您所在的位置: 上海有色 > 有色金属产品库 > 钨酸钙制备

钨酸钙制备

抱歉!您想要的信息未找到。

钨酸钙制备百科

更多

白钨矿(Scheelite)(又称钨酸钙矿)

2019-01-21 10:39:06

Ca[WO4] 【化学组成】由于W和Mo离子半径几乎相等,因此,白钨矿中W与Mo为完全类质同像,成 为白钨矿—钼钨矿系列。高温时,Mo含量高;与辉钼矿共生的白钨矿中,Mo含量也高。部分的Ca可被Cu和TR代替。 【晶体结构】四方晶系;a0=0.525nm,c0=1.140nm;Z=4。白钨矿晶体结构简单,是由稍扁平的[WO4]四面体和Ca离子沿c轴相间排列而成。 【形态】晶体常呈四方双锥,也有的沿{001}呈板状(图H-22)。依(110)成双晶普遍。集合体多呈不规则粒状,较少呈致密块状。   图H-22白钨矿晶体 【物理性质】白色、黄白、浅紫等,油脂光泽或金刚光泽;透明至半透明。解理{111}中等;断口参差状。硬度4.5~5。相对密度5.8~6.2(相对密度随Mo的增加而降低)。性脆。具发旋旋光性,在紫外光照射下发浅蓝色至黄色(依Mo的含量而定,Mo增加,荧光变浅黄至白)的荧光。 【成因及产状】主要产于接触交代矿床。也可见于高—中温热液矿床。 【主要用途】重要钨矿石矿物。

由纯钨酸钠溶液转型制备纯钨酸铵溶液

2019-03-05 09:04:34

一、有机溶剂萃取法转型 (一)基本原理 1、莘取剂。钨萃取工艺中,常用的萃取剂主要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。 在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁酯(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表1。 表1  某些萃取剂萃钨的功能注:N235-三烷基胺;N263-季胺盐。 在用有机胺时,先用无机酸(常用H2SO4)与有机相效果,使胺生成胺盐,例如用2~3mol∕L H2SO4效果,则:用H2SO4≥5mol∕L效果时,则:2、萃钨进程。先用无机酸(如H2SO4)将Na2WO4溶液酸化至pH=2.5~3.0,钨以(HW6O21)5-、(H2W12O40)6-、(W12O39)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。 关于叔胺萃钨(Ⅵ)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1∶3~1∶2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2WO4溶液pH=1~3条件下,用体积比为:% Alamine336∶癸醇∶火油为7∶7∶86的有机相萃钨(Ⅵ)的通式为:依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12O40H2)6-、(W6O21H)5-(低钨浓度下)和(W12O40)8-。 当Na2WO4溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12O40)4-、(PW12O40)3-、(AsW12O40)3-与叔胺生成的萃合物是密度大于1g∕cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。 3、反萃进程。为了直接获得(NH4)2WO4溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:可见,虽然有机相中萃合物的组成不同,但都是1mol钨耗费2mol氮。所用的浓度一般为3~4mol∕L NH4OH,反萃终了的平衡水相应保持在pH=8.5左右。 (二)工业实践 用叔胺萃钨的准则流程参见图1。图1  从粗Na2WO4溶液制取钨化合物准则流程图 叔胺萃钨工艺中各阶段的条件及目标见表2。 表2  叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取比较(o∕a)=1,混合2~3min,温度25~40℃,3~5级逆流钨萃取率大于99%,萃余液中低于0.1g∕L WO3①有机相φ∕%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol∕L; ②Na2WO4料液:(WO3)90~100g∕L,pH=2.5~3 ③萃取洗剂和反洗剂为纯水; ④酸化剂为(H2SO4)0.1~0.2mol∕L ⑤反萃剂为(NH4OH)3~4mol∕L萃洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中WO3含量低于0.5g∕L反萃取比较(o∕a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流反萃取率大于99%,反萃液中250~300g∕L WO3反洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中低于0.5g∕L WO3酸化比较(o∕a)=5,混合2~3min,温度25~40℃,2~3级逆流    纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。 工艺条件: 有机相φ∕%;20叔胺,20异辛醇,60火油; 料液组成/(g·L-1);(WO3)45~55;(Mo)0.03~0.05;(SiO2)0.03~0.06;(F-)0.1;(NaCl)50~60。 设备。萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高10m,有两个弄清区,脉冲频率50次∕min,振幅20min,塔总体积30m3,生产才能按两相总计为50m3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o∕a)为(5~10)∶1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。 钨和其他成分在流程中的分配见表3。 表3  钨和其他成分在流程中的分配    (g∕L)美国联合碳化物公司用苏镇压煮所得的Na2WO4溶液为55~110g∕L WO3,2.1~4.5g∕L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51. 8g∕L WO3,0.0012g/L Mo,0.75g∕L SiO2。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较O∕A为1,洗刷比较(O∕A)为 1∶0.75。然后用3mol∕L NH4OH反萃钨,比较(O∕A)为1∶(1~1.1)。将反萃液循环至(NH4)2WO4溶液中WO3浓度为225g∕L停止。这时反萃液中含0.4g/L SiO2以上。将溶液在55℃和2.7mol∕L NH4OH条件下弄清约1.5h,使SiO2沉积分出。萃取和反萃取均在50℃下进行。 中科院赵由才等曾研讨用伯胺及磷酸三丁酯(TBP)为萃取剂别离钨酸钠或钼酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。 二、离子交流法转型 乌兹别克斯坦某厂使用活动床经过AH-80П树脂将经典法净化所得的Na2WO4溶液转型为(NH4)2WO4,其准则流程见图2。图2  用AH-80П将Na2WO4溶液转型的流程 —树脂运动道路;----各种溶液运动道路 1-吸附柱;2-洗刷柱;3-解吸柱;4-再生柱:5-交流后液贮槽; 6-中和槽;7-(NH4)2WO4液贮槽;8-中和槽;9-过滤器 Na2WO4溶液含125g∕L WO3;0.01~0.08g∕L Mo;≤0.05g∕L P、As;115~135g∕L NaCl+Na2CO3;pH=2.5~3.0。溶液中钨主要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80П树脂(Cl-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1∶(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g∕cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含WO3 0.02g∕L,WO3吸附率达99.95%。饱满WO3的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g∕L HCl再生成Cl-型后,进行再吸附。 依据测定当溶液中WO3浓度为15~20g/L时,AH-80П的全改换容量达1g干树脂吸附1610mg WO3,比经典的人工白钨酸分化再溶的工艺WO3回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。 在生产条件下,当用HNO3系统,则树脂亦可用BП-14K型。 三、沉积人工白钨-酸分化法转型 其实质是将净化除杂后的Na2WO4溶液首要参加CaCl2使Na2WO4转化为CaWO4沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:生成的CaWO4(又称人工白钨)再与HCl效果转化为H2WO4,H2WO4进而用NH4OH溶解得(NH4)2WO4溶液。

含钒溶液的钒酸钙、钒酸铁盐沉淀法

2019-01-24 14:01:24

钒酸钙、钒酸铁盐沉淀法主要用于从低浓度含钒溶液中回收钒。 一、钒酸钙法 加入CaCl2、Ca(OH)2、CaO,随溶液pH值的变化而生成不同的沉淀。pH值10.8~117.8~9.35.1~6.1沉淀物正钒酸钙焦钒酸钙偏钒酸该Ca3(VO4)2CaV2O7Ca(VO3)2溶解度小小稍大 通常在强烈搅拌下逐渐加入沉钒剂,加Ca2+后 等杂质也会进入沉淀,硅胶也混入沉淀。最经济有效地沉淀物位焦钒酸钙,沉钒率一般可达97%~99.5%。 二、钒酸铁沉淀法 用铁盐或亚铁盐作沉淀剂,在弱酸性条件下,将含钒溶液倒入硫酸亚铁溶液中,并不断搅拌、加热,便会析出绿色沉淀物。由于二价铁会部分氧化成三价铁,V2O5会部分还原成V2O4,所以沉淀物的组成多变,其中包括Fe(VO3)2、Fe(VO3)3、VO2·xH2O、Fe(OH)3等。若沉淀剂采用FeCl3或Fe2(SO4)3,则析出黄色xFe2O3·yV2O5·zH2O沉淀。本法钒的沉淀率可达99%~100%。 钒酸铁及钒酸钙均可作冶炼钒铁的原料,或作为进一步提纯制取V2O5的原料。

电石渣制备碳酸钙工艺研究

2019-03-07 09:03:45

渣是制取聚氯乙烯(PVC)、气体时发生的工业废渣。渣中首要的物质为氢氧化钙,还含有少数的无机杂质,比方MgO、FeO和SiO2等,因为渣内含有少数的C、S、P等杂质使其呈现灰白色,并伴有浓郁的冲鼻滋味。渣中的颗粒十分的细小,粒径大约在10-15μm;渣的pH值大约能够到达12.5左右,呈现比较强的碱性。因而以渣为质料出产高需求量的超细活性碳酸钙,无疑是处理渣最好的途径。 1、渣的预处理 渣浆的预处理方法直接影响到CaCO3产品质量的好坏和渣的运用率。一般渣的预处理方法包含两种,105℃下枯燥和530℃下锻烧。挑选105℃下枯燥一方面能够除掉渣内的水分,另一方面能够使渣内的有机物和挥发性杂质分化,然后能够减小碳酸钙制品中杂质的含量。530℃下锻烧一方面是使渣内的氢氧化钙分化成氧化钙,另一方面使渣内的金属化合物转换成难溶物质。 试验标明,渣经105℃枯燥的作用最好。在这种预处理方法下所得Ca(OH)2回收率和碳酸钙白度最高。 2、渣的浸出 许多金属氢氧化物是不溶性阳离子物质,只需操控必定的碱性条件,可使系统中的金属阳离子有挑选性的沉积。依据溶度积原理,在浸取的进程中,pH操控在必定规模以内,就能够使Mg2+、Fe3+、Mn2+等杂质离子先构成氢氧化物沉积,而Ca2+达不到Ca(OH)2的溶度积仍留在溶液中,过滤掉沉积即可得到不含镁、铁、锰杂质的精制Ca2+溶液。 (1)浸出 高传相等选用对渣进行杂质处理后得到球形超细CaCO3,所得碳酸钙纯度大于98%,白度大于97,均匀晶粒尺度为45nm,电镜均匀粒径约为80nm,比表面积约为32m2/g。乔叶刚等选用必定浓度的溶解渣,过滤除掉不溶性杂质,使CaCl2溶液得到净化。 (2)氯化铵浸出 卢忠远等将渣参加质量分数为J%、过量30%的NH4Cl的溶液中反响,CaCO3的回收率最高达99%,所组成的碳酸钙为针状文石型碳酸钙。 (3)甘酸浸出 袁可等选用甘酸水溶液将渣中的有用钙转变为可溶性的甘酸钙,经过碳化,组成出球形碳酸钙。其工艺与氯化钱工艺十分类似,但在氯化铵系统中,所制备的碳酸钙描摹为立方形,而在甘酸系统中,碳酸钙的描摹则为球形。两者描摹彻底不同,这或许是因为甘酸对碳酸钙的描摹有抑制作用。 3、碳酸钙的制备 (1)CO2碳化 吴琦文等以渣为质料,CO2为碳源,制备纳米碳酸钙。在其制备进程中,研讨质料的浓度、CO2气体的浓度、CO2气体的流速、反响温度、拌和速率以及添加剂的用量对碳酸钙产品粒径和晶型的影响,结果标明:质料的浓度、CO2浓度和流速对碳酸钙均匀粒径有稍微的影响,在必定的条件下可制备颗粒粒径为50nm、均匀晶粒尺度约30nm的方解石型纳米碳酸钙颗粒。 Jun-HwanBang等运用CO2微气泡发生器组成得到小尺度、高比表面积的碳酸钙,并研讨了Ca(OH)2浓度、电解质的量、CO2流量和注入方法对碳酸钙的尺度、比表面积的影响。结果标明:CO2流量的添加会减小碳酸钙粒子的尺度,或许的原因是CO2流量的添加使得剪切速率变大而且添加了CO2的涣散;运用MBG(微气泡发生器)注入CO2要比惯例的泡沫发生器制得的碳酸钙粒子更小。 (2)碳酸钠碳化 YuDong等运用微乳液作为组成途径,以碳酸钠为碳源,可控的得到不同描摹的碳酸钙。经过操控这些参数:表面活性剂的品种、陈化时刻以及W0(水与表面活性剂的摩尔比)得到了许多新颖的描摹,纳米棒、六角圆片以及类镜头像结构。碳酸钠和氯化钙量的添加会使得碳酸钙粒子形状不规则,到达必定量后不会构成微乳液。 Fang-zhiHuang等以碳酸钠为碳源,经过参加可溶性添加物的正向微乳液得到不同描摹的碳酸钙粒子。当在甘酸润饰的正向微乳液下,碳酸钙生成中空的微球粒子,然而在Mg2+润饰的正向微乳液下,得到了许多新颖的分层霞石碳酸钙晶体,比方轴型霞石碳酸钙、圆片霞石碳酸钙等等。这些不同晶相的特殊描摹碳酸钙或许是因为碳酸钙的前体(球形的或许片状的纳米粒子)在两层的模版下,自发拼装构成的,意味着咱们能够在两层模版下,经过仿生组成手法,组成得到具有特殊描摹和结构的无机或许有机一无机杂化材料。 (3)碳酸铵碳化 张宏等选用以下试验工艺条件:浸取液Ca2+浓度为0.85mol/L,(NH4)2CO3:CaCl2=0.95:1(物质的量比),反响温度位15℃,组成得到碳酸钙的晶形为立方体,均匀粒径为50nm。试验进程发现,Ca2+浓度在1mol/L以下,跟着浓度的添加粒径线性下降,1mol/L以上则改变不明显;而且,Ca2+浓度在1mol/L以上,对渣中杂质的去除是十分晦气的。 闻琨等以渣为质料、氯化铵溶液为浸取剂、碳酸铵为碳化剂、柠檬酸为晶行操控剂,选用液相法制备了高纯度的纳米级碳酸钙。调查了钙浓度、柠檬酸的用量、碳化温度三种要素对碳酸钙晶型和粒径的影响,结果标明:钙浓度为0.6mol/L、柠檬酸与碳酸钙质量比为0.03、碳化温度为12℃为最佳工艺,所得碳酸钙粒径为40-60nm,为纯洁的方解石晶型。 4、渣碳酸钙在塑猜中的使用 聚  董卫龙等以渣为质料,或氯化铵为浸取剂提取渣内的Ca2+离子,并别离选用液相法和微乳法制备碳酸钙。选用微乳液法得到的超细活性碳酸钙与浙江菱化活性钙、纳米钙三种碳酸钙填充PP,力学功能结果标明:跟着碳酸钙含量的添加,力学功能都呈现了明显地下降,可是渣制备的碳酸钙填充PP的力学功能一直比浙江菱化活性钙、纳米钙填充PP的要高;流变功能显现渣制备的碳酸钙和浙江菱化活性钙填充PP后的熔体粘度整体比浙江菱化纳米钙填充PP的小。

苄基胂酸浮选黑钨和锡石细泥

2019-02-27 08:59:29

苄基胂酸是我国创始的黑钨和锡石细泥有用捕收剂。苄基肿酸和混合甲对黑钨的捕收功能极为类似,能够在相同的浮选流程和相同的药剂准则下相互替代运用,得到极为挨近的浮选成果。黑钨比严重,粗粒黑钨用重选法处理能够得到很高的目标但黑钨性脆,在采选过程中简单发生矿泥,重选法收回遭到粒度约束,对矿泥的处理目标较低,湖南、广东、江西一些摇床等重选法收回黑钨细泥的选厂,一般收回率只要20%-40%,适当一部分钨金属从矿泥丢失。用浮选法处理黑钨细泥,收回率比重选法高,因而用重选法处理粗粒矿砂,浮选法处理矿泥的重浮联合流程来进步选厂钨收回率是可取的。

球形碳酸钙的制备及机理分析

2019-03-07 09:03:45

碳酸钙具有方解石、文石和球霞石3种晶型结构,常温常压下方解石最安稳,球霞石热力学安稳性较差,因而制备的碳酸钙多由方解石构成。 碳酸钙微球具有体积小、比表面积大、孔隙率大等特色,广泛使用于生物技术、医药等高端职业。碳酸盐与钙盐在无其他物质的参加下能够直接反响得到立方体碳酸钙,产品一般由方解石构成,一些表面活性剂如柠檬酸(CA)、乙二胺四乙酸盐(EDTA)和十六烷基三甲基化铵(CTAB)以及部分聚合物等能够调控碳酸钙的成长,操控碳酸钙的结晶速度和描摹,终究操控碳酸钙的晶型及晶粒大小。陈先勇等以柠檬酸钠作晶型操控剂,以醋酸钙和碳酸钠为质料制备出了孪生球状碳酸钙。 1、试验 (1)试剂 无水氯化钙(CaCl2)、无水碳酸钠(Na2CO3)、无水乙醇(C2H5OH)和一水柠檬酸(C6H8O7·H2O)、(NaOH)。 (2)仪器与设备 场发射扫描电子显微镜(FESEM,表面镀金,作业电压15kV)、Zetasizer3000HS、多功能X射线衍射仪(XRD,扫描视点3-80°,铜靶,电压40kV,电流40mA)、SpectrumOne型傅里叶变换红外光谱仪(FTIR,KBr压片,测验规模400-4000cm-1)。 (3)乙醇溶液法制备碳酸钙 别离制造2份100mL体积分数为0,25%,50%和75%乙醇水溶液贮存于0℃条件下备用,称取4份0.01mol的无水氯化钙别离参加4种不同体积分数的乙醇水溶液中拌和使其充沛溶解,相同办法称取4份0.01mol的无水碳酸钠别离参加不同体积的乙醇水溶液中拌和使其充沛溶解,并在0℃水浴条件下别离参加相应乙醇体积分数的CaCl2溶液中,然后用浓度为1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。 同样地,称取0.01mol的无水氯化钙和无水碳酸钠,别离参加2份100mL体积分数为50%的无水乙醇溶液中,拌和使其溶解充沛,将Na2CO3溶液在水浴温度为60℃条件下,参加CaCl2溶液中,然后,用1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后,静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。 (4)添加柠檬酸制备碳酸钙 称取0.01mol的一水柠檬酸,参加100mL浓度为0.15mol/L的CaCl2溶液中,拌和使其溶解均匀,用1.0mol/L的NaOH溶液调理溶液的pH值为5.8,必定拌和速度下快速倒入100mL浓度为0.15mol/L的Na2CO3溶液,调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。同上所述,称取0.1mol的一水柠檬酸进行上述反响。 2、成果与评论 (1)描摹分析由图1可知,乙醇的体积分数为0(水溶液)时,制备的碳酸钙相似于短柱状,面和棱均清晰可见; 乙醇的体积分数为25%时,制备的碳酸钙相似于梭状,并且单个呈现空心,见图1b中扩大图,制备的碳酸钙没有显着的棱角,空心梭的截面呈现空心环的描摹; 乙醇的体积分数为50%时,制备的碳酸钙为双球形,从图lc中的扩大图能够看出,微球是由纳米颗粒构成; 乙醇的体积分数为75%时,制备的碳酸钙相似于棉絮状,见图1d中扩大图。 跟着反响溶液中乙醇体积分数的添加,碳酸钙晶粒的直径逐步减小,能够估测乙醇的添加能够阻挠碳酸钙的成核或成长。乙醇的体积分数为50%时,生成的碳酸钙是直径为纳米级的颗粒,因为较高的表面能而聚组成球,构成双球状。图2为乙醇体积分数为50%时,不同水浴温度条件下制备的碳酸钙微球FESEM图画。从图中能够看出,较高温度下制备的碳酸钙微球中间洼陷程度较小,或许是跟着反响时间添加,高温下乙醇部分蒸发导致浓度减小,对碳酸钙的成长按捺效果减小,然后有利于碳酸钙微球的成长,中间洼陷程度削减。图3是柠檬酸浓度别离为0.1、1.0mol/L时,制备的碳酸钙微球FESEM图画。柠檬酸浓度为0.1mol/L时,制备的碳酸钙微球粒径较大。经过图3a中扩大图能够看出,与在乙醇溶液中制备的碳酸钙相似,都是由纳米状碳酸钙聚合而成,不同的是在柠檬酸的操控下制备的碳酸钙微球没有中间洼陷,构成的球较规整。 柠檬酸浓度为1.0mol/L时,制备的碳酸钙微球粒径显着减小,且相似于圆饼状,由图3d中扩大图发现,制备的碳酸钙微球相似于层状包裹而成,而不是由碳酸钙纳米颗粒聚合而成,这与其他微球显着不同。 比照图3a和图3b发现,柠檬酸能够有用地阻挠碳酸钙晶粒的成长,并且柠檬酸的浓度为1.0mol/L时能够促进碳酸钙更好地成球。 经过图2和图3能够看出,在乙醇溶液和柠檬酸溶液中都能制备出描摹较规整的碳酸钙微球,并且跟着无水乙醇和柠檬酸的量的添加,制备的碳酸钙晶粒都有必定程度的减小,阐明两者都能够按捺碳酸钙的成长。 (2)相结构分析图4为图1对应制备碳酸钙的XRD谱图。图4中a对照X射线标准卡片发现与碳酸钙的标准卡片JCPDS47-1743完全契合,阐明制备的碳酸钙是由方解石构成,图4中a和b在29.4°处的峰十分强并且尖利,对应的是碳酸钙的(104)晶面,阐明图4a和b对应的碳酸钙结晶性杰出。 图4中b、c和d在2θ坐落24.9°、27.1°、32.8°、43.9°、50.1°处均呈现球霞石的特征峰(JCPDS33-268),阐明图4b、c和d对应的碳酸钙中均有球霞石存在,并且方解石的峰值逐步减小;球霞石的峰值逐步添加,阐明跟着反响溶液中的无水乙醇含量添加,制备的碳酸钙中的方解石含量逐步削减,球霞石逐步添加,因而,能够揣度乙醇能够按捺方解石的生成,促进球霞石的生成,并且跟着乙醇含量的添加,对方解石的按捺效果添加,进而影响碳酸钙的结晶度。图5为图2和图3对应制备碳酸钙的XRD谱图。图5中a和b是无水乙醇体积分数为50%时别离在0、60℃条件下反响制备的样品的XRD谱图。与图5a对应的碳酸钙是由方解石和球霞石构成不同,图5b对应的碳酸钙是由方解石和文石构成的,估测或许是反响系统温度较高,促进球霞石转化为热安稳性较高的文石,别的,反响系统温度的升高,系统中乙醇的含量下降,按捺效果下降,也促进文石的发作。 图5c和5d是反响系统中添加柠檬酸后制得的碳酸钙的XRD谱图。经过比较发现,柠檬酸的浓度为0.1mol/L时,制备的碳酸钙样品是由方解石构成;而柠檬酸的浓度为1.0mol/L时制备的碳酸钙样品是由方解石和球霞石构成。与未添加柠檬酸时制备的碳酸钙的XRD谱图(图4a)比照,标明柠檬酸的添加会按捺方解石的成长,促进球霞石的成长,然后按捺碳酸钙的结晶,并且跟着柠檬酸含量的添加,对反响系统的按捺效果增大。图6为不同条件下制备的碳酸钙的FTIR谱图。712、874、1417cm-1处呈现的峰是方解石的特征吸收峰,745cm-1是球霞石的特征峰,1455-1490cm-1对错晶碳酸钙的吸收峰。由此可知,图6中a和d对应的碳酸钙微球含有球霞石,这与XRD图的分析成果共同。4个样品中均呈现非晶态碳酸钙的特征吸收峰,阐明乙醇溶液和柠檬酸的参加都在必定程度上按捺了碳酸钙的结晶,促进非晶态碳酸钙的发作,这也契合XRD图得出的定论。样品b中未呈现文石的特征吸收峰,这与XRD得出的定论不太共同,或许是被其他较强的峰掩盖,也或许是在样品制备过程中发作反响。 3、碳酸钙微球的构成机理 在制备碳酸钙的反响中,没有柠檬酸的参加下,氯化钙溶液和碳酸钠溶液一经混合,反响首要生成热安稳性较好的方解石。反响过程中晶核的发作需求较大的能量,晶核的成长速度远远大于构成速度,因而倾向于构成描摹较大,晶面较规整的碳酸钙(图la)。描摹操控剂的参加阻挠了Ca2+和CO32-的有用磕碰,按捺晶核的构成和成长,然后按捺反响的进行,到达操控样品描摹的意图。 当按捺剂的量较多时,进一步阻挠系统反响的进行,进而添加系统的能量,促进很多晶核的发作。因为比表面积较大,因而晶核在成长过程中聚会构成颗粒的集合体,然后构成比表面积较小的球状(图2a、2b和2c)。乙醇溶液对碳酸钙的成长具有按捺效果,乙醇钙的电离才干较强,而乙醇是弱电解质,溶液中存在很多的乙醇分子。估测反响过程中乙醇分子的存在阻挠了Ca2+和CO32-的有用磕碰,而乙醇分子的存在也阻挠了碳酸钙晶核的成长。跟着乙醇浓度的添加,系统中乙醇分子和离子的量添加,阻挠效果增强。而反响温度的添加,促进了乙醇的蒸发,下降了反响系统中乙醇的含量,然后下降了乙醇的按捺效果,加速反响的进行,削减球霞石的发作而构成文石(图2b)。图7为柠檬酸的分子结构图。柠檬酸根离子是一种较强的金属鳌合剂,能与钙离子鳌合,构成安稳的柠檬酸钙,这与乙醇钙的阻挠效应不同。添加柠檬酸后,柠檬酸根离子与钙离子鳌合构成结构安稳,易溶于水的柠檬酸钙,下降了系统中钙离子的浓度。跟着柠檬酸钙的缓慢离解,Ca2+与溶液中游离的CO32-反响生成CaCO3,少数柠檬酸根离子吸附在晶核表面,按捺晶面的进一步成长,然后使溶液中碳酸钙的过饱和度添加。而球霞石是碳酸钙无水结晶中最不安稳的晶型,一般需求更好的表面能和较高的过饱和度才干构成,因而,反响有利于生成球霞石。 跟着柠檬酸浓度的增大,更多的柠檬酸根离子集合到碳酸钙分子周围,下降了晶核构成的能垒,促进碳酸钙晶核的发作,而进一步按捺晶体的成长。因为柠檬酸根离子浓度较大,对碳酸钙晶体成长的按捺效果也更强,终究得到粒径较小的含有很多球霞石晶型的碳酸钙颗粒。又因为柠檬酸根的空间位阻效果较大,因而,制得的球形碳酸钙微粒的分散性较好,粒度散布较会集。 另一方面,初始构成的纳米级碳酸钙小颗粒具有较高的表面能,为了下降表面能,小颗粒极易集合到一同,而初始构成的碳酸钙集合体表面高低不平,在集合体表面凹的部分区域液相相对流速较慢,Ca2+和CO32-简单在该区域富集,较易快速构成许多小晶粒,这些小晶粒经过彼此交融及结构重组完成集合体的表面最小化。而柠檬酸浓度增大时,吸附在碳酸钙表面的柠檬酸量添加,阻挠了Ca2+和CO32-在碳酸钙表面的富集,按捺碳酸钙颗粒的成长,因而,颗粒直径减小(图3b)。图8所示为依据试验分析得出的或许的碳酸钙微球构成机理。 4、结语 (1)别离选用乙醇和柠檬酸作为碳酸钙粒子的结构和描摹的调控剂,发现二者都能经过按捺碳酸钙的成长调控碳酸钙的结晶,然后制备出不同描摹的碳酸钙。 (2)经过改动试验条件发现乙醇和柠檬酸制备碳酸钙的机理不同,乙醇溶液经过下降粒子的活性来按捺碳酸钙的成长速度,而柠檬酸经过与钙离子反响下降溶液中钙离子的浓度来调控碳酸钙的成长速度。 (3)乙醇溶液对碳酸钙描摹的影响较严峻,50%体积分数的乙醇溶液与浓度为1.0mol/L柠檬酸调控下都能制备出描摹杰出的碳酸钙微球,但是在柠檬酸调控下制备的碳酸钙微球描摹愈加规整,粒度也较小,使用规模愈加广泛。  材料来源于碳酸钙微球的制备及其机理。

铁矿石烧结的铁酸钙生成特性研究

2019-01-25 10:19:13

1 前言  近年来,对烧结矿还原性的研究受到了广泛的重视,高炉炉料还原性的提高,可使焦比大幅度降低,生产率提高。在保证烧结矿其它性能(如冷强度、还原粉化和软化温度等)的同时,应尽量提高烧结矿的还原性,而铁酸钙是影响烧结矿还原性十分重要的因素,因此,有必要对铁矿石在烧结过程中铁酸钙的生成特性进行研究。 关于铁酸钙的成分与结构,国内外已有许多研究。最早认为是二元系铁酸钙,其成分为CaO.Fe2O3、2CaO.Fe2O3、CaO.2Fe2O3。随着研究的深入,发现烧结矿中铁酸钙主要是三元系、四元系及其固溶体,这是由于原料中存在的SiO2及Al2O3在烧结过程中溶入铁酸钙。因此,人们称其为复合铁酸钙或硅铝铁酸钙,简称SFCA。 道森(Dawson)等人认为SFCA的形成是以下几个反应的结果:  CaO.Fe2O3形成(1050~1150℃);  Al2O3与CaO反应生成铝酸钙(1100~1150℃);  铝酸钙熔于CaO.Fe2O3中(1100~1150℃),形成铁铝酸一钙;  铁铝酸一钙熔化并与Fe2O3反应生成铁铝酸半钙(1200~1250℃);  随后与SiO2反应形成SFCA(1200~1250℃)。 影响铁矿石的铁酸钙生成特性的因素较多,主要包括以下两个方面:(1)烧结工艺参数的影响,包括烧结温度、烧结气氛和配碳量等。较低的烧结温度、较强的氧化性气氛,能够促进铁酸钙的生成。(2)铁矿石的性质,即自身特性,是决定烧结矿中不同矿物组成的内在因素。铁矿粉的种类、粒度组成、致密性、碱度、化学成分(包括CaO、MgO、SiO2和Al2O3)等又直接影响到烧结矿的矿相组成及分布的均匀性。铁矿粉的自身特性是影响SFCA生成能力的重要因素。[next]    2 试验原料与方法    2.1 试样制备  试验用的铁矿粉一部分来自济南钢铁集团总公司(简称济钢)原料厂和第一烧结厂,一部分由铁矿石经销商提供;CaO 为化学纯试剂。铁矿粉的取样采取“四分选取法”,以保证试样的代表性。将试验所用的铁矿粉在 110 ℃的烘箱内干燥2h,冷却后及时放入干燥皿保存。将干燥后的铁矿粉磨制成小于0.15mm的粉状,放入干燥皿保存。将 CaO 试剂磨制成小于0.15mm 的粉状,放入干燥皿保存。小饼试样的秤重采用精度为万分之一的电子天平。采用“干粉压制法”压制,压力为10MPa,保压2min。    2.2 试验设备  试验采用的主要设备有称量装置、压溃强度装置、压样试验装置和微型烧结法试验装置。微型烧结试验装置主要包括RHL-410P型红外线快速高温试验炉(主要由石英保护管和红外线灯管发热元件组成)、TPC-1000型温度程序控制仪、冷却水控制器、试样台自动升降装置、炉体支架及控制系统、试验气体控制系统、温度测定及控制系统。    2.3 试验方法  试验采用微型烧结法、显微矿相试验法。采用微型烧结法将各矿粉制成的小饼试样在一定的烧结制度下焙烧;对烧结后的小饼试样磨样,在显微镜下观察各试样中SFCA的生成情况以及矿相结构等。矿相组成的定量分析采用目测法。 具体方案采用碱度为2.0、试验温度1280℃,试验用原料的化学成分见表1。试验用小饼试样以高度为基准,高5mm,直径8mm。试验温度和气氛控制见表2。[next]表1 试验用原料的化学成分%矿石代号TFeFeOSiO2CaOMgOAl2O3SP烧损A67.720.220.580.0180.020.740.0030.0481.61B68.70.261.050.110.060.340.0030.0180.44C670.261.40.320.0731.30.0180.0461.18D66.020.293.360.310.0430.710.010.0261.18E63.460.153.030.0310.041.970.0050.0783.79F64.90.773.150.040.061.830.0080.072.55G57.950.94.150.0110.081.120.0080.0411.61H56.91.165.340.410.192.360.0060.03910.32I56.91.165.340.410.192.360.0060.03910.32J62.460.222.440.0310.0341.70.0020.0725.51[next]表2 试验温度和气氛控制温度/℃时间/min气氛室温→6004空气600→10001氮气1000→11501.5氮气1150→试验温度1氮气试验温度4氮气试验温度→11502空气1150→10001.5空气1000→室温断电自然降温空气注:氮气和空气流量均为3L/min。  列顺序依次为:G、H、E、F、D、J、I、B、C、A矿。    3 试验结果及分析  10种铁矿石的矿物组成及显微结构特征见表3及图1~10。矿石试样中铁酸钙含量由高到低的排:[next] [next] [next]     3.1 G、H矿中SFCA含量最高  在10种铁矿石中,G和H两种矿试样中的SFCA含量最高,分别达到40%和35%。主要原因:(1)这两种铁矿石皆为褐铁矿,烧损比较高,在一定的温度下,结晶水受热蒸发后,在褐铁矿中留下残余气孔,使铁矿石结构疏松,加快了Ca2+向铁矿石中的扩散,同时铁矿物离子也易于扩散,使反应更易进行,有利于大量低熔点化合物的生成,因而有利于提高SFCA的生成量。(2)这两种铁矿石的Al2O3/SiO2的比值较为适宜,有利于铁酸钙的生成。(3)这两种铁矿石的Al2O3和SiO2含量都比较高,结构比较疏松,非常有利于SFCA的生成。    3.2 E、F、D矿中SFCA含量较高  在10种铁矿石中,E、F、D三种矿试样中SFCA含量都比较高(在29%~31%之间)。主要原因:(1)这三种矿的SiO2含量都比较高,在相同碱度条件下,配入的CaO量较高,而这三种矿皆为赤铁矿,这样CaO与Fe2O3接触的几率增大,SFCA生成量也随之增大。(2)这三种矿结构都比较疏松,利于扩散反应的进行,从而有利于铁酸钙的生成。另外,D矿Al2O3/SiO2比值比较适宜,利于铁酸钙的生成,也是D矿SFCA生成量较高的重要原因。    3.3 J、I、B、C矿中SFCA含量较低  在10种铁矿石中,J、I、B和C矿铁酸钙生成量较低的主要原因为:(1)I矿的品位低、SiO2含量高,达5.34%。烧结料中含有较高的SiO2时,会发生:2Fe3O4+3SiO2=3(2FeO.SiO2)+O2的反应,从而会加速磁铁矿和赤铁矿的分解,不利于铁酸钙的生成。另外,烧结料中含有较高的SiO2,会生成较多的2CaO.SiO2,而大量2CaO.SiO2的生成,也就意味Fe2O3与CaO结合的机会相对减少,不利于铁酸钙的生成。(2)J、B和C三种矿SiO-2含量比较低,在相同碱度的条件下,配入的CaO量也比较少,因而生成SFCA的几率降低。[next]    3.4 A矿中SFCA含量最低  在10种铁矿石中A矿的SFCA含量最低,只有5%。其原因为:该矿的SiO2含量最低,只有0.58%,这样在相同碱度的条件下,配入的CaO量也最少,因而生成的铁酸钙含量最少。另外该矿结构比较致密,既不利于Fe2O3和CaO的扩散,也不利于低价氧化物氧化过程的进行,从而在一定程度上影响了铁酸钙的生成。    4 结论    4.1 铁矿石的铁酸钙生成特性是多种因素共同作用的结果。除受焙烧温度、焙烧气氛、碱度等因素影响外,还受铁矿石的自身性质,如Fe2O3含量、CaO含量、SiO2含量、MgO含量、Al2O3/SiO2的比值,和致密性等因素的影响,这些影响因素之间是互相影响、互相作用的。    4.2 不同的铁矿石,铁酸钙的生成特性不同。在碱度为2.0及其它条件相同的情况下,结构松散的褐铁矿、赤铁矿及较高含量的Al2O3和SiO2均有利于SFCA的生成。    4.3 铁矿石的铁酸钙生成特性是烧结配矿必须考虑的因素,对优化配矿具有重要的指导作用。在烧结料中适当配加一定比例的G矿和H矿以及结构松散的赤铁矿粉,可以提高烧结矿强度和还原度。

立式粉磨机制备超微细重质碳酸钙

2019-03-07 09:03:45

重质碳酸钙,简称重钙,是由天然碳酸盐矿藏如方解石、大理石、石灰石经破碎与粉磨而成,是重要的绿色环保、节能减排、契合国家可持续发展的非金属矿藏材料,可广泛使用于塑料、涂料和橡胶等职业。 图1 重质碳酸钙的使用范畴我国重钙首要出产基地1 我国国重质碳酸钙出产基地首要有广西贺州、广东连州、浙江建德和四川宝兴等,广西贺州被称为“我国重钙之都”,年产重质碳酸体达800万吨以上,产品商场占有量到达60%以上,是全国最大的重质碳酸体出产基地。 图2 广西贺州碳酸钙千亿元工业演示基地重质碳酸钙出产工艺 2 重质碳酸钙工艺首要有干法、湿法和干湿结合法。 (1)干法工艺 重质碳酸钙干法出产工艺一般有球磨-分级机多种规格产品粉磨体系、雷蒙磨混合振动磨-分级机组合粉磨体系、气流磨-分级机组合体系、立式拌和磨-分级机组合粉磨体系。 (2)湿法工艺 重质碳酸钙干法出产工艺一般有卧式磨串并联组合体系、立式磨单机开路粉磨体系、和立式磨多机串联粉磨体系。湿法出产的滤饼、浆料可直接供应,或经冲击式自磨、枯燥体系枯燥成粉体产品。 (3)干湿结合工艺 干湿结合法行将两种工艺进行组合,其出产工艺流程见图。 图3 重质碳酸钙干湿结合出产工艺常见的超细粉磨设备3 选用雷蒙磨、立式磨、球磨机、旋磨机和高速机械冲击式破坏机等粉磨设备,产品细度多在200-1250目之间,想要得到1250-2500意图超细重质碳酸体,须将磨机和干式精密分级机组合,多段分级,接连闭路进行出产,循环负荷高达300-500%。 立式粉磨机的作业原理4 图4 立式粉磨机结构(1)研磨 质料由反转下料器进入主机,在底部磨盘滚动的离心力下,质料被推送至磨轮之间进行研磨,三个磨轮均有独自的油压连杆操控研磨压力,油压体系所输出的安稳压力为70-75kg/cm2,使质料于三个磨轮与磨盘之间进行研磨,油压体系配备有六个蓄压器可吸收颗粒状质料开始破坏时所发生出来的震动力。 (2)分级 质料由磨轮和磨盘之间研磨成细粉之后,自磨盘周围溢出,跟着环带状气流上升,进入上端的滚动锥形分级叶片区,经过分级叶片区较粗的粉无法经过以设定转速的分级叶片区,而直接落在下部持续研磨,经过分级叶片区的粉末称为细粉,这些细粉将被收人在后段收尘设备中。 (3)制品 细粉跟着气流经过分级叶片后,进入旋风收尘器或是脉冲式袋式收尘器中,收尘设备搜集细粉后,被别离的空气会借风机再次运行至体系中,整个体系中的气流呈负压状况,然后将不会导致因粉尘的数量而发生的环境污染。 立式粉磨机制备重工艺5 (1)方解石经过选矿、水冲刷等除掉杂质,暴晒风干送入堆棚。 (2)分一段或许两段进行破碎,如有大块石料,须先送入鄂式破碎机粗碎,之后再进入锤式破碎机细碎,破碎后的细石料经斗式提高机送入质料储库待用。 (3)闭路粉磨分级体系中,首要细石料从质料库由定量给料机送入立式粉磨机粉磨-分级体系,较细产品将直接被搜集到高浓度高压脉冲袋式收尘器内,经过分级叶片可将产品细度操控在500-3000目之间调理,之后进行包装。粗粉再次进入立式粉磨机,与质料混合,从头粉磨。 图5 姑苏某公司立式粉磨机制备重质碳酸工艺选用立式粉磨机制备重质碳酸,具有简略高效、能耗低、噪音小等优势。 重钙出产技能发展趋势6 (1)商场关于超微细重质碳酸钙产品的需求愈来愈多,分级机作为超细粉加工关键设备,其发展趋势将在超微细范畴使用。当时,国内加工3000目以下超微细产品的分级机技能比较老练,但是加工3000目以上超微细产品的分级机技能有待开发。 (2)以产品质量安稳、出产成本下降为意图,在新建厂及现有厂的技能改造中选用低能耗、低损耗、操作保护便利、功能安稳的老练设备。  (3)出产过程的自动化和智能化程度有待进一步提高。

球形碳酸钙制备方法及研究进展!

2019-03-06 10:10:51

碳酸钙按形状分为无规矩体、纺锤形、针形、球形、链锁形、片形、偏三角形和菱形六面体形、无定形等,不同形状的碳酸钙,其应用范畴和功用也各不相同。图1 不同晶型碳酸钙晶SEM相片 因为球形碳酸钙有杰出的滑润性、流动性、涣散性和耐磨性等特性,故而被广泛应用在橡胶、涂料油漆、油墨、医药、牙膏和化妆品等范畴。 01 球形碳酸钙制备办法及研讨进展 球形碳酸钙的组成办法多以液相法为主,依据反响机理的不同又可将其划分为三种反响体系:Ca(OH)2-H2O-CO2反响体系、Ca2+-H2O-CO32-反响体系和Ca2+-R-CO32-反响体系(R为有机质)。 (1)Ca(OH)2-H2O-CO2反响体系——碳化法 该反响体系是以Ca(OH)2水乳液作为钙源,用CO2碳化制得碳酸钙。Ca(OH)2一般由天然碳酸钙锻烧成生石灰,然后经消化得到,碳酸钙锻烧的烟道气经净化作为碳化反响的CO2来历。 碳酸钙晶体的成长与描摹的构成首要发生在碳化阶段,可经过反响温度、Ca(OH)2浓度、CO2流量、晶体成长抑制剂等要素加以操控,制得球形碳酸钙产品。 研讨进展: ①向兰等选用间歇碳化法(管式气体散布器)组成了均匀粒径0.1μm左右的超细球形碳酸钙;选用小气泡及CO2含量较高的混合气体有利于构成超细碳酸钙,参加少数添加剂如ZnCl2、MgCl2或EDTA(乙二胺四乙酸)可显着改动碳酸钙粒子的描摹和巨细。 ②陈先勇等选用间歇鼓泡碳化法,在碳化温度为20℃左右、灰乳密度为1.07(d)的条件下,参加少数复合添加剂PBTCA(2-磷酸基-1,2,4-三羧酸)和CTAB(十六烷基三甲基化铵),可制得粒度散布均匀、涣散性好、均匀粒径为40nm左右的球形碳酸钙。 ③赵风云等以一种出产球形纳米碳酸钙的喷发-乳化新式组合式碳化反响器,在小型试验设备上,选用正交试验的办法,断定出粒度散布窄的球形纳米碳酸钙的最佳反响条件为:温度15℃,氢氧化钙浆液质量浓度65g/L,气液体积比5:1,在完结小试的基础上,建成了年产60吨纳米碳酸钙的中试试验设备,并成功制备出均匀粒径80nm球形纳米碳酸钙。图2 球形纳米碳酸钙中试出产线 ④谷丽等以石灰石为质料,选用间歇鼓泡碳化法制备纳米球形碳酸钙,在反响温度为20-40℃,石灰乳浓度为86g/L,空塔气速为0.114m/s时,晶形操控剂参加量为1%时,可得到涣散性较好、粒度散布较均匀纳米球形碳酸钙。 碳化反响开端后,在不同时刻参加同一剂量的同一种晶形操控剂,制得碳酸钙的晶形和粒径不尽相同,晶形操控剂参加的时刻越早,所得到的球形碳酸钙晶体的描摹越好、粒径越小。 图3 纳米球形碳酸钙工艺流程 ⑤申小清等用硅酸钠为晶形操控添加剂,经过石灰乳碳化工艺制备了颗粒尺度为40-50nm的球形超细碳酸体,添加剂最佳用量为0.7-1.5%。 (2)Ca2+-H2O-CO32-反响体系——复分化法 该体系是将含Ca2+的溶液与含CO32-的溶液在必定条件下混合反响来制备碳酸钙。依据质料的不同又分为氯化钙钙-碳酸钙法、氯化钙-苏打法(苏尔维法)、石灰-苏打法等。 一般经过添加剂来操控产品的粒径和晶体结构。用Ca2+-H2O-CO32-反响体系反响体系能够得到20-100nm的碳酸钙。 研讨进展: ①方卫民等选用复分化法将必定量的无水Na2CO3和CaCl2别离溶解于适量水中,经过参加少数添加剂乙二胺四乙酸二钠和磷酸氢二钠,制备出了均匀粒径为50-70nm的球形碳酸钙。 ②雷鸣等经过有机聚合物聚磺酸钠PSSS对碳酸钙粒子的调制效果,成功制备出了均匀粒径为5μm的球形碳酸钙。 ③谢英惠等运用缓冲剂氯化钠和结晶成长中止剂调理碳酸钙的描摹,选用复分化法制备出了球形碳酸钙。 (3)Ca2+-R-CO32-反响体系——微乳液法和凝胶法 该反响体系是经过有机介质R来调理Ca2+和CO32-的传质,然后到达操控晶体成核成长的意图。依据有机介质R品种的不同可分为微乳液法和凝胶法两类。 微乳液法选用的有机介质一般为液体油,而凝胶法选用的是有机凝胶。这类共聚物具有2个亲水链段(耦合链段与促溶链段),能够定向吸附于无机-水界面。 带有特定功用团的共聚物可能与金属离子及表面活性剂相互效果而在溶剂中构成较为杂乱的有序集合结构。这些特性使得双亲水嵌段共聚物在调控无机粒子描摹方面显示出共同的长处。 (4)其他 ①袁可等将基酸-甘酸和废渣经过简略的酸碱中和反响,制备出了超微细球形碳酸钙,其纯度和白度均达96%以上,成团微粒为纳米级,二次团粒结构的粒径散布在1-3μm之间,经过pH或物理和化学的涣散,可便利的调控其微观尺度。 ②赖永华等运用甘酸与渣的首要成分Ca(OH)2反响生成可溶性的甘酸钙,过滤除掉不溶杂质。在气升式高效反响器中,向甘酸钙溶液通入CO2进行碳化反响,洗刷后制得超微细球形碳酸钙膏体。选用该超微细球形碳酸钙膏体替代配方中的悉数粉体制备水性涂料,不光能够下降涂料的质料本钱和出产本钱,还能够简化涂料的出产操作、削减粉尘污染。 表1 超微细球形碳酸钙性能目标02 国外球形碳酸钙出产及研讨现状 国外开发的低光泽纸专用球形碳酸钙具有白度高、易涣散、油墨吸收性杰出、粒径散布窄等优秀特性,其2-5μm的粒子占比约为67%,晶体形状为较规矩球形。 研讨标明:3.5μm低光泽纸专用球形碳酸钙在涂猜中的最佳用量在40-50%之间,此刻能够获得较低的纸页光泽度,较高的印刷光泽度和高的光泽度差。与其他无光纸用颜料比较,运用球形碳酸钙可获得光学目标、物理性能及印刷适性之间的平衡,而且不会发生印刷斑驳。 因而,球形碳酸钙是一种出产低光泽涂布纸的优秀颜料,能够替代现行涂料配方中的几种颜料,提凹凸光泽涂布纸质量,下降出产的杂乱性,将会有宽广的市场前景。 现在,碳化法制备球形碳酸钙是出产厂商和科研院所重视和研讨的要点,别的也有一些厂商经过湿法超细研磨制备出了椭圆形碳酸体材料。未来,对粒子巨细和描摹的有用调控将成为碳酸钙被广泛应用的关键技术。

煅烧酸浸铁矿石制备硫酸铁的技术

2019-01-30 10:26:27

硫酸铁是一种重要的化工原料,是水净化和湿法冶金的重要药剂。目前,硫酸铁的工业制造方法,主要是直接氧化或催化氧化硫酸水溶液中的硫酸亚铁,有的是用细菌加臭氧或氧气氧化,如加拿大专利CA-1018774公开了一种用于制造硫酸铁的连续细菌氧化工艺和设备,可将硫酸亚铁在细菌作用下,与硫酸和氧气反应转变为硫酸铁。另外,还有用硫酸水溶液浸出铁矿石或其与金属铁的混合物,所用氧化剂有H2O2、KC1O3、KMnO4、O2等,如日本专利J61-286228、286229是用硫酸与铁的氧化物反应,将得到的浸出液中的Fe2+用O2或空气、H2O2、MnO2、NaC1O3氧化剂氧化,或以硝基氧化物催化氧化成Fe3+。上述己有技术,由于是将硫酸与亚铁反应,需要的设备要求耐腐蚀性好,因此设备投资、维修费用高,同时氧化剂、催化剂消耗很多,工艺也比较复杂,从而限制了硫酸铁的生产和应用。本实验采用铁矿石为原料制备硫酸铁,由于铁矿石中含有许多有机杂质,如果直接酸浸,将影响硫酸铁的质量。故将铁矿石先进行缎烧然后再酸浸,同时考察了锻烧温度、锻烧时间、硫酸浓度、酸浸时间和液固比(硫酸与铁矿石质量比)对铁浸出率的影响,并确定了合理的生产工艺和操作条件。该法具有工艺简单、投资少、成本低的特点,可有效地综合利用铁矿石,治理环境污染。     一、实验部分     铁矿石取自湘潭某钢铁厂,经分析,其化学组成为:TFe 63.3%,FeO 0.25%,Fe2O389.94%,Al2O3 2.08%,SiO2 4.16%,CaO0.4%,其它3.17%。     主要仪器。DBJ一621型六联定时变速搅拌器;CS-501SP型超级数量恒温器;马弗炉。     实验方法。将研磨为-200目的铁矿粉放入马弗炉中,分别在600℃、700℃、800℃和900℃温度下煅烧一定时间,冷却后,取出备用。在常温常压下,将一定比例的铁矿粉和被稀释过的浓硫酸置于一个带有搅拌装置的500ml烧瓶中,然后在100℃条件下反应一段时间,冷却,过滤,即得含有Fe2(SO4)3的溶液。以H3PO4作掩蔽剂,用KMnO4滴定,测定Fe2+浓度;以磺基水杨酸为指示剂,EDTA络合滴定法测出Fe3+浓度。     二、结果与讨论     (一)煅烧温度对铁浸出率的影响 控制锻烧时间为2h,硫酸浓度为5mol/L,液固比为6∶1,酸浸时间为3h,考察不同锻烧温度对铁浸出率的影响,结果见表1。由表1知,当锻烧温度低于800℃时,铁浸出率随温度升高而增大;但当锻烧温度超过800℃时,铁浸出率随温度升高变化不明显。故较佳煅烧温度为800℃。 表1  煅烧温度对铁浸出率的影响煅烧温度/℃600700800900铁浸出率/%53.169.279.580.3     (二)锻烧时间对铁浸出率的影响     控制煅烧温度为800℃,硫酸浓度为5mol/L,液固比为6∶1,酸浸时间为3h,考察不同煅烧时间对铁浸出率的影响,结果如表2所示。由表2可知,随着煅烧时间的延长,铁的浸出率提高;但煅烧时间超过2h后,铁浸出率增大不明显。所以煅烧时间以2h为宜。 表2  煅烧时间对铁浸出率的影响煅烧时间/h0.5123铁浸出率/%35.362.578.780.4     (三)硫酸浓度对铁浸出率的影响     控制煅烧温度为800℃,煅烧时间为2h,液固比为6∶1,酸浸时间为3h,考察不同硫酸浓度对铁浸出率的影响,结果见表3。由表3可知,随着硫酸浓度的升高,铁的浸出率提高,当硫酸浓度超过5mo1/L时,铁的浸出率反而下降。这是因为硫酸的浓度过高,则反应系统的水分越少,反应就会不充分,铁的浸出率反而下降。因此,硫酸浓度控制在5mol/L为宜。 表3  硫酸浓度对铁浸出率的影响硫酸浓度/(mol/L)3456铁浸出率/%44.870.679.578.2     (四)酸浸时间对铁浸出率的影响     控制煅烧温度为800℃,煅烧时间为2h,硫酸浓度为5mol/L,液固比为6∶1,考察不同酸浸时间对铁浸出率的影响,结果见表4。由表4可知,随着酸浸时间的延长,铁的浸出率提高;但酸浸时间超过3h后,铁浸出率增大不明显。所以酸浸时间以3h为宜。 表4  酸浸时间对铁浸出率的影响酸浸时间/h1234铁浸出率/%51.570.378.779.1     (五)液固比(硫酸与铁矿石质量比)对铁浸出率的影响     控制煅烧温度为800℃,煅烧时间为2h,硫酸浓度为5mo1/L,酸浸时间为3h,考察不同液固比(硫酸与铁矿石质量比)对铁浸出率的影响,结果见表5。由表5可知,铁浸出率随液固比的增大而提高,因为液固比增大,液固接触机会增多,反而速率提高,因而铁浸出率提高,但液固比超过6∶1后,铁浸出率增大不明显。因此,液固比(硫酸与铁矿石质量比)控制在6∶1为宜。 表5  液固比对铁浸出率的影响液固比(硫酸与铁矿石质量比)4567铁浸出率/%58.375.179.179.7     三、结论     (一)由于铁矿石中含有许多有机杂质,如果直接酸浸,将影响硫酸铁的质量。故将铁矿石先进行煅烧然后再酸浸,其铁浸出效果会更好。     (二)当煅烧温度为800℃,锻烧时间是2h,硫酸浓度为5mo1/L,酸浸时间3h以及液固比(硫酸与铁矿石质量比)为6∶1时,铁的浸出率最高。     (三)以铁矿石为原料,按上述方法制备硫酸铁,具有工艺简单、投资少、成本低的特点,可有效地综合利用铁矿石,治理环境污染。