钨尾矿回收钨、铋、钼实例
2019-01-21 18:04:37
棉土窝钨矿是以钨为主的含钨铜铋钼的多金属矿床,在棉土窝钨矿每年选钨后所产生的磁选尾矿(选厂摇床得到的钨毛砂,经抬浮脱硫、磁选选钨后的尾矿)中,含Bi20%、WO310%~20%、Mo1.45%、SiO230%~40%,铋矿物以自然铋、氧化铋、辉铋太及少量的硫铋铜矿、黄铁矿、辉钼矿、褐铁矿以及石英、黄玉等。镜下鉴定表明,钨铋矿物互为连生较多,钨矿物还与黄铜矿、褐铁矿及脉石连生,也见有辉铋矿被包裹在黑钨矿粒中,极难实现单体解离。尾矿取样测定的粒度组成和单体解离度见表1、表2。从表中可以看出,试样中+0.074mm的产率仍占75.55%,且3种主要矿物也主要分布在+0.074mm的粒级中。
表1 试样粒度筛析结果粒级/mm产率/%品位/%占有率/%个别累计BiWO3MoBiWO3Mo-0.63+0.3218.6318.6323.5420.841.2719.1018.4717.76-0.32+0.1634.2556.8822.5819.611.3933.6731.9535.73-0.16+0.07424.6777.5522.0321.001.3723.6624.6525.37-0.074+0.049.4687.0123.9523.031.339.8710.379.44-0.0412.99100.0024.2223.561.2013.7014.5611.70原矿100.00 22.9621.021.33100.00100.00100.00
表2 试样单体解离度测定粒级/mm解离度/%黑钨矿铋矿物- 0.63+0.3259.969.4-0.32+0.1662.871.50.16+0.07482.282.0-0.074+0.0491.589.8-0.0498.596.4
选厂根据小型试验结果在生产实践中采用重选-浮选-水冶联合流程(见图1)处理磁选尾矿,综合回收钨、铋、钼。考虑到磁选尾矿中含硅高达30%~40%,远远超过了铋精矿的含硅标准(小于8%),故在选铋作业前先用摇床重选脱硅,重选精矿经磨矿分级后,进入浮选作业,先浮易浮的钼和硫化铋,后浮难浮的氧化铋;为进一步回收浮选尾矿中的微粒铋矿物及铋的连生矿物,在常温下对得到的浮选尾矿(钨粗精矿)进行浸出,再通过置换而得到合格的铋产品和剩下的钨粗精矿产品。生产实践表明,通过该工艺可得到含铋分别为36%和71%的硫化铋精矿和氯氧铋,铋的总回收率高达95%,还得到了含钨36%、回收率90%的钨粗精矿,使选钨厂的总回收率提高了2%
图1 铋钨综合回收流程
铋的硅氟酸溶液电解
2019-03-04 11:11:26
铋的电解液由与铋组成,所用阳极是经开始火法精粹的粗铋。开始火法精粹首要包含两个工序:榜首工序是熔析除铜后加硫拌和除铜、铅,然后用洗刷脱硫;第二工序是用惯例的碱性精粹与氧化精粹除砷、锑。
阳极选用立模浇铸,阴极选用铜板,悬挂在电解槽中,在直流电效果下,发作下列反响:铋的溶液电解工艺流程图如图1所示。图1 铋的溶液电解工艺流程
各种杂质在电解中的行为与在氯化溶液中类似,不用造液。电解液含铋在80~100克/升,H2SiF8 330~350克/升,室温,当电流密度40~80安/米2时,槽压0.3伏,阴极分出纯度达99.9%。
日本住友公司国富冶炼厂曾选用电解精粹铋、阳极的典型分析为Bi 98.77%,Pb 0.12%、Ag 0.022%、Cu 0.032%、As 0.03%、Sb 0.026%。选用笔直型阳极浇铸机铸成挂耳型阳极,每块重约为70千克,阳极袋套用聚料。运用18个衬沥青的钢筋混凝土电解槽,尺度为:长×宽×深=3350×760×850毫米。28块阳极,24块阴极,板距离为130毫米。电解液含铋40克/升,游离330~350克/升,每出产一吨铋加胶一克,电解的总电流为850安,总电压4.5伏,选用硅整流器,槽电压0.2伏,电流密度60安∕米2,电流效率93%,残极率约40%,阳极泥率0.5%,分出铋洗刷后脱落熔化铸成5千克锭。电铋质量为:铋高于99.99%,铜与铅均为2ppm,铁与锌均为3ppm,微量银、砷、锑。
铋冶炼的综合回收-酸浸法回收锌
2019-01-31 11:06:04
此法用来出产硫酸锌。
一、工艺流程。
如图1。图1 七水硫酸锌出产工艺流程图
二、首要技能条件。
浸出温度:80℃,液固比:4∶1,酸耗为理论量的1.4~1.5倍,残酸为15~20克/升,粒度:-40目,浸出时刻,2小时,锰粉参加量为渣量的1∕10。
一次净化除重金属铅,铜,铋:参加锌粉,分两次加,每次参加量为渣量3~4%,净化温度高于70℃,拌和,pH3~5。
二次净化除铁:参加,第一次参加理论量的40%,第2次参加30%,第三次参加40%,除铁至微量,溶液煮沸,拌和,pH3~5。
蒸腾结晶:净化后溶液蒸腾至密度1.52克/厘米3,冷却结晶,结晶用离心机过滤甩干即可包装。
三、首要设备。
浸出槽一个,净化槽二个,蒸腾浓缩槽一个,皆选用φ1000×1500毫米之珐琅反应釜:球磨机一台;颚式破碎机一台:离心过滤机一台。
四、产品用处。
产品可作印染媒染剂,木材及皮革防腐剂,医药催吐剂,人造纤维辅助材料,避免果树和苗圃病虫害,农肥,还用于电缆和电镀职业,用于出产锌盐和立德粉,用作选矿药剂。
五、产品质量。
一级品含ZnSO4·7H2O≥99%,游离酸不高于0.05%,水不溶物不高于0.02%,氯化物(Cl)不高于0.05%,铁不高于0.005,铅不高于0.01%;二级品含ZnSO4·7H2O98%,游离酸不高于0.1,水不溶物不高于0.05%,氯化物(Cl)不高于0.2,铁不高于0.01,铅不高于0.05%。
白钨矿(Scheelite)(又称钨酸钙矿)
2019-01-21 10:39:06
Ca[WO4]
【化学组成】由于W和Mo离子半径几乎相等,因此,白钨矿中W与Mo为完全类质同像,成
为白钨矿—钼钨矿系列。高温时,Mo含量高;与辉钼矿共生的白钨矿中,Mo含量也高。部分的Ca可被Cu和TR代替。
【晶体结构】四方晶系;a0=0.525nm,c0=1.140nm;Z=4。白钨矿晶体结构简单,是由稍扁平的[WO4]四面体和Ca离子沿c轴相间排列而成。
【形态】晶体常呈四方双锥,也有的沿{001}呈板状(图H-22)。依(110)成双晶普遍。集合体多呈不规则粒状,较少呈致密块状。
图H-22白钨矿晶体
【物理性质】白色、黄白、浅紫等,油脂光泽或金刚光泽;透明至半透明。解理{111}中等;断口参差状。硬度4.5~5。相对密度5.8~6.2(相对密度随Mo的增加而降低)。性脆。具发旋旋光性,在紫外光照射下发浅蓝色至黄色(依Mo的含量而定,Mo增加,荧光变浅黄至白)的荧光。
【成因及产状】主要产于接触交代矿床。也可见于高—中温热液矿床。
【主要用途】重要钨矿石矿物。
铍铜的合成比
2018-12-13 10:37:27
常用铍铜中铍的质量分数为1.7-2.5%,铍青铜经过淬火和时效可以具有极高的强度和硬度,远超过其他所有的铜合金,甚至可以和高强度钢蓖美.它的弹性极限\疲劳极限\耐磨性\耐腐蚀性也都很好,是各种性能结合得很好的一种合金;还具有很好的物理\化学性能.就是价格太高!!!常用牌号:QBe2\QBe1.5\QBe1.7等.
铋的用途
2019-03-07 10:03:00
铋首要用于制作易熔合金,熔点规模是47~262℃,最常用的是铋同铅、锡、锑 、铟等金属组成的合金,用于消防设备、主动喷水器、锅炉的安全塞,一旦发作火灾时,一些水管的活塞会“主动”熔化,喷出水来。 在消防和电气工业上,用作主动救活体系和电器保险丝、焊锡。铋合金具有凝结时不缩短的特性,用于铸造印刷铅字和高精度铸型。
铋作为可安全运用的“绿色金属”,除用于医药行业外,也广泛应用于半导体、超导体、阻燃剂、颜料、化妆品、化学试剂、电子陶瓷等范畴,大有替代铅、锑、镉等有毒元素的趋势。
苄基胂酸浮选黑钨和锡石细泥
2019-02-27 08:59:29
苄基胂酸是我国创始的黑钨和锡石细泥有用捕收剂。苄基肿酸和混合甲对黑钨的捕收功能极为类似,能够在相同的浮选流程和相同的药剂准则下相互替代运用,得到极为挨近的浮选成果。黑钨比严重,粗粒黑钨用重选法处理能够得到很高的目标但黑钨性脆,在采选过程中简单发生矿泥,重选法收回遭到粒度约束,对矿泥的处理目标较低,湖南、广东、江西一些摇床等重选法收回黑钨细泥的选厂,一般收回率只要20%-40%,适当一部分钨金属从矿泥丢失。用浮选法处理黑钨细泥,收回率比重选法高,因而用重选法处理粗粒矿砂,浮选法处理矿泥的重浮联合流程来进步选厂钨收回率是可取的。
铋的冶炼
2019-03-07 10:03:00
铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其中所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。
铋的性质
2019-03-07 10:03:00
银白色或微赤色,有金属光泽,性脆,导电和导热性都较差。铋在凝结时体积增大,膨胀率为 3.3%。铋的硒化物和碲化物具有半导体性质。室温下,铋不与氧气或水反响,在空气中安稳,加热到熔点以上时能焚烧,宣布淡蓝色的火焰,生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋粉在内着火。铋不溶于水,不溶于非氧化性的酸(如),使浓硫酸和浓,也仅仅在共热时才稍有反响,但能溶于和浓硝酸。
因为铋的熔点低,因此用炭等能够将它从它的天然矿石中复原出来。所以铋早被古代人们获得,但因为铋性脆而硬,缺少延展性,因此古代人们得到它后,没有找到它的使用,仅仅把它留在合金中。
铋的来历
2019-11-14 16:58:18
早在古希腊和罗马时期,就有金属铋的使用,人们用木炭复原辉铋矿制得它,首要用作盒子和箱子的底座。1450年,德国修士B•瓦伦丁曾描绘过铋。直到1556年,德意志的G.阿格里科拉才在《论金属》一书中提出锑和铋是两种独立金属的观点。1737年赫罗特用火法剖析钴矿时曾取得一小块样品,但当时并不知是何物。1753年,英国C. 若弗鲁瓦和T.伯格曼承认铋是一种化学元素,定名为bismuth。1757年法国人日夫鲁瓦(Geoffroy)经剖析研究,确定为新元素。铋的拉丁称号bismuthum和元素符号来自德文weisse masse(白色物质),可是金属铋并非银白色,而是粉红色。
锡石、黑钨细泥捕收剂苄基胂酸的研制
2019-02-27 08:59:29
关于黑钨、锡石细泥的捕收剂,国内外已研讨过不少,众所周知的有脂肪酸(皂),烷基硫酸钠,经肪酸(皂),乙烯麟酸,烷基麟酸,烃基肿酸,美狄兰,磺丁二酞胺酸等。实践证明混合肿酸是黑钨、锡石矿泥杰出的捕收剂,目前我国正在运用。本文介绍了苄基胂酸组成原理,经过组成条件实验,找出组成苄其(?)酸最好的条件是:苄氯与的克分子比为0.9∶1,反响温度80℃,反响时间为4.5小时。在小型实验的基础上进行了工业实验,工业实验结果表明,用这种办法出产苄基胂酸是可行的。
由纯钨酸钠溶液转型制备纯钨酸铵溶液
2019-03-05 09:04:34
一、有机溶剂萃取法转型
(一)基本原理
1、莘取剂。钨萃取工艺中,常用的萃取剂主要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。
在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁酯(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表1。
表1 某些萃取剂萃钨的功能注:N235-三烷基胺;N263-季胺盐。
在用有机胺时,先用无机酸(常用H2SO4)与有机相效果,使胺生成胺盐,例如用2~3mol∕L H2SO4效果,则:用H2SO4≥5mol∕L效果时,则:2、萃钨进程。先用无机酸(如H2SO4)将Na2WO4溶液酸化至pH=2.5~3.0,钨以(HW6O21)5-、(H2W12O40)6-、(W12O39)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。
关于叔胺萃钨(Ⅵ)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1∶3~1∶2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2WO4溶液pH=1~3条件下,用体积比为:% Alamine336∶癸醇∶火油为7∶7∶86的有机相萃钨(Ⅵ)的通式为:依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12O40H2)6-、(W6O21H)5-(低钨浓度下)和(W12O40)8-。
当Na2WO4溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12O40)4-、(PW12O40)3-、(AsW12O40)3-与叔胺生成的萃合物是密度大于1g∕cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。
3、反萃进程。为了直接获得(NH4)2WO4溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:可见,虽然有机相中萃合物的组成不同,但都是1mol钨耗费2mol氮。所用的浓度一般为3~4mol∕L NH4OH,反萃终了的平衡水相应保持在pH=8.5左右。
(二)工业实践
用叔胺萃钨的准则流程参见图1。图1 从粗Na2WO4溶液制取钨化合物准则流程图
叔胺萃钨工艺中各阶段的条件及目标见表2。
表2 叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取比较(o∕a)=1,混合2~3min,温度25~40℃,3~5级逆流钨萃取率大于99%,萃余液中低于0.1g∕L WO3①有机相φ∕%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol∕L;
②Na2WO4料液:(WO3)90~100g∕L,pH=2.5~3
③萃取洗剂和反洗剂为纯水;
④酸化剂为(H2SO4)0.1~0.2mol∕L
⑤反萃剂为(NH4OH)3~4mol∕L萃洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中WO3含量低于0.5g∕L反萃取比较(o∕a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流反萃取率大于99%,反萃液中250~300g∕L WO3反洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中低于0.5g∕L WO3酸化比较(o∕a)=5,混合2~3min,温度25~40℃,2~3级逆流 纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。
工艺条件:
有机相φ∕%;20叔胺,20异辛醇,60火油;
料液组成/(g·L-1);(WO3)45~55;(Mo)0.03~0.05;(SiO2)0.03~0.06;(F-)0.1;(NaCl)50~60。
设备。萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高10m,有两个弄清区,脉冲频率50次∕min,振幅20min,塔总体积30m3,生产才能按两相总计为50m3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o∕a)为(5~10)∶1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。
钨和其他成分在流程中的分配见表3。
表3 钨和其他成分在流程中的分配 (g∕L)美国联合碳化物公司用苏镇压煮所得的Na2WO4溶液为55~110g∕L WO3,2.1~4.5g∕L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51. 8g∕L WO3,0.0012g/L Mo,0.75g∕L SiO2。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较O∕A为1,洗刷比较(O∕A)为 1∶0.75。然后用3mol∕L NH4OH反萃钨,比较(O∕A)为1∶(1~1.1)。将反萃液循环至(NH4)2WO4溶液中WO3浓度为225g∕L停止。这时反萃液中含0.4g/L SiO2以上。将溶液在55℃和2.7mol∕L NH4OH条件下弄清约1.5h,使SiO2沉积分出。萃取和反萃取均在50℃下进行。
中科院赵由才等曾研讨用伯胺及磷酸三丁酯(TBP)为萃取剂别离钨酸钠或钼酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。
二、离子交流法转型
乌兹别克斯坦某厂使用活动床经过AH-80П树脂将经典法净化所得的Na2WO4溶液转型为(NH4)2WO4,其准则流程见图2。图2 用AH-80П将Na2WO4溶液转型的流程
—树脂运动道路;----各种溶液运动道路
1-吸附柱;2-洗刷柱;3-解吸柱;4-再生柱:5-交流后液贮槽;
6-中和槽;7-(NH4)2WO4液贮槽;8-中和槽;9-过滤器
Na2WO4溶液含125g∕L WO3;0.01~0.08g∕L Mo;≤0.05g∕L P、As;115~135g∕L NaCl+Na2CO3;pH=2.5~3.0。溶液中钨主要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80П树脂(Cl-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1∶(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g∕cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含WO3 0.02g∕L,WO3吸附率达99.95%。饱满WO3的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g∕L HCl再生成Cl-型后,进行再吸附。
依据测定当溶液中WO3浓度为15~20g/L时,AH-80П的全改换容量达1g干树脂吸附1610mg WO3,比经典的人工白钨酸分化再溶的工艺WO3回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。
在生产条件下,当用HNO3系统,则树脂亦可用BП-14K型。
三、沉积人工白钨-酸分化法转型
其实质是将净化除杂后的Na2WO4溶液首要参加CaCl2使Na2WO4转化为CaWO4沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:生成的CaWO4(又称人工白钨)再与HCl效果转化为H2WO4,H2WO4进而用NH4OH溶解得(NH4)2WO4溶液。
酸溶性钛渣的酸解工艺
2019-02-13 10:12:38
用酸溶性钛渣作质料比钛铁矿作质料有以下长处。
a.因为钛渣中的TiO2含量高,产品总收率可进步2%~3%,并可节省相应的储运、枯燥、原矿破坏的费用;
b.因为钛渣中钛含量高、铁含量低,因而酸耗也明显下降,每吨钛的酸(H2SO4)耗可节省25%~30%,但反响时硫酸浓度较高;
c.无副产品硫酸亚铁,也不需求用铁屑来复原,防止废铁屑带进的杂质对成品质量的影响;
d.能耗低,可节省0.6t蒸汽/钛,节电8%、节油或燃气4%、节水5%、节省制作本钱12%;
e.工艺流程短,可省去复原、亚铁结晶与别离和浓缩3个工艺操作进程;
f.反响生成的钛液稳定性好,晶种增加量也较少;
g.废酸,废水、废渣排放量以每吨钛计比普通钛铁矿酸解工艺要少得多,三废管理的费用相对少。
因为酸溶性钛渣在高温冶炼时要参加复原剂(无烟煤),因而产品中不含Fe2O3而含有二价的FeO和金属铁,所以在酸解进程中不只不需求参加铁屑来复原高价铁,有时因为三价钛含量过高还要参加少数的氧化剂。别的因为酸溶性钛渣中二氧化钛含量高、总铁含量低、不含有Fe2O3,因而反响时放热低,需求蒸汽加热的时刻较长,反响时的硫酸浓度要求较高(91%)老练和浸取的时刻较长。
图1为运用加拿大QIT索利尔酸溶性钛渣的酸解反响进程,从图中能够看出:反响前的80min为加酸、投矿和拌和的进程,此刻的压缩空气流量为600m3/h,随后加稀释水7min,因为硫酸稀释放热温度从50℃升至80℃,然后通蒸汽加热25min温度上升至120℃,主反响当即开端,在5min内温度从120℃猛增至200℃左右。主反响期间保持约15min,从加稀释水前20min到主反响期间压缩空气的流量增大至800~1000m3/h,保温吹气0.5h,此刻压缩空气量可降至500m3/h,中止吹气老练约4h,在此期间温度从190℃缓慢降至85℃,接着在不超越90℃的情况下浸取约7h,浸取期间拌和用的压缩空气流量约800m3/h,所得钛液的相对密度为1.550g/cm3。[next]
图2是一个运用加拿大QIT索利尔酸溶性钛渣的工艺流程和物料平衡示意图。
钨的简介
2018-01-04 11:22:43
我国国际储量榜首。是熔点最高的金属,熔点为3410℃。占全球供应量的为85%。首要用于硬质合金、特种钢等产品,并被广泛用于国防工业、航空航天、信息产业,被称为"工业的牙齿" 。如果一个国家没有钨的话,在技能条件下的金属加工能力就会呈现极大的缺失,直接导致机械行业的瘫痪,所以称之为战略金属。此外在照明范畴也有必要运用钨做为灯丝。
钨的用途
2017-06-06 17:50:00
钨的用途由于纯钨很脆,难以加工,所以钨大多数都是与其他的金属形成合金或以钨的化合物被广泛运用。【高速钢】含有9%~24%的钨、3.8%~4.6%的铬、1%~5%的钒、4%~7%钴、0.7%~1.5%碳。高速钢的特点是在空气中有高的强化回火温度(700~800℃)下,能自动淬火,因此,直到600~650℃它还保持高的硬度和耐磨性。【合金工具钢】钨钢含0.8%~1.2%的钨;铬钨硅钢含2%~2.7%的钨;铬钨钢含2%~9%的钨;铬钨锰钢含0.5%~1.6%的钨。含钨的钢用于制造各种工具:如钻头、铣刀、拉丝模、阴模和阳模,气支工具等零件。钨磁钢是含有5.2%~6.2%的钨、0.68%~0.78%碳、0.3%~0.5%铬的永磁体钢。钨钴磁钢含有11.5%~14.5%的钨、5.5%~6.5%钼、11.5%~12.5%钴的硬磁材料。它们具有高的磁化强度和矫顽磁力。钨的碳化物是最硬的物质之一,碳化钨是磨具和转具中最常见的材料,往往也是最好的材料。这些合金含有85%~95%的碳化钨和5%~14%的钴,钴是作为粘结剂金属,它使合金具有必要的强度。当加热到1000~1100℃时,它们仍具有高的硬度和耐磨性。硬质合金刀具的切削速度远远地超过了最好的工具钢刀具的切削速度。硬质合金主要用于切削工具、矿山工具和拉丝模等。【热强和耐磨合金】主要用于强烈耐磨的零件,例如航空发动机的活门、压模热切刀的工作部件、涡轮机叶轮、挖掘设备、犁头的表面涂层。【触头材料】用粉末冶金方法制造的钨-铜合金(10%~40%的铜)和钨-银合金,兼有铜和银的良好的导电性、导热性和钨的耐磨性。因此,它成为制造闸刀开关、断路器、点焊电极等的工作部件非常的效的触头材料。【高比重合金】高比重的合金,用于制造陀螺仪的转子、飞机、控制舵的平衡锤、放射性同位素的放射护罩和料筐等。由于钨非常紧密,飞镖往往含80%至97%的钨。子弹中使用钨来取代铅。钨与镍、铁和钴的合金被用来制作重合金,这样的重合金用在动能弹中取代贫铀。【电真空照明材料】钨以钨丝、钨带和各种锻造元件用于电子管生产、无线电电子学和X射线技术中。钨是白织灯丝和螺旋丝的最好材料。高的工作温度(2200~2500℃)保证高的发光效率,而小的蒸发速度保证丝的寿命长。钨丝用于制造电子振荡管的直热阴极和栅极,高压整流器的阴极和各种电子仪器中旁热阴极加热器,以及无线电设备的触头和原子氢焊枪电极。钨丝和钨棒作为高温炉(达3000℃)的加热器。【其他】二硫化钨是高温润滑剂,它在500℃依然稳定。由于钨的热胀性与硅酸硼玻璃类似,它被用来做玻璃/金属密封。运输氟脱氧葡萄糖一般用钨容器,因为氟脱氧葡萄糖中的高能氟-18铅容器无法使用。氧化钨被用在陶瓷釉中,钙或镁钨常用在荧光粉中,青铜色的氧化钨被用在绘画中。含钨的盐被用在化学和皮革工业中。由于它的低敏感性碳化钨被用作首饰,另外是因为它非常硬不易出划痕。有些乐器的弦使用钨丝。
钨的价格
2017-06-06 17:50:00
今日湖南、江西地区主流钨的价格为8.2-8.4万元/吨,近几日来价格维持稳定。对于后市的走向,市场上出现了两种截然不同的看法。一部分商家认为钨矿市场对于前期涨幅不能完全吸收,所以近段时间出现弱势盘整局面,对此并不用担忧,相信在短暂的调整后钨矿市场会继续上涨。另一部分商家则表示,目前大环境的不景气会影响钨矿市场,加之APT价格下滑,钨矿价格将再度下调。由于目前钨矿价格有所回落,而且后市走向尚不明朗,部分商家开始观望惜售,这种行为或将再度使钨矿现货市场紧张。钨品价格反弹、销量增加至营业收入同比大幅增长。公司的主营业务包括钨钼制品、新能源材料和房地产开发,正常的年份中,公司钨品的出口比例高达60%以上。报告期公司营业收入大幅增长96.2%的主要原因是:1)09年一季度国内钨品出口量急剧萎缩,而2010年一季度,随着全球经济的持续转暖,国内钨品出口市场逐步恢复常态,因此公司钨品销量出现同比大幅回升;2)随着需求复苏,钨品价格同比回升,如2010年一季度国内65%黑钨精矿均价为7.4万元/吨,同比增长17.5%;国内88.5%纯度APT 均价为11.4万元/吨,同比增长8.1%。自有钨资源确保盈利能力同比大幅提升。作为全球最大的钨冶炼企业,公司钨业务具有“矿石采选—钨冶炼—钨深加工”完整的产业链条,目前公司自有矿比例约为35%左右。在钨品价格上涨时,原料钨精矿价格会按相应比例上升,因此外购精矿生产钨制品的生产方式不能充分的分享钨品价格上涨带来的收益,公司盈利的关键在于自产钨精矿。报告期内,公司综合毛利率为22.62%,同比增长10.4个百分点,使公司的盈利能力大幅改善。自2009年中期以来,钨品价格稳步上涨,2010年钨品价格有望持续回升,全年公司盈利或将大幅增长。盈利预测:在不考虑房地产业务集中结算的情况下,预计公司2010年实现归属母公司所有者净利润2.78亿元,给予2010-2012年实现EPS 分别为0.41元、0.55元和0.74元的盈利预测,按照4月23日21.40元的收盘价测算,2010-2012年的动态P/E 分别为52倍、39倍和29倍。按照市盈率,目前公司的估值基本合理,但考虑到公司拥有稀缺的钨和稀土资源,并且新能源电池材料业务未来的发展前景广阔,因此我们继续维持公司“增持”的投资评级。宏观方面利好消息不断刺激钨矿市场,给予上涨的动力,但是下游采购商的承受能力似乎已达顶峰,牵制着上涨的脚步。目前这两股力量尚不能分出胜负,钨的价格市场将继续保持稳定。
铋常识
2019-03-14 09:02:01
铋是银白色金属,密度9.8,熔点271.3℃,沸点 1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。 自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。 铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。 铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。 铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
铋知识
2019-03-08 09:05:26
铋是银白色金属,密度9.8,熔点271.3℃,沸点1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。
自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。
铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。
铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。
铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
钨的介绍
2019-02-15 14:21:10
中国是国际上钨矿资源最丰厚的国家。已探明矿产地有252处,散布于23个省(区)。总保有储量WO2,529万吨,居国际第1位。产值也居国际首位,是我国传统出口的矿产品。就省(区)来看,以湖南(白钨矿为主)、江西(黑钨矿为主)为多,储量别离占全国总储量的33.8%和20.7%;河南、广西、福建、广东等省(区)次之。首要钨矿区有湖南柿竹园钨矿、江西西华山、大吉山、盘古山、归美山、漂塘等几天钨矿、广东莲花山钨矿、福建行洛坑钨矿、甘肃塔儿沟钨矿、河南三道庄铝钨矿等。在钨矿床类型方面以层控叠加矿床和壳源改造花岗岩型矿床为最重要;壳幔源同熔花岗(闪长)岩型矿床、层控再造型矿床和表生型钨矿床次之。从成矿年代来看,最早为早古生代,晚古生代较少,中生代构成钨矿最多,新生代钨矿则属稀有。 钨(音乌),TUNGSTEN,源自瑞典文tung sten,意为“沉重的石头”。W的符号,由它的德国姓名Woifram而来,1783年发现。是具有最高熔点3,140℃的金属,用钨做成的灯丝耐得住灯泡的高热,其他用处包含制作超高速钻孔器和轿车分配器的顶级。 钨元素由瑞典化学家舍勒(C.W.Scheele)于1781年从其时称为重石的矿藏(现称白钨矿)中发现的,并以瑞典文tung(重)和sten(石头)的复合词tungsten命名这种新元素。1783年西班牙人德卢亚尔兄弟(F•de Elhuyar)从黑钨矿中制得氧化钨,并用碳还原为钨粉。 钨呈银白色,是熔点最高的金属,熔点高达3400℃,居所有金属之首,沸点5555℃,比重(单晶钨)19.3 ,并具有高硬度、杰出的高温强度和导电、传热功用,常温下化学性质安稳,耐腐蚀,不与或硫酸起作用。 钨在冶金和金属材料范畴中属高熔点稀有金属或称难熔稀有金属。钨及其合金是现代工业、国防及高新技术使用中的极为重要的功用材料之一,广泛使用于航天、原子能、船只、轿车工业、电气工业、电子工业、化学工业等许多范畴。特别是含钨高温合金首要使用于燃气轮机、火箭、及核反应堆的部件,高比重钨基合金则用于反坦克和反潜艇的头。 钨精矿用于出产金属钨、碳化钨、钨合金及化合物。 美国、日本、西欧是国际钨的首要消费国,算计占国际总消费量的60%~65%,但这些国家钨精矿产量只能满意需求量的12%~15%,大多靠进口满意需要,因此也是最重要的钨进口国。中国是国际上最大的钨直销国。
铋的基本知识
2019-03-12 11:03:26
铋是银白色金属,密度9.8,熔点271.3℃,沸点 1560℃,性脆,导电和导热性都比较差。铋是逆磁性最强的金属,在磁场效果下电阻率增大而热导率下降。铋及其合金具有热电效应。铋在凝结时体积增大,膨胀率为3.3%。在室温下,铋不与氧气或水反响,加热到熔点以上时能焚烧生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋不溶于非氧化性的酸(如),但能溶于硫酸和硝酸。铋的氧化态为-3、+3、+5,其间+5价化合物NaBiO5(铋酸钠)是强氧化剂,在分析化学中用于检测Mn。铋的硒化物和碲化物具有半导体性质。 自然界中铋以单质和化合物两种状况存在,铋独自矿床少,常与铅、锌、铜、钨、钼、锡等伴生。首要矿藏有辉铋矿(Bi2S3)、泡铋矿(Bi2O3)、菱铋矿(nBi2O3•mCO2•H2O)、铜铋矿(3Cu2S•4Bi2S3)、方铅铋矿(2PbS•Bi2S)等。 铋的冶炼分粗炼和精粹两个过程。粗炼的办法因质料而异,以硫化铋精矿、氧化铋和铋的混合矿、氧化铋渣以及氯氧化铋等作为炼铋质料时,选用混合熔炼法,配入适量的铁屑、纯碱、萤石粉、煤粉等,在反射炉中进行混合熔炼,得到粗铋,送去精粹。以铅的火法精粹过程中发生的钙镁铋浮渣为质料的炼制办法是:先将浮渣加热,使其间所含的铅下沉取出。持续加热熔渣,熔化后,参加氯化铅或通入,以除掉钙和镁,得到富含铋的铅铋合金,再送精粹。精粹一般包含氧化除砷锑碲、加锌除银、氯化除铅锌、高温除氯四个过程。 铋的首要用途是以金属形状用于制作易熔合金,以化合物形状用于医药。前者熔点规模为47-262℃,最常用的是铋同铅、锡、锑、铟等金属组成的二元、三元、四元、五元合金。改动这些金属在合金中所占的百分比,就可取得一系列不同熔点和不同物理性质的合金,这些合金用于消防设备,做主动喷水器的热敏元件,锅炉和压缩空气缸的安全塞,焊料等。 铋合金具有在冷凝时不缩短的特性,用于铸造印刷铅字和高精度的铸型。铋及其合金常作为铸铁、钢和铝合金的添加剂,以改进合金的切削性能。含锑11%的铋合金用于制作红外线检测计。铋锡和铋镉合金用于制作硒整流器的辅佐电极。使用铋在磁场效果下电阻率急剧减小的特性制作磁力测定仪。铋锰合金可用作永磁材料。铋的热中子吸收截面很小而且熔点低、沸点高,可用作核反响堆的传热介质。碲化铋广泛用于制作温差元件用于太阳能电池,铋银合金可用于制作光电放大器,硫化银铋用于制作半导体仪器,铋镉温差元件用于报警设备。
铋的氯化溶液电解
2019-03-04 11:11:26
铋的电解精粹是以经过开端火法精粹的铋铸成阳极,将电解分出铋铸成阴极,在和三氯化铋的电解液中电解,凭借直流电的效果,使阳极铋溶解,铋在阴极上分出。
铋的氯化溶液电解的工艺流程如图1所示。图1 铋的氯化溶液电解工艺流程
粗铋中杂质在电解时分为三类:一类在阴极分出;一类溶入电解液;一类不溶解而进入阳极泥。
一、铋电解的电极反响
铋电解示意图如图2。图2 铋电解示意图
在由和三氯化铋组成的电解液中的电离反响:在直流电效果下,阳极发作铋的溶解:阴极发作铋的堆积分出:跟着电解进程的进行,阳极铋逐步溶解,阴极上逐步分出铋而增厚。
二、杂质在电解中的行为
粗铋阳极板中含有多种杂质,这些杂质可分为三类:
(一)较铋更负电性的金属:如铁、碲、铅、锡等,因为它们的标准电位比铋更负,所以先于铋进入电解液,生成氯化物盐类,其间氯化铅在溶液中溶解度小而沉积,其他氯化物进入电解液后,下降BiCl3浓度,使耗费添加,电耗添加,还会使阳极泥中海绵铋量添加,电流效率下降,使分出铋质量下降。
(二)较铋更正电性的杂质:如金、银等不溶解,进入阳极泥。少数银进入阴极铋是因为电解液循环机械夹藏所形成的。
(三)与铋电位挨近的杂质:如砷、锑、铜等,当这些杂质在溶液中浓度较大时,可能与铋一道在阴极分出。
所以要求电解运用的阳极质量好,主成分含量高,杂质含量低,特别是应严格控制砷、锑、铜的含量,以削减其在阴极分出的可能性。
三、铋电解造液法
因为铋离子在溶液中导电性差,因此铋阳极溶解的速度慢,而在阴极分出的速度快,从而使电解液中铋离子浓度不断下降,这种现象叫阳极钝化。所以在铋电解进程中,有必要制作部分含铋高的电解液弥补到已贫化的电解液中去。造液有两种办法:坩埚造液法与碱性造液法。
1、坩埚造液法。粗铋为阳极,铅条为阴极,铅条外用素烧的陶瓷坩埚作阴极隔阂。当新造液时,原液选用和食盐的混合液:而旧造液时,用电解后的溶液造液回来运用。在直流电效果下,氯离子移向阳极,使阳极铋溶解生成三氯化铋溶液,因为铋离子体积较大,不能透过阴极坩埚隔阂,而被留在电解液中,只要氢离子体积小,能经过隔阂在阴极放电。在不断对阴极弥补的情况下,电解液含铋量不断添加,其反响为:造液后的高铋溶液,经过电解液的循环,接连地弥补到电解出产中去,而含铋低的电解液,也经过循环不断回来造液。
坩埚造液法能够在不改变电解液量的情况下,进步电解液中铋离子浓度。
2、碱性造液法。阴极与阳极均用粗铋,不需阴极隔阂,造液运用食盐溶液,在直流电效果下,阳极铋溶解生成BiCl3,而在阴极表面分出并发生NaOH,其反响为:生成的氯化铋被水解为氯氧化铋,仅少数在阴极分出:阳极不断溶解,直至将溶液中氯离子耗费完毕。电解完毕后将碱液抽去,用将BiOCl浸出:因为浸出BiOCl的溶解度约束在100~120克/升铋左右,所以碱性造液法只能添加所需的电解液量,而不能进步电解液含铋量。
四、铋电解的技能条件
(一)电解液组成。电解液由与三氯化铋组成。在开槽制备电解液时,需配入一定量的食盐,其浓度为100千克食盐/1米3,以添加溶液中氯离子浓度。电解液中游离酸控制在80~100克/升,铋控制在120~150克/升。电解液密度1.2克/厘米3左右。电解液中酸量超越含铋量时,在阴极分出海绵铋,酸量过低则阳板溶解欠好,有片状物掉落,阳极泥含铋高,下降电流效率。当电解液中铋量过低时,阴极也分出海绵铋,而含铋过高时则需很多造液,使电耗添加。
2、阳极。阳极档次宜高,一般在90%~95%,最好大于95%,含硫要求不超越0.5%,含铅不超越3%。阳极中杂质含量对电解作业影响很大。某厂曾对表1所列阳极进行电解,技能条件控制为:电解液组成:Bi 90~115克/升,HCl 100~120克∕升,NaCl 80~100克/升,电流密度100安/米2。
表1 粗铋组成与电解作业联系由表1可见,粗铋含硫高时,阴极分出物呈混状,有一半的分出铋掉入阳极泥中,电流效率下降至50%左右,这是因为不溶的硫化铋薄膜阻止阳极铋溶解形成的。
粗铋中锑的含量直接影响阳极泥的附着情况,含锑高时,阳极泥不掉落,但含锑过高将引起槽压上升;当阳极含锑低时,阳极泥易掉落,添加了槽底阳极泥量,且电解液易污染。
粗铋含银与阴极分出铋含银间联系如图3所示。图3 粗铋含银与分出的铋含银间的联系
当粗铋含银低于1.5%时,电铋含银低于0.05%。
参加适量硫酸以除掉电解液中Pb2+。但参加硫酸也有利于银在阴极分出,所以当粗铋含银大于1%时,不宜加硫酸避免银分出。
阳极板的厚度与电解周期有关,当阳极厚5毫米,电流密度100安∕米2时,可饱尝24小时电解,残极率35%。
(三)电流密度。电流密度是每米2阴极表面上经过的电流安培数,单位为安/米2。电流密度直接影响电解的出产率、电耗和出产本钱,是至关重要的技能参数。选定电流密度时要考虑经济和技能条件。不引起阳极钝化又能确保阴极分出物质量的最大电流密度称答应电流密度,在答应电流密度范围内,经济上最合理的电流密度叫经济电流密度,也就是本钱最低的电流密度,能够确保较高的阴极质量、较高的电流效率和较低的电耗的高电流密度。铋电解的电流密度一般控制在100~150安/米2,造液的电流密度为200~300安/米2。
(四)电耗、槽电压及电流效率。电耗是电解出产的首要技能经济指标,是每出产一吨铋在电解时所耗费的直流电数量,以千瓦小时/吨铋或千瓦小时/吨分出铋表明,电耗(W)首要由槽电压(V)和电流效率(η)所断定,其核算式:
从上式可见,电耗与槽电压成正比,与电流效率成反比,而以槽电压影响最大。
槽电压可用下式核算:式中,Ea-由阳极浓差极化引起的阳极电位(伏);
Ek-由阴极浓差极化引起的阴极电位(伏);
I-经过电解槽的电流强度(安)即电流密度乘以一个电解槽内阴极总面积(米2);
R1-电解液电阻(欧);
R2-阴极、阳极与导电铜板和导电杆等的电阻(欧)。
槽电压随电流密度的进步及电解时刻的延伸而进步。开端电解时槽压为0.25伏左右,跟着电解的进行,阳极泥层加厚,浓差极化加重,至电解后期达0.5伏以上。造液则开端为3.5伏左右,后期升至5.5伏左右。
铋电解的电流效率在90%以上,一般在95%左右。核算电流效率的公式为:式中G-分出铋分量(克);
q-铋的电化当量,为2.6克/安·小时;
I-电流强度(安);
t-通电时刻(小时);
n-电解槽数目。
综上所述,列出铋电解技能条件如下:
电解液组成:游离80~100克/升;铋离子120~150克/升;NaCl 100~120克/升;
阳极档次:Bi高于90%;S低于0.5%;
电流密度:100~150安/米2;造液200~300安/米2;
槽电压:0.25~0.5伏:造液3.5~5.5伏;
电解液温度:25~30℃;造液时低于50℃;
电解液循环量:下进上出,5升/分;
极距:100~110毫米;
电解周期:2~3天;造液3~4天;
阳极泥率:10%左右;阳极泥含铋50%~70%;
残极率:35%~50%。
五、铋电解设备
某厂年产500吨电铋之电解设备为:
电解槽:2500×1050×1000毫米共30只,水泥槽体,内村沥青;
地下贮槽:2500×2000×1000毫米共2只,材料为混凝土槽体内衬沥青;
洗残极槽2个;
离心过滤机:φ600毫米(内衬胶)一台;
电动单樑桥式超重机(2吨)一台;
酸泵:φ'2"(内衬胶)2台。
六、分出铋的火法精粹
粗铋经电解精粹在阴极分出的电铋,含铋在99%左右,还含有铅、铜、砷、锑、碲、银等杂质,有必要再经火法精粹提纯。
将粉与分出铋分层装锅,每层分出铋厚度约300~400毫米,加硫份额为Bi∶S=200∶1。装锅后缓慢升温至600℃,拌和捞除铜浮渣,然后参加固体碱,拌和除硫。再进行加锌除银与氯化除锌、铅,其原理与操作办法如前述。
铋的氯化精炼实例
2019-02-18 15:19:33
将除银后铋液用泵转入4号锅进行氯化精粹。降温至320~340℃通入,每锅刺进通氯管4~8根,刺进深度为300~400毫米。插管太浅,易逸出蒸发,基层含铅高的液体难以氯化,插管太深,则通氯阻力大,钢锅易被腐蚀。
氯化锌熔点283℃,因为密度小(2.9克/厘米3),上浮至液面而有掩盖效果,锅面构成灰白色薄膜,当开端呈现深灰色渣时,则为除锌结尾,此刻将液态的氯化锌渣舀出,作为出产ZnCl2的质料。
然后氯化除铅。因为铅是铋液中首要杂质,为了加速氯化除铅的速度和进步利用率,操作温度一般控制在350~400℃。PhCl2的密度5.9克/厘米3,熔点498℃,较铋液轻而上浮,呈固态浮渣掩盖铋液表面,避免的蒸发丢失和污染环境。除铅过程中要抓取氯化铅渣数次,捞渣时先停氯,升温至500℃以上,使呈液态舀出,以削减渣中夹藏金属铋丢失。半途捞渣不用捞净,每次捞完后仍降温至350~400℃,持续通氯,直至除铅结尾。氯化锌渣量约为料重的3%~5%,氯化铅渣量约为料重的13%~20%,其成分于下表。
表 氯化精粹渣成分(%)氯化除铅结尾的判别极为重要。判别过早,因除铅不完全而添加出锅前弥补脱铅工序,判别过晚,就会添加铋被氯化入渣丢失量。判别结尾可根据粗铋中杂质铅含量概算氯化铅渣产出量,而大略估量除铅结尾。在出产实践中首要经过取试样目测判别:当试样表面发黑,不冒金属小珠,试祥断面贯穿细密的笔直条纹状结晶,呈金属光泽,无灰色斑驳,则为除铅结尾,此刻之铋液含铅小于0.01%,然后持续通氯一小时左右,取样分析铅,此刻之含铅量动摇在0.0005%~0.001%之间。
剧毒,激烈影响人的呼吸系统,吸入过量会引起肺水肿,乃至引起逝世。
铋的碱性精炼实例
2019-01-21 18:04:55
为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。
将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。
捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。
某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。
表 碱性精炼渣成分(%)
钨的密度
2017-06-06 17:50:00
钨的密度为:19.35克/立方厘米 。钨是稀有金属,也是重要的战略物资,在古代被称为“重石”。1783年被西班牙人德普尔亚命名。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的金属,熔点极高,硬度很大。性质钨是稀有高熔点金属,属于元素周期表中第六周期(第二长周期)的VIB族。钨是一种银白色金属,外形似钢。钨的熔点高,蒸气压很低,蒸发速度也较小。钨的化学性质很稳定,常温时不跟空气和水反应,不溶于盐酸、硫酸、硝酸和碱溶液。溶于王水以及硝酸和氢氟酸的混合液。高温下能与氯、溴、碘、碳、氮、硫等化合,但不与氢化合。钨的主要物理性质如下:元素符号: W原子序数: 74稳定同位素及其所占百分比: 180(0.14);182(26.41); 183(14.40);184(30.64);186(28.41)原子体积:(立方厘米/摩尔) 9.53相对原子质量: 183.85元素在太阳中的含量:(ppm) 0.004%元素在海水中的含量:(ppm) 0.000092%自由原子的电子层结构: 1s22s22p63s23p63d104s24p64d104f145s25P65d46S2原子体积: 9.53 cm3/mol 原子半径: 137皮米外围电子排布: 5d46s2钨有两种变型,α和β。在标准温度和常压下,α型是稳定的体心立方结构。β型钨只有在有氧存在的条件下才能出现。它在630℃以下是稳定的,在630℃以上又转化为α钨,并且这一过程是不可逆的。
钨的熔点
2017-06-06 17:50:00
钨的熔点为:3380℃ 其沸点可达到 5927℃ 。接下来我们在来更深入的了解一下什么是钨。钨是一种金属元素。原子序数74。钢灰色或银白色,硬度高,熔点高,常温下不受空气侵蚀;主要用途是制造灯丝和高速切削合金钢、超硬模具,也用于光学仪器,化学仪器方面 tungsten;wolfram——元素符号W。钨是属于有色金属,也是重要的战略金属,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的金属,熔点极高,硬度很大。钨是稀有高熔点金属,属于元素周期表中第六周期(第二长周期)的VIB族。钨是一种银白色金属,外形似钢。钨的熔点高,蒸气压很低,蒸发速度也较小。钨的化学性质很稳定,常温时不跟空气和水反应,不加热时,任何浓度的盐酸、硫酸、硝酸、氢氟酸以及王水对钨都不起作用,当温度升至80°—100°C 时,上述各种酸中,除氢氟酸外,其它的酸对钨发生微弱作用。常温下,钨可以迅速溶解于氢氟酸和浓硝酸的混合酸中,但在碱溶液中不起作用。有空气存在的条件下,熔融碱可以把钨氧化成钨酸盐,在有氧化剂(NaNO3、NaNO2、KClO3、PbO2)存在的情况下,生成钨酸盐的反应更猛烈。高温下能与氯、溴、碘、碳、氮、硫等化合,但不与氢化合。目前世界上开采出的钨矿,约50%用于优质钢的冶炼,约35%用于生产硬质钢,约10%用于制钨丝,约5%其他用于其他用途。钨可以制造枪械、火箭推进器的喷嘴、切削金属的刀片、钻头、超硬模具、拉丝模等等,钨的用途十分广泛,涉及矿山、冶金、机械、建筑、交通、电子、化工、轻工、纺织、军工、航天、科技、各个工业领域。钨是稀有金属,也是重要的战略物资。我国是产钨大国,钨资源储量520万吨,占世界总储量的65%,产量及出口量均居世界第一。湖南、江西、河南三省的钨资源储量居全国的前三位,其中湖南、江西两省的钨资源储量占全国的55.48%。湖南以白钨为主,江西以黑钨为主,其黑钨资源占全国黑钨资源总量的42.40%。钨的熔点或是其他更多有关金属方面疑问,请登入上海有色网查询。
铋的最终精炼
2019-01-04 09:45:48
一、最终精炼机理
氯化精炼为可逆的置换反应。为了除去残留的比铋更易氧化的痕迹元素,如氯、锌、锑、碲、铁、铅等,必须进行最终精炼。
最终精炼实质上为碱性精炼,将重量为铋量的1%~2%的固体碱加入除氯后铋液中,并加入KNO3(或NaNO3)2~5千克,压缩空气搅拌,某厂最终精炼杂质除去情况如图1所示。图1 最终精炼杂质去除程度
从图1可见,以除氯效果显著,对除残锌、残铁亦有效,而对脱除残铅作用不大。这大概是由于铅与铋的氧化物的自由焓较接近,而铅与铋之间又能生成稳定的金属间化合物之故。
最终精炼时锌首先氧化,被NaOH吸收入渣,为了加强氧化效果,在铋液中加入少量KNO3(NaNO3),生成锌酸盐以除去残锌。
若含铅高于0.001%,则需补充通氯脱铅,直至合格。
二、最终精炼实践
最终精炼在实践中又分“高温法”与“低温法”两种。
高温法是将最终精炼温度控制在680~720℃,加入料重0.5%~1%的NaOH和1~2千克KNO3,向除氯后铋液中鼓入压缩空气搅拌约2小时后捞渣,取样分析铅与银,至铅低于0.001%,银低于0.003%为合格。然后加入少量固体碱熔化后覆盖液面,降温至300~400℃铸锭。精铋采用立模浇铸,铸模内部尺寸为370×140×30毫米,每块重约15.6千克。
低温法是将精炼温度控制在550℃左右,其它操作与技术条件与高温法类似。实践证明,采用低温法不影响质量,并可降低燃料消耗,延长精炼锅使用寿命。
某厂最终精炼渣成分如表1所示。
表1 最终精炼渣成分(%)精铋表面呈玫瑰红金属光泽,无夹渣、无气孔、无毛翅。某厂为使精铋表面呈银白色,增加“做表面”工序。将合格后铋液,降温至320~340℃,加入0.2~0.5千克氯化铵,2~5分钟后,取样观察表面呈银白色,即可出锅铸型。
通过直接火法精炼,可产出1号或2号精铋。精铋的国家标准如表2。
表2 精铋的国家标准GB915-84
铋的转炉熔炼
2019-01-04 09:45:29
炼铋转炉与铜冰铜吹炼炉不同,仅外形有某些相似,炼铋转炉采用厚16~20毫米锅炉钢板焊成圆筒状,外有两筋状钢轮包围筒体,水平安置在四对滚轮上,滚轮安装在铸钢底座上,底座固定在钢筋混凝土基础上。圆筒有两个端盖钢板,并在圆筒一端靠近支承轮旁有一大齿轮圈,大齿轮圈是转动机构的主动轮。电动机经减速箱传动驱动小齿轮,小齿轮与大齿轮啮合,从而通过电机运转驱动转炉炉体。
炼铋转炉实际上是一旋转式熔炼炉,不需要如吹炉似的一排风口。炉体用镁砖砌筑,其结构如图1所示。图1 铋转炉的一般构造
1-烟道;2-托圈;3-风口;4-炉口;5-大齿圈;6-油口;
7-小齿圈;8-减速箱;9-转动电机;10-后托轮;11-前托轮
一、转炉的构造及主要尺寸
转炉由炉体、燃油装置、炉口、转动装置、炉尾烟道、余热利用设备等主要部分组成。
(一)炉体。炉体为圆筒形,卧式,用锅炉钢板焊成,两端钢板与圆筒用螺钉联结固定,一端设重油燃烧孔,一端炉尾烟道与水平固定烟道相接。
(二)重油燃烧系统。采用100号重油作燃料。燃烧系统包括下述主要设备:齿轮油泵、流量计、压力式温度计、电加热器、减压阀、低压油嘴等。
(三)炉口。炉口在转炉中部,如图1所示。炉口有两个作用:炉料从炉口装入炉内:熔体(粗铋、冰铜、炉渣)从炉口放出。
(四)转动装置。用4.5千瓦电动机经减速箱后,以6分/转的转速转动炉体至任意位置。
(五)炉尾烟道。转炉炉头安装重油喷嘴,炉尾设烟道排送烟气,炉尾烟遭与水平固定烟道之间,用法兰盘螺钉密封联接,其联接部位示意图如图2所示:图2 铋转炉烟道接口示意图
1-固定部分;2-转动部分;3-接口部分
(六)余热利用设备。转炉炉尾烟气温度在1150℃左右,在水平固定烟遭中安装套管式换热器,如图3所示。图3 套管式换热器示意图
1-水平烟道;2-换热器;3-喷流孔
冷空气从内管进入换热器,经管壁无数小孔呈喷流状态喷在被炉尾烟气加热的外管壁,实现热交抉,被预热的空气经夹套送入重油燃烧系统。套管式换热器可将空气预热到300℃以上,供重油燃烧用。
二、转炉作业基本条件
(一)炉料与装科方法铋转。铋炉多用来进行氧化铋渣的还原熔炼。这是由于转炉便于操作,炉温易于调节,所以处理氧化铋渣时可以减少产生炉结,即使生成炉结也易于处理。转炉产出冰铜含铋高,可以返炉再炼。最近某厂已将转炉用于处理铋精矿及混合料,正在探索最佳技术条件。
转炉备料及装料方式与反射炉大致相同,采用地坑配料,箕斗盛装,卷扬提升至炉顶。不同之处是转炉不另置进料口,而是转动炉体使炉口朝上,将箕斗内的炉料直接倒入炉内。进料后,再将炉口转至水平位置。
(二)燃料及燃烧方法。转炉可采用重油、粉煤、天然气作燃料,铋转炉多采用重油,因为重油发热量高、灰分极少,设备投资省。重油需先预热至80~100℃,并用98066.5~196133帕油泵送入喷嘴。一般采用低压喷嘴,喷嘴的内管输送燃料、夹套间输送1373~1961帕的压缩空气。重油燃烧所需空气的3%~6%随重油一道喷入炉内,其余绝大部分空气从喷嘴周围大气中吸入炉内。低压喷嘴的一般构造如图4所示。图4 低压油嘴的构造示意图
1-固定螺丝;2-重油喷头;3-油量调节器
三、转炉熔炼实践
转炉熔炼包括备料、熔炼、出炉等步骤。
(一)备料。处理氧化铋渣时,其配料比控制在:氧化铋渣100%,纯碱3%~4%,煤粉3%,黄铁矿20%~30%,萤石粉3%~4%。处理返炉冰铜时,其配料比为:返炉冰钢100%,煤粉3%。纯碱3%~4%,黄铁矿15%,萤石粉酌情加入。处理铋精矿及混合料时,其配料比可参考反射炉配料比。
各工序操作时间与温度的控制如表1。
表1 转炉各工序操作时间与温度(二)熔化。采用低压喷嘴燃烧重油。由于是周期性作业,每炉升温前要点火。点火可用木柴或煤气点火,点火时操作人员应站在油嘴两侧,先开风后开油,点火后遂渐加大风量与油量,使炉温逐渐上升。风油比控制为每千克重油耗10米3风量,油压应大于0.39×106帕,当用压缩空气雾化时,风压应大子0.39×106帕,当用蒸汽雾化时,蒸汽压力应大干0.59×106帕。
在熔化过程中必须经常观察炉料熔化情况,根据具体情况翻动炉料或转动液面。炉料完全熔化后,为了使还原反应完全,可加入煤粉后翻动炉料,再封好炉口继续熔化。
(三)出炉。出炉包括放渣、放冰铜,放铋合金(粗铋),放渣时不许停风停油,保持高温放稀渣,溜口要清理得又宽又平,缓慢转动炉体,使渣流出时薄而慢,经常取样观察,炉内粘渣、浮砖要及时抓出,不让在炉内形成炉结。放渣后要清理干净炉口,将炉口转至水平位置。为了降低冰铜含铋,可加入部分铁屑,用铁扒搅匀后升温。放冰铜时速度应稍快,但要防止粗铋流出,要经常采样观察。放完冰铜后降温,直至炉内残存之冰铜冷凝成固体后,再放粗铋,放到斗内的粗铋上的浮渣,要及时捞干净。
四、转炉故障及排除
(一)炉结。转炉炉结与反射炉炉结大体相同,主要是由黄渣组成,因为氧化铋渣含砷高达2%左右,而加入黄铁矿后,热分解产生FeS,FeS被纯碱氧化成FeO,FeO在转炉熔炼温度下,当炉内局部气氛含CO高于70%时,可以还原为金属铁。
金属铁与氧化铋渣中被还原的砷一道组成黄渣。黄渣的处理方法与反射炉大致相同,由于转炉燃料是重油,炉温较反射炉更易掌握,所以炉结较易排除。
(二)重油燃烧的主要故障及预防
1、点不着火的原因是无油或油中渗水过多、烧嘴服堵塞、温度不够、风量过大、重油闪点过高。预防法是重油须经滤油器过滤、点火时确认有油喷出,雾化空气量必须适当。
2、火焰不稳定的原因是重油粘度过大、燃烧器喷嘴过大、风压,油压不稳定。预防法是提高加热温度、选用适当的油嘴砖、设置减压阀。
3、回火的原因是重油闪点过低、油灰过大、一次空气压力不够。预防法是选用合适的燃烧器,观察雾化状况及喷出速度,防止排气管堵塞。
4、积炭结焦包括喷口及油嘴砖积炭结焦。原因是由于预热温度过高、喷射不良、油含碳高而引起喷嘴结焦;而油嘴砖扩散度不够、喷嘴喷射角度太陡、重油雾化不够是造成油嘴砖结焦的原因。对积炭结焦要经常检查,及时清理。
谁创造了“合成金属”这个术语?
2019-03-04 10:21:10
掺杂共聚合物,以及其他具有金属导电性的有机材料,一般称为组成金属。这个名词经过Alan Mac Diarmid“组成金属:有机聚合物的新式效果”为人们所熟知。该术语也能够在专门介绍这些材料的Elsevier杂志和世界组成金属科学技能会议上看到。“组成金属”这个术语运用的时刻现已满足长,所以很少有人质疑它的来源。因而,回忆一下这一术语的来源前史是有必要的。
人们以为靠前次运用这个术语是Alfred Ubbelohde在1969年开端的。在Weinberg的关于Ubbelohde的列传中能够找到一个明显的案例:“Ubbelohde发明了诱人的表达”组成金属,是包含金属传导材料发明的,但这些材料又完全由非金属原子如碳、氮、氢、卤素和氧组成的。但事实上,这个术语的呈现早于Ubbelohde,这能够在1911年的Herbert Mc Coy的着作中找到。
Herbert Newby Mc Coy(1870-1945)于1898年在芝加哥大学取得博士学位,并在前往工厂之前具有犹他州和芝加哥的职位。虽然他为人所熟知的是稀土化学专业的研讨,但也被以为是经过电解(CH3)4N+盐在1911年靠前位制备有机金属的人。这可追溯到1808年关于合金的报导,McCoy以为复原铵能够显现类似于的金属性质。
运用电极,电解发生类似于钠齐的具有金属光泽的固体。虽然不是很安稳,但被确以为是具有金属导电性的铵自由基的齐。Mc Coy总结道:“效果刚被检查过,虽然数量很少,但很有或许制备复合金属物质,就是称为组成金属的物质,而且这些组成元素中至少一部分对错金属的。”1986年,Bard和搭档以为,这些产品实际上是由复原NH4+(Hg4-)发生的的Zintl离子盐。因而,这些不是较初以为的有机金属,而似乎是“组成金属”的来源。该术语随后在文献中不再运用,直到1969年Ubbelohde运用它描绘插层石墨时再次呈现。
Alfred Rene Ubbelohde(1907-1988)1941年被牛津大学颁发D.Sc. 学位,之后在皇后大学和帝国学院担任学术职位,他的研讨生计触及一系列科研方向,包含石墨和插层化合物,金属氢,相变材料和离子熔体。Ubbelohde报导的嵌入石墨显现出高达2.5×105Scm-1的电导率,因而成为供给金属有机物质的靠前实例。他在1951年初次描绘这些材料,但直到1969年才将它们描绘为组成金属。1969年的论文中报导的电导率明显高于他曾经的陈述,这或许是为什么他会用这个术语来描绘这些后来的材料的原因。不管什么原因,这个词之后成为他的着作中的干流,这导致了人们信任是他发起了这个词。
那么,到底是Ubbelohde独立开发了“组成金属”这一词,仍是在Mc Coy的作业中学到了它,并简略地将它应用于自己的作业。这个问题是不或许有定论的,虽然Ubbelohde的列传能够供给一些头绪,可是需求留意的是,Ubbelohde从来没有宣称这个术语是他自己的,他也从不界说这个术语。他总是运用这个术语,就好像它是一个已知的术语,不需求解说。例如,他在1969年靠前篇论文中靠前句话说到:“跟着出产近抱负石墨的办法的开展和操控逐步形成插层化合物的办法的改善研讨,这些组成金属中电荷载流子行为的改变是有或许的,会比研讨天然金属的可运用性的状况愈加具体。”
这个术语没有被解说,他也没有供给参阅内容。虽然Mc Coy从未被提及,但应该留意的是,Ubbelohde在1951年宣布了2篇关于铵齐的论文,这与Mc Coy的组成金属原文是相同的论题,因而他了解Mc Coy的作业似乎是合理的。虽然这不能被证明,笔者以为,Ubbelohde是从Mc Coy那学习到这个术语的,而且没有独登时开展它。假如这个说法是正确的,那Ubbelohde从未参阅或供认Mc Coy的原因将依然是一个令人困惑的奥妙。
在20世纪70年代初,发现了别的的金属材料,包含有机电荷转移盐、金属链化合物和聚硫氮化物。因为这项研讨覆盖了一系列科学和地舆学科,1976年的夏天在匈牙利的希奥福克举办了一个研讨会,将这些跨学科研讨人员集合在一起。从此发生了一个长时间的世界会议,即世界组成金属科学和技能会议,一般称为ICSM。该会议自1976——1982年每年举办一次,1982年后每2年举办一次。
1976年11月,研讨人员发现经过掺杂聚薄膜能够得到高导电性材料,Mac Diarmid、Heeger和Shirakawa初次在纽约市的第二届ICSM会议上陈述了这一研讨。这一研讨结果随后呈现在1977年底的文献中,然后扩展了组成金属的规模,即包含掺杂的聚。虽然该术语并未用于原始的聚论文中,但Mac Diarmid在1979年的谈论文章中界说了组成金属是衍生于自聚硫氮化物,聚和石墨的金属化合物。跟着导电聚合物的持续开展,该术语在1991年得到进一步延伸,包含掺杂聚合物,如聚对、聚亚基亚乙烯、聚、聚和聚。
到1979年10月,一份新的Elsevier杂志被推出,专门报导这些材料,名为组成金属。到目前为止,这依然是的有机导电材料杂志。
组成金属的前史能够追溯到比一般以为的愈加长远。此外,因为咱们的导电材料概念在曩昔50多年中也发生了改变,因而“组成金属”这一术语所代表的材料自从初次运用以来也发生了改变。但是,在所有状况下,这些材料都契合Mc Coy较早在1911年提出的组成金属是用来表明“复合金属物质从组成元素来看,其间至少部分元素对错金属的”这一观念。
硫化矿酸浸的工业应用高温氧化酸浸
2019-03-06 09:01:40
一、高温氧化酸浸
高温氧化酸浸是指温度在200 — 230℃,压力在4~6 MPa条件下进行浸取。此刻硫化矿的硫都氧化为硫酸根,黄铜矿的总浸取反响能够写作:
2CuFeS2+H2SO4+8.5O2 ==== 2CuSO4+Fe2(SO4)3+H2O
共生的黄铁矿在这样的浸取条件下也被浸出,在酸度较低时,高铁离子水解生成赤铁矿,发生硫酸,如下式:
Fe2(SO4)3+3H2O ==== Fe2O3+3H2SO4
按此反响计量比核算,氧化每公斤硫需氧气2.12kg。如一种精矿含Cu 26%、Fe 31.3% 、S36%,则溶出每公斤铜需氧气2.93kg。在不同温度和pH值及氧化条件下,铁还能够沉积为针铁矿FeOOH,酸型黄铁矾(H3O)Fe3(SO4)2(OH)6以及碱式硫酸铁Fe (OH)SO4。可是因为这些沉积组成不一样,发生的硫酸量也不同。如生成(H3O)Fe3(SO4)2(OH)6的反响为:
3Fe2(SO4)3+14H2O ==== 2(H3O)Fe3(SO4)2(OH)6+5H2SO4
每摩尔Fe3+水解发生的酸(H+)仅为5/3mol,而生成赤铁矿时,每摩尔Fe3+水解发生的酸(H+)为3mol。
铁沉积的稳定性影响到浸取渣排放的安全间题,以赤铁矿的稳定性最好,不会进一步水解释出酸,遇石灰不反响。碱式硫酸铁等与石灰反响,铁离子进一步水解。因而不管生成碱式硫酸铁或许酸型的黄铁矾(H3O) Fe3(SO4)2(OH)6,当从渣中化提金时,石灰耗费量往往很大。
二、黄铜矿和混合矿的酸
加拿大谢尔特•高登(Sherritt Gordon)在1954年成功将加压浸应用于镍黄铁矿浸取的一同,也进行了许多酸浸研讨。他们研讨过一种混合的镍黄铁矿—黄铜矿—磁黄铁矿的浸取,成分为:Ni 10%、Cu5% 、Fe 30%、S 30%。当温度在210℃和氧分压700kPa时,镍和铜的浸取率可到达99%。
20世纪90年代,科明科(Cominco)工程服务公司、佩莱•瑟侗(Placer Dome)公司、通用黄金资源公司 (General Gold Resources) 等试验过高温浸取黄铜矿的工艺。如试验研讨了斑岩铜矿、黄铜矿、黄铜矿—斑铜矿混合矿(含Cu 41.4%、Fe 22.2%、S 28.0%)等的浸取,在200~210℃,2MPa氧分压下,60 min,铜浸取率都在99%左右。浸出液含铜36~78g/L、硫酸40~31 g/L、铁小于lg/L。
三、高杂质含黄铜精矿的酸浸
在高温氧化酸浸时,砷、锑、秘等金属与铁一同沉积。在高温酸浸一种黑黝铜矿为主的精矿时,样品成分为:Cu 26.5%、Sb 13.2%、 As 6.8%、Fe 2.0%、Zn 2.9%、S 19.4% 、Ag 0.27%,事前参加硫酸亚铁,使Fe/(As+Sb)=1.5/1(mol )。在220℃和600kPa的氧分压下,铜和锌的浸取率别离到达95.4%和95.0%。渣用氯化物溶液浸取银,浸出率到达95.4%。
除了生成铁
Fe2(SO4)3+2H3AsO4 ==== 2FeAsO4+3H2SO4
铁离子和根还生成碱式盐
2Fe2(SO4)3+2H3AsO4+(2+n)H2O ==== 2Fe2(AsO4)(SO4)OH·nH2O+4H2SO4
常见的含砷、锑铜矿除了黑黝铜矿(Cu12Sb4S13),还有硫砷铜矿(Cu3AsS4)、砷黝铜矿(Cu12As4S13)。高压浸取一种含(%):Cu 22.6、Sb 0.5、As 8.6、Fe 18.0、S 35.4、Ag 61g/t、Au 844g/t的精矿。在200℃经3h浸取或220℃下浸取1h,硫的氧化率到达99%,简直悉数的锑及多于94%的砷沉积到渣中。铜的浸取率在95%~98%,是因为溶解的铜又生成了一种含有Fe-Cu-As-S-O的沉积。进步浸取温度,生成的不稳定硫酸盐沉积量增大,在化时耗费更多的石灰。220℃的渣化浸金时耗费石灰达130kg/t,而200℃的浸取渣仅耗费50kg/t。金的化回收率在87%~96%之间。银的回收率很低,是因为构成银的黄铁矾盐的原因。
四、孔科拉流程
孔科拉矿石的首要铜矿藏是辉铜矿、斑铜矿,其次才是黄铜矿。因而它的精矿的特色是:高铜,低硫,低铁和高硅,而且含有钴矿藏,所以在熔炼时有必要配人黄铁矿和石灰。可是,这些特色使它十分合适选用加压浸取。孔科拉深部矿样中斑铜矿占铜矿藏的22%、辉铜矿18%、黄铜矿11%、铜蓝5%,首要脉石是钾长石(19%)、石英石(8%)和云母。钴首要以硫铜钴矿与铜矿藏共存。
南非的盎格鲁·阿美利加研讨室(AAC)受托付就孔科拉矿的冶炼,并结合恩昌加的难冶矿的使用,提出了一个酸的供需坚持平衡的联合湿法流程,流程图见图1。图1 孔科拉工程的流程
AAC的试验总共取了6个不同的钦可拉难冶矿样,其间一种典型的成分和孔科拉精矿样品一同列于表1。在进行了充沛的小试验之后,依照上述流程图进行接连的中间工厂试验,规划为4kg/h精矿和2kg/h难冶矿。氧化剂为纯氧。硫化矿加压浸取和难冶矿的两段常压浸出条件均见表2。
表1 孔科拉精矿和钦可拉难冶矿典型成分成分%CuCoFeAlMgCaMnNiSiZnCO3S孔科拉精矿41.440.46.513.010.880.350.0210.222约15难冶矿1.030.060.945.263.480.580.1429.70.022.48表2 孔科拉流程中试浸取条件矿藏工序温度/℃停留时间/h总压/kPa氧分压/kPa硫化矿分化碳酸盐6532300700加压浸取2001难冶矿一段常压302二段常压656
图2是浸取进程到达稳态时,各个取样点的铜、铁、钻和游离酸的均匀浓度散布。取样点1、2为碳酸盐分化前后的成分,当参加酸后,铜和铁都有显着的溶出,游离酸升至49g/L.取样点3至8别离是高压釜6个室的样品,因为样品是从200℃的釜中放出的,取样时有很多蒸汽蒸发,釜中溶液的浓度约为图中浓度乘以0.8后的数值。9是取自减压槽的样品。图2 孔科拉流程浸取进程中各首要成分的浓度散布这些结果标明,在釜中浸出的铁很快氧化、水解,然后沉积。沉积包含赤铁矿和铁的碱式硫酸盐。酸首要耗费于铜和钴的浸出反响,固体样品的分析标明,铜约在40mim时已浸出结束,而钴浸取则需求60min才干完结。铜矿藏的浸出次序为:斑铜矿>辉铜矿>铜蓝>黄铜矿。
铋的氧化精炼实例
2019-01-21 18:04:55
除铜后之铋液,升温至680~750℃,鼓入压缩空气,使砷、锑氧化挥发,作业时间根据粗铋中砷、锑含量而定,一般为4~12小时,至白烟稀薄,铋液表面出现氧化铅渣时,则为除砷、锑的终点。在操作中如渣覆盖液面时,可酌情捞出,以免影响气体挥发逸出,渣稀时,可加入少量固体碱或谷壳、木屑,使渣变干,便于捞渣。除砷、锑氧化渣量,约为料重的4%~8%。氧化渣组成列于下表。
表 氧化精炼渣成分(%)