您所在的位置: 上海有色 > 有色金属产品库 > 钨酸钙晶体

钨酸钙晶体

抱歉!您想要的信息未找到。

钨酸钙晶体百科

更多

白钨矿(Scheelite)(又称钨酸钙矿)

2019-01-21 10:39:06

Ca[WO4] 【化学组成】由于W和Mo离子半径几乎相等,因此,白钨矿中W与Mo为完全类质同像,成 为白钨矿—钼钨矿系列。高温时,Mo含量高;与辉钼矿共生的白钨矿中,Mo含量也高。部分的Ca可被Cu和TR代替。 【晶体结构】四方晶系;a0=0.525nm,c0=1.140nm;Z=4。白钨矿晶体结构简单,是由稍扁平的[WO4]四面体和Ca离子沿c轴相间排列而成。 【形态】晶体常呈四方双锥,也有的沿{001}呈板状(图H-22)。依(110)成双晶普遍。集合体多呈不规则粒状,较少呈致密块状。   图H-22白钨矿晶体 【物理性质】白色、黄白、浅紫等,油脂光泽或金刚光泽;透明至半透明。解理{111}中等;断口参差状。硬度4.5~5。相对密度5.8~6.2(相对密度随Mo的增加而降低)。性脆。具发旋旋光性,在紫外光照射下发浅蓝色至黄色(依Mo的含量而定,Mo增加,荧光变浅黄至白)的荧光。 【成因及产状】主要产于接触交代矿床。也可见于高—中温热液矿床。 【主要用途】重要钨矿石矿物。

含钒溶液的钒酸钙、钒酸铁盐沉淀法

2019-01-24 14:01:24

钒酸钙、钒酸铁盐沉淀法主要用于从低浓度含钒溶液中回收钒。 一、钒酸钙法 加入CaCl2、Ca(OH)2、CaO,随溶液pH值的变化而生成不同的沉淀。pH值10.8~117.8~9.35.1~6.1沉淀物正钒酸钙焦钒酸钙偏钒酸该Ca3(VO4)2CaV2O7Ca(VO3)2溶解度小小稍大 通常在强烈搅拌下逐渐加入沉钒剂,加Ca2+后 等杂质也会进入沉淀,硅胶也混入沉淀。最经济有效地沉淀物位焦钒酸钙,沉钒率一般可达97%~99.5%。 二、钒酸铁沉淀法 用铁盐或亚铁盐作沉淀剂,在弱酸性条件下,将含钒溶液倒入硫酸亚铁溶液中,并不断搅拌、加热,便会析出绿色沉淀物。由于二价铁会部分氧化成三价铁,V2O5会部分还原成V2O4,所以沉淀物的组成多变,其中包括Fe(VO3)2、Fe(VO3)3、VO2·xH2O、Fe(OH)3等。若沉淀剂采用FeCl3或Fe2(SO4)3,则析出黄色xFe2O3·yV2O5·zH2O沉淀。本法钒的沉淀率可达99%~100%。 钒酸铁及钒酸钙均可作冶炼钒铁的原料,或作为进一步提纯制取V2O5的原料。

硫化锌晶体

2017-06-06 17:50:00

硫化锌晶体具有不改变配位情况的多晶型现象,有立方硫化锌和六方硫化锌两种结构立方硫化锌晶体结构:国际上表达这种结构形式的记号为B3型;属立方晶系,面心立方点阵型式;Zn2+和S2-离周围都由4个异号离子呈四面体方式配位;这种结构也可看作S2-作立方最密堆积,Zn2+填入四面体的空隙中;或者,由于Zn-S间共价键占很大成分,可将它的结构看作立方金刚石结构中的C原子,交替地由Zn和S原子置换而得。六方硫化锌晶体结构:国际上表达这种结构形式的记号为B4型;属六方晶系,简单六方点阵型式;Zn2+和S2-离子周围都由4个异号离子呈四面体方式配位;这种结构也可看作S2-作六方最密堆积,Zn2+填入四面体的空隙中。作立方闪锌矿堆积的硫化锌晶体.四个面心立方格子上的原子(Zn)和周围属于另一个面心立方格子上的四个原子(S),以共价键的形式相互结台.整个硫化锌晶胞就是由这两类格子沿面心立方对角线方向错开1/4对角线长度套构而成,这时S 作立方最紧密堆积,Zn” 充填其半数的四面体空隙.这是13-ZnS,而用六角纤锌矿堆积的硫化锌晶体即n ZnS,S 一作六角最紧密堆积,Zn” 充填其半数的四面体空隙,可见闪锌矿型与纤锌矿型的硫化锌晶体结构很相似,所不同的仅是S 的堆积方式不同,以一个晶胞中S 的堆积情况来分析,纤锌矿型结构垂直于六次轴方向S 排列有三层,闪锌矿型结构垂直于三次轴方向S。一排列有四层,两种结构中S的排列层间距也十分相似.硫化锌晶体属等轴晶系的硫化物矿物。闪锌矿完好晶形呈四面体或菱形十二面体,但少见,常呈粒状集合体. 

苄基胂酸浮选黑钨和锡石细泥

2019-02-27 08:59:29

苄基胂酸是我国创始的黑钨和锡石细泥有用捕收剂。苄基肿酸和混合甲对黑钨的捕收功能极为类似,能够在相同的浮选流程和相同的药剂准则下相互替代运用,得到极为挨近的浮选成果。黑钨比严重,粗粒黑钨用重选法处理能够得到很高的目标但黑钨性脆,在采选过程中简单发生矿泥,重选法收回遭到粒度约束,对矿泥的处理目标较低,湖南、广东、江西一些摇床等重选法收回黑钨细泥的选厂,一般收回率只要20%-40%,适当一部分钨金属从矿泥丢失。用浮选法处理黑钨细泥,收回率比重选法高,因而用重选法处理粗粒矿砂,浮选法处理矿泥的重浮联合流程来进步选厂钨收回率是可取的。

铁矿石烧结的铁酸钙生成特性研究

2019-01-25 10:19:13

1 前言  近年来,对烧结矿还原性的研究受到了广泛的重视,高炉炉料还原性的提高,可使焦比大幅度降低,生产率提高。在保证烧结矿其它性能(如冷强度、还原粉化和软化温度等)的同时,应尽量提高烧结矿的还原性,而铁酸钙是影响烧结矿还原性十分重要的因素,因此,有必要对铁矿石在烧结过程中铁酸钙的生成特性进行研究。 关于铁酸钙的成分与结构,国内外已有许多研究。最早认为是二元系铁酸钙,其成分为CaO.Fe2O3、2CaO.Fe2O3、CaO.2Fe2O3。随着研究的深入,发现烧结矿中铁酸钙主要是三元系、四元系及其固溶体,这是由于原料中存在的SiO2及Al2O3在烧结过程中溶入铁酸钙。因此,人们称其为复合铁酸钙或硅铝铁酸钙,简称SFCA。 道森(Dawson)等人认为SFCA的形成是以下几个反应的结果:  CaO.Fe2O3形成(1050~1150℃);  Al2O3与CaO反应生成铝酸钙(1100~1150℃);  铝酸钙熔于CaO.Fe2O3中(1100~1150℃),形成铁铝酸一钙;  铁铝酸一钙熔化并与Fe2O3反应生成铁铝酸半钙(1200~1250℃);  随后与SiO2反应形成SFCA(1200~1250℃)。 影响铁矿石的铁酸钙生成特性的因素较多,主要包括以下两个方面:(1)烧结工艺参数的影响,包括烧结温度、烧结气氛和配碳量等。较低的烧结温度、较强的氧化性气氛,能够促进铁酸钙的生成。(2)铁矿石的性质,即自身特性,是决定烧结矿中不同矿物组成的内在因素。铁矿粉的种类、粒度组成、致密性、碱度、化学成分(包括CaO、MgO、SiO2和Al2O3)等又直接影响到烧结矿的矿相组成及分布的均匀性。铁矿粉的自身特性是影响SFCA生成能力的重要因素。[next]    2 试验原料与方法    2.1 试样制备  试验用的铁矿粉一部分来自济南钢铁集团总公司(简称济钢)原料厂和第一烧结厂,一部分由铁矿石经销商提供;CaO 为化学纯试剂。铁矿粉的取样采取“四分选取法”,以保证试样的代表性。将试验所用的铁矿粉在 110 ℃的烘箱内干燥2h,冷却后及时放入干燥皿保存。将干燥后的铁矿粉磨制成小于0.15mm的粉状,放入干燥皿保存。将 CaO 试剂磨制成小于0.15mm 的粉状,放入干燥皿保存。小饼试样的秤重采用精度为万分之一的电子天平。采用“干粉压制法”压制,压力为10MPa,保压2min。    2.2 试验设备  试验采用的主要设备有称量装置、压溃强度装置、压样试验装置和微型烧结法试验装置。微型烧结试验装置主要包括RHL-410P型红外线快速高温试验炉(主要由石英保护管和红外线灯管发热元件组成)、TPC-1000型温度程序控制仪、冷却水控制器、试样台自动升降装置、炉体支架及控制系统、试验气体控制系统、温度测定及控制系统。    2.3 试验方法  试验采用微型烧结法、显微矿相试验法。采用微型烧结法将各矿粉制成的小饼试样在一定的烧结制度下焙烧;对烧结后的小饼试样磨样,在显微镜下观察各试样中SFCA的生成情况以及矿相结构等。矿相组成的定量分析采用目测法。 具体方案采用碱度为2.0、试验温度1280℃,试验用原料的化学成分见表1。试验用小饼试样以高度为基准,高5mm,直径8mm。试验温度和气氛控制见表2。[next]表1 试验用原料的化学成分%矿石代号TFeFeOSiO2CaOMgOAl2O3SP烧损A67.720.220.580.0180.020.740.0030.0481.61B68.70.261.050.110.060.340.0030.0180.44C670.261.40.320.0731.30.0180.0461.18D66.020.293.360.310.0430.710.010.0261.18E63.460.153.030.0310.041.970.0050.0783.79F64.90.773.150.040.061.830.0080.072.55G57.950.94.150.0110.081.120.0080.0411.61H56.91.165.340.410.192.360.0060.03910.32I56.91.165.340.410.192.360.0060.03910.32J62.460.222.440.0310.0341.70.0020.0725.51[next]表2 试验温度和气氛控制温度/℃时间/min气氛室温→6004空气600→10001氮气1000→11501.5氮气1150→试验温度1氮气试验温度4氮气试验温度→11502空气1150→10001.5空气1000→室温断电自然降温空气注:氮气和空气流量均为3L/min。  列顺序依次为:G、H、E、F、D、J、I、B、C、A矿。    3 试验结果及分析  10种铁矿石的矿物组成及显微结构特征见表3及图1~10。矿石试样中铁酸钙含量由高到低的排:[next] [next] [next]     3.1 G、H矿中SFCA含量最高  在10种铁矿石中,G和H两种矿试样中的SFCA含量最高,分别达到40%和35%。主要原因:(1)这两种铁矿石皆为褐铁矿,烧损比较高,在一定的温度下,结晶水受热蒸发后,在褐铁矿中留下残余气孔,使铁矿石结构疏松,加快了Ca2+向铁矿石中的扩散,同时铁矿物离子也易于扩散,使反应更易进行,有利于大量低熔点化合物的生成,因而有利于提高SFCA的生成量。(2)这两种铁矿石的Al2O3/SiO2的比值较为适宜,有利于铁酸钙的生成。(3)这两种铁矿石的Al2O3和SiO2含量都比较高,结构比较疏松,非常有利于SFCA的生成。    3.2 E、F、D矿中SFCA含量较高  在10种铁矿石中,E、F、D三种矿试样中SFCA含量都比较高(在29%~31%之间)。主要原因:(1)这三种矿的SiO2含量都比较高,在相同碱度条件下,配入的CaO量较高,而这三种矿皆为赤铁矿,这样CaO与Fe2O3接触的几率增大,SFCA生成量也随之增大。(2)这三种矿结构都比较疏松,利于扩散反应的进行,从而有利于铁酸钙的生成。另外,D矿Al2O3/SiO2比值比较适宜,利于铁酸钙的生成,也是D矿SFCA生成量较高的重要原因。    3.3 J、I、B、C矿中SFCA含量较低  在10种铁矿石中,J、I、B和C矿铁酸钙生成量较低的主要原因为:(1)I矿的品位低、SiO2含量高,达5.34%。烧结料中含有较高的SiO2时,会发生:2Fe3O4+3SiO2=3(2FeO.SiO2)+O2的反应,从而会加速磁铁矿和赤铁矿的分解,不利于铁酸钙的生成。另外,烧结料中含有较高的SiO2,会生成较多的2CaO.SiO2,而大量2CaO.SiO2的生成,也就意味Fe2O3与CaO结合的机会相对减少,不利于铁酸钙的生成。(2)J、B和C三种矿SiO-2含量比较低,在相同碱度的条件下,配入的CaO量也比较少,因而生成SFCA的几率降低。[next]    3.4 A矿中SFCA含量最低  在10种铁矿石中A矿的SFCA含量最低,只有5%。其原因为:该矿的SiO2含量最低,只有0.58%,这样在相同碱度的条件下,配入的CaO量也最少,因而生成的铁酸钙含量最少。另外该矿结构比较致密,既不利于Fe2O3和CaO的扩散,也不利于低价氧化物氧化过程的进行,从而在一定程度上影响了铁酸钙的生成。    4 结论    4.1 铁矿石的铁酸钙生成特性是多种因素共同作用的结果。除受焙烧温度、焙烧气氛、碱度等因素影响外,还受铁矿石的自身性质,如Fe2O3含量、CaO含量、SiO2含量、MgO含量、Al2O3/SiO2的比值,和致密性等因素的影响,这些影响因素之间是互相影响、互相作用的。    4.2 不同的铁矿石,铁酸钙的生成特性不同。在碱度为2.0及其它条件相同的情况下,结构松散的褐铁矿、赤铁矿及较高含量的Al2O3和SiO2均有利于SFCA的生成。    4.3 铁矿石的铁酸钙生成特性是烧结配矿必须考虑的因素,对优化配矿具有重要的指导作用。在烧结料中适当配加一定比例的G矿和H矿以及结构松散的赤铁矿粉,可以提高烧结矿强度和还原度。

由纯钨酸钠溶液转型制备纯钨酸铵溶液

2019-03-05 09:04:34

一、有机溶剂萃取法转型 (一)基本原理 1、莘取剂。钨萃取工艺中,常用的萃取剂主要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。 在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁酯(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表1。 表1  某些萃取剂萃钨的功能注:N235-三烷基胺;N263-季胺盐。 在用有机胺时,先用无机酸(常用H2SO4)与有机相效果,使胺生成胺盐,例如用2~3mol∕L H2SO4效果,则:用H2SO4≥5mol∕L效果时,则:2、萃钨进程。先用无机酸(如H2SO4)将Na2WO4溶液酸化至pH=2.5~3.0,钨以(HW6O21)5-、(H2W12O40)6-、(W12O39)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。 关于叔胺萃钨(Ⅵ)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1∶3~1∶2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2WO4溶液pH=1~3条件下,用体积比为:% Alamine336∶癸醇∶火油为7∶7∶86的有机相萃钨(Ⅵ)的通式为:依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12O40H2)6-、(W6O21H)5-(低钨浓度下)和(W12O40)8-。 当Na2WO4溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12O40)4-、(PW12O40)3-、(AsW12O40)3-与叔胺生成的萃合物是密度大于1g∕cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。 3、反萃进程。为了直接获得(NH4)2WO4溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:可见,虽然有机相中萃合物的组成不同,但都是1mol钨耗费2mol氮。所用的浓度一般为3~4mol∕L NH4OH,反萃终了的平衡水相应保持在pH=8.5左右。 (二)工业实践 用叔胺萃钨的准则流程参见图1。图1  从粗Na2WO4溶液制取钨化合物准则流程图 叔胺萃钨工艺中各阶段的条件及目标见表2。 表2  叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取比较(o∕a)=1,混合2~3min,温度25~40℃,3~5级逆流钨萃取率大于99%,萃余液中低于0.1g∕L WO3①有机相φ∕%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol∕L; ②Na2WO4料液:(WO3)90~100g∕L,pH=2.5~3 ③萃取洗剂和反洗剂为纯水; ④酸化剂为(H2SO4)0.1~0.2mol∕L ⑤反萃剂为(NH4OH)3~4mol∕L萃洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中WO3含量低于0.5g∕L反萃取比较(o∕a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流反萃取率大于99%,反萃液中250~300g∕L WO3反洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中低于0.5g∕L WO3酸化比较(o∕a)=5,混合2~3min,温度25~40℃,2~3级逆流    纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。 工艺条件: 有机相φ∕%;20叔胺,20异辛醇,60火油; 料液组成/(g·L-1);(WO3)45~55;(Mo)0.03~0.05;(SiO2)0.03~0.06;(F-)0.1;(NaCl)50~60。 设备。萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高10m,有两个弄清区,脉冲频率50次∕min,振幅20min,塔总体积30m3,生产才能按两相总计为50m3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o∕a)为(5~10)∶1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。 钨和其他成分在流程中的分配见表3。 表3  钨和其他成分在流程中的分配    (g∕L)美国联合碳化物公司用苏镇压煮所得的Na2WO4溶液为55~110g∕L WO3,2.1~4.5g∕L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51. 8g∕L WO3,0.0012g/L Mo,0.75g∕L SiO2。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较O∕A为1,洗刷比较(O∕A)为 1∶0.75。然后用3mol∕L NH4OH反萃钨,比较(O∕A)为1∶(1~1.1)。将反萃液循环至(NH4)2WO4溶液中WO3浓度为225g∕L停止。这时反萃液中含0.4g/L SiO2以上。将溶液在55℃和2.7mol∕L NH4OH条件下弄清约1.5h,使SiO2沉积分出。萃取和反萃取均在50℃下进行。 中科院赵由才等曾研讨用伯胺及磷酸三丁酯(TBP)为萃取剂别离钨酸钠或钼酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。 二、离子交流法转型 乌兹别克斯坦某厂使用活动床经过AH-80П树脂将经典法净化所得的Na2WO4溶液转型为(NH4)2WO4,其准则流程见图2。图2  用AH-80П将Na2WO4溶液转型的流程 —树脂运动道路;----各种溶液运动道路 1-吸附柱;2-洗刷柱;3-解吸柱;4-再生柱:5-交流后液贮槽; 6-中和槽;7-(NH4)2WO4液贮槽;8-中和槽;9-过滤器 Na2WO4溶液含125g∕L WO3;0.01~0.08g∕L Mo;≤0.05g∕L P、As;115~135g∕L NaCl+Na2CO3;pH=2.5~3.0。溶液中钨主要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80П树脂(Cl-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1∶(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g∕cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含WO3 0.02g∕L,WO3吸附率达99.95%。饱满WO3的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g∕L HCl再生成Cl-型后,进行再吸附。 依据测定当溶液中WO3浓度为15~20g/L时,AH-80П的全改换容量达1g干树脂吸附1610mg WO3,比经典的人工白钨酸分化再溶的工艺WO3回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。 在生产条件下,当用HNO3系统,则树脂亦可用BП-14K型。 三、沉积人工白钨-酸分化法转型 其实质是将净化除杂后的Na2WO4溶液首要参加CaCl2使Na2WO4转化为CaWO4沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:生成的CaWO4(又称人工白钨)再与HCl效果转化为H2WO4,H2WO4进而用NH4OH溶解得(NH4)2WO4溶液。

高碱度烧结矿及低温烧结-关于铁酸钙的实验研究

2019-01-25 15:49:24

一、概  述    高碱度烧结矿出现于20世纪60年代,以其碱度高、冶金性能优良区别于自熔性烧结矿。低温烧结技术是生产优质高碱度烧结矿和降低烧结能耗的基本措施,它出现于70年代,低温烧结技术的核心是创造适宜的温度、气氛和物质成分条件,形成大量针状铁酸钙(SF-CA)使之成为烧结矿的主要粘结相。高碱度烧结矿和低温烧结技术已经在生产实践中广泛使用。    二、高碱度烧结矿的基本特征    高碱度烧结矿既具有FeO低、还原性好的特征,又具有强度高的特征,根本原因在于其主要粘结相为铁酸钙(SFCA).    优质高碱度烧结矿的碱度值(m(CaO)/m(SiO2))一般在1.8~2.2范围之内,其铁酸钙主要以针状存在。烧结矿的冶金性能最好,能耗也低。    碱度值低于1.8,烧结矿中含铁硅酸盐液相增多,碱度值高于2.2,生成铁酸钙过多,且将有相当量的铁酸一钙,甚至铁酸二钙出现,均不利于烧结矿的强度和还原性。    三、关于铁酸钙的实验研究    鉴于铁酸钙,尤其是针状铁酸钙,对烧结矿冶金性能起决定性的影响,国内外的炼铁烧结工作者就铁酸钙进行了大量的实验研究。   (一)铁酸钙的化学构成    大量的实验研究证实,烧结矿中的铁酸钙成分除主要为Fe2O3及CaO外,均含有一定量的SiO2和Al2O3,为Fe2O3-CaO-SiO2-Al2O3四元系复合铁酸钙,其化学式为5CaO•2SiO2•9(Fe,Al)2O3,简写SFCA,并常含一些MgO、FeO等成分。用扫描电镜-能谱分析我国鞍钢、宝钢、首钢等十余家的烧结矿,结果表明,尽管他们的含铁品位、碱度和铁酸钙的形态不同,烧结矿的含铁原料各异,但所生成的铁酸钙都是铁、钙、硅、铝四元系复合化合物,其化学式均为SFCA,Fe2O3与CaO物质的量的比值在2左右,属于铁酸半钙。铁酸钙中SiO2含量和Al2O3含量分别在5%~10%和1%~3%不等。在宝钢的烧结矿中还含有Fe2O3与CaO物质的量的比值为3~4的高铁分铁酸钙.X光衍射及化学分析证明,铁酸钙中的铁主要以Fe2O3形式存在,FeO含量仅有1%左右。   (二)关于铁酸钙的强度和还原性    通过对烧结矿的主要矿物进行强度测定,得知赤铁矿的强度最高,铁酸钙次之,磁铁矿再次之,各种硅酸盐矿物,尤其是玻璃相的强度最低。参见图1 [next]     实验研究表明铁酸钙(SFCA)的还原性与赤铁矿近似,显著优于磁铁矿。铁酸钙中的m(Fe2O3)/m(CaO)的比值愈高,还原性愈好,其顺序是;铁酸半钙—铁酸—钙—铁酸二钙。针状铁酸钙属于铁酸半钙型,它的还原性最好,见图2.    1979年首钢23m3试验高炉做解剖试验时,在显微镜下观察烧结矿试样,发现金属铁优先出现于赤铁矿和铁酸钙还原形成的Fe/O周边,证实铁酸钙的还原性优于磁铁矿。针状铁酸钙存在的烧结矿的还原性明显优于以片状、柱状铁酸钙存在的烧结矿。    高碱度烧结矿中,铁酸钙的含量一般在30%~50%,其中Fe2O3的含量占70%以上,所以针状铁酸钙不仅是良好的粘结相,同时也是与赤铁矿和磁铁矿同等重要的铁矿物,而且其还原性极好.高碱度烧结矿中的SiO2,Al2O3大量进入铁酸钙中,使含铁硅酸盐液相渣大为减少,这也是高碱度烧结矿强度和还原性好的原因。针状铁酸钙是一种含Fe2+极低的粘结相,所以高碱度烧结矿的强度与FeO的含量没有直接的关系,从而打破了FeO作为烧结矿强度指标的传统观念。针状铁酸钙代替硅酸盐作为烧结矿的粘结剂,使降低SiO2,提高烧结矿的含铁品位成为可能。以前认为烧结矿的SiO2含量不能低于6%,否则强度将受到影响。目前优质高碱度烧结矿的SiO2含量已经降到4%~5%,仍然具有足够的强度。   (三)针状铁酸钙的形成机理    作者用微型烧结实验以及中断烧结杯实验过程、解剖烧结料柱等方法,对于针状铁酸钙形成的机理、工艺条件、影响因素,进行了较细致、深入的研究,下面是研究结果。    1.针状铁酸钙形成的过程    中断烧结杯实验,解剖烧结料柱,是研究针状铁酸钙形成过程的理想方法。以赤铁矿作为烧结的原料,碱度值(m(CaO)/m(SiO2))为2,中断烧结过程,解剖取样,在显微镜下分析它们的矿物组成。    用赤铁矿烧结时,在预热带中,除了石灰石分解反应外,便有较多的高钙型铁酸钙(含Si、Al的铁酸一钙、铁酸二钙)生成。在燃烧带中迅速生成大量的针状铁酸钙(SF-CA),同时有较多赤铁矿被还原为磁铁矿。在高温氧化带(指温度在1100℃以上的冷却带)中,部分磁铁矿再氧化,针状铁酸钙进一步明显增加,铁酸钙形成交织结构或与磁铁矿形成交织熔蚀结构,并将原生及再生的赤铁矿粘结起来。    用磁铁矿烧结时(碱度值也为2),预热带中主要是熔剂的分解反应,铁酸钙数量生成极少。在燃烧带中铁氧化物仍主要以磁铁矿存在,只生成少数片状高钙型铁酸钙,CaO大量固溶在磁铁矿中,及与SiO2、Al2O3等形成硅酸二钙和硅酸盐液相。在高温氧化带的温度和气氛下,大量磁铁矿氧化,新生的赤铁矿遂与硅酸二钙等成分大量形成针状铁酸钙。其化学反应可表示如下:    9(Fe,Al)2O3+2(2CaO•SiO2)+CaO固溶→5CaO•2SiO2•9(Fe,Al)2O3    研究表明,以磁铁矿为原料,也能够形成以针状铁酸钙为主要粘结相的优质高碱度烧结矿,但是较以赤铁矿为原料,针状铁酸钙生成数量少一些,FeO含量多一些。    由上述可知位于燃烧带上部的高温氧化带(1100℃以上的冷却带)对针状铁酸钙的形成,无论对磁铁矿还是赤铁矿烧结都是十分重要的,特别是对磁铁矿烧结。    2.温度对于针状铁酸钙形成的影响    将磁铁矿配成碱度值(m(CaO)/m(SiO2))2.0的烧结试样,压成小饼(Ф8mm×4mm),于空气介质中,在1260℃焙烧,仅能生成少量的片状铁酸钙。1210℃铁酸钙开始迅速生成,并向针状铁酸钙转化。1250℃下,试样中的针状铁酸钙含量达到75%~80%。温度高于1260℃,针状铁酸钙发生明显分解,转变成赤铁矿、硅酸二钙和硅酸盐液相,铁酸钙含量急剧下降。实验表明,对于磁铁矿,针状铁酸钙形成的最佳温度是1230~1250℃,而赤铁矿则为1250~1270℃.    对上述小饼实验进行了烧结杯烧结验证。碱度值为2.0的磁铁矿混合料,燃料配比按4.3%、4%、3.8%、3.6%、3.2%下降,随着燃比降低,烧结矿中的铁酸钙含量由30%提高到50%~55%,形态由多熔蚀片状变为主要为针状,FeO含量由10.6%下降到5.62%.    上述实验表明,针状铁酸钙的形成对于温度比较敏感,要求较低的烧结温度。这是生产以针状铁酸钙为主要粘结相的高碱度烧结矿需要和允许低温烧结的根本原因,说明优质高碱度烧结矿生产技术是集优质与节能为一体的。

纳米晶体材料的应用前景分析

2019-01-03 09:36:46

纳米晶体材料是指三维空间尺度中至少有一维处于纳米量级的晶体材料,其晶粒尺寸约为1-250纳米,这种材料的一个显著特点就是其大部分原子处于晶粒边界区域。这种独特的结构特征使纳米晶体成为有别于普通多晶体和非晶态固体的一种新材料,其中界面成为一种不可忽略的结构组元。 纳米晶体材料分为单相或多相的单晶或多晶粒材料。在单晶材料中,任意区域都具有一样的晶格方向,而多晶材料则由许多晶格方向不一的区域或晶粒组成,晶粒之间由晶界相分割。由于纳米多晶材料晶粒细小,其内部由晶界、相界或畴界等构成的内界面含量很高,因而显著影响着纳米晶的物理和机械性能,使其具有传统材料所不具备的优异特性。与传统的粗晶材料(晶粒尺寸的范围大约是10-300微米)相比,纳米晶粒材料具有十分优异的物理、力学以及化学性能,如很高的强度或硬度、良好的热稳定性、增强的扩散性能和热传导性质。纳米晶体设计师 纳米晶体的制备和合成技术一直是纳米晶体材料研究领域的一个重要方面。目前纳米晶体材料的制备方法主要有:外压力合成(如超细粉冷压法、机械研磨法)、沉积合成法(如各种沉积方法)、相变界面形成法(如非晶晶化法)等。 纳米晶体材料在很多领域可以得到应用。例如,它们不仅能发光,也能吸收多种颜色的光,这有助于形成高分辨率显示器屏幕上的发光像素,或是制成新类型的高效、广谱太阳能电池。同时,这种材料还可被用于开发针对少量特定生物分子的高敏度探测器,如作为毒素筛选系统或是医药检测设备等。又如,纳米晶体材料可以弥补硅钢和铁氧体材料的不足,使各类电子产品的质量和效率得到提高,且节能效果明显。目前,纳米晶材料除了用于制造变压器以外,还可以作为互感器、电抗器、传感器、滤波器等器件的铁芯材料,应用范围还涉及到我们的日常生活中的家用电器、智能电表、直流变频空调、漏电保护开关等,电力系统的输变电测量、配电、遥测传感等,铁路系统的机车空调、电力机车的逆变电源、铁路信号传感等,还应用在航天、航空、航海等多项军工和国家高科技项目中,被定型采用。 未来,纳米晶材料研究中要积极改善及取代传统材料,提高及改善产品质量和性能,制备技术应致力于开发高性能、微型、环保型产品。

2017-07-03 10:53:04

钨条包括钨棒,钨钢棒,烧结钨棒,主要是用来锻造成材料的成分,刀具和弹头,灯泡钨丝,电接触点和热导体,曲轴和气缸钨丝桶,耐热钢的各种成分。掺杂的钨条用于生产灯丝或电子管灯丝,这就保证具有显著的抗高温。纯钨是一种从地上开采的天然金属。在原始形式 下,纯钨是很脆的。简介钨是世界上少有的一种有色矿产品,年产量很低,用途非常广泛,主要用于铸造配料用原料。钨来源于一种白色砂型矿体,矿线特别微小,经过采掘、研磨、水重选、提炼等多道工艺,得到品位达到95%以上的钨矿粉,再经过高温电炉提炼成型生产出的成品才是钨条。钨的熔点:3500℃。钨矿主要分布在中国和俄罗斯,中国现在是世界上最大的钨出口国。通常钨条的纯度都应在99.95%以上,而且必须出具权威机构的检验分析测试报告,例如:国家有色金属及电子材料分析测试中心分析测试报告。分类铸造碳化钨、 碳化钨粉、钨粉、氧化钨、合成白钨、钨丝、钨钼合金丝、钨绞丝、杜美丝、钨铼合金丝、钨铈电极、钨板、钼基钨极、掺杂钨条、钨条、钨杆、钨加热子。优点淬火和回火后硬度高;耐磨性好;高温下工作性能好。用途1、加工用车刀刀头、照明器材用钨丝及各种导热体2、制造高级汽车的曲轴、缸筒的配料,铸造各种耐热钢材的配料3、广泛用于枪支、火炮、火箭、卫星、飞机、舰船的制造 钨资源分布我国是产钨大国,钨资源储量520万吨,为国外30个产钨国家总储量(130万吨)的3倍多,产量及出口量均居世界第一。湖南、江西、河南三省的钨资源储量居全国的前三位,其中湖南、江西两省的钨资源储量占全国的55.48%。湖南以白钨为主,江西以黑钨为主,其黑钨资源占全国黑钨资源总量的42.40%。我国的钨矿大体上分布于我国南岭山地两侧的广东东部沿海一带,尤其是以江西的南部为最多,储量约占全世界的二分之一以上。此外,江西的大余、湖南的汝城、安化、临武、资兴、荼陵等地;以及广西和云南、四川、福建等省也有钨矿资源。国外钨矿的主要产地是加拿大和美国。 

锡石、黑钨细泥捕收剂苄基胂酸的研制

2019-02-27 08:59:29

关于黑钨、锡石细泥的捕收剂,国内外已研讨过不少,众所周知的有脂肪酸(皂),烷基硫酸钠,经肪酸(皂),乙烯麟酸,烷基麟酸,烃基肿酸,美狄兰,磺丁二酞胺酸等。实践证明混合肿酸是黑钨、锡石矿泥杰出的捕收剂,目前我国正在运用。本文介绍了苄基胂酸组成原理,经过组成条件实验,找出组成苄其(?)酸最好的条件是:苄氯与的克分子比为0.9∶1,反响温度80℃,反响时间为4.5小时。在小型实验的基础上进行了工业实验,工业实验结果表明,用这种办法出产苄基胂酸是可行的。