您所在的位置: 上海有色 > 有色金属产品库 > 钨酸钙生产

钨酸钙生产

抱歉!您想要的信息未找到。

钨酸钙生产百科

更多

白钨矿(Scheelite)(又称钨酸钙矿)

2019-01-21 10:39:06

Ca[WO4] 【化学组成】由于W和Mo离子半径几乎相等,因此,白钨矿中W与Mo为完全类质同像,成 为白钨矿—钼钨矿系列。高温时,Mo含量高;与辉钼矿共生的白钨矿中,Mo含量也高。部分的Ca可被Cu和TR代替。 【晶体结构】四方晶系;a0=0.525nm,c0=1.140nm;Z=4。白钨矿晶体结构简单,是由稍扁平的[WO4]四面体和Ca离子沿c轴相间排列而成。 【形态】晶体常呈四方双锥,也有的沿{001}呈板状(图H-22)。依(110)成双晶普遍。集合体多呈不规则粒状,较少呈致密块状。   图H-22白钨矿晶体 【物理性质】白色、黄白、浅紫等,油脂光泽或金刚光泽;透明至半透明。解理{111}中等;断口参差状。硬度4.5~5。相对密度5.8~6.2(相对密度随Mo的增加而降低)。性脆。具发旋旋光性,在紫外光照射下发浅蓝色至黄色(依Mo的含量而定,Mo增加,荧光变浅黄至白)的荧光。 【成因及产状】主要产于接触交代矿床。也可见于高—中温热液矿床。 【主要用途】重要钨矿石矿物。

含钒溶液的钒酸钙、钒酸铁盐沉淀法

2019-01-24 14:01:24

钒酸钙、钒酸铁盐沉淀法主要用于从低浓度含钒溶液中回收钒。 一、钒酸钙法 加入CaCl2、Ca(OH)2、CaO,随溶液pH值的变化而生成不同的沉淀。pH值10.8~117.8~9.35.1~6.1沉淀物正钒酸钙焦钒酸钙偏钒酸该Ca3(VO4)2CaV2O7Ca(VO3)2溶解度小小稍大 通常在强烈搅拌下逐渐加入沉钒剂,加Ca2+后 等杂质也会进入沉淀,硅胶也混入沉淀。最经济有效地沉淀物位焦钒酸钙,沉钒率一般可达97%~99.5%。 二、钒酸铁沉淀法 用铁盐或亚铁盐作沉淀剂,在弱酸性条件下,将含钒溶液倒入硫酸亚铁溶液中,并不断搅拌、加热,便会析出绿色沉淀物。由于二价铁会部分氧化成三价铁,V2O5会部分还原成V2O4,所以沉淀物的组成多变,其中包括Fe(VO3)2、Fe(VO3)3、VO2·xH2O、Fe(OH)3等。若沉淀剂采用FeCl3或Fe2(SO4)3,则析出黄色xFe2O3·yV2O5·zH2O沉淀。本法钒的沉淀率可达99%~100%。 钒酸铁及钒酸钙均可作冶炼钒铁的原料,或作为进一步提纯制取V2O5的原料。

酸法生产氧化铝

2019-03-04 16:12:50

酸法出产氧化铝有各种不同的办法,但根本进程为:(1)矿石的预处理。意图在于改进矿石中氧化铝的溶出性,除掉杂质,将矿石磨细到必定粒度。(2)用酸容法,使矿石中氧化铝转变为可溶性的无机酸铝盐与不溶性杂质别离。(3)溶出液除铁。(4)铝盐的分化和氢氧化铝的煅烧。(5)酸的收回。     酸法出产氧化铝的长处是质料来历广泛,但存在下述首要缺陷:从铝盐中除铁困难;钢制设备遭到腐蚀;溶解氧化铝所需酸量大;酸的收回再生进程杂乱;铝盐具有高的生成热,煅烧分化时热耗大;大都酸具有挥发性,环境保护方面较杂乱;酸法得到的氧化铝与拜耳法得到的氧化铝的性质有所不同,电解作业需求调整。     酸法出产氧化铝中,法最受注重,因为它有许多长处:比较廉价,溶出条件不严苛;水和氯水铝的水含量比其他铝盐少,无段蒸腾便可结晶分出:HCl易于收回使用。     法的工艺流程如图1所示,用1:1的于50℃下拌和溶出600℃下焙烧过的黏土,因为反响放热,坚持溶出进程在欢腾下进行。通过2h的溶出,氧化铝的溶出率达95%。钛化合物少数溶出,硅矿藏悉数进入渣,易别离。溶出液中的FeCl3可通过基萃取完全脱除。除净铁的AlCl3溶液浓缩后或通入HCl气分出AlCl3·6H2O。煅烧AlCl3·6H2O,在185℃时分化为AlCl3和水,400℃以上进一步分化为氧化铝。为了得到冶金级的氧化铝需求在1000℃以上进行,得到的HCl气回来使用。图1  法出产氧化铝的工艺流程图     酸法出产氧化铝的办法还有法国Petzer公司的H+-process和酸碱联合法等。

苄基胂酸浮选黑钨和锡石细泥

2019-02-27 08:59:29

苄基胂酸是我国创始的黑钨和锡石细泥有用捕收剂。苄基肿酸和混合甲对黑钨的捕收功能极为类似,能够在相同的浮选流程和相同的药剂准则下相互替代运用,得到极为挨近的浮选成果。黑钨比严重,粗粒黑钨用重选法处理能够得到很高的目标但黑钨性脆,在采选过程中简单发生矿泥,重选法收回遭到粒度约束,对矿泥的处理目标较低,湖南、广东、江西一些摇床等重选法收回黑钨细泥的选厂,一般收回率只要20%-40%,适当一部分钨金属从矿泥丢失。用浮选法处理黑钨细泥,收回率比重选法高,因而用重选法处理粗粒矿砂,浮选法处理矿泥的重浮联合流程来进步选厂钨收回率是可取的。

铁矿石烧结的铁酸钙生成特性研究

2019-01-25 10:19:13

1 前言  近年来,对烧结矿还原性的研究受到了广泛的重视,高炉炉料还原性的提高,可使焦比大幅度降低,生产率提高。在保证烧结矿其它性能(如冷强度、还原粉化和软化温度等)的同时,应尽量提高烧结矿的还原性,而铁酸钙是影响烧结矿还原性十分重要的因素,因此,有必要对铁矿石在烧结过程中铁酸钙的生成特性进行研究。 关于铁酸钙的成分与结构,国内外已有许多研究。最早认为是二元系铁酸钙,其成分为CaO.Fe2O3、2CaO.Fe2O3、CaO.2Fe2O3。随着研究的深入,发现烧结矿中铁酸钙主要是三元系、四元系及其固溶体,这是由于原料中存在的SiO2及Al2O3在烧结过程中溶入铁酸钙。因此,人们称其为复合铁酸钙或硅铝铁酸钙,简称SFCA。 道森(Dawson)等人认为SFCA的形成是以下几个反应的结果:  CaO.Fe2O3形成(1050~1150℃);  Al2O3与CaO反应生成铝酸钙(1100~1150℃);  铝酸钙熔于CaO.Fe2O3中(1100~1150℃),形成铁铝酸一钙;  铁铝酸一钙熔化并与Fe2O3反应生成铁铝酸半钙(1200~1250℃);  随后与SiO2反应形成SFCA(1200~1250℃)。 影响铁矿石的铁酸钙生成特性的因素较多,主要包括以下两个方面:(1)烧结工艺参数的影响,包括烧结温度、烧结气氛和配碳量等。较低的烧结温度、较强的氧化性气氛,能够促进铁酸钙的生成。(2)铁矿石的性质,即自身特性,是决定烧结矿中不同矿物组成的内在因素。铁矿粉的种类、粒度组成、致密性、碱度、化学成分(包括CaO、MgO、SiO2和Al2O3)等又直接影响到烧结矿的矿相组成及分布的均匀性。铁矿粉的自身特性是影响SFCA生成能力的重要因素。[next]    2 试验原料与方法    2.1 试样制备  试验用的铁矿粉一部分来自济南钢铁集团总公司(简称济钢)原料厂和第一烧结厂,一部分由铁矿石经销商提供;CaO 为化学纯试剂。铁矿粉的取样采取“四分选取法”,以保证试样的代表性。将试验所用的铁矿粉在 110 ℃的烘箱内干燥2h,冷却后及时放入干燥皿保存。将干燥后的铁矿粉磨制成小于0.15mm的粉状,放入干燥皿保存。将 CaO 试剂磨制成小于0.15mm 的粉状,放入干燥皿保存。小饼试样的秤重采用精度为万分之一的电子天平。采用“干粉压制法”压制,压力为10MPa,保压2min。    2.2 试验设备  试验采用的主要设备有称量装置、压溃强度装置、压样试验装置和微型烧结法试验装置。微型烧结试验装置主要包括RHL-410P型红外线快速高温试验炉(主要由石英保护管和红外线灯管发热元件组成)、TPC-1000型温度程序控制仪、冷却水控制器、试样台自动升降装置、炉体支架及控制系统、试验气体控制系统、温度测定及控制系统。    2.3 试验方法  试验采用微型烧结法、显微矿相试验法。采用微型烧结法将各矿粉制成的小饼试样在一定的烧结制度下焙烧;对烧结后的小饼试样磨样,在显微镜下观察各试样中SFCA的生成情况以及矿相结构等。矿相组成的定量分析采用目测法。 具体方案采用碱度为2.0、试验温度1280℃,试验用原料的化学成分见表1。试验用小饼试样以高度为基准,高5mm,直径8mm。试验温度和气氛控制见表2。[next]表1 试验用原料的化学成分%矿石代号TFeFeOSiO2CaOMgOAl2O3SP烧损A67.720.220.580.0180.020.740.0030.0481.61B68.70.261.050.110.060.340.0030.0180.44C670.261.40.320.0731.30.0180.0461.18D66.020.293.360.310.0430.710.010.0261.18E63.460.153.030.0310.041.970.0050.0783.79F64.90.773.150.040.061.830.0080.072.55G57.950.94.150.0110.081.120.0080.0411.61H56.91.165.340.410.192.360.0060.03910.32I56.91.165.340.410.192.360.0060.03910.32J62.460.222.440.0310.0341.70.0020.0725.51[next]表2 试验温度和气氛控制温度/℃时间/min气氛室温→6004空气600→10001氮气1000→11501.5氮气1150→试验温度1氮气试验温度4氮气试验温度→11502空气1150→10001.5空气1000→室温断电自然降温空气注:氮气和空气流量均为3L/min。  列顺序依次为:G、H、E、F、D、J、I、B、C、A矿。    3 试验结果及分析  10种铁矿石的矿物组成及显微结构特征见表3及图1~10。矿石试样中铁酸钙含量由高到低的排:[next] [next] [next]     3.1 G、H矿中SFCA含量最高  在10种铁矿石中,G和H两种矿试样中的SFCA含量最高,分别达到40%和35%。主要原因:(1)这两种铁矿石皆为褐铁矿,烧损比较高,在一定的温度下,结晶水受热蒸发后,在褐铁矿中留下残余气孔,使铁矿石结构疏松,加快了Ca2+向铁矿石中的扩散,同时铁矿物离子也易于扩散,使反应更易进行,有利于大量低熔点化合物的生成,因而有利于提高SFCA的生成量。(2)这两种铁矿石的Al2O3/SiO2的比值较为适宜,有利于铁酸钙的生成。(3)这两种铁矿石的Al2O3和SiO2含量都比较高,结构比较疏松,非常有利于SFCA的生成。    3.2 E、F、D矿中SFCA含量较高  在10种铁矿石中,E、F、D三种矿试样中SFCA含量都比较高(在29%~31%之间)。主要原因:(1)这三种矿的SiO2含量都比较高,在相同碱度条件下,配入的CaO量较高,而这三种矿皆为赤铁矿,这样CaO与Fe2O3接触的几率增大,SFCA生成量也随之增大。(2)这三种矿结构都比较疏松,利于扩散反应的进行,从而有利于铁酸钙的生成。另外,D矿Al2O3/SiO2比值比较适宜,利于铁酸钙的生成,也是D矿SFCA生成量较高的重要原因。    3.3 J、I、B、C矿中SFCA含量较低  在10种铁矿石中,J、I、B和C矿铁酸钙生成量较低的主要原因为:(1)I矿的品位低、SiO2含量高,达5.34%。烧结料中含有较高的SiO2时,会发生:2Fe3O4+3SiO2=3(2FeO.SiO2)+O2的反应,从而会加速磁铁矿和赤铁矿的分解,不利于铁酸钙的生成。另外,烧结料中含有较高的SiO2,会生成较多的2CaO.SiO2,而大量2CaO.SiO2的生成,也就意味Fe2O3与CaO结合的机会相对减少,不利于铁酸钙的生成。(2)J、B和C三种矿SiO-2含量比较低,在相同碱度的条件下,配入的CaO量也比较少,因而生成SFCA的几率降低。[next]    3.4 A矿中SFCA含量最低  在10种铁矿石中A矿的SFCA含量最低,只有5%。其原因为:该矿的SiO2含量最低,只有0.58%,这样在相同碱度的条件下,配入的CaO量也最少,因而生成的铁酸钙含量最少。另外该矿结构比较致密,既不利于Fe2O3和CaO的扩散,也不利于低价氧化物氧化过程的进行,从而在一定程度上影响了铁酸钙的生成。    4 结论    4.1 铁矿石的铁酸钙生成特性是多种因素共同作用的结果。除受焙烧温度、焙烧气氛、碱度等因素影响外,还受铁矿石的自身性质,如Fe2O3含量、CaO含量、SiO2含量、MgO含量、Al2O3/SiO2的比值,和致密性等因素的影响,这些影响因素之间是互相影响、互相作用的。    4.2 不同的铁矿石,铁酸钙的生成特性不同。在碱度为2.0及其它条件相同的情况下,结构松散的褐铁矿、赤铁矿及较高含量的Al2O3和SiO2均有利于SFCA的生成。    4.3 铁矿石的铁酸钙生成特性是烧结配矿必须考虑的因素,对优化配矿具有重要的指导作用。在烧结料中适当配加一定比例的G矿和H矿以及结构松散的赤铁矿粉,可以提高烧结矿强度和还原度。

由纯钨酸钠溶液转型制备纯钨酸铵溶液

2019-03-05 09:04:34

一、有机溶剂萃取法转型 (一)基本原理 1、莘取剂。钨萃取工艺中,常用的萃取剂主要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。 在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁酯(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表1。 表1  某些萃取剂萃钨的功能注:N235-三烷基胺;N263-季胺盐。 在用有机胺时,先用无机酸(常用H2SO4)与有机相效果,使胺生成胺盐,例如用2~3mol∕L H2SO4效果,则:用H2SO4≥5mol∕L效果时,则:2、萃钨进程。先用无机酸(如H2SO4)将Na2WO4溶液酸化至pH=2.5~3.0,钨以(HW6O21)5-、(H2W12O40)6-、(W12O39)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。 关于叔胺萃钨(Ⅵ)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1∶3~1∶2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2WO4溶液pH=1~3条件下,用体积比为:% Alamine336∶癸醇∶火油为7∶7∶86的有机相萃钨(Ⅵ)的通式为:依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12O40H2)6-、(W6O21H)5-(低钨浓度下)和(W12O40)8-。 当Na2WO4溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12O40)4-、(PW12O40)3-、(AsW12O40)3-与叔胺生成的萃合物是密度大于1g∕cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。 3、反萃进程。为了直接获得(NH4)2WO4溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:可见,虽然有机相中萃合物的组成不同,但都是1mol钨耗费2mol氮。所用的浓度一般为3~4mol∕L NH4OH,反萃终了的平衡水相应保持在pH=8.5左右。 (二)工业实践 用叔胺萃钨的准则流程参见图1。图1  从粗Na2WO4溶液制取钨化合物准则流程图 叔胺萃钨工艺中各阶段的条件及目标见表2。 表2  叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取比较(o∕a)=1,混合2~3min,温度25~40℃,3~5级逆流钨萃取率大于99%,萃余液中低于0.1g∕L WO3①有机相φ∕%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol∕L; ②Na2WO4料液:(WO3)90~100g∕L,pH=2.5~3 ③萃取洗剂和反洗剂为纯水; ④酸化剂为(H2SO4)0.1~0.2mol∕L ⑤反萃剂为(NH4OH)3~4mol∕L萃洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中WO3含量低于0.5g∕L反萃取比较(o∕a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流反萃取率大于99%,反萃液中250~300g∕L WO3反洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中低于0.5g∕L WO3酸化比较(o∕a)=5,混合2~3min,温度25~40℃,2~3级逆流    纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。 工艺条件: 有机相φ∕%;20叔胺,20异辛醇,60火油; 料液组成/(g·L-1);(WO3)45~55;(Mo)0.03~0.05;(SiO2)0.03~0.06;(F-)0.1;(NaCl)50~60。 设备。萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高10m,有两个弄清区,脉冲频率50次∕min,振幅20min,塔总体积30m3,生产才能按两相总计为50m3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o∕a)为(5~10)∶1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。 钨和其他成分在流程中的分配见表3。 表3  钨和其他成分在流程中的分配    (g∕L)美国联合碳化物公司用苏镇压煮所得的Na2WO4溶液为55~110g∕L WO3,2.1~4.5g∕L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51. 8g∕L WO3,0.0012g/L Mo,0.75g∕L SiO2。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较O∕A为1,洗刷比较(O∕A)为 1∶0.75。然后用3mol∕L NH4OH反萃钨,比较(O∕A)为1∶(1~1.1)。将反萃液循环至(NH4)2WO4溶液中WO3浓度为225g∕L停止。这时反萃液中含0.4g/L SiO2以上。将溶液在55℃和2.7mol∕L NH4OH条件下弄清约1.5h,使SiO2沉积分出。萃取和反萃取均在50℃下进行。 中科院赵由才等曾研讨用伯胺及磷酸三丁酯(TBP)为萃取剂别离钨酸钠或钼酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。 二、离子交流法转型 乌兹别克斯坦某厂使用活动床经过AH-80П树脂将经典法净化所得的Na2WO4溶液转型为(NH4)2WO4,其准则流程见图2。图2  用AH-80П将Na2WO4溶液转型的流程 —树脂运动道路;----各种溶液运动道路 1-吸附柱;2-洗刷柱;3-解吸柱;4-再生柱:5-交流后液贮槽; 6-中和槽;7-(NH4)2WO4液贮槽;8-中和槽;9-过滤器 Na2WO4溶液含125g∕L WO3;0.01~0.08g∕L Mo;≤0.05g∕L P、As;115~135g∕L NaCl+Na2CO3;pH=2.5~3.0。溶液中钨主要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80П树脂(Cl-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1∶(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g∕cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含WO3 0.02g∕L,WO3吸附率达99.95%。饱满WO3的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g∕L HCl再生成Cl-型后,进行再吸附。 依据测定当溶液中WO3浓度为15~20g/L时,AH-80П的全改换容量达1g干树脂吸附1610mg WO3,比经典的人工白钨酸分化再溶的工艺WO3回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。 在生产条件下,当用HNO3系统,则树脂亦可用BП-14K型。 三、沉积人工白钨-酸分化法转型 其实质是将净化除杂后的Na2WO4溶液首要参加CaCl2使Na2WO4转化为CaWO4沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:生成的CaWO4(又称人工白钨)再与HCl效果转化为H2WO4,H2WO4进而用NH4OH溶解得(NH4)2WO4溶液。

超细碳酸钙生产方法简述

2019-01-03 09:36:51

近年英国、西班牙、日本等国的碳酸钙生产商纷纷看好我国市场,在广东、江苏、安徽、浙江等省相继建起一些年产2~5万t超细碳酸钙的独资或合资企业,目前英国瓷土公司已在安徽建设了2万t/a的造纸用超细碳酸钙生产厂,并准备在宁波再建1套5万t/a的生产装置。我国碳酸钙市场对国外公司的吸引力由此可见一斑,同时也显示了超细碳酸钙在我国有着广阔的发展前景。我国对纳米级超细活性碳酸钙的需求量预计每年以15%的增长率增长。我国塑料、油墨、特殊纸制品、轿车漆及橡胶几个主要行业对纳米碳酸钙有较大的需求量,到2005年预计将增加到8万t以上。 根据碳化过程的不同,我国超细钙的生产方法大体可分为间歇鼓泡碳化法、连续鼓泡碳化法、连续喷雾碳化法、超重力反应结晶法4种。 (1)间歇鼓泡碳化法 根据碳化塔中是否有搅拌装置,该法又可分为普通间歇鼓泡碳化法和搅拌式间歇鼓泡碳化法。该法是在锥底圆柱体碳化塔中加入精制氢氧化钙悬浊液和适当的添加剂,然后从塔底通入二氧化碳碳化之终点,得到所要求的碳酸钙产品。在反应过程中需要严格控制反应条件,如碳化温度、二氧化碳流量、石灰乳浓度及搅拌速度,并加入适当的添加剂。该法投资少、操作简单,但生产不连续,自动化程度低,产品质量不稳定,主要表现在产品晶形不易控制、粒度分布不均、不同批次产品的重现性差。目前国内在多数厂家采用此法来生产轻质碳酸钙,生产超细碳酸钙必须严格控制反应工艺参数,才能提高不同批次产品的稳定性。 (2)连续鼓泡碳化法 连续鼓泡碳化法一般采用两级或三级串联碳化工艺,即精制石灰乳经第一级碳化塔进行部分碳化或得到反应混合液,在浆液槽中加入适当的添加剂后进入第二级碳化塔碳化制得最终产品。该法由于碳化过程分步进行,采用级间进行表面活性处理,可通过制冷来控制碳化温度,因此对晶形的成核、生长过程和表面处理分段控制,从而可得到较好的晶形、较小的粒径和粒径分布。现在,国内有些碳酸钙生产厂家可以根据用户的需求,通过严格控制石灰乳浓度、碳化温度、添加剂的类型和配比等来生产所需晶形和粒径的产品。 (3)连续喷雾碳化法 连续喷雾碳化法一般采用三级串联碳化工艺。精制石灰乳从第一级碳化塔顶部喷雾成0.01-0.1mm的液滴加入,二氧化碳从塔底通入,二者逆流接触发生碳化反应。反应混合液从塔底流出,进入浆液槽,添加适当的分散剂处理后,喷雾进入第二级碳化塔继续碳化,然后再经表面活性处理、喷雾进入三级碳化塔碳化制得最终产品。其产品粒径可达40-80nm。该法为河北科技大学专利,其技术理念无疑是先进的,以液体作为分散相进行汽液传质反应,大大增加了汽液接触面积,在反应初期易形成大量的晶核,可在较高温度下生产超细钙。但由于该工艺投资较高、技术较复杂、操作难度较大、更主要的问题是喷嘴雾化问题难以解决,因为要想提高喷嘴雾化效果,就必须缩小喷嘴孔径,而缩小喷嘴孔径则容易造成堵塞。 (4)超重力反应结晶法 超重力反应结晶法是湘潭大学和北京化工大学先后在1986年和1989年研究开发的新技术,该技术的特征是以强化气液传质过程为基本出发点,其核心在于碳化反应是在超重力离心反应器(旋转螺旋或填充床反应器)中进行,利用填充床高速旋转产生的几十到几百倍重力加速度,可获得超重力场环境,并通过CO2和Ca(OH)2悬浊液在超重力专用设备中逆流接触,使相间传质和微观混合得到极大强化,为CaCO3均匀快速成核创造了理想环境。在超重力场中,各种传递过程得到极大强化,相界面迅速更新,体积传质系数可提高到常重力填充床的10-1000倍,从而可大大提高Ca(OH)2溶解和CO2吸收速率,使体系中Ca2+和CO32-的浓度增加,过饱和度提高,同时添加适当的分散剂,控制晶体生长,最终得到平均粒径达15-30nm的纳米级碳酸钙。该法粒径分布均匀,不同批次产品的重现性好,且碳化反应时间仅为传统方法的1/4-1/10,达国际先进水平。目前,北京化工大学将该工艺3000t/年的纳米级碳酸钙在广东广平化工有限公司、内蒙古蒙西高新技术材料公司实现工业化生产。据报道,山西兰花华明纳米材料有限公司建成了3万吨/年纳米级超细碳酸钙生产基地,专门生产橡胶用、高档造纸及油墨用、涂料用超细碳酸钙产品。

碳酸钙的生产区域有哪些?

2019-01-04 15:16:46

石灰岩是一种以方解石为主要成分的碳酸盐岩。中国是世界上石灰岩矿资源丰富的国家之一。除上海、香港、澳门外,在各省、直辖市、自治区均有分布,全国石灰岩分布面积达43.8万km2(未包括西藏和台湾)。丰富的石灰岩资源给我国的碳酸钙产业发展提供了极大的先天优势,中国四大碳酸钙生产基地初步形成,包括广东连州、安徽池州、浙江衢州、广西贺州;另四川碳酸钙资源也比较丰富。1广东连州 连州市矿产资源丰富,碳酸钙(含晶体状白理岩)、硅灰石(结构针状)矿产资源居广东省绝对优势地位。其中碳酸钙储量达500亿吨,硅灰石8000万吨。较著名生产厂家有连州市炜烨矿产有限公司、连州市鑫华矿业有限责任公司等。 2安徽池州 池州市方解石资源在全国占有重要的地位,白度品位高,保有资源储量5.40亿吨,占全国保有储量的30%,主要矿床集中在青阳县南阳乡、酉华乡,贵池区、东至县也有小型方解石矿产资源分布。池州石灰岩资源保有资源储量19.68亿吨,潜在资源量335亿吨,大中型矿床(区)6个,主要集中于贵池区和东至县的沿江区域。冶金用白云岩保有资源储量12.48亿吨,潜在资源量100亿吨,矿床(区)22个。 3浙江衢州 浙江省衢江区石灰石、方解石资源丰富,已探明储量达60亿吨,占浙江省的三分之一,且品位高,杂质少,具有发展碳酸钙生产的资源优势。该区碳酸钙生产企业相对比较集中,全区已有钙品生产企业203家,2005年实现产值4.1亿元,初步形成了以上方镇为中心的碳酸钙生产基地。 4广西贺州 贺州及周边地区有储量巨大、碳酸钙含量高、杂质少的碳酸岩资源,也有储量可观,品质优良的软质高岭土资源可供开发超细粉体工业应用,还有品种和数量不少的其它非金属矿储量,如滑石、莹石、石英石、钾长石、方解石、重晶石、硅灰石、膨润土等等。代表厂家有贺州市耀德粉体有限公司、广西贺州市科隆粉体有限公司、广西贺州市平桂管理区黄田恒信粉体厂等。 5四川 重钙主要分布在雅安市宝兴县、石棉县、阿坝州的汶川县、绵阳地区江油市,轻钙主要分布在成都都江堰、德阳地区绵竹市。代表厂家有四川贡嘎雪新材料股份有限公司等等。 宝兴重钙: 宝兴发展重钙相对较早,从80年代末发展至今,已形成年产40-50万吨重钙规模。 汶川、江油重钙: 汶川县、江油市重钙资源也较为丰富,但品位低,主要用于做腻子(涂料底层)填料,年产量30万吨左右,得益于离成都及周边地区近,不到150公里,路面好。 都江堰、绵竹轻钙: 都江堰、绵竹发展轻钙已有一定历史,品质较好,年产量约20万吨,在PVC、PE、电缆、橡胶行业占有绝对优势。

纳米钙与轻钙在生产、质量控制、应用上的区别

2019-03-08 09:05:26

以石灰石为质料经锻烧、消化、碳酸化、别离、枯燥分级制取的产品称为轻质碳酸钙,是用处最为广泛的无机填料之一,广泛使用于橡胶、塑料、造纸、涂料、油漆、油墨、印刷、电缆、食物、医药、化妆品、日用品、饲料、润滑油等各个职业。 超细碳酸钙,特别是纳米碳酸钙微粒,不只保留了原碳酸钙的功用,还具有纳米微粒的特性。并且,经过操操控备条件,能够得到不同粒径不同晶体形状的纳米碳酸钙。因而,纳米钙与轻钙在在出产工艺、质量操控、外观、粒径、使用等方面有许多不同。了解它们之间的差异,有助于咱们区分并依据不同需求开发不必功用的碳酸钙产品。 1、出产工艺及质量操控的差异 轻质碳酸钙的出产办法尽管不少,但在国内完成工业出产的简直只需碳化法。将石灰石等质料锻烧生成生石灰首要成份为氧化钙和二氧化碳,再加水消化石灰生成石灰乳首要成份为氢氧化钙,然后再通入二氧化碳碳化石灰乳生成碳酸钙沉积,终究碳酸钙沉积经脱水、枯燥和破坏便制得轻质碳酸钙。此法具有能耗低、工艺简略、质料丰厚等显著特点,满意不同职业的要求。 我国于上世纪80年代初开始研发和出产纳米碳酸钙,并于80年代末完成工业化出产。国内的研讨开发单位首要有北京化工大学、华东理工大学、哈尔滨工程大学化工学院、中科院合肥固体物理研讨所、天津化工研讨院等。 纳米碳酸钙的出产进程首要分四个工序:煅烧净化、消化、碳化、枯燥包装。出产时先将精选的石灰石矿石锻烧,得到氧化钙和窑气然后将氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力效果下破坏,经多级旋液别离除掉颗粒及杂质,得到必定浓度的精制的氢氧化钙悬浮液之后通入,参加恰当的表面改性剂,碳化至结尾,得到碳酸钙浆液再进行脱水、干操、表面处理,终究得到所要求的纳米碳酸钙产品。 1)消化 轻钙制备工艺对消化温度以及消化用水质量要求不高,能够使用离心脱水的收回滤液作为消化的热水,这样能够充分使用热能进步消化反响温度,一起下降出产中的水的消耗量。一般要求石灰为中烧或过烧即可,消化后的生浆粘度较低,有利于进步碳化功率。 制备纳米碳酸钙应选用活性较高的轻烧石灰,操控较高的消化温度和安稳的生浆粘度。可使用生浆精制进程中的洗渣液作为消化水,但不能选用熟浆滤液消化,因为滤液中含有很多的碳酸钙晶体,参加到生浆中将成为晶种参加碳化反响,影响碳化结晶的均匀性,简略在结晶进程中发生大颗粒晶体,影响产品粒径散布规划。 2)碳化 制备轻钙不操控碳化反响的初始温度,也简直不操控生浆的浓度和粘度以及的浓度。有时为了进步碳化速度,在沉降体积到达要求的情况下,在碳化初始的生浆内添加一部分熟浆,可显着进步碳化反响速度,又可作为调理产品沉降体积的一种手法。 制备纳米碳酸钙选用与普通轻钙不同的碳化反响器,装有可操控反响温度的冷水夹套或进步气液混合的拌和器等设备以及制冷设备等。操控生浆碳化的开始温度、石灰乳液浓度、仇浓度、温度、流量以及拌和速度等工艺参数,还能够选用多级碳化的办法操控晶体的粒径和晶形。因为在碳化反响初期不能带入较多的晶种,因而碳化反响器应便于清洗,以便于每批次碳化完毕后对体系进行必要的清洗。也能够在生浆或碳化反响进程中添加必定量的晶形操控剂,起到调理反响速度,进步晶体涣散功用和操控结晶的效果,其碳化工艺操控较普通轻钙或微细钙杂乱得多。 3)枯燥 轻钙一般只需操控产品的白度、水分、筛余物和值等目标到达要求即可,所以在产品枯燥后,经过简略筛分后包装产品。枯燥温度要求不高,只需不超越碳酸钙的分化温度即可,所以普通轻钙一般选用600-750℃温度进行枯燥,功率较高。 纳米碳酸钙大多数是经过表面处理的,因而产品在枯燥时,温度不宜操控过高,不然会引起表面活性剂焦化,产品严峻变黄,影响到产品的质量。现在纳米碳酸钙的枯燥温度一般在200-300℃,视物料在不同枯燥体系中停留时间的不同,工艺操控温度也略有不同。产品枯燥后破坏解聚和分级是纳米碳酸钙产质量量操控的要害手法。针对不同粒经散布和不同表面活性剂处理的产品,在挑选枯燥和破坏分级设备时各有偏重。 2、外观质量不同 1)外观 用手指搓弄纳米碳酸体时,感觉颗粒较为细滑,附着力较强,冲刷手指上的粉末时较难洗净。粉体在空气中构成的粉尘较难沉降,粒径较小的纳米碳酸钙产品与水混溶后构成的膏状料外观白度不高,并有微通明的感觉。 2)白度 因为普通纳米碳酸钙产品在出产工艺进程中十分重视对产品中“黑、黄点”等杂质的操控,因而产品白度较高,一般为94%96%,会略高于普通活性轻钙,但也有部分普通轻钙非活性产品白度较高,能够到达96%-97%。 3)堆积密度 一般情况下纳米碳酸钙产品的堆积密度较小,多为0.4-0.6g/cm3,而轻钙堆积密度一般为0.6-0.7g/cm3,但随着纳米碳酸钙产品使用功用的不断改进,一些产品的堆积密度在逐步进步,加之不同枯燥设备出产的产品堆积密度差异较大,一般现在从堆积密度方面比较难以区分纳米碳酸钙产品和普通轻钙产品。 3、粒径及晶形不同 1)粒径不同 纳米碳酸钙与普通轻钙的本质差异就在于原始粒径也称一次粒径不同,经过透射电镜分析检测能够精确区分两种产品。 2)晶形不同 因为纳米碳酸钙碳化工艺与普通轻钙不同较大,使纳米碳酸钙晶体结晶进程中晶形发生变化,晶体的形状以立方体为主,晶体的形状随工艺条件和晶形操控剂的影响而出现多样性,而普通轻钙晶体形状较为单一,以纺锤形为主,亦或聚会凝集构成菊花状晶体。 4、使用进程功用和效果不同 纳米碳酸钙因为其颗粒粒径较小,在使用材料中表现出一些特殊功用,如在橡胶和塑猜中具有较强的补强和改性效果,能够较大起伏进步材料的部分力学功用和光学功用。因而纳米碳酸钙一般具有功用性填料和体积填料两层效果。普通轻钙在补强功用等方面显着差劲于纳米碳酸钙产品,故一般只具有体积填充效果。 纳米级碳酸钙在我国已完成工业化,不同碳化办法应运而生,规划不断增大,产值不断添加,使用领域不断扩大,由橡胶、油墨等职业向塑料、涂料、胶黏剂、造纸等职业敏捷扩展,需求量以每年20%的速度递加,高级产品不断投放商场,满意了国内外两大商场日益增长的需求。 现在,功用性碳酸钙已经成为碳酸钙使用商场的一大需求点。面临商场需求,不同用户对产品要求不同,除了看产品碳酸钙粒径,更看产品功用、质量,各种功用化专用钙产品才干具有更强的商场竞争力。因而,可在纳米级碳酸钙的使用功用上多下功夫,开宣布更多功用性、专用纳米碳酸钙。其他无机粉体材料的功用开发亦是如此。

从锡生产炉渣回收钽、铌、钨

2019-02-25 14:01:58

一、苏打焙烧和水浸 苏打焙烧和水浸的意图是除钨。为此在锡炉渣中配入占理论量1.25 倍的苏打,并参加少数木炭,进行磨矿。然后在回转窑中焙烧,操控温度850~900℃,焙烧时刻45 分钟。焙烧渣在球磨机湿磨,再水浸,浸出固液比1 : 2.5~3,温度90℃,时刻一小时。弄清别离后过滤,从滤液中收回入工组成的白钨。含钽酸钠和铌酸钠的滤渣送下工序处理。苏打焙烧,水浸的脱钨功率为56% ,并可除掉一部分硅、砷、磷,铝、锡等。       二、稀酸脱硅和脱锡 滤渣中的硅绝大部分呈硅酸钠形状存在,脱硅是用稀(7~95 %)浸出,使硅酸钠转变为硅酸进入溶液。浸出的固液比1:6,拌和1~3分钟后当即过滤,脱硅串可达60~70%,滤渣中担锯档次可富集2.5~3倍。将脱硅后的滤渣用玉2~14%的再浸出,在固液比1:6,温度80~90℃ 条件下拌和2小时脱锡,使锡呈SnCl4形状进入溶液,并除掉部分铁和钙等杂质。过滤后,滤渣即为钽铌富集物。假如此富集物档次太低且含杂质较高时,则有必要进一步用碱和酸浸处理。上述质料的富集物成分列于表二中。上述富集阶段担锯的收回率为71.5~85.5%;除杂质功率为:钨42~70 %,锡50~70%。        三、分化 分化是运用钽,铌氧化物能溶于生成H2TaF7和H2NbF7的性质,按固液比1:2.5参加6~7当量的到反响锅中,然后慢慢参加富集物,拌和浸出2小时,参加硫酸(5~6当量)调整酸度,分化后的溶液含钽、铌氧化物130~150 克/升,以及少数钨、锡等杂质,残渣为稀土和碱金属等的不溶性氟化物沉积。钽、铌的分化功率比较完全,收回率可达98~99%。        四、钽、铌的萃取别离 将上述含钽,铌溶液用磷酸三丁脂(T.B.P)为萃取剂,萃取别离钽和铌。为此在箱式萃取器中,经过10 级萃取,12 级酸洗;然后经过反萃,反萃钽为7 级,反萃铌为14 级,最终则分册得到钽液和铌液。有机萃取剂回来运用,萃余液抛弃。 别离出来的钽液和铌液分别加(pH≥9)和硼砂沉积,然后经过碱浸和酸浸除钨,锡,铁等杂质。产出的氢氧化钽和氢氧化铌,经过滤,洗刷、烘干(或锻烧)产出氢氧化钽和氢氧化铌(或氧化钽和氧化铝)产品,其成分列于表三中。            五、复原和熔炼 是用或氟铌酸钾在850一900℃ 于氩气维护下,在复原炉顶用复原,即得到钽粉和铌粉:K2TaF7 + 5Na = Ta + 5NaF + 2KF  也能够在1750 一1800℃ 下于真空复原炉内用碳或碳化铌复原氧化铌得到铌条,铌条经氢化,破坏、脱氢得到铌粉:   将钽粉和铌粉在电子束熔炼炉,烧结炉或电弧炉中进行真空熔炼,除掉气体杂质和简单蒸发的非金属杂质使其得到进一步提纯,然后熔炼成锭块。           六、钨、锡的收回 水浸产出的钨酸钠(含WO3 20 克/升)用于出产组成白钨,这种钨酸钠溶液常常含有硅、砷,磷等杂质,除掉这些杂质是用“镁铵净化法”,即先在溶液中参加和氯化铵脱硅,然后加MgCl2除砷、磷,使之生成溶解度小的H2SiO3、 Mg( NH4)PO4和Mg(NH4)AsO4沉积,弄清别离后,上清液加热至80~90℃,用饱满CaCl2溶液沉积CaWO4,将其过滤、洗刷,烘干,即得到人工白钨。        不管稀酸脱硅或脱锡的溶液,均含有不同数量的锡(6~12克/升),故须在贮液池参加铁屑将锡复原,使SnCl4变成SnCl2,然后用电积法便可取得阴极锡(75~85%Sn),为中间产品。 上述从炉渣收回钽、铌、钨的流程,钽、铌的总收回串为65~85%,钨为66~70%。 ,