由纯钨酸钠溶液转型制备纯钨酸铵溶液
2019-03-05 09:04:34
一、有机溶剂萃取法转型
(一)基本原理
1、莘取剂。钨萃取工艺中,常用的萃取剂主要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。
在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁酯(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表1。
表1 某些萃取剂萃钨的功能注:N235-三烷基胺;N263-季胺盐。
在用有机胺时,先用无机酸(常用H2SO4)与有机相效果,使胺生成胺盐,例如用2~3mol∕L H2SO4效果,则:用H2SO4≥5mol∕L效果时,则:2、萃钨进程。先用无机酸(如H2SO4)将Na2WO4溶液酸化至pH=2.5~3.0,钨以(HW6O21)5-、(H2W12O40)6-、(W12O39)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。
关于叔胺萃钨(Ⅵ)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1∶3~1∶2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2WO4溶液pH=1~3条件下,用体积比为:% Alamine336∶癸醇∶火油为7∶7∶86的有机相萃钨(Ⅵ)的通式为:依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12O40H2)6-、(W6O21H)5-(低钨浓度下)和(W12O40)8-。
当Na2WO4溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12O40)4-、(PW12O40)3-、(AsW12O40)3-与叔胺生成的萃合物是密度大于1g∕cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。
3、反萃进程。为了直接获得(NH4)2WO4溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:可见,虽然有机相中萃合物的组成不同,但都是1mol钨耗费2mol氮。所用的浓度一般为3~4mol∕L NH4OH,反萃终了的平衡水相应保持在pH=8.5左右。
(二)工业实践
用叔胺萃钨的准则流程参见图1。图1 从粗Na2WO4溶液制取钨化合物准则流程图
叔胺萃钨工艺中各阶段的条件及目标见表2。
表2 叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取比较(o∕a)=1,混合2~3min,温度25~40℃,3~5级逆流钨萃取率大于99%,萃余液中低于0.1g∕L WO3①有机相φ∕%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol∕L;
②Na2WO4料液:(WO3)90~100g∕L,pH=2.5~3
③萃取洗剂和反洗剂为纯水;
④酸化剂为(H2SO4)0.1~0.2mol∕L
⑤反萃剂为(NH4OH)3~4mol∕L萃洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中WO3含量低于0.5g∕L反萃取比较(o∕a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流反萃取率大于99%,反萃液中250~300g∕L WO3反洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中低于0.5g∕L WO3酸化比较(o∕a)=5,混合2~3min,温度25~40℃,2~3级逆流 纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。
工艺条件:
有机相φ∕%;20叔胺,20异辛醇,60火油;
料液组成/(g·L-1);(WO3)45~55;(Mo)0.03~0.05;(SiO2)0.03~0.06;(F-)0.1;(NaCl)50~60。
设备。萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高10m,有两个弄清区,脉冲频率50次∕min,振幅20min,塔总体积30m3,生产才能按两相总计为50m3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o∕a)为(5~10)∶1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。
钨和其他成分在流程中的分配见表3。
表3 钨和其他成分在流程中的分配 (g∕L)美国联合碳化物公司用苏镇压煮所得的Na2WO4溶液为55~110g∕L WO3,2.1~4.5g∕L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51. 8g∕L WO3,0.0012g/L Mo,0.75g∕L SiO2。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较O∕A为1,洗刷比较(O∕A)为 1∶0.75。然后用3mol∕L NH4OH反萃钨,比较(O∕A)为1∶(1~1.1)。将反萃液循环至(NH4)2WO4溶液中WO3浓度为225g∕L停止。这时反萃液中含0.4g/L SiO2以上。将溶液在55℃和2.7mol∕L NH4OH条件下弄清约1.5h,使SiO2沉积分出。萃取和反萃取均在50℃下进行。
中科院赵由才等曾研讨用伯胺及磷酸三丁酯(TBP)为萃取剂别离钨酸钠或钼酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。
二、离子交流法转型
乌兹别克斯坦某厂使用活动床经过AH-80П树脂将经典法净化所得的Na2WO4溶液转型为(NH4)2WO4,其准则流程见图2。图2 用AH-80П将Na2WO4溶液转型的流程
—树脂运动道路;----各种溶液运动道路
1-吸附柱;2-洗刷柱;3-解吸柱;4-再生柱:5-交流后液贮槽;
6-中和槽;7-(NH4)2WO4液贮槽;8-中和槽;9-过滤器
Na2WO4溶液含125g∕L WO3;0.01~0.08g∕L Mo;≤0.05g∕L P、As;115~135g∕L NaCl+Na2CO3;pH=2.5~3.0。溶液中钨主要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80П树脂(Cl-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1∶(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g∕cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含WO3 0.02g∕L,WO3吸附率达99.95%。饱满WO3的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g∕L HCl再生成Cl-型后,进行再吸附。
依据测定当溶液中WO3浓度为15~20g/L时,AH-80П的全改换容量达1g干树脂吸附1610mg WO3,比经典的人工白钨酸分化再溶的工艺WO3回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。
在生产条件下,当用HNO3系统,则树脂亦可用BП-14K型。
三、沉积人工白钨-酸分化法转型
其实质是将净化除杂后的Na2WO4溶液首要参加CaCl2使Na2WO4转化为CaWO4沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:生成的CaWO4(又称人工白钨)再与HCl效果转化为H2WO4,H2WO4进而用NH4OH溶解得(NH4)2WO4溶液。
从钨酸盐溶液中除钼
2019-03-05 09:04:34
现在许多用户对钨制品中钼含量约束十分严苛,我国GB 10116-88规则0级APT含钼量应不超越20×10-6,因而钨冶金中除钼为重要的工序之一。
在钨冶金中,视原猜中钼含量的不同以及详细工艺流程的不同,除钼可能是从Na2WO4溶液或净化转型所得的(NH4)2WO4港液或APT结晶母液中除掉(当原猜中钼含量很少时)。现在研讨的除钼办法甚多,但在工业中使用最广的都是根据钨、钼对硫的亲和力的不同,首要在pH=7.5~8的条件下(对(NH4)2WO4溶液面言,pH值提至pH=10~11)向溶液中参加S2-,此刻,MoO42-与S2-作用:而WO42-根本不变,因而使溶液中钨和钼别离以WO42-、MoO4-nSn2-形状存在,然后使用两者性质的差异进行别离,现在已工业化的别离工艺为:
一、选择性沉积法从钨酸盐溶液中除钼、砷、锡、锑
作者首要用量子化学核算的办法开始找出WO42-与MoO4-nSn2-在微观性质上的差异,再用分子规划办法定向寻觅,发现参加M115对MoS42-有特殊的亲和力,构成沉积进入渣相,而WO42-不反响,保留在溶液中,经过滤后,钨钼到达高效别离。与此一起发现SnO32-、AsO43-、SbO43-等亲硫元素的含氧阴离子都能被硫化成硫代酸根离子,因而也能一起除掉。本工艺的特点是:
(一)适用性广,能从各种钨酸盐溶液(包含Na2WO4溶液、(NH4)2WO4溶液及APT结晶母液等)中一次性除掉上述多种杂质。
(二)除钼率高,对原始溶液中钼含量根本上没有约束,工业条件下其除钼作用如表1所示。
(三)WO3回收率高,沉钼渣中含Mo15%~20%,WO32%~4%,相当于除掉1kg Mo丢失0.2~0.3kgWO3,对含1g∕L Mo、200g∕L WO3的溶液而言,回收率达99.8%~99.90%。
本工艺在我国钨冶金技术市场中占有率已达72%。
表1 选择性沉积法除钼的工业生产成果二、离子改换法
根据强碱性阴离子交流树脂上的胺功用团对MoO4-nSn2-的亲和力比WO42-大,故将WO42-、MoO42-混合液加S2-转化后,用凝胶型或大孔型强碱性阴离子交流树脂吸附,钼优先吸附在树脂相,改换后液则为含钼很少的钨溶液。对吸附有MoO4-nSn2-的树脂则加氧化剂如NaClO、H2O2等进行解吸,其反响为:因而MoO4-nSn2-变成MoO42-解吸。其首要参数和目标如下:
(一)料液制备进程
对(NH4)2WO4料液含WO3∶100~250g∕L,pH=9~10,S2-参加量按生成MoS42-计过量0.57~1.43g/L,40~90℃保温1~2.5h。再在室温保温10-16h。
(二)除钼进程
当除钼进程在离子交流柱进步行时:吸附流速2~8cm∕min,至钼穿透停止。淋洗钨溶液含NH4Cl 1~3mol∕L,pH=8.5~1.3,流速2~8cm∕min。解吸钼选用NaClO+NaCl溶液(其间NaCl浓度为0.5~3.5mol∕L,NaClO浓度为含有效氯1~15g∕L)或H2O2的碱性液,pH=11~14。
使用上述氧化剂将树脂上吸附的MnO4-nSn2-氧化为MoO42-和SO42-,然后完成将其解吸的意图。
(三)除钼作用
当溶液中Mo∕WO3=0.05%左右,交流后液Mo∕WO3约为0.005%。
(四)回收率
当溶液中Mo∕WO3=0.05%左右,钨进入交流后液的回收率为85%~90%,进入淋洗液为7%~8%。钼进入解吸液回收率为87%~96%。
因为在离子交流柱进步行时,交流容量小,一起解吸进程氧化速度很慢。因而,肖连生等进行了改善,将除钼的吸附进程在移动床中进行,而将氧化解吸在流化床内进行,大幅度提高了交流容量和解吸速度,交流容量达Mo 70kg∕m3树脂,WO3的丢失相当于1kg WO3∕kg Mo。
三、MoS3沉积法
(一)根本原理
上述硫化后的溶液加HCl中和到pH=2.5~3,则MoS42-。成MoS3沉积,然后与钨别离,反响为:(二)工业实践
MoS3沉积法除钼的操作进程、设备及首要操控条件、净化目标综合于表2中。
表2 三硫化钼沉积法除钼的工业实践操作进程及设备首要操控条件净化目标在耐酸珐琅反响锅中将Na2WO4溶液加热至70~80℃,参加理论量125%~150%的NaHS,拌和2~2.5h,用3~5mol∕L的HCl(若除钼后直接用萃取法则用2~3mol∕L H2SO4)中和至pH=2.5~3,煮沸1.5~2h后用耐酸真空抽滤器过滤MOS42-转化阶段:pH=7.2~7.3,温度为70~75℃,时刻为2~2.5h,NaHS加量为确保转化后溶液中游离S2-浓度1.5~3g∕L;MoS3沉积阶段:pH=2.5~3,煮沸时刻1.5~2h除钼率98%~99%,或除钼后的溶液中Mo∕W=0.01%~0.05%;钨的回收率大于98%
硫化钼沉积法除钼的缺陷是除钼作用欠佳,钨的回收率较低,一起放出有毒气体H2S,因而只适宜于含钼较低的Na2WO4溶液,故在我国已被筛选。
四、有机溶剂萃取法除钼
现在用萃取法除钼的计划繁复,其间较老练的为季铵盐萃取,其实质是先参加S2-使溶液中MoO42-转化为MoS42-后,以季铵盐作萃取剂萃取钼,其反响为:富钼的有机相用次溶液反萃,使MoS42-氧化成MoO42-;进入溶液(与离子交流法除钼的解吸进程类似),反萃后有机相回来萃取。
黄蔚庄等处理的料液成分为WO3 75~85g∕L、Mo 0.03~0.17g∕L、pH=8.2~8.4,经硫化后萃取,有机相为1.2% N263+20%TBP,其他为火油,反萃剂为0.3 mol∕L NaOH和30g/L NaCl的次溶液,选用6级逆流萃取,二级逆流反萃,萃余液中Mo∕WO3≤0.01%,进程中WO3丢践约0.5%,有机相丢践约3L∕WO3。除上述办法外,现在研讨的钨钼别离办法繁复,详细可参看参考文献。
纯钨化合物的制取—从钨酸盐溶液中除钼
2019-02-13 10:12:38
现在许多用户对钨制品中钼含量约束十分严苛,我国GB 10116-88规则0级APT含铝量应不超越20×10-6,因而钨冶金中除钼为重要的工序之一。 在钨冶金中,视原猜中钼含量的不同以及详细工艺流程的不同,除钼可能是从Na2W04溶液或净化转型所得的(NH4)2W04溶液或APT结晶母液中除掉(当原猜中铝钼含量很少时)。现在研讨的除钼办法甚多,但在工业中使用最广的都是根据钨、钼对硫的亲和力的不同,首要在pH =7.5~8的条件下(对(NH4)2W04溶液而言,pH值提至pH =10~11)向溶液中参加S2-,此刻,Mo042-与S2-作用: Mo042-+4S2-+4H20 ==== Mo042-+80H- Mo042-+nS2-+nH20 ==== Mo04-nSn2-+2nOH-而WO42-根本不变,因而使溶液中钨和钼别离以WO42-、Mo04-nSn2-+形状存在,然后使用两者性质的差异进行别离,现在已工业化的别离工艺为: A 选择性沉积法从钨酸盐溶液中除钼、砷、锡、锑 作者首要用量子化学核算的办法开始找出WO42-与Mo042-在微观性质上的差异,再用分子规划办法定向寻觅,发现参加M115对Mo042-有特殊的亲和力,构成沉积进入渣相,而WO42-不反响,保留在溶液中,经过滤后,钨钼到达高效别离。与此一起发现SnO32-、AsO43-、SbO43-等亲硫元素的含氧阴离子都能被硫化成硫代酸根离子,因而也能一起除掉。本工艺的特点是: (1)适用性广,能从各种钨酸盐溶液(包含Na2W04溶液、(NH4)2 W04溶液及APT结晶母液等)中一次性除掉上述多种杂质。 (2)除钼率高,对原始溶液中钼含量根本上没有约束,工业条件下其除钼作用如表1所示。表1 选择性沉积法除钼的工业生产成果料液品种批量/(m3·批-1)料液成分/(g·L-1)净液成分/(g·L-1)离子交流解吸顶峰液32.50.892090.0041982×10-5钨酸铵溶液14.50.552260.0122126×10-5离子交流解吸顶峰液18.03.72100.0122006×10-5离子交流解吸顶峰液10.00.042200.0012105×10-5离子交流解吸顶峰液5.02.451800.0071704×10-5离子交流解吸顶峰液7.00.72100.0062003×10-5APT结晶母液400.12300.00529
(3) W03回收率高,沉钼渣中含Mo15%~20% , W032%~4%,相当于除掉lkg Mo丢失0.2~0.3kgW03,对含lg/L Mo、200g/L W03的溶液而言,回收率达99.8%~99.9%。 本工艺在我国钨冶金技术市场中占有率已达72%。 B 离子交流法 根据强碱性阴离子交流树脂上的胺功用团对Mo04-nSn2-的亲和力比WO42-大,故将W042- ,Mo042-混合液加S2-转化后,用凝胶型或大孔型强碱性阴离子交流树脂吸附,钼优先吸附在树脂相,交流后液则为含钼很少的钨溶液。对吸附有Mo04-nSn2-的树脂则加氧化剂如NaC10、H202等进行解吸,其反响为: Mo04-nSn2-+4nNaC10+nH20 ==== Mo042-+nS042-+2nH++4nNaC1因而Mo04-nSn2-变成Mo042-解吸。其首要参数和目标如下: a 料液制备进程 对(NH4) 2 WO4料液含W03:100~250g/L, pH = 9~10, S2-参加量按生成MoS42-计过量0.57~1.43g/L,40~90℃保温1~2.5h。再在室温保温10~16h。 b 除钼进程 当除钼进程在离子交流柱进步行时:吸附流速2~8cm/min,至钼穿透停止。淋洗钨溶液含NH4Cl 1~3 mol/L,pH=8.5~13,流速2~8cm/min 。解吸钼选用NaC10+NaCl溶液(其间NaCl浓度为0.5~3.5 mol/L,NaC10浓度为含有效氯1~15 g/L)或H202的碱性液,pH=11~14。 使用上述氧化剂将树脂上吸附的Mo04-nSn2-氧化为Mo042-和SO42-,然后完成将其解吸的意图。 c 除钼作用 当溶液中MO/W03=0.05%左右,交流后液MO/W03约为0.005%。 d 回收率 当溶液中MO/W03 =0.05%左右,钨进入交流后液的回收率为85%~90%,进入淋洗液为7%~8%。钼进入解吸液回收率为87%~96%。 因为在离子交流柱进步行时,交流容量小,一起解吸进程氧化速度很慢。因而,肖连生等进行了改善,将除钼的吸附进程在移动床中进行,而将氧化解吸在流化床内进行,大幅度提高了交流容量和解吸速度,交流容量达Mo 70kg/ m3树脂,W03的丢失相当于lkg W03/kg Mo。 C MoS3沉积法 a 根本原理 上述硫化后的溶液加HCl中和到pH =2.5~3,则MOS42-成MoS3沉积,然后与钨别离,反响为: MOS42-+2HCl ==== MoS3+H2S+2C1- b 工业实践 MoS3沉积法除钼的操作进程、设备及首要操控条件、净化目标综合于表2中。
表2 三硫化钼沉积法除钼的工业实践操作进程及设备首要操控条件净化目标在耐酸珐琅反响锅中将Na2WO4溶液加热至70~80℃,参加理论量125%~150%的NaHS,拌和2~2.5h,用3~5mol/L的HCl(若除钼后直接用萃取法则用2~3mol/L H2SO4)中和至pH=2.5~3,煮沸1.5~2h后用耐酸真空抽滤器过滤MoS42-转化阶段:pH=7.2~7.3,温度为70~75℃,时刻为2~2.5h,NaHS加量为确保转化后溶液中游离S2-浓度1.5~3g/L;MoS3沉积阶段;pH=2.5~3,煮沸时刻1.5~2h除钼率98%~99%,或除钼后的溶液中Mo/W=0.01%~0.05%;钨的回收率大于98%
硫化钼沉积法除钼的缺陷是除钼作用欠佳,钨的回收率较低,一起放出有毒气体H2S,因而适宜含钼较低的Na2W04溶液,故在我国已被筛选。 D 有机溶剂萃取法除钼 现在用萃取法除钼的计划繁复,其间较老练的为季铵盐萃取,其实质是先参加S2-使溶液中的MoO42-+转化为MoS42-后,以季铵盐作萃取剂萃取钼,其反响为: 2(R3CH3N)+Cl-+MoS42- ==== (R3CH3N)2+MoS42-+2C1- 富钼的有机相用次溶液反萃,使MoS42-氧化成MoO42-进入溶液(与离子交流法除钼的解吸进程类似),反萃后有机相回来萃取。 黄蔚庄等处理的料液成分为W0375~85 g/L、Mo 0.03~0.17g/L、pH=8.2~8.4,经硫化后萃取,有机相为1.2% N263 +20% TBP,其他为火油,反萃剂为0.3 mol/L NaOH和30g/L NaCl 的次溶液,选用6级逆流萃取,二级逆流反萃,萃余液中MO/W03≤0.O1%,进程中W03丢践约0.5%,有机相丢践约3L/tW03。
钨尾矿回收钨、铋、钼实例
2019-01-21 18:04:37
棉土窝钨矿是以钨为主的含钨铜铋钼的多金属矿床,在棉土窝钨矿每年选钨后所产生的磁选尾矿(选厂摇床得到的钨毛砂,经抬浮脱硫、磁选选钨后的尾矿)中,含Bi20%、WO310%~20%、Mo1.45%、SiO230%~40%,铋矿物以自然铋、氧化铋、辉铋太及少量的硫铋铜矿、黄铁矿、辉钼矿、褐铁矿以及石英、黄玉等。镜下鉴定表明,钨铋矿物互为连生较多,钨矿物还与黄铜矿、褐铁矿及脉石连生,也见有辉铋矿被包裹在黑钨矿粒中,极难实现单体解离。尾矿取样测定的粒度组成和单体解离度见表1、表2。从表中可以看出,试样中+0.074mm的产率仍占75.55%,且3种主要矿物也主要分布在+0.074mm的粒级中。
表1 试样粒度筛析结果粒级/mm产率/%品位/%占有率/%个别累计BiWO3MoBiWO3Mo-0.63+0.3218.6318.6323.5420.841.2719.1018.4717.76-0.32+0.1634.2556.8822.5819.611.3933.6731.9535.73-0.16+0.07424.6777.5522.0321.001.3723.6624.6525.37-0.074+0.049.4687.0123.9523.031.339.8710.379.44-0.0412.99100.0024.2223.561.2013.7014.5611.70原矿100.00 22.9621.021.33100.00100.00100.00
表2 试样单体解离度测定粒级/mm解离度/%黑钨矿铋矿物- 0.63+0.3259.969.4-0.32+0.1662.871.50.16+0.07482.282.0-0.074+0.0491.589.8-0.0498.596.4
选厂根据小型试验结果在生产实践中采用重选-浮选-水冶联合流程(见图1)处理磁选尾矿,综合回收钨、铋、钼。考虑到磁选尾矿中含硅高达30%~40%,远远超过了铋精矿的含硅标准(小于8%),故在选铋作业前先用摇床重选脱硅,重选精矿经磨矿分级后,进入浮选作业,先浮易浮的钼和硫化铋,后浮难浮的氧化铋;为进一步回收浮选尾矿中的微粒铋矿物及铋的连生矿物,在常温下对得到的浮选尾矿(钨粗精矿)进行浸出,再通过置换而得到合格的铋产品和剩下的钨粗精矿产品。生产实践表明,通过该工艺可得到含铋分别为36%和71%的硫化铋精矿和氯氧铋,铋的总回收率高达95%,还得到了含钨36%、回收率90%的钨粗精矿,使选钨厂的总回收率提高了2%
图1 铋钨综合回收流程
铋的硅氟酸溶液电解
2019-03-04 11:11:26
铋的电解液由与铋组成,所用阳极是经开始火法精粹的粗铋。开始火法精粹首要包含两个工序:榜首工序是熔析除铜后加硫拌和除铜、铅,然后用洗刷脱硫;第二工序是用惯例的碱性精粹与氧化精粹除砷、锑。
阳极选用立模浇铸,阴极选用铜板,悬挂在电解槽中,在直流电效果下,发作下列反响:铋的溶液电解工艺流程图如图1所示。图1 铋的溶液电解工艺流程
各种杂质在电解中的行为与在氯化溶液中类似,不用造液。电解液含铋在80~100克/升,H2SiF8 330~350克/升,室温,当电流密度40~80安/米2时,槽压0.3伏,阴极分出纯度达99.9%。
日本住友公司国富冶炼厂曾选用电解精粹铋、阳极的典型分析为Bi 98.77%,Pb 0.12%、Ag 0.022%、Cu 0.032%、As 0.03%、Sb 0.026%。选用笔直型阳极浇铸机铸成挂耳型阳极,每块重约为70千克,阳极袋套用聚料。运用18个衬沥青的钢筋混凝土电解槽,尺度为:长×宽×深=3350×760×850毫米。28块阳极,24块阴极,板距离为130毫米。电解液含铋40克/升,游离330~350克/升,每出产一吨铋加胶一克,电解的总电流为850安,总电压4.5伏,选用硅整流器,槽电压0.2伏,电流密度60安∕米2,电流效率93%,残极率约40%,阳极泥率0.5%,分出铋洗刷后脱落熔化铸成5千克锭。电铋质量为:铋高于99.99%,铜与铅均为2ppm,铁与锌均为3ppm,微量银、砷、锑。
含钒溶液的钒酸钙、钒酸铁盐沉淀法
2019-01-24 14:01:24
钒酸钙、钒酸铁盐沉淀法主要用于从低浓度含钒溶液中回收钒。
一、钒酸钙法
加入CaCl2、Ca(OH)2、CaO,随溶液pH值的变化而生成不同的沉淀。pH值10.8~117.8~9.35.1~6.1沉淀物正钒酸钙焦钒酸钙偏钒酸该Ca3(VO4)2CaV2O7Ca(VO3)2溶解度小小稍大
通常在强烈搅拌下逐渐加入沉钒剂,加Ca2+后 等杂质也会进入沉淀,硅胶也混入沉淀。最经济有效地沉淀物位焦钒酸钙,沉钒率一般可达97%~99.5%。
二、钒酸铁沉淀法
用铁盐或亚铁盐作沉淀剂,在弱酸性条件下,将含钒溶液倒入硫酸亚铁溶液中,并不断搅拌、加热,便会析出绿色沉淀物。由于二价铁会部分氧化成三价铁,V2O5会部分还原成V2O4,所以沉淀物的组成多变,其中包括Fe(VO3)2、Fe(VO3)3、VO2·xH2O、Fe(OH)3等。若沉淀剂采用FeCl3或Fe2(SO4)3,则析出黄色xFe2O3·yV2O5·zH2O沉淀。本法钒的沉淀率可达99%~100%。
钒酸铁及钒酸钙均可作冶炼钒铁的原料,或作为进一步提纯制取V2O5的原料。
钨尾矿中回收铜、钼实例
2019-02-21 12:00:34
赣州有色金属冶炼厂钨精选车间建于1954年投产,首要选用干式磁选、重力抬浮、白钨抬浮、浮选和电选加工处理江西南部中小型钨矿及全省民窿出产的钨锡粗精矿、中矿,设计能力为30t/d,收回钨、锡、钼、铋、铜五种金属。在几十年的出产过程中,每天都有很多的尾矿排入尾矿坝储存,尾矿内仍含有多种有用金属矿藏,为充分利用矿产资源,完成老尾矿的资源化,精选车间对尾矿坝的尾矿进行了归纳收回铜、钨、银等有用金属的研讨并在出产实践中获得成功。
尾矿中首要金属矿藏有黄铜矿、辉铜矿、辉铋矿、黑钨矿、白钨矿、辉钼矿、黄铁矿、毒砂、磁黄铁矿等,非金属矿藏有石英、方解石、云母、萤石等,尾矿含泥较多,矿藏表面有细微氧化。各矿藏间铜铋连生且可浮性相近,黑钨和锡石、石英连生,贵金属银伴生在铅铋硫等硫等矿藏中。铜矿藏以黄铜矿为主,呈细密状,部分解离。尾矿藏料粒径为-0.043mm+0.010mm,有用矿藏根本解离。物料松懈密度1.8g/cm3,密度2.76g/cm3。尾矿多元素分析成果见表1,物料筛析成果见表2。由表2可看出矿藏粒度特性,细粒级较多,其间-0.104mm+0.074mm占49.92%,且有用金属三氧化钨、铜在该粒级中别离占55.41%、56.08%,物猜中含砷、铁、硫、铋高且和铜矿藏可浮性相近,以至于浮选铜档次难以富集进步。
表1 尾矿多元素分析成果 (%)成分CuWO3SnZnBi白WO3AsAgFeSiO2S质量分数2.025.471.063.671.352.222.150.0258.93024.08
表2 物料筛析成果粒级/mm产率/%档次/%金属散布率/%单个累计WO3CuWO3Cu+0.4953.893.893.270.742.321.44-0.495+0.3515.548.433.910.813.251.83-0.351+0.2467.4615.893.991.285.454.77-0.246+0.17511.3427.233.562.047.4011.55-0.175+0.12411.0238.253.201.786.469.80-0.124+0.1042.9241.173.202.011.702.93-0.104+0.07449.9291.096.052.2555.4156.08-0.074+0.0434.8695.959.542.158.505.21-0.0434.05100.0012.813.169.516.39算计100.00 5.492.01100.00100.00
在小型实验和工业实验的基础上,断定尾矿再选的出产流程(见图1)为尾矿进行脱渣脱药后进入分级磨矿,浮选中选用一粗二扫三精得出铜精矿,浮选尾矿经摇床丢掉石英等脉石后经弱磁除铁再送湿式强磁选机选别得出黑钨细泥精矿和白钨锡石中矿,黑钨细泥送本厂钨水冶车间出产APT,铜精矿外销。
图1 尾矿再选出产实践流程图
出产流程中的工艺条件见表3,出产指标见表4。
由计算财务报表查得,自1994年7月至1996年7月两年时刻共收回铜金属56.2t,钨细泥金属47.6t,银292kg,价值138.32万元,获得效益52.96万元。
表3 出产测定工艺条件作业称号工艺条件(药剂用量单位g/t原矿)脱药3600磨矿质量分数58%,-0.074mm占77%,石灰3800,水玻璃2000浮选拌和质量分数30%,钠1400,硫酸锌1400,丁基黄药120,丁黄腈酯50浮选粗选火油30,松醉油60,pH8.5~9浮选精选Ⅱ钠1600,硫酸锌1600,石灰1000浮选扫选Ⅱ丁基黄药60,丁黄腈酯20重选丢尾质量分数20%,冲程12mm,冲次310r/min弱磁除铁质量分数30%,磁场强度1.15×105A/m湿式强磁选质量分数28%,布景场强11.94×105A/m,磁空隙1.45mm
表4 出产测定成果 (%)原矿档次精矿档次收回率CuAgWO3铜精矿钨细泥精矿CuAgWO31.990.0325.57CuAgWO313.410.147923.6483.8858.2341.16
白钨矿(Scheelite)(又称钨酸钙矿)
2019-01-21 10:39:06
Ca[WO4]
【化学组成】由于W和Mo离子半径几乎相等,因此,白钨矿中W与Mo为完全类质同像,成
为白钨矿—钼钨矿系列。高温时,Mo含量高;与辉钼矿共生的白钨矿中,Mo含量也高。部分的Ca可被Cu和TR代替。
【晶体结构】四方晶系;a0=0.525nm,c0=1.140nm;Z=4。白钨矿晶体结构简单,是由稍扁平的[WO4]四面体和Ca离子沿c轴相间排列而成。
【形态】晶体常呈四方双锥,也有的沿{001}呈板状(图H-22)。依(110)成双晶普遍。集合体多呈不规则粒状,较少呈致密块状。
图H-22白钨矿晶体
【物理性质】白色、黄白、浅紫等,油脂光泽或金刚光泽;透明至半透明。解理{111}中等;断口参差状。硬度4.5~5。相对密度5.8~6.2(相对密度随Mo的增加而降低)。性脆。具发旋旋光性,在紫外光照射下发浅蓝色至黄色(依Mo的含量而定,Mo增加,荧光变浅黄至白)的荧光。
【成因及产状】主要产于接触交代矿床。也可见于高—中温热液矿床。
【主要用途】重要钨矿石矿物。
Na2WO4溶液净化除磷、砷、硅、氟
2019-03-06 09:01:40
Na2WO4溶液中的硅、磷、钼、氟、锡等杂质有必要预先除掉。按现在生产工艺,一般要求净化后的Na2WO4溶液(含WO3150g∕L)的杂质含量标准如下:Mo<0.05g/L;As<0.01g∕L;P<0.01g∕L;Si<0.05g∕L。现在化学净化工艺杂质除掉率随溶液质量而异,对分化标准精矿的溶液而言,除Sn、S可高达99.9%,除Si可高达98%~99%,而P为95%~99%,As为85%~90%。
一、基本原理
(一)除硅。在Na2WO4碱性溶液(pH=14左右)中,硅一般以SiO32-存在,用酸或将溶液中和至pH=8~9,则50%以上的硅以H2SiO3沉积除掉,剩余的在镁盐沉积时除掉,中和除硅反应为:
此刻,溶液中的Na2SnO3,也水解成Sn(OH)4沉积除掉: 为避免构成胶态H2SiO3,除硅作业应在煮沸条件下进行,有时还参加少数聚酰胺作絮凝剂。
(二)除磷、砷、氟。除磷、砷、氟是使用它们能与Mg2+构成难溶的Mg3(PO4)2、Mg3(AsO4)2和MgF2沉积除掉,或能与Mg2+、NH4+构成溶度积更小的MgNH4PO4、MgNH4AsO4沉积除掉。其首要反应为: 上述难溶化合物的溶度积见表1。
表1 磷、砷、硅、氟的某些镁盐的溶度积 二、工业实践
工业上镁盐法和铵镁盐法的操作过程、工艺条件、设备、首要操控要素综合于表2中。
表2 镁盐法和铵镁盐法工业实践办法操作过程及条件、设备首要操控要素优缺陷镁盐法在搅搅拌煮沸条件下用3~4mol∕L HCl或Cl2,中和至游离NaOH 1±0.2g∕L,煮沸20~30min,参加密度1.16~1.18g∕m3的MgCl2液至游离NaOH0.2~0.4g∕L,煮沸30min,澄精过滤。首要设备为钢制蒸汽加热搅拌槽和压滤机温度:煮弗
终究pH=9左右为宜长处:一次性沉积过滤
除磷、砷、硅,操作简略
缺陷:渣量及WO3丢失铵镁盐法在搅搅拌煮沸条件下用3~4mol∕LHCl或Cl2中和至游离NaOH 4~5g∕L,煮弗30min后加NH4Cl液至pH=8~9,沉积过滤硅渣。加NH4OH至滤液pH=10~11,参加核算量MgCl2液,在50℃左右搅抖30~60min,弄清过滤在陈硅阶段,温度及pH值的操控同上。在除磷、砷阶段,pH值过低时磷、砷的铵镁盐会水解生成溶解度较大的磷、砷氢镁(pH=7左右),乃至生成钨的铵钠复盐沉积(pH=6左右)长处:渣量控WO3丢失小,除杂作用比镁盐法好
缺陷:需二次沉积过滤
操作较繁
镁盐法产出的磷砷渣经NaOH煮洗后,其渣成分(干量)为:2%~9% WO3,0.4%~1.4%As,0.3%~0.5% P,3.8%~16.7% SiO2,30.3%~44.4% MgO。
氧化矿石中综合回收钼及钨
2019-02-12 10:08:00
我国是世界上钨储量最多的国家。论成因,多属气化高温热液矿床。其间,石英脉型是价值最大、最重要的钨矿床。在钨矿石中,矿藏组成反常杂乱,首要金属矿藏除黑钨矿、白钨矿外,尚伴生有锡石、辉钼矿、黄铜矿、辉铋矿等多种矿藏。伴生的硫化矿藏含量,常常能到达归纳收回的价值。含多种硫化矿藏的钨矿石中,钨与钼的赋存联系有两种:
(1)钼以类质同象部分替代钨而进入了钨矿藏。鉴于钨的硫化态矿化很少见,类质同象产品往往为含钼白钨矿或钨-钼钙矿(钼-钨钙矿或含钨的钼钙矿则是钨替代钼钙矿中钼的产品)。此刻,钼作为钨矿藏中有价伴生元素存在。
(2)钼矿藏与钨矿藏伴生。此刻,钼矿藏作为钨矿石中有价伴生矿藏存在。
对类质同象已进入钨矿藏中的钼,是无法用惯例选矿别离的;对钨矿石中伴生的氧化态钼矿藏,也是难于用惯例选矿工艺别离的。它们随钨矿藏选别进入钨精矿,再在深度加工时别离、提取。
含多种硫化矿藏的钨矿石,伴生的辉钼矿由全硫浮选产出的混合精矿分选获取合格钼精矿。因为钨矿藏是首要有价矿藏,选矿工艺应首要考虑钨矿藏的收回。一般,联合重、浮、磁、电多种手法才干到达分选意图。随钨矿藏品种、粒度、嵌布联系等,联合流程组合也不同,见下图。
图 含多金属硫化物的钨矿石选矿准则流程图
其间:图a适于钨矿藏含量高、粒度粗、矿藏组成简略的矿石。从矿泥收回钨可用浮选法,也可用重选法(翻床、皮带溜槽等)。图b适于细粒嵌布、矿藏组成杂乱或硫化矿藏含量高的钨矿石。从浮选尾矿中收回钨矿藏的工艺亦可用浮选,也可用重选。图c适于钨矿藏与硫矿藏共生亲近,呈集合体嵌布易选的钨矿石。对含很多磁铁矿的钨矿石,流程中应增设磁选工艺。对含稀有金属氧化物(如独居石等),重砂还须加电选别离、收回之。
全硫浮选所产出的混合硫精矿的别离。参加在碱性介质可抑制铜、锌、铁的硫化矿藏,浮选钼、铋(铅)混合精矿;再加诺克斯或在弱酸性介质用抑铋、铅,浮选辉钼矿;用石灰抑硫捕收铜矿藏。然后,使Mo、Bi、Cu、Fe的硫化物得以别离。钼产品经屡次精选,可获合格钼精矿。并能获多种硫化精矿。[next]
含钨的钼矿石,在浮选辉钼矿的一起,亦可从浮选尾矿中经过重选或浮选,归纳收回伴生的白钨矿或黑钨矿,其工艺比较简略。
在同一矿藏中的钨-钼组分的别离,往往须在深加工中完结。
用作钢铁的合金添加剂时,伴生的钼(或钨)也是钢铁有利组分,一般不再别离而直接使用。
作为金属或化工原料,钨制品中的钼,或钼制品中的钨,常常作为有害元素而严加操控。所以,此刻的钨-钼别离不只是归纳收回的手法,也是净化产品的必要手法。
工业上,从钨-钼浸出液中别离钨钼有用的办法是沉积三硫化钼(MoS3)。
当一起含有MoO42-与WO42-离子的浸液参加(Na2S)后,会发生如下反响:
Na2WO4 + 4NaHS ←→ Na2WS4 + 4NaOH
Na2MoO4 + 4NaHS ←→ Na2MoS4 + 4NaOH
K(平衡常数)=〔Na2RS4〕〔NaOH〕4〔Na2RO4〕〔NaHS〕4
因为KMo》KW生成硫代钼酸钠远比生成硫代钨酸钠简单得多。当参加的(Na2S)量只够使Na2MoO4硫化成Na2MoS4时,钨酸钠很少被硫化。再将浸液酸化,使pH=2.5~3.0,此刻硫代钼酸钠分化,分出溶解度很低的三硫化钼(MoS3):
Na2MoS4 + 2HCl → MoS3 + 2NaCl + H2S↑
为避免生成硫代钨酸钠而分出三硫化钨(WS3),要操控Na2S加人量仅为理论值的82%~83%(因酸化还会生成含氧的硫化钼(MoOxS3~x)。
从含8~10g/tMo与100~120g/t WO3,溶液中沉积钼时,沉积的硫化物中含5%~10%WS3。将该沉积在苏打中溶解后再用Na2S重复沉积MoS3,可获含WO3
溶液脱钼后,可参加苛性钠(NaOH)煮沸,损坏偏钨酸盐,再经除硅和除磷,就可制取钨酸或仲钨酸铵等化工产品了。
此刻产出的钨酸或仲钨酸铵还含少数钼酸或仲钼酸铵。进一步的净化,一般选用浓缩、分步结晶法:使用仲钨酸盐的溶解度比仲钼酸铵的小,溶液蒸腾60%液体后,55%仲钨酸铵晶出,而钼只分出12%。重复浓缩、分步结晶,就可将仲钨酸铵中的钼降至很低。
用以上工艺可满足地取得钨-钼的别离。它不只适用于钨-钼类质同象矿藏,也适于各种含钼的钨精矿。