 The rest 2.7-2.8 灰Grey铈钨电极中的铈的主要应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的 金属 应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等 行业 。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及 有色金属 等。元素描述:灰色 金属 ,有延展性。熔点799℃,沸点3426℃。密度:立方晶体6.76克/厘米3,六方晶体6.66克/厘米3。外围电子层排布4f15d16s2。第一电离能5.47电子伏特。化学性质活泼,用刀刮即可在空气中燃烧(纯的铈不易自燃,但稍氧化或与铁生成合金时,极易自燃);加热时,在空气中燃烧生成铈钨电极。能与沸水作用,溶于酸,不溶于碱。受低温和高压时,出现一种反磁性体,比普通形式的铈致密18%。铈是稀土元素中最丰富的 金属 元素。有四种同位素:136Ce、138Ce、140Ce、142Ce。142Ce是放射性的α放射体,半衰期为5×1015年。铈钨电极中的铈是稀土元素。稀土元素是指钪、钇和全部镧系元素。铈和另一稀土元素钇是稀土元素中在地壳中含量较大的两种元素,因而它们在稀土元素中首先被发现。欧洲北部斯堪的纳维亚半岛上的挪威和瑞典是稀土元素矿物比较丰富的产地,因而这两种元素在这个地区最先被发现。钇和铈的氧化物以及其他稀土元素氧化物和土族元素的氧化物一样很难还原。直到1875年希尔布郎德利用电解熔融的铈的氧化物,获得 金属 铈。这是今天取得稀土元素 金属 的一种普遍的方法。综上所述,铈钨电极的铈(Ce)(cerium)(shì)   "铈"这个元素是由德国人M.H.Klaproth,瑞典人J.J.Bergelius和W.Hisinger于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。熔点为 799 ℃,沸点为3 426 ℃,密度为8.240 g/cm3(α)(25 ℃)。灰色活泼的 金属 ,是镧系 金属 中自然丰度最高的一种,性质活泼。在空气中失去光泽,加热时燃烧,与水迅速反应,溶于酸。用于制造玻璃、打火石、陶瓷和合金等。铈钨电极的铈元素的来源:铈主要存在独居石和氟碳铈矿中,也存在于铀、钍、钚的裂变产物中。常由氧化铈用镁粉还原,或由电解熔融的氯化铈而制得。元素用途:铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,可以用来制造喷气推进器零件。硝酸铈可用来制造煤气灯上用的白热纱罩。

塑铜线图片

2017-06-06 17:50:12

 塑铜线图片塑铜线,顾名思义,就是塑料铜芯电线,全称铜芯聚氯乙烯绝缘电线。塑铜线本身并没有太严格的定义,只是按照行内的认识进行归类。一般包括bv电线、bvr软电线、rv电线、rvs双绞线、rvb平行线,总的来说,塑铜线就是聚氯乙烯绝缘加铜质导线。一、执行标准:GB5023-1997; JB8734-1998 ; 阻燃型电缆Q/12 YJ 3729-2000;厂标电缆Q/12YJ4099-2000;二、适用范围:适用于交流额定电压450/750V及以下动力.日用电器.仪器仪表及电信设备的线路。阻燃型电缆适用于有阻燃要求的场合。三、使用特性:电线的额定电压(相电压/线电压)为450/750V和300/500V。当用于直流系统时,该系统的标称电压应不大于额定电压的1.5 倍四、工作温度:一般型不超过70℃,  型号后带90的最高不超过90℃,安装温度不低于0℃.电线塑铜 是什么意思:塑铜  塑料铜芯线(一般为铜芯聚氯乙烯绝缘电线,符号BV)塑软  塑料软线 (如塑料铜芯软线,同上,线芯多股,符号BVR)橡铜  铜芯橡皮线(符号BX)橡 铝   铝芯橡皮线(符号BLX)塑铝  塑料铝芯线(一般为铝芯聚氯乙烯绝缘电线,符号BLV)耐火  耐火电线、在电线符号前加 “NH” 表示;橡软 橡皮软线 同上上阻燃线 阻燃型导线,在电线符号前加 “ZR” 表示;更多有关塑铜线图片的内容请查阅上海 有色 网

电解铜图片

2017-06-06 17:50:03

电解铜图片中国是世界最大的铜材生产国、消费国、进口国,也是重要的出口国,铜材总 产量 己连续7年居世界首位。中国铜加工业所面临的新形势是:世界金融危机对铜加工的不利影响并未消除,出口形势并不乐观,节能减排和企业升级任务艰巨。中国铜加工的发展战略是 宏观 上全 行业 做大做强,微观上把企业做精做专,建设生产技术先进、产品质量一流、技术指标先进的创新型铜加工业。创新是 行业 发展的动力源(600405)泉,为实现 行业 升级的宏伟目标必须进行科学的企业整合,大力推进技术创新,建立节能、环保、连续化、自动化生产线,是提升 行业 水平的重要措施。更多关于电解铜信息请详见上海 有色金属 网 

金属硅图片

2017-06-06 17:49:50

  金属硅图片  金属硅又称结晶硅或工业硅,其主要用途是作为非铁基合金的添加剂。硅是非金属元素,呈灰色,有金属色泽,性硬且脆。硅的含量约占地壳质量的26%;原子量为28.80;密度为2.33g/m3;熔点为1410C;沸点为2355C;电阻率为2140Ω.m。  金属硅的用途:金属硅(Si)是工业提纯的单质硅,主要用于生产有机硅、制取高纯度的半导体材料以及配制有特殊用途的合金等。制造高纯半导体现代化大型集成电路几乎都是用高纯度金属硅制成的,而且高纯度金属硅还是生产光纤的主要原料,可以说金属硅已成为信息时代的基础支柱产业。配制合金硅铝合金是用量最大的硅合金。硅铝合金是一种强复合脱氧剂,在炼钢过程中代替纯铝可提高脱氧剂利用率,并可净化钢液,提高钢材质量。硅铝合金密度小,热膨胀系数低,铸造性能和抗磨性能好,用其铸造的合金铸件具有很高的抗击冲击能力和很好的高压致密性,可大大提高使用寿命,常用其生产航天飞行器和汽车零部件。生产硅橡胶、硅树脂、硅油等有机硅硅橡胶弹性好,耐高温,用于制作医疗用品、耐高温垫圈等。硅树脂用于生产绝缘漆、高温涂料等。硅油是一种油状物,其粘度受温度的影响很小,用于生产高级润滑剂、上光剂、流体弹簧、介电液体等,还可加工成无色透明的液体,作为高级防水剂喷涂在建筑物表面。  更多关于金属硅图片的资讯,请登录上海有色网查询。

铈铝:新型的铈(Ce)系纯铝复合涂层

2019-01-11 15:43:41

铈铝就是我们平时说的Ce铝,Ce铝是一种新型的铈(Ce)系纯铝复合涂层。主要包括铈(Ce)系纯铝涂层和环氧乙烯酯漆涂层,所述铈(Ce)系纯铝涂层是以铝为原料,添加铈(Ce)元素的热喷涂层,所述环氧乙烯酯漆涂层为铈Ce铝热喷涂层的封闭层和功能涂层。铈(Ce)系纯铝涂层添加元素铈(Ce)重量百分比为0.05-0.50%(wt),其它杂质铁+铜+硅≤0.30%(wt),余量为铝,还可辅助添加元素镁,系纯铝涂层的制作方法为:加工制作成线材或者粉末用热喷涂技术在钢铁表面制作成Ce铝喷涂层。所述环氧乙烯酯漆涂层为以环氧乙烯酯树脂为原料,添加炭化硅和铝粉或铝粉浆。环氧乙烯酯漆作为Ce系铝涂层的封闭层、中间层和表面层,也还可以其它油漆涂料代替其中的某一层或者全部。    一种铈(Ce)系纯铝复合涂层,主要包括:铈(Ce)系纯铝涂层和环氧乙烯酯漆涂层,其特征在于:所述铈(Ce)系纯铝涂层是以铝为原料,添加铈(Ce)元素的热喷涂层,所述环氧乙烯酯漆涂层为铈Ce铝热喷涂层的封闭层和功能涂层。

稀土元素铈(Ce)的用途

2019-01-30 10:26:34

稀土的分类 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 铈(Ce)“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星-谷神星。

铈铌钙钛矿(前苏联)

2019-01-30 10:26:21

一、矿石性质       前苏联科拉半岛的铈铌钙钛矿产于碱性霓霞正长岩和异性霞石正长岩中,是一种含稀土、铌、钛的复合物。这种矿物的主要化学成分:含REO28.71%、ThO2 0.52%、Nb2O5 9.4%、Ta2O5 0.38%、TiO2 36.83%;矿物的密度为4.64~4.89克/厘米3;铈铌钙钛矿具有弱磁性。原矿含铈铌钙钛矿3.53%~3.70%,伴生的脉石有霞石、霓石等。矿石中有用矿物嵌布粒度较粗,一般可采用重选、磁选方法回收。       二、重选-磁选流程及选别指标       从矿山运来的矿石,采用两段破碎流程破碎至-20毫米,经一段磨矿磨至-1毫米送水力分级,粗粒级送跳汰,跳汰尾矿返回再磨。细粒级用摇床选别。所得的霞石-铈铌钙钛矿混合精矿用磁选除去霞石,获得含89%~91%铈铌钙钛矿的精矿,回收率为70%~75%。流程示于图1。    图1  回收铈铌钙钛矿的重-磁选流程       三、用浮选法从重选矿泥中进一步回收铈铌钙钛矿       用浮选法处理重选矿泥的流程(图2):首先将矿泥中易浮的磷灰石浮出,经四次精选获得含P2O5 36%~38%、回收率83%~85%的磷灰石精矿。磷灰石浮选尾矿进一步脱泥,并添加水玻璃和捕收剂ИM-50,采用H2SO4使矿浆pH调整至5.4~4.8,进行铈铌钙钛矿和霞石浮选;上述两种矿物的浮选泡沫经酸处理后,采用草酸、六偏磷酸钠、ИM-50,在pH6.2~6.4的条件下浮选铈铌钙钛矿,经精选获得含铈铌钙钛矿95%的最终精矿,对重选矿泥的作业回收率为82%(对原矿而言大约增加8%~10%的回收率)。    图2  从重选矿泥中用浮选回收铈铌钙钛矿流程

新型铝合金更耐热 还可让铈变废为宝

2018-12-27 15:30:42

美国能源部橡树岭国家实验室的研究人员与合作伙伴劳伦斯利弗莫尔国家实验室、威斯康星州的Eck工业公司合作开发了一种新型铝合金,比现有产品实用性好且更耐高温。更为重要的是,这种含有铈的铝合金有可能极大提高美国稀土的产量。        铈是一种稀土元素,可与铝形成金属间化合物,其熔点超过1000摄氏度。铝-铈系合金非常适合用于内燃机发动机,测试表明该系列合金可以在300摄氏度环境下稳定工作。铝-铈合金的可铸性与铝-硅系合金相当,非常易于加工,金属间化合物的稳定性消除了许多热处理环节。研究人员还指出,由于铝合金的广泛应用,铝-铈合金的发现将启动并快速推进铈稀土元素产业的发展,据初步估算,即使按1%的添加量,每年对铈的市场需求亦可达到3000吨。橡树岭国家实验室的科学家ZachSims、Michael Mc Guire和Orlando Rios与来自Eck工业公司、劳伦斯利弗莫尔国家实验室、爱荷华州的埃姆斯实验室的同事们在一篇文章中探讨了铝铈合金的技术和经济可行性,该论文发表在矿物、金属和材料协会的出版物JOM上。        稀土是一组对电子器件、可替代能源和其他现代技术非常重要的元素。例如,现代的风力发电和混合动力汽车对由稀土元素钕和镝制造的强大的永磁铁非常依赖。然而,在现在的北美并没有进行稀土的生产。其中一个问题是,包括美国的稀土矿在内,铈含量高达稀土含量一半以上,但是稀土生产商很难找到铈矿市场。事实上,在美国最常见的稀土矿,铈的含量是钕含量的3倍以上、镝含量的500倍以上。        铝铈合金有望通过增加需求来促进国内稀土矿开采,并最终提高铈的价值。Rios解释道,我们有足够的稀土来满足能源技术的需要,但当你提炼稀土时,得到的大部分元素是铈和镧,限制了稀土的大规模使用。例如,如果在内燃机上用到铝铈合金,这样可以迅速将铈从一个糟糕的副产品转换为一个有价值的产品。        Rios解释说:“铝产业是巨大的,汽车产业中使用了大量的铝,所以对于铝铈合金即使是一个非常小的突破,将导致市场使用大量的铈元素。事实上,市场上1%的铝合金中加入铈,市场将产生3000t的铈需求量。        Rios表示,与传统的铝合金相比,铝铈合金具有成本低,可铸造性高,热处理需求低和高温稳定性好。Eck工业公司工程研究和开发的副总裁David Weiss表示:”大多数具有卓越性能的合金很难浇铸,但铝铈合金具备优异的性能,且其铸造特性与铝硅合金相差无几。“        合金的高温性能的关键是形成一种特殊的铝-铈化合物,即金属间化合物,当合金熔化和铸造的时候,该化合物才在合金内部形成。这种金属间化合物只有在华氏2000度以上才融化。Rios指出,铝铈合金的耐热性应用在内燃机上是非常有吸引力的。试验表明,新型合金在300摄氏度(572华氏度)时会保持稳定状态,而传统合金在这一温度开始崩解。此外,金属间化合物的稳定性有时可以免除铝合金通常需要的热处理工序。铝铈合金通过提高运行温度来直接提高发动机燃油效率,也可以通过用轻型铝基组件或用铝合金来替代铸铁部件从而减轻发动机的重量来间接提高燃油效率,如气缸体、变速箱和气缸盖。        这个团队在传统的砂模中铸造了原型飞机的汽缸盖;也在3D打印的砂模中为一个化石燃料驱动的发电机铸造了全功能汽缸盖。橡树岭国家实验室美国交通运输研究中心这一史无前例的示范引导一个发动机试验获得了成功,即证明了这种发动机能进行温度超过600摄氏度的排气。        橡树岭国家实验室的物理学家Zachary Sims介绍说:“3D打印的模型通常很难被填充满,但有着卓越铸造特性的铝铈合金是个例外。”

国外从氟碳铈矿提取稀土的方法

2019-01-18 09:30:29

氟碳饰矿是一种稀土氟碳酸盐矿物(RFCO3或R:(CO3)3RF3)。在扎伊尔、马尔加什、乌干达、布隆迪、美国都有这种矿物的矿床。表1列出几种氟碳饰矿的化学组成。 作为提取稀土的矿物原料,氟碳饰矿的历史比独居石短得多。美国加利福尼亚州的蒙顿巴斯矿在本世纪五十年代初期才开始开采。而十九世纪末,独居石已在欧洲当作白炽灯罩所需原料进行生产。第二次世界大战后,因独居石是提取核燃料所需原料,一些资源输出国维护其资源,只出口提取牡、铀以后的氯化稀土或其它稀土富集物。近几年来,主要输出国,像巴西,因本国生产的稀土金属量大幅度增加,稀土中间产品的出口随之减少。资源缺乏的国家逐渐转向购买氟碳钟矿。另外,由于氟碳饰矿中牡、铀含量较独居石少得多,生产过程中放身J·性元素的污染问题较容易解决。像日本的资本家,既要追逐利润,又不愿解决污染问题,便以氟碳饰矿代替独居石作为权宜之计。这种矿物的储量大,稀土含量高,又易于处理,在稀土应用日益发展的今天,国外氟碳饰矿生产的发展与独居石相比,大有后来居上之势。表1几种氟碳柿矿的化学组

铈(Ce)系纯铝复合涂层主要包括哪些东西?

2019-01-11 15:43:47

一种铈(Ce)系纯铝复合涂层,主要包括:铈(Ce)系纯铝涂层和环氧乙烯酯漆涂层,其特征在于:所述铈(Ce)系纯铝涂层是以铝为原料,添加铈(Ce)元素的热喷涂层,所述环氧乙烯酯漆涂层为铈Ce铝热喷涂层的封闭层和功能涂层。

铈(Ce)系纯铝复合涂层主要包括哪些东西?

2018-12-29 13:37:17

一种铈(Ce)系纯铝复合涂层,主要包括:铈(Ce)系纯铝涂层和环氧乙烯酯漆涂层。   其特征在于:   所述铈(Ce)系纯铝涂层是以铝为原料,添加铈(Ce)元素的热喷涂层,所述环氧乙烯酯漆涂层为铈Ce铝热喷涂层的封闭层和功能涂层。

氟碳铈矿-独居石混合稀土精矿的硫酸焙烧分解工艺技术

2019-02-11 14:05:38

硫酸焙烧办法依据焙烧温度的不同分为低温(300℃以下)焙烧和高温(750℃左右)焙烧两种工艺。两种工艺的首要差异在于:高温焙烧进程中精矿中的钍生成了难溶性的焦磷酸钍,浸出进程中与未分化的矿藏一同进入渣中,随渣而抛弃(因放射性超支有必要封存);低温焙烧进程中精矿中的钍生成了可溶性的硫酸钍,浸出进程中同稀土一同进入浸出液中,待进一步别离。因为高温焙烧的产品在浸出和净化进程中耗费化工质料少,工艺流程短,相对低温焙烧而言具有较高的经济效益,因此被出产厂商广泛选用。 一、硫酸焙烧进程的分化反响 浓硫酸与混合型稀土精矿拌和均匀,在差热(DTA)仪上测验其不同温度下的差热改变,发现有6个显着的吸热反响峰(见图1)。每个峰所对应的分化反响别离如下。 榜首个吸热峰(181℃),峰宽约为150~300℃的范围内,首要是矿藏中的氟碳酸盐、磷酸盐、萤石、铁矿藏等与浓硫酸反响: 2REFCO3+3H2SO4=RE2(SO4)3+2HF↑+2CO2↑+2H2O↑     (1) 2REPO4+3H2SO4=RE2(SO4)3+2H3PO4                     (2) CaF2+H2SO4=CaSO4+2HF↑                             (3) Fe2O3+3H2SO4=Fe2(SO4)3+3H2O↑                      (4) 反响产品HF与矿藏中SiO2的反响:  SiO2+3HF=SiF4↑+2H2O↑                            (5) 在此温度区间还存在磷酸脱水转变为焦磷酸,焦磷酸与硫酸钍效果生成难溶的焦磷酸钍的反响: 2H3PO4=H4P2O7+H2O↑                                 (6) Th(SO4)2+H2P2O7=ThP2O7+2H2SO4                      (7) 生成焦磷酸钍的反响趋势随温度添加而增强,当焙烧温度超越200℃时,ThP2O7的生成量显着添加。图1  混合型精矿浓硫酸焙烧差热曲线(DTA) 第二个吸热峰(328℃)所对应的化学反响首要是硫酸的分化反响: H2SO4=SO3↑+H2O↑                           (8) 第三个吸热峰(400℃)是硫酸铁分化成碱式硫酸铁和焦磷酸脱水等反响: Fe2(SO4)3=Fe2O(SO4)2+SO3↑                   (9) H4P2O7=2HPO3+H2O                            (10) 第四个吸热峰(622℃)和第五个吸热峰(645℃)部分堆叠,这说明在焙烧温度到达600~700℃时至少存在两个化学反响,但现在能够断定的反响是碱式硫酸盐的分化反响: Fe2O(SO4)2=Fe2O3+2SO3↑                   (11) 第六个吸热峰出现在800℃,此温度下稀土硫酸盐将分化碱式硫酸稀土。当焙烧温度超越1000℃时,碱式硫酸铁进一步分化成氧化稀土: RE2(SO4)3=RE2O(SO4)2+SO3↑               (12) RE2(SO4)3=RE2O3+2SO2↑                     (13) 经过上述反响能够看出:1、精矿的氟碳铈矿、独居石、萤石、铁矿石、硅石等首要成分在300℃曾经即可被硫酸分化,稀土矿藏转化成可溶性的硫酸盐,这有利于在浸出进程中收回稀土;2、以磷酸盐存在的钍(Th3(PO4)4 )在300℃曾经首要被硫酸分化为可溶性的硫酸盐,然后硫酸盐又与H3PO4的分化产品焦磷酸和偏磷酸反响生成难溶性的ThP2O7和Th(PO3)4。当焙烧温度高于250℃以上时,硫酸钍生成难溶性化合物的反响趋势添加,在浸出时留于浸出渣的量添加,反之,200℃以下时,硫酸钍生成难溶性化合物趋势削减,浸出时随稀土进入溶液中的量添加。在工业出产中应依据焙烧产品中钍存在的化学方法及溶解性能来断定工艺道路。为了避免放射性元素钍损害劳作人员健康和对环境的污染,出产中期望在精矿分化后的榜首工序(浸出)进程将钍别离并收回;3、进步焙烧温度有利于稀土矿藏的分化,可是过高的温度(800℃以上)稀土硫酸盐会分化成碱式硫酸稀土,乃至氧化稀土,这将下降稀土的浸出率,对收回稀土晦气。 二、影响精矿分化的要素 稀土精矿的焙烧进程在回转窑中进行。与浓硫酸均混合的稀土精矿从回转窑的尾部接连参加,随窑体的转意向窑头方向运动。回转窑为内热式,重油焚烧室设在窑头,焚烧气体经过辐射直接加热物料,焙烧反响气体与焚烧气体从窑尾排出,经排风机送入净化系统。窑内的温度由窑尾至窑头逐步升高。依据物料在窑内的反响进程大致能够将窑体分为低温区(窑尾部分),温度区间为150~300℃;中温区(窑体部分),温度区间300~600℃;高温区(窑头部分),温度区间为600~800℃。依据前述的分化反响可知,低温区的首要效果是硫酸分化稀土矿藏,其化学反响归于固-液-气多相反响;可是因为反响进程中在精矿颗粒表面生成的是多孔膜,而使得涣散进程相对简化。为了便于评论,现假定硫酸用量很大,反响进程酸浓度不变,液-固相间涣散膜形成的阻力极小,即涣散进程能够疏忽,分化反响速度首要受化学反响进程操控,此刻硫酸焙烧反响动力学方程能够用下式表明。 1-(1-x)1/3=(kco/ργ0)t                 (14) 式中 X-稀土矿藏的反响分数(或表明精矿分化率); ρ-精矿的密度; k-化学反响速度常数; co-硫酸的初始浓度; rO-精矿的粒度; t-反响时刻。 使用动力学方程式对影响硫酸焙烧进程稀土精矿分化的要素评论如下。 (一)焙烧温度的影响 浓硫酸焙烧混合型稀土精矿的反响动力学进程受化学反响速度限制,依据阿累尼乌斯公式,化学反响速度常数K与反响温度T有关。 K=Z·e(-E/RT)                            (15) 式中Z-与反响物浓度和温度无关的常数; E-活化能; K-阿累尼钨斯公式反响速度常数,K= kco/ργ0; T-温度; R-气体常数。 当进步焙烧温度T时,反响速度常数K添加,使分化率X添加。在高温强化硫酸焙烧工艺中,为了强化稀土矿藏的分化反响,使稀土转变成可溶性硫酸盐,而钍、磷、铁、钙等非稀土元素则呈焦磷酸盐和不溶性的硫酸盐留于渣中,一般操控反响温度在300~350℃,窑尾温度(即低温区)控帽在250℃左右,窑头温度(高温区)操控在680~750℃之间。假如温度过低,分化速度慢,分化不彻底,钍在浸出时涣散于溶液和浸出渣中不便于收回;焙烧温度高于800℃以上时,稀土硫酸盐被分化成难溶的RE2O(SO4)2和RE2O3,在浸出时进入渣中,导致稀土的收回率下降。关于以钍在浸出时进入溶液中而进一步收回为意图焙烧工艺,有必要合理的挑选焙烧澷工,避免温度过高,钍生成焦磷酸盐留于渣中,温度过低,稀土矿藏分化不彻底,形成分化率过低。 (二)硫酸用量对分化率的影响 硫酸作为反响剂在反响前滋润于精矿颗粒的周围,当周围的硫酸浓度cO越高时,分化率x越大。因此,硫酸参加量在出产中一般都过量于理核算量。实际上,硫酸的用量与精矿档次有关。精矿的档次越低,耗酸越多,因为矿藏中的萤石、铁矿石等杂质均耗费硫酸。此外,还有必要考虑焙烧温度下的硫酸分化而导致的丢失。 (三)焙烧温度的影响 由硫酸焙烧反响动力学表达式和阿累尼钨斯公式,能够直观地看出,分化率x随温度T的添加而添加的规则。可是应注意到时刻过长,会延伸出产周期,下降回转窑的处理才能。早年面的硫酸焙烧分化反响可知,在低温区是稀土矿藏分化的区域,延伸分化时刻有利于分化率的进步,而对中、高区而言,延伸时刻会形成硫酸的分化和稀土不溶性化合物的生成,并因此而导致硫酸耗费添加与稀土收率下降。这说明操控回转窑的各温度区段的长度是十分重要的。 (四)精矿粒度的影响 因为硫酸对矿藏的渗透才能强及固体产品的多孔性,反响剂和产品的涣散速度大,因此浓硫酸焙烧工艺对精矿粒度的要求较宽松,一般小于200目即可。不过粒度过大,将使精矿表面积减小,下降反响速度和分化率。 三、稀土的浸出率与净化 经回转窑焙烧的产品依据焙烧温度的不同化学性质有所不同,因此所采纳的浸出与净化工艺办法也不相同。选用高温强化焙烧办法,焙烧产品中钍、钙、铁、磷等杂质均以难溶性的化合物存在,浸出时留于渣中,便于同稀土别离,使浸出液净化进程简单化。关于低温焙烧的产品,在工业出产中首要使用稀土硫酸复盐不溶于水和酸溶液的性质与铁、钙等杂质别离,然后再用溶剂萃取或优溶办法别离钍(见图2);关于高温焙烧产品则用MgO中和余酸及参加FeCl3的办法除掉浸出液中少数的磷、铁、钍(见图3)。图2  硫酸复盐法从硫酸盐溶液中提取稀土的准则流程图3  高温硫酸焙烧混合稀土精矿及前处理准则工艺流程 鉴于现在工业上首要使用高温焙烧工艺分化混合型稀土精矿的原因,文中将首要叙述高温焙烧产品的浸出与净化工艺进程。 (一)浸出 焙烧产品中的稀土现已转变为可溶性的硫酸盐,产品中并含有少数的剩余硫酸,浸出时一般不需要参加硫酸,能够直接用水浸出。因为稀土硫酸盐在水中溶解度较低,对混合铈组稀土而言常温下REO仅为40g/L,并且随温度添加而减小,所以在浸出时为了确保稀土浸出彻底,应有较大的液固比,一起将温度操控在尽可能低的条件下。焙烧产品出窑后不宜寄存时刻长,否则将生成溶解速度较慢的含水盐。一般的做法是,热焙烧料直接加水调成浆状,然后经泵打入浸出槽,按固液比1∶(10~15)在拌和条件下浸出。 (二)浸出液净化 经高温焙烧的稀土精矿,在浸出时能够除掉大部分难溶性的非稀土杂质。为确保稀土的充沛浸出,一般操控浸出酸度为0.2mol/L左右,此条件下稀土的浸出率能够到达95%以上,可是因为浸出酸度过高,浸出液中仍含有少数的钙、铁、磷、硅、铝、钛和微量的钍,影响接下来的萃取别离工艺的进行及混合氯化稀土和碳酸稀土的产品质量。出产中除掉这些杂质办法如下。 首要,在浸出液中参加FeCl3调整Fe/P=2~3,使磷生成FePO4沉积: FeCl3+H3PO4=FePO4+3HCl                       (16) 然后,浸出液中参加MgO调整pH=4.0~4.5使浸出液中的Fe2(SO4)3和Th(SO4)2水解成氢氧化物沉积: Fe2(SO4)3+6MgO+3H2SO4=2Fe(OH)3↓+6MgSO4              (17) Th(SO4)2+4MgO+2H2SO4=Th(OH)4↓+4MgSO4           (18) 浸出液中还含有硅酸和颗粒细小的硫酸钙,使过滤和洗刷操作困难,对此可参加少数的聚酰胺凝集剂,促进胶体凝集,添加过滤速度。 四、因为浸出液制备混合稀土产品 净化后的浸出液能够作为稀土别离的质料进入萃取车间逐个别离单一稀土。依据需要也能够制备成结晶混合氯化稀土和混合碳酸稀土。 (一)制备结晶氯化稀土 由硫酸稀土溶液制备结晶氯化稀土,首要有必要将硫酸稀土溶液转化为氯化稀土溶液。转化的办法整体可分为固体沉积-溶解和溶剂萃取-反萃两大类,后者具有与前工艺联接便利和进一步净化稀土溶液以及出产成本的长处。氯化稀土溶液一般含有REO为200~280g/L,经蒸腾后REO浓缩至450g/L左右,冷却可得到结晶RECl3·nH2O产品。出产上为了进步蒸腾的速度,一般选用减压浓缩的方法。使用水流喷射器将蒸腾罐内的真空保持在6×104Pa时,稀土氯化物溶液的沸点可降到14℃左右。 (二)制备碳酸稀土 向含REO为40~60g/L的浸出液中参加碳酸氢铵(固体或液体均可)将按反响式(19)出产碳酸稀土沉积。沉积出的碳酸稀土用水洗除掉吸附的硫酸盐,过滤后制备得的RE(CO3)3·nH2O产品。 RE2(SO4)3+6NH4HCO3=RE2(CO3)3+3H2O+3CO2      (19)

纳米复合氧化锆在铈锆固溶体中的应用分析

2019-01-03 09:36:51

汽车尾气净化催化剂一般由三个部分组成:载体(堇青石、氧化铝等)、助催化剂(纳米涂层增大比表面积、同时作为储氧材料)、催化剂(一般汽油车为铂钯铑等,柴油车为钒钨钛等)。 其中铈锆固溶体复合氧化物材料作为助催化剂使用,是十分重要的涂层材料。其具备四个方面的特点: 1 铈、锆两种金属可在较宽范围内有效复合; 2 高温稳定性好; 3 高氧化还原能力(Ce4+ Ce3+); 4 高储氧放氧能力。 这些特征使三效催化剂使用铈锆固溶体后具有很高的低温催化转化能力。 1升催化剂一般需消耗铈锆固溶体100g左右,每辆车的催化剂用量与排量相关,汽油车1L排量对应0.8-1.2L催化剂,柴油车1L排量对应2L催化剂。 2013年全球汽车销量达到8280万辆,同比增加4.2%;其中中国汽车产销量均超过2000万辆大关,产量2211.68万辆,销量2198.41万辆,同比分别增长14.76%、13.87%。假设以8280万辆车全部按照1L排量汽油车、对应使用0.8L催化剂计算,铈锆固溶体年消费量6600吨。预计实际用量在7000吨以上。 对国内市场而言,随着监管升级,国内汽油车尾气催化剂14-17年有望保持19%的复合增速,柴油车领域随着国IV标准的正式实施,有望触发柴油车尾气催化剂市场的爆发式增长。 按照国内汽车产量数据测算,13-17年国内整车厂家对应铈锆固溶体年需求量分别达到4000吨、6400吨、9000吨、11500吨、13700吨。由于国内汽车尾气催化剂市场主要仍掌握在庄信万丰、优美科等外企手中,国内企业仅威孚高科、贵研铂业等少数企业有规模产量,实际国内采购量将有一定折扣,但从全球角度看,铈锆固溶体仍在快速成长期。 另外,铈锆固溶体在传感器材料、抛光材料、燃料电池、结构材料、高强度陶瓷等领域亦有广泛的应用前景。

氟碳铈矿-独居石混合稀土精矿的特点及分解方法简述

2019-02-11 14:05:38

氟碳铈矿-独居石混合稀土精矿是我国特有的一种复合型稀土矿藏,该矿藏具有如下特色:     一、精矿中氟碳铈矿与独居石的质量比在9∶1~6∶4之间动摇;     二、精矿中含有铁矿藏(Fe2O3、Fe3O4)、萤石(CaF2)、重晶石(BaSO4)、磷灰石(Ca5F(PO4)3)等矿藏;     三、铈组元素约占矿藏稀土元素总量的98%;     四、放射性元素Th含量约为0.2%,低于独居石等稀土矿藏。     现在可供工业上运用的混合型稀土精矿的稀土档次一般在50%~60%之间。表1中列出的是常用的混合型稀土精矿的化学成分。 表1  氟碳铈矿-独居石混合稀土精矿的化学成分      单位:%成分ΣREOΣFeFPSiO2CaOBaOSThO2Nb2O5含量50.403.705.903.500.565.557.582.670.2190.05254.782.106.204.650.677.654.591.640.1700.01760.123.056.204.851.285.802.420.650.2100.023    混合型稀土矿藏中因为含有高温下非常安稳的稀土磷酸盐矿藏(独居石),常温下难以用酸分化,运用的办法现在仅限于硫酸焙烧和溶液分化两种。可是因为这两种办法在环境保护和生产成本等方面上别离都存在必定的问题,因而开发经济环保型的新工艺一直是人们重视的工作。

氟碳铈矿-独居石混合稀土精矿的硫酸强化焙烧工艺实例

2019-02-21 13:56:29

图1中所示的是生产中的强化高温硫酸焙烧分化混合型稀土精矿的前处理准则工艺流程。在生产进程中运用的首要设备和技能条件如下。图1  高温硫酸焙烧混合稀土精矿及前处理准则工艺流程 一、硫酸焙烧 焙烧进程的首要设备是钢板卷制、内衬防腐耐火砖的回转窑。窑头砌燃烧室,燃料可用重油、煤炭。物料在窑内的焙烧时刻长短和窑的长度、转数、斜度相关。生产中的技能条件为: 矿∶酸(硫酸浓度为92%)=1∶(1.2~1.4); 窑头温度700~800℃; 窑尾温度220~270℃; 精矿分化率约93%。 二、浸出和净化 从回转窑出来的热焙烧产品在调浆槽内用一次洗渣液调成浆状,一起参加FeCl3溶液,然后经泵转入浸出槽。在浸出槽中拌和浸出一起参加MgO中和剩余酸,至pH=3.5~4.0,用板框式压滤机别离渣和浸出液。为了进步稀土收率,浸出渣须经过二次洗渣操作。生产中的技能条件为: 固液比(质量∶体积)=1∶(10~15); Fe/P=2~3; 浸出时刻2~3h; 浸出温度  常温; 中和pH值3.5~4.5。 净化后浸出液的技能要求: REO=25~40g/L; Fe2O3<0.05g/L; PO43-<0.005g/L; ThO2<0.001g/L。 三、溶剂萃取转型 选用二(2-乙基已基)磷酸(即P204)萃取剂将硫酸溶液中的稀土悉数萃入有机相,然后以为反萃取液,能够将稀土硫酸溶液转化为稀土溶液。在萃取转型的进程中能够从萃余液中扫除Ca2+、Mg2+、Fe2+等杂质,而且经过操控反萃取剂浓度和流量使稀土溶液的浓度得到富集。工业上依据用户对产品的要求,有时在转型前首先用与前相同的萃取剂进行钕钐分组,分组的萃余液中稀土元素是La~Nd 。反萃溶液中稀土元素是钐后的中重稀土元素,用草酸或碳酸氢铵沉积后,可直接收回钐、铕、钆富集物。La~Nd元素的萃余液再进入萃取转型工序。钕钐分组和萃取转型均用分馏萃取方法,首要技能条件如下。 钕钐分级 级数:萃取+洗刷+反萃取=7级+13级+8级=28级 有机相组成:1mol/L P204-火油 反萃取剂酸度:6mol/L La~Nd萃取转型 级数: 级数:萃取+弄清+反萃取=7级+2级+6级=15级 有机相组成:同钕钐分组 La~Nd料液酸度:pH=1~4.5 反萃剂及酸度:6mol/LHCl 反萃液的质量要求:REO=250~270g/L、SO42-<0.179g/L、Fe2O3<0.418g/L假如萃取液中SO42-不符合要求,能够定量参加BaCl2除掉。 四、蒸腾浓缩 蒸腾浓缩进程在蒸汽夹套加热、内衬珐琅的蒸腾罐内进行。蒸腾进程的技能参数如下: 罐内真空度   6×104Pa; 蒸腾温度     108~115℃; 蒸气压力     0.3~0.4MPa。 五、碳酸稀土制备 浸出液参加碳酸氢铵能够直接制备碳酸稀土,生产中首要技能条件如下: 浸出液稀土浓度REO=30~50g/L; 沉积温度  40~60℃; 拌和转速  60~80r/min; 碳酸稀土要求  REO≥43%,Fe2O3≤0.5%,SO42-≤2%。

氯化铵焙烧法从氟碳铈矿提取稀土的研究进展

2019-01-31 11:06:04

我国是稀土资源大国,稀土储量约占国际已探明储量的40%左右。其间大部分会集在内蒙古白云鄂博矿,其次是四川攀西稀土矿和山东微山稀土矿。此外,江西、福建等地区有我国独有的离子型稀土矿。一起,我国又是稀土质料出产大国,其产值是国际稀土总产值的90%,约60%以上的轻稀土质料产自内蒙古白云鄂博。以氟碳铈精矿为质料出产稀土产品,在我国现在首要浓硫酸强化焙烧法分化稀土矿藏。稀土精矿经分化、水浸、碱转化后,选用优先溶解得到稀土氯化物。该工艺会发作废水、废气,污染环境,工艺流程冗长,化工质料耗费大。一起,使用该工艺提取氟碳铈精矿中的稀土对设备耐腐蚀要求高。因而,开发低成本、少污染的稀土提取新工艺,关于我国稀土冶金工业的可持续发展,具有十分重要的理论含义和现实含义。在原国家计委稀土办、国家自然科学基金的支持下,提出了氯化铵焙烧分化提取攀西稀土矿风化泥中稀土的新工艺。该工艺使用NH4Cl在必定温度条件下分化的HC1使矿藏中的稀土氯化,然后用热水浸出收回稀土氯化物。该工艺中未引进酸、碱,稀土转化形状少,氯化挑选性好,氯化率高,条件温文,是一种绿色的稀土提取工艺。针对攀西稿土矿黑色风化矿泥中的稀土选用该工艺于1998年进行了中间实验,并经过了由国家教育部安排的专家判定。进一步的研讨发现,经过改动工艺条件,挑选性氯化铵焙烧分化法还能使用于攀西稀土原矿和精矿与尾矿、山东微山中档次稀土精矿以及白云鄂博中高档次混合型稀土精矿的处理,一起也研讨探讨了这些工艺进程中的脱(固)氟反响机理、氯化反响及氯化提取动力学。本文扼要回忆了挑选性氯化铵焙烧分化法提取氟碳铈矿中稀土的研讨发展。 一、氯化铵焙烧分化法的化学理论根底 (一)热力学理论根底、脱(固)氟及氯化反响机理 氟碳铈矿加热到500℃左右时便发作分化,构成稀土氧化物。参加脱氟剂(Na2CO3)或固氟剂(Mg0),能够避免稀土氟化物固相的生成,然后有利于稀土的下一步氯化其脱(固)氟反响为:(3),(4)是氟碳铈稀土矿的脱氟反响的表达式,而 (5)~(8)是包头混合型稀土矿的固氟进程的反响表达式。 经过脱氟后的氟碳铈矿,选用氯化铵焙烧法,将稀土转化成水溶性的氯化稀土方式,有利于进一步的别离纯化。其氯化反响可表示为:氟碳铈精矿中的首要杂质是含钙、镁、铝、硅和铁的化合物,大大都以氧化物的方式存在或在氟碳铈精矿的脱(固)氟焙烧进程中转化成氧化物。矿藏首要成分在氯化铵氯化焙烧进程中的氯化反响的自在能变△GT列于表1中。 表1  某些氧化物与氯化氢反响的自在能变从表1能够看出,在优化氯化温度(>600K)下,除稀土、钙、锰、铅、镁等元素能被氯化外,其他氧化物简直不可能被氯化。明显,从热力学的角度上讲,氯化铵焙烧法处理氟碳铈矿脱(固)氟后的焙砂或氧化物类型的稀土矿是可行的,并且具有杰出的挑选性,能完成稀土元素与大都非稀土元素及放射性钍元素的别离。 (二)氯化铵焙烧法提取稀土的动力学 经过研讨了攀西脱锰矿泥中稀土的氯化动力学。为盐类氯化法提取氟碳铈矿中稀土奠定工程扩大的根底。效果标明,稀土的氯化是在球粒状焙砂球体层开端进行的,氯化反响为界面化学反响操控的动力学类犁,其动力学方程式为kt=1-(l-a)1/3,反响体现活化能Ea=44.01kJ·mol-l。动力学研讨还标明,跟着反响时刻的延伸,稀土的氯化及稀土氯化物的氧化为一对竞赛反响,在500℃以上,稀土氯化物的分化体现得愈加杰出,然后构成稀土的氯化率随反响时刻的延伸而下降。 研讨了固氟氯化铵焙烧法分化包头混合型稀土精矿收回稀土的动力学。图1是固氟焙砂在350~500℃温度区间的氯化动力学曲线,为典型的多相气一固区域反响动力学曲线,所以固氟焙砂的氯化反响进程契合Bagdasarrym提出的区域反响速率模型,氯化反响进程经过了二个串联反响进程,且反响生成物的核是按一个方向长大的。反响速率方程遵照Erofeev方程ln[-ln(1-a)]=lnk+nlnt,反响速率常数与温度T的函数关系式为k=6.23×10-2e-36381/RT,表观活化能Ea为36.381 kJ·mol-l,进程约束环节是内扩散操控。 研讨了固氟氯化焙烧法分化山东微山中档次氟碳铈精矿收回稀土的动力学,动力学曲线如图2,是多相气一固区域反响动力学曲线。固氟焙砂的氯化反响进程契合Bagdasarrym提出的区域反响速率模犁,氯化反响进程经过了二个串联反响进程,且反响生成物的核是无方向长大的。反响速率方程遵照Erofeev方程ln[-ln(l-a)]=lnk+nlnt,反响速率常数与温度£的函数关系式为k=3.972×1010e-167993/RT,表观活化能Ea为167.793 kJ·mol-l,进程约束环节首要是界面化学反响操控。 (三)稀土氧化物的氯化进程及其机理的研讨 关于氟碳铈矿,其首要配分元素为镧和铈,两者的配分之和大于85%,故其脱氟焙烧矿砂中的稀土首要是镧和铈的氧化物,但以+4氧化态存在的首要配分元素铈在脱(固)氟进程中被转化成难溶于的CeO2。因而,对Ce02和La203在氯化铵焙烧进程中的氯化反响机理的深化研讨,为改善工艺条件供给理论依据。 图1  包头混合型稀土精矿350~500℃氯化动力学曲线图2  山东微山碳铈稀土精矿氯化动力学曲线研讨了Ce0,和La203的氯化反响机制和CeCl3·7H20及LaCl3·7H20热分化氧化机理。这些研讨阐明,CeO2和La203在空气气氛下选用NH4Cl氯化,在300℃左右其氯化率到达80%左右,而NH4C1在328℃左右才开端分化为NH3和HC1,所以Ce02和La203的氯化并不满是NH4C1热分化发作的氯化体使之发作氯化,NH4Cl也直接参与了矿藏的氯化反响。反响首要生成中间化合物CeOCl及LaOCl,然后转化成CeCl3和LaCl3。镧和铈的氯化反响机理为反响(5)~(8)。 CeCl3·7H20和LaCl3·7H20的热解进程,进一步验证了咱们提出的氯化机理。LaCl3·7H20和CeCl3·7H20的TGA曲线,如图3所示。从图3可知,CeCl3·7H20和LaCl3·7H20的热分化是一个多进程进程,图中榜首、二、三、四个台阶别离代表第四、五、六、七个结晶水;可是第五个台阶,为一个混合进程,失重产品为CeOCl( LaOCl)与Ce02(La203)的混合物。在Ce02和La203氯化进程中,Ce02和La203的氯化CeCl3和LaCl3的热分化(氧化)一起发作,温度过高及反响时刻过长,均会促进已生成的CeCl3和LaCl3从头被氧化分化。因而,为了最大极限地进步氟碳铈矿脱氟后的氯化焙砂中稀土的氯化率,一方面要挑选最佳的氯化温度 和时刻,另一方面也要参加足量的NH4Cl。过量的NH4C1才有利于CeCl3和LaCl3的构成。LaCl3及CeCl3。在空气气氛下的分化使进一步进步氯化铵焙烧分化法提取稀土的收回率,有必定的难度。 图3  CeCl3·7H20和LaCl3·7H20的TGA曲线二、氯化铵焙烧法提出氟碳铈矿中稀土的工艺研讨 研讨中创造的氯化铵焙烧分化提取攀西稀土矿风化泥中稀土不只成功地进行了中试,并且适用于从攀西氟硫铈原精尾矿、山东微山氟碳铈精矿及白云鄂博混合型稀土精矿中提取稀土。以下扼要概述有关氯化铵焙烧法提取稀土的工艺研讨发展。 (一)色风化矿泥中别离提取稀土的研讨 在原国家计委稀土办、四川省计委和国家自然科学根底的支持下,开始进行了黑色风化矿泥的浸取工艺及稀土浸出动力学的研讨。因为法存在着杂质溶出率高、稀士收回率低、设备腐蚀严峻及产品成本高级工艺缺点而没有投入工业使用。后来提出了氯化铵焙烧分化法提取攀西稀土矿风化泥中稀土的工艺。该工艺的实验室及中试研讨标明,矿泥中锰的氧化物含量对氯化进程有着重要的影响。假如矿泥中锰氧化物含量大于5%,则氯化前须用S02进行预处理脱锰,脱锰后的矿泥选用NH4Cl焙烧工艺提取稀土。在焙烧温度为520℃、NH4Cl/矿泥的质量比为0.2、焙烧时刻为2.5h的条件下,稀土的浸出收回率为79%,稀土的总收回率为72%,锰的收回率达64%,出产的碳酸锰产品纯度大于43.2%,契合工业品要求。关于含锰的氧化物低于5%的稀土矿泥,可直接用氯化铵焙烧黑色风化矿泥,在焙烧温度为520℃、NH4Cl/矿泥质量比为0.3、焙烧时刻为2.5h的条件下,稀土的收回率为81%,稀土总收回率为75%。稀土浸出液挑选除杂,经过操控pH<3,在到达训ωRE/ωWn=100时,稀土的损失率小于5%,制备晶形碳酸稀土的条件为训ωRE=1~15g·L-1、ωNH4HCO3/ωRE=2.1、晶化时刻为24h时,能制备出过滤功能很好的片状碳酸稀土产品。中试产品质量为:氯化稀土∑REO=45.51%,氯化稀土∑REO=98.9%,碳酸稀土∑REO=55.20%。 研讨了黑色风化矿泥氯化焙烧浸液RE与Mn萃取法别离工艺。选用P507萃取剂对黑色风化矿泥氯焙烧浸液中RE与Mn进行了7级分馏萃取别离,取得纯度为99.5%的RECl3溶液和MnCl2溶液。经过NH4HC03沉积,别离取得大颗粒晶型碳酸稀土和工业级碳酸锰,稀土和锰的收率均大于98%。研讨了从稀土矿泥氯化焙烧浸取液制备晶态碳酸稀土的条件,评论了碳酸氢铵在沉积进程中的作用。经过L9(34)正交实验断定晶态碳酸稀土的最佳制备条件为:在PH=5,CRE=1.0g·L-l,t=20℃, CNH4HC03=15%,NH4HC03用量为RE质量的2.1倍时,RE2 (C03)3的沉积率大于98%。NH4HC03在制备进程中起着PH调整剂和RE沉积剂的两层作用。碳酸 稀土分出的最佳pH值与稀土浓度及NH4HC03浓度之间的关系为:PH=1.384 - 2/3 lg[ RE3+]-lg[ HC0-1]。在晶态碳酸稀土的制备进程中,操控恰当的过饱和度是工艺的要害,另加( NH4)2S04有利于晶态产品的生成。 为了进步黑色风化矿泥氯化后焙砂的水浸液中稀土的浓度,削减非稀土杂质的相对含量,便于进一步收回稀土产品,对其氯化焙砂进行了柱浸实验研讨,探究了浸取剂、浸出温度、柱径比对浸出液中稀土浓度的影响。实验效果标明.浸出 剂的pH =7和柱径比为h/σ=280mm/50mm时,浸取作用最佳。柱浸稀土浓度能由本来拌和浸出的4.3g·L-l进步到来44.8g·L-l,稀土浸取率达94.43%,非稀土杂质Al,Fe,Ca相关于稀土的含量别离为6.5%,3.4%,6.1%。参加5%的( NH4)2S04去浸取,浸取液中非稀土杂质的含量均会有所下降,特别是钙的含量会有大幅度的下降。 (二)攀西氟碳铈原精尾矿的氯化焙烧工艺的研讨 选用四川冕宁稀土档次较高的原矿( REO∶16.78%)为质料,用Na2C03焙烧脱氟后,研讨了氯化铵焙烧法提取稀土的工艺。经过L16(45)正交实验断定了优化工艺条件:当脱氟剂参加量为矿藏的25%,在温度为650℃下脱氟30min,热水洗脱后,质料的脱氟率达95%以上;脱氟矿砂进一步选用氯化铵法收回稀土,在氯化温度为325℃,m(NH4Cl)/m(矿)=1∶1下焙烧600min,稀土的提取率达95%以上。 进行了氯化铵焙烧法分化攀西氟碳铈精矿提取稀土的研讨,体系调查了脱氟剂用量、脱氟温度、氯化剂用量、氯化温度及氯化时刻等工艺参数对稀土提取率的影响。断定了工艺优化条件:在精矿中添加柏当于矿重30%的脱氟剂脱氟后,于500℃下焙烧脱氟,脱氟后的焙砂与恰当于脱氟焙砂2倍分量的氯化铵混合,在480℃焙烧1.5h,将焙砂用热水浸出得氯化溶液,稀土提取率达80%以上,浸出液中Fe,Al,Si等非稀土杂质含量很低,有利于进一步的别离纯化。为了充分使用氟碳铈矿资源,全面推广氯化铵分化法在氟碳铈矿上的使用,研讨了氯化铵分化氟碳铈尾矿收回稀土的工艺。四川氟碳铈尾矿在固氟剂添加量为矿质量的1/4、氯化铵用量为矿质量的1/2、焙烧温度为500℃、焙烧时刻为1h的条件下,稀土的浸出收回率达84%,浸出液中铁的含量低于0.1%,有利于进一步除杂收回稀土。  (三)氯化铵焙烧法分化山东微山氟碳铈矿收回稀土的研讨 山东微山稀土矿是以氟碳铈矿为主的稀土矿床,其钍含量是最低的氟碳铈精矿。经过对该精矿进行了氯化铵焙烧法提取稀土的研讨,实验效果标明,该中档次精矿与氯化铵混合进行氯化焙烧,就能够提取82%以上的稀土。实验断定的最佳工艺条件为:氯化铵与精矿的质量比为2:1,焙烧温度为480℃及焙烧时刻90min。焙砂经过热水浸出,浸取液选用环烷酸有机相全捞工艺,然后完成了RE3+与Ca2+的别离。该工艺稀土浸出率可达82.8%,其氯化稀土的纯度为99.2%。该工艺于 2001年下半年在山东微山进行了日处理50kg中档次稀土精矿的中间实验,规划了接连氯化焙烧反响炉,稀土收回率达85%以上,研讨中考虑了氯化进程发作的气及过量的氯化铵的收回及使用,过量的氯化铵一方面经过冷却捕集器加以收回,另一方面在选用稀吸收氯化生成的气的一起吸收未捕集的氯化铵。经过中试为该氟碳铈矿的工业化出产提取稀土奠定了坚实的根底。山东微山稀土精矿和四川攀西稀矿同归于氟碳铈矿,其氟含量恰当,为什么微山矿能够直接氯化提取,而攀西矿有必要经过预脱氟处理才可氯化浸取,其原因有待于进行深化的研讨。 (四)氯化铵法提取白云鄂博混合型稀土矿中稀土的研讨 白云鄂博混合型稀土精矿首要以氟碳铈矿和独居石的方式存在。现在,该矿首要选用浓H2S04强氧化焙烧法提取稀土,其缺点如前所述。据表1的热力学分析,在恰当的脱氯(固氟)和氯化焙烧条件下,氟、铁、硅等非稀土杂质及放射性钍元素不能被氯化而进入溶液,所以脱氟(固氟)氯化铵焙烧法适合于处理钍含量较高的白云鄂博中高档次混合型稀土精矿。研讨了在固定氯化焙烧条件下(氯化铵用量/脱氟渣质量=1.5,氯化温度为325℃及氯化时刻为60mm),脱氟剂用量、脱氟温度及脱氟反响时刻对稀土氯化进程的影响。实验效果标明,在550℃的脱氟温度下焙烧60min时,其脱氟渣的稀土氯化温度随脱氟剂的用量的添加而逐渐升高,当脱氟剂的用量由脱氟渣质量的20%添加到30%时,其稀土的氯化率将进步到84%以上,再持续添加脱氟剂的用量,其稀土氯化率反而下降。 研讨了固氟氯化焙砂法从高档次包头混合型稀土精矿收回稀土的工艺及固氟反响机理。挑选性氯化铵焙烧法一般选用Na2CO3为脱氟剂对氟碳铈精矿进行预脱氟处理,但该脱氟工艺中需用很多的水洗脱焙砂中的NaF,且洗脱液中可溶性的NaF会污染环境。为此,咱们提出了固氟氯化新工艺,固氟氯化最佳工艺条件为:往氟碳铈精矿粉中加主矿质量三分之一的轻烧镁(Mg0),在600℃下焙烧80min固氟,热后将焙砂与二倍质量的氯化铵混匀.在500℃下焙烧80min,热水浸出焙砂,即得氯化稀土浸出液。在优化条件下,稀土的加收率在85%以上。依据精矿粉,固氟焙砂及氯化浸渣的X-线衍射图谱可知,混合型稀土精矿的固氟进程中,固氟剂(Mg0)与矿藏反响,将矿中的F转化尴尬溶性的MgF2,P043-转化尴尬溶性的Mg3(P04)2,然后部分MgF2与Mg3(P04)2在高温下生成难溶性的Mg2FP04。混合型稀土精矿的固氟反响机理为反响(5)~(8)。该挑选性稀土提取工艺的固氟剂价廉易得、操作简略、省去了水洗除氟工序和脱氟工艺比较,既下降了出产成本,又有利于环境保护。固氟氧化铵焙烧法从白云鄂博混合型稀土精矿收回稀土的研讨,仅是实验室实验效果,固氟氯化焙烧法能否适宜于攀西和山东微山矿处理的工艺研讨、固氟动力学及工业中间实验,还有待于进一步的深化研讨。 三、结  论 经过几年来的尽力,氯化铵焙烧分化法提取氟碳铈矿中稀土的研讨有了长足的发展,取得了可喜的效果。首要是展开了不同类型稀土矿中稀土提取工艺的实验研讨,其次是展开了使用根底理论的研讨,再次是进行了稀土提取工艺的工业实验研讨。可是,为使挑选性氯化铵焙烧法日臻完善并投入工业化出产,还需要开晨深化的研讨。比方:持续展开挑选性氯化铵焙烧法提取各类型氟碳铈矿中稀土的脱(固)氟动力学研讨、工艺进程中有关物理化学问题的研讨、工艺的工业化使用研讨以及固氟氯化焙烧法能否适宜于攀西和山东微山矿的处理等问题。

氟碳铈矿-独居石混合稀土精矿的其它分解技术及研究进展

2019-02-11 14:05:38

除硫酸焙烧分化和分化两种办法外,人们还研讨了高温氯化法、熔盐萃取法以及酸碱联合法。这些办法根据矿藏性质进行研讨,有共同之处,可是三种分化办法的工艺流程中都没有完好的收回矿藏中有价值的氟、磷、钍元素的工序设置,这些元素常常残留于废气、废水、废渣中而污染环境,虽然有些研讨方案的工艺流程中能够收回某一两种元素,但由于所触及的设备杂乱,化工原料耗费本钱高,工艺进程冗长,不易操作,而导致出产中难以实现。近几年,基酝环境保护意图,分化混合型稀土精矿的工艺研讨取得了一些发展,其间具有必定含义的有如下几种。 一、NaCO3焙烧法 在高温下碳酸钠能够将混合型稀土精矿中的稀土氟碳酸盐和磷酸盐分化成稀土氧化物。在分化进程中,矿藏中的其他组成也将参与反响,使焙烧产品的组成杂乱化。碳酸钠焙烧方未予的特点是:1、焙烧进程中,稀土矿藏被分化成稀土氧化物可溶性的稀土复盐,一起铈由三价氧化为四价;2、焙烧产品中含有Na3PO4、BaCO3、Na2SO4、CaCO3、NaF等非稀土杂志。为了避免这些杂质在硫酸浸出时与稀土构成难溶的稀土硫酸复盐及稀土磷酸盐,构成稀土丢失,在硫酸浸出前需用水洗、酸洗办法预先处理焙烧产品;3、硫酸稀土溶液能够接溶剂萃取提取铈和收回钍;4、焙烧废气和浸出废渣以及废水对环污染小。碳酸钠焙烧办法现在尚存在焙烧进程中焙烧产品在回转窑中结块等问题而仍未用于工业出产。图1中所示的是工业试验流程。图1  碳酸钠分化混合稀土精矿试验工艺流程 (一)焙烧反响 在600~700℃用Na2CO3焙烧混合型稀土矿藏将发作如下化学反响: 2REFCO3+Na2CO3=RE2O3+2NaF+3CO2                   (1) 2CeFCO3+Na2CO3+(1/2)O2=2CeO2+2NaF+3CO2          (2)  2REPO4+3Na2CO3=RE2O3+2Na3PO4+3CO2                 (3) Th3(PO4)4+6NaCO3=3ThO2+4Na3PO4+6CO2             (4) 在750~780℃下,精矿中的萤石(CaF2)与上述反响生成的Na3PO4和NaF进一步反响,生成可溶于酸的NaREF4、NanREPO4Fn和Na3RE(PO4)2: CaF2+Na3PO4=2NaF+NaCaPO4                        (5) REPO4+nNaF=NanREPO4Fn                           (6) REPO4+Na3PO4=Na3RE(PO4)2                                  (7) 用X射线衍射办法测验不同温下度的焙烧产品,发现在850℃下,Na2CO3参与量缺乏时(15%),焙烧产品中仍有REPO4存在,并且呈现了Ca8RE(PO4)5O2。剩下的REPO4同矿藏中CaCO3的分化产品CaO构成固溶体,在构成固溶体的一起伴有化学反响发作,即: REPO4+2Ca3(PO4)2+2CaO=Ca8RE(PO4)5O2           (8) 2REPO4+3CaO=RE2O3+Ca3(PO4)2                   (9) 此外,在焙烧进程中部分萤石、重晶石、磷灰石也参与下反响: CaF2+Na2CO3=CaCO3+2NaF                      (10) BaSO4+Na2CO3=BaCO3+Na2SO4                   (11) Ca5(PO4)3F+5Na2CO3=5CaCO3+3Na3PO4+NaF     (12)2Na3PO4+3BaCO3=Ba3(PO4)2+3Na2CO3           (13) 2Na3PO4+3CaCO3=Ca3(PO4)2+3Na2CO3            (14) 精矿在焙烧进程中的分化率受碳酸钠的参与量和焙烧温度的影响比较大,在700℃前,分化率随碳酸钠参与量的增加而增加,可是当焙烧温度大于700℃,碳酸钠参与量超越20%后,由于Na2CO3与矿藏中的SiO2效果增强,使反响进程愈加杂乱化,并促进了难溶于酸的化合物NaRE4(SiO4)3F的生成,导致分化率反而下降。过高的温度,将会引起可溶性的Na3RE(PO4)2分化及难溶于酸的化合物NaRE4(SiO4)3F的生成,也会导致分化率的下降。 (二)硫酸浸出及稀土提取 由于焙烧产品中除REO外还含有Na3PO4、BaCO3、Na2SO4、CaCO3、NaF等非稀土杂质。Na3PO4在硫酸浸出时与硫酸反响生成H3PO4和Na2SO4,而H3PO4和Na2SO4与稀土又将构成难溶的稀土硫酸复盐及稀土磷酸盐,构成稀土丢失。BaCO3和CaCO3在硫酸浸出时生成了BaSO4和CaSO4难溶化合物而沉积于浸出渣中。可是CaSO4在浸出进程中所构成的晶粒很小并且分出速度慢,在过滤进很难彻底出去。因而,焙烧产品在硫酸浸出前需用水洗、酸洗办法预先除掉这些杂质。浸出液的硫酸浓度约为1.5mol/L,铈氧化率大于90%,其大致的组成如表1。表1  硫酸浸出液的化学成分化学成分REOThO2FFeCaO含量/ g·L-150~600.2~0.33~72~15约4 根据四价铈与三价稀土元素化学性质的不同,这种溶液能够用硫酸复盐沉积或溶剂萃取的办法首要别离铈,可是硫酸复盐沉积办法存在工艺流程长、耗费化工原料多、出产本钱高级缺陷,同硫酸复盐沉积法比较溶剂萃取法战胜了这些缺陷,并且还具有铈产品的纯度高、稀土收回率高的长处,缺陷是F对萃取进程搅扰大,影响出产的正常进行。 二、氯化铵分化法 氯化铵焙烧分化混合型稀土精矿提取稀土工艺,是一种经过NH4Cl在必定温度条件下分化丰HCl使矿藏中的稀土氯化为稀土氯化物的办法。该工艺中为了战胜碳酸钠焙烧工艺中需用许多水进行洗除焙烧产品中的NaF的问题,选用两次焙烧的办法。第一次,用轻烧镁(MgO)与包头混合型稀土精矿(以稀土氧化物计,含52.1%)混匀焙烧使混合型稀土精矿中的独居石的氟碳铈矿分化成稀土氧化物和氟化镁,第2次焙烧,用氯化铵将在第一次焙烧中生成的稀土氧化物氯化为稀土氯化物。用这种焙烧产品提取稀土可直接加水浸出不必引进酸、碱并且稀土转化方式少,小试验的稀土的收回率在85%以上,是一种值得进一步研讨的稀土提取工艺。 第一次焙烧的反响如下: 2REFCO3+MgO=MgF2+RE2O3+2CO2                   (15) 4CeFCO3+2MgO+O2=2MgF2+4CeO2+4CO2             (16) 2REPO4+3MgO=RE2O3+Mg3(PO4)2                  (17) MgF2+Mg3(PO4)2=2Mg2FPO4                       (18) 试验中发现:当稀土精矿与氧化镁质量比3∶1时,稀土收回率最高。持续增加MgO,稀土收回主反而下降,这是由于当MgO过量时,MgO会在氯化进程中被氯化而影响了稀土的氯化;焙烧的最佳温度为600℃。反响温度低,晦气于焙烧反响的进行;再持续升温,温度对被烧反响的影响不大,混合型稀土精矿的最佳焙烧时刻为80min。第2次焙烧的反响如下: NH4Cl=NH3+HCl(328℃)                           (19) RE2O3+6HCl=2RECl3+3H2O                          (20) 2CeO2+8HCl=2CeCl3+Cl2+4H2O                     (21) RE2O3+3Cl2=2RECl3+(3/2)O2                       (22) 试验成果以为:当稀土精矿与氯化铵的质量比为1∶2时,稀土收回率可达85%以上,再增加氯化铵的用量,已无益于稀土收回率的进步。在350~500℃规模内,跟着反响温度的升高,稀土的收回主逐步进步,当温度为500℃时,稀土的收回率最高。进一步进步反响温度,稀土的收回率反而下降,这或许是氯化稀土又从头被氧化之故。 三、CaO分化法 CaO-NaCl分化混合型稀土精矿是凭借溶剂NaCl增虽CaO对REPO4和REFCO3的分化效果的办法。在600~900℃的焙烧温度下,REPO4和REFCO3被分化为REO和Ca5F(PO4)3,分化的一起,Ce2O3被空气中的氧氧化成CeO2。焙烧进程中发生的废气的首要成分是CO2,对环境无污染。焙烧产品经稀酸洗除掉Ca5F(PO4)3和NaCl后,用硫酸浸出REO、CeO2、ThO2,浸出渣中ThO2小于0.001%g/L,归于低放射性渣,能够按一般废渣处理。浸出液能够用溶剂萃取法别离提取铈、钍及非铈稀土元素。该工艺是一种契合环境保护的清洁出产工艺,现在尚处于研讨阶段,还需要系统的研讨后才干应用于出产实践。 CaO分化稀土矿藏的研讨,多会集在对独居石的研讨。1980年Yasuo.Hikichi等人对SiO2、Al2O3、CaO同稀土磷酸盐的化学效果进行了研讨。试验中测出:稀土磷酸盐同SiO2的反响在1700℃以上;而同CaO的反响在700℃就能够进行。由于CaO和稀土磷酸盐之间的化学反响为固相反响,反响速度受分散速度的约束,分化率很低,只要在液相存鄙人反响进行的比较彻底,分化率可到达78%。混合稀土精矿的组成比独居石杂乱,其焙烧进程中的化学反响与独居石也不彻底相同。近年来,用氧化钙焙烧分化混合型稀土精矿的研讨方面上得到了如下一些成果。 (一)焙烧进程的分化反响 用TG-DTA热分析技能,研讨增加CaO、NaCl分化混合稀土精矿在100~1000℃规模焙烧进程,得到了图2所示的成果。成果标明:CaO-NaCl焙烧分化混合稀土精矿的进程分为两个阶段:第一阶段在417~530℃之间,首要分化反响是REFCO3的分化和Ce2O3的氧化: REFCO3=REOF+CO2                              (23) 3REFCO3+H2O=RE2O3+REOF+2HF+3CO2           (24) Ce2O3+(1/2)O2=2CeO2                          (25) 第二阶段在600~800℃之间,首要是CaO分化REPO4和REOF的反响,分化产品为Ca3(PO4)2、RE2O3、CaF2,其间CaF2还参与了CaO分化REPO4的反响,并促进了CaCO3分化独居石的反响进行: 3CaO+2REPO4=RE2O3+Ca3(PO4)2               (26) CaO+2REOF=RE2O3+CaF2                         (27) 9CaO+CaF2+6REPO4=3RE2O3+2Ca5F(PO4)3       (28) 在这一阶段,参与的NaCl为反响系统中供给了液相,强化了固相反响物间的传质进程,显着地进步了混合稀土精矿的分化。当反响系统中CaF2量缺乏时,NaCl也或许参与分化反响: 15CaO+3NaCl+10REPO4=3CaCl(PO4)3+Na3PO4+5RE2O3   (29) 可是,当反响系统中存在满足的CaF2时,由于Ca5F(PO4)3和Ca5Cl(PO4)3同属六方晶系,晶格常数挨近,并且F原子半径(0.136nm)小于Cl的原子半径(O.181nm),所以CaF2比NaCl更简单参与CaO分化REPO4的反响。因而,反响系统中一起存在REFCO3和REPO4时,反响式(28)比反响式(29)的反响趋势更大。 (二)CaO参与量对分化率的影响 将NaCl参与量定为10%,改动焙烧温度为700℃、780℃、860℃,得到了分化率(Y)随CaO参与量(C)改变的等温曲线(见图3)。由图3中的曲线能够看出分化率(Y)随CaO参与量的增加而改变的进程分为三个阶段:第一阶段,随CaO的增加分化率敏捷增加,并且随温度的增加,此阶段变长;第二阶段,随CaO参与量增加,分化率增加趋于陡峭;第三阶段,CaO持续增加,分化率有隆低的趋势。因而,在断定CaO参与量时应留意到温度的条件,假如为取得高的分化率,能够挑选900℃,CaO参与量为30%的条件。 (三)NaCl参与量对分化率的影响 图4是NaCl参与量与分化率的联系图。图中的曲线随NaCl参与量的增加呈势线形改变。焙烧温度800℃条件下,NaCl在0~10%时,分化率呈上升趋势并且改变较大;在10%~20%时,分化率上升,改变率减小,在20%左右分化率到达最大;NaCl参与量超越20%时,分化率呈现下降趋势。在焙烧进程中NaCl的首要效果是为反响物供给液相,促进了反响的进行,进步了稀土精矿分化率。NaCl参与量从10%增加到20%时,分化率改变并不大。并且NaCl参与过多有许多晦气,如焙烧产品简单结块,简单烧结,给浸出工艺带来诸多不便,增加硫酸浸出前的水洗量,由于假如水洗不彻底,浸出时NaCl将转变为Na2SO4稀土构成的稀土复盐留在渣中,严重影响稀土收回率。所以从各方面归纳考虑,NaCl参与量以10%为宜。图2  混合稀土精矿增加15% CaO+10%NaCl的TG-DTA测验成果图3  CaO参与量与分化率的联系图4  NaCl参与量与分化率的联系图5  焙烧温度对分化率的影响 (四)焙烧温度对分化率的影响 从图5中温度-分化率联系曲线标明:随温度的升高,分化率升高,这是由于分化反响均为吸热反响,温度升高,有利于反响的进行。一起温度升高,NaCl或NaCl与CaF2等物质所构成的低熔点熔体开端熔化,呈现液相,这有利于反响物之间的传质,使精矿分化更为彻底。可是应该留意:温度过高,将构成熔盐蒸发,减少了低熔点体的效果,反而晦气于分化反响的进行。别的,温度过高,焙烧产品中的CeO2不易被酸溶液浸出,会使稀土收回率下降。因而,温度的挑选是非常重要的。例如,将混合型稀土精矿在精矿∶CaO∶NaCl=1∶0.35∶0.1份额下,别离在670℃,780℃,900℃下焙烧1h得到的分化率别离为71.12%,89.27%,91.08%。这说明780℃前进步温度对进步分化率效果显着,而780℃与900℃间起效果不大,所以温度控制在780~800℃时比较合理。 (五)从焙烧产品中收回稀土的办法 焙烧产品经稀酸洗除掉Ca5F(PO4)3和NaCl后,按图6所示的试验流程,用硫酸浸出REO、CeO2、ThO2,稀土收回率能够到达92%以上。经两次浸出,两次水洗的浸出渣中的首要成分是CaSO4,ThO2小于0.001g/l。图6  从焙烧产品中硫酸浸出收回稀土试验流程

氟碳铈矿-独居石混合稀土精矿的氢氧化钠分解工艺技术

2019-02-11 14:05:38

氟碳铈矿-独居石混合稀土精矿也能够选用溶液分化办法处理(工艺流程见图1),可是因为精矿中含氟高于独居石,对碱分化设备腐蚀严峻,如依然用独居石分化所用的蒸汽夹套加热,设备寿命短,运转极不安全。生产中应该用直接加热物料的办法操作。某工厂在钢制的分化罐中刺进三根电极,是电流通过精矿和混合物,使用物料自身的电阻发热,分化精矿。此种办法称为电场分化。该办法与夹套加热办法比较具有精矿分化率高、能量消耗低、碱耗低一级长处。混合稀土精矿另一个特点是含钙比独居石高,直接分化稀土收率很低,必须在分化前除掉钙。图1  分化混合稀土精矿准则工艺流程 一、浸泡除钙 混合型精矿中以萤石(CaF2)、白云石(CaCO3、MgCO3)、方解石(CaCO3)形状存在的CaO大约7%左右,在碱分化中萤石难以被分化,而其他钙矿藏的分化产品氢氧化钙易与碱液中的磷酸三钠效果生成难溶的磷酸钙。碱分化后,部分钙以氟化钙和磷酸钙的方式同稀土氢氧化物一同进入酸溶工序。在酸溶工序中,CaF2、Ca3(PO4)2被分化,溶液中呈现的HF和H3PO4使RE3+生成REF3和REPO4沉积于渣中,形成稀土丢失。在碱分化前用先将钙除掉能够有用的防止稀土丢失。浸泡除钙进程中稀土矿藏的化学形状基本上没有发作变化,因而这一办法也被称为化学选矿除钙。浸泡除混合型精矿中钙的化学反响如下: CaF2+2HCl=2CaCl2+2HCl       (1) CaCO3+2HCl=CaCl2+H2O+CO2↑     (2) 3REFCO3+6HCl=2RECl3+REF3↓+3H2O+3CO2   (3) 被溶解的稀土与溶液中的氟化氢反响,生成氢化稀土而沉积在未分化的稀土矿藏中。因为REF3溶度积(Ksp=8×10-16)小于CaF2(Ksp=2.7×10-11),因而式(1)、式(2)和式(3)所示的化学反响不断地进行,钙的去除率能够到达90%以上,一起稀土的丢失率不大(2%~4%)。 RECl3+3HF=REF3↓+3HCl 浸泡除钙的操作条件为:浸泡酸度=2mol/L;矿酸比(固∶液)=1∶2;温度=90~95℃;时刻=3h。除钙后,精矿的稀土档次由50%~60%上升到60%~70%,钙≤1%。浸泡除钙进程的稀土丢失率随精矿中的钙含量的添加而添加,并且酸用量也随之添加。因而用浸泡除钙-碱分化工艺处理混合稀土精矿时应选稀土档次高、钙含量低的精矿质料。 二、分化 浸泡除钙后的稀土精矿在60%~65%的的溶液中,用三相沟通电极加热至160~165℃,稀土、钍、酸浸泡进程中未分化的萤石将发作如下化学反响: REFCO3+3NaOH=RE(OH)3↓+Na2CO3+NaF        (4) REPO4+3NaOH=RE(OH)3↓+Na3PO4             (5) Th3(PO4)4+12NaOH=3Th(OH)4↓+4Na3PO4   (6) CaF2+2NaOH=Ca(OH)2↓+2NaF               (7) 3Ca(OH)2+2Na3PO4=Ca3(PO4)2↓+6NaOH      (8)在此一起,精矿中的铁、等杂质与反响生成相应的氢氧化物。 碱分化进程中,铈的三价氢氧化物将进一步被氧化为四价氢氧化物,其化学反响式如下: 2Ce(OH)3+H2O+(1/2)O2=2Ce(OH)4                           (9) 分化完成后,沉积物(碱饼)中除了RE(OH)3、Th(OH)4、Ca (OH)2、Fe(OH)3等难溶性的物质外,还存有过量的NaOH及分化着重指出NaF、Na3PO4可溶性盐。工业生产中按固液比1∶(10~12),用60~70℃水洗刷沉积物6~7次(洗至水pH=8~9),从中除掉可溶性盐,使氢氧化稀土得到开始的净化。分化后的废碱液,仍含有较多的,能够收回使用。 三、溶解 通过洗刷的沉积物(碱饼)在酸溶槽中加溶解,使得氢氧化稀土转化为氯化物进入溶液与未分化的矿藏及不溶性的杂质别离。与氢氧化稀土一起溶解的还有Th(OH)4、Fe(OH)3、Fe(OH)2,其化学反响如下: RE(OH)3+3HCl=RECl3+3H2O               (10) Ce(OH)4+4HCl=CeCl3+4H2O+(1/2)Cl2         (11) Th(OH)4+4HCl=ThCl4+4H2O                  (12) Ca(OH)2+2HCl=CaCl2+2H2O               (13) Fe(OH)2+2HCl=FeCl2+2H2O               (14) Fe(OH)3+3HCl=FeCl3+3H2O                (15) 酸溶后溶液的稀土浓度一般控制在REO=200~300g/L,溶液的酸度在pH=1~2。酸溶渣中一般还有少数稀土矿藏,为了充沛收回稀土,经水洗后回来碱分化。 四、氯化稀土溶液的净化 由溶解进程的反响式(10)~(15)能够知道,酸溶得到的氯化稀土溶液中除RE3+外,还含有Th4+、Fe3+、Fe2+,根据它们的溶度积和水解pH值的不同,能够从溶液中逐个地除掉。 五、从优溶渣中收回稀土 优溶渣中尚含有未溶解的精矿钍、铁等杂质,其渣中的稀土含量(REO)大于10%以上。对此,一般采纳硫酸全溶解的办法收回稀土。其主要溶解反响如下: 2REPO4+3H2SO4=RE2(SO4)3+2H3PO4         (16) 2REF3+3H2SO4=RE2(SO4)3+6HF            (17) Th(OH)4+2H2SO4=Th(SO4)2+4H2O         (18) 2Fe(OH)3+3H2SO4=Fe2(SO4)3+4H2O       (19) 硫酸溶出的溶液,经硫酸复盐沉积别离铁等杂质、稀土和钍的硫酸复盐用溶液在90℃下转化为氢氧化物,然后再经优溶工序别离稀土与钍。

铝型材焊接前的准备及注意事项

2019-03-11 09:56:47

近年来,跟着我国大规模的基建投资和工业化进程的快速推动,铝型材作为建筑范畴和机械工业范畴里重要的运用材料,其全职业的产值和消费量迅猛增加,我国也一跃成为国际最大的铝型材生产基地和消费市场.铝型材职业分析研究报告标明,通过长达近10年的高速增加,我国铝型材职业步入了新的发展阶段并展示出了许多新的发展趋势.下面介绍一下铝型材焊接前的预备及注意事项:    铝管的焊接1焊接特性:铝及铝合金具有导热性强而热容量大,线胀系数大,熔点低和高温强度小等特色,焊接难度大,应采纳必定的办法,才干确保焊接质量。2管件及焊丝的整理,焊丝及破口两边50mm范围内表面用清洗洁净,用不锈钢丝刷刷去表面氧化膜,显露金属光泽,整理好的破口必须在2小时内焊接,整理好的焊丝放入未用的筒内,必须在8小时内用完,不然重新处理。3钨棒选用铈钨棒,氩气钝质不小于99.96%,且含水量不该大于50mg/m3。4环境温度不低于5℃,不然应预热至100~200℃方可施焊,相对湿度控。   假如你要在家或许车间焊接铝材,那么首要咱们需求弄清下面一些被群众误解的东西:1.你至少需求具有一台价值4000美元的焊机和高明的焊接技巧来焊接铝材;2.不需求操练就可以完结作用很好的焊接作业;3.你需求购买合适铝材焊接的贵重焊。   事实是,在通过训练,运用合适的焊接设备,进行正确的参数设置情况下,紧凑的小型MIG焊机也能进行暂时的铝材焊接作业。你将能运用MIG焊机来完结你家里各种的材料焊接,比如烧烤架,后院储藏间,船坞,乃至装修零件。即使是常常焊接钢材的家庭焊接狂热者,也会觉得去焊接铝材是一项极大的应战。原因是:铝丝十分软,送丝适当困难。别的,一般用于钢材的焊丝直径和焊机设置或许不合适焊接铝材。