您所在的位置: 上海有色 > 有色金属产品库 > 硅钨酸水合物 > 硅钨酸水合物百科

硅钨酸水合物百科

锑的氧化物及其水合物

2019-02-11 14:05:30

一、三氧化二锑及亚锑酸    Sb4O6为白色立方晶体,熔点929K,沸点1698K。和磷的氧化物相同,三氧化二锑也是以Sb4四面体为结构根底的,以Sb4O6方式存在的分子晶体,其结构和P4O6类似。 Sb4O6是偏碱性的氧化物,难溶于水,易溶于酸和碱。                              Sb2O3+3H2SO4Sb2(SO4)3+3H2O                                Sb2O3+2NaOH2NaSbO2+H2O    亚锑酸盐在碱性介质中是一个较强的还原剂: [H3SbO6]4-+H2O+2eSbO2-+5OH-         ψBθ=-0.4V 二、及锑酸 为淡黄色粉末,是偏酸性氧化物,难溶于水,不溶于硝酸溶液,但溶于碱生成锑酸盐。如溶于KOH溶液生成锑酸钾K[Sb(OH)6],锑酸钾是判定Na+的试剂。锑酸   H[Sb(OH)6]是一元酸(K=4.0×10-6),它与同周期的H6TeO6、H5IO6有相同的结构,都是六配位八面体结构,并且它们互为等电子体。锑酸及其盐最杰出的性质是氧化性,且从As、Sb到Bi,其+Ⅴ氧化态的氧化性顺次增强。 H[Sb(OH)6]+2HClH[Sb(OH)4]+Cl2+2H2O

什么是可燃冰?中国首次海域天然气水合物(可燃冰)试采成功

2019-03-07 09:03:45

我国初次海域天然气水合物(可燃冰)试采成功!据央视新闻今日(18日)征引国土资源部我国地质调查局音讯,这标志着我国成为全球榜首个完结了在海域可燃冰试挖掘中取得接连安稳产气的国家。中央国务院对海域天然气水合物试采成功发去贺电。 可燃冰,学名天然气水合物(Natural Gas Hydrate,简称GasHydrate),是散布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下构成的类冰状的结晶物质。因其外观像冰相同并且遇火即可焚烧,所以又被称作“可燃冰”或许“固体瓦斯”和“气冰”。 焚烧后,可燃冰仅会生成少数的二氧化碳和水,污染比煤、石油、天然气小许多,但能量高出十倍。此外,可燃冰储量巨大,所含有机碳资源总量相当于全球已知煤、石油和天然气总量的两倍,被国际公认为石油、天然气的顶替动力。 我国统辖海域和陆区也蕴藏有丰厚的可燃冰资源,因而走近、知道可燃冰显得含义特殊。 正式出气至今 已累计产出超12万立方米含量高达99.5%的天然气 据央视新闻报道,我国南海北部的神狐海域,也是我国正在进行的可燃冰试挖掘的现场。这个继续不断焚烧的火焰,就是正在从1000多米的水下分化提取出的可燃冰所发生的气体。这标志着我国初次试挖掘得到了全面成功。 国土资源部地质调查局在本年2月标明,现在我国现已初步查明我国可燃冰的资源潜力,本年,我国将展开海上可燃冰的试挖掘。 经过勘查,2016年,在我国海域,已圈定了6个可燃冰成矿前景区,在青南藏北已优选了9个有利区块,据猜测,我国可燃冰前景资源量超越1000亿吨油当量,潜力巨大。 国土资源部我国地质调查局资源点评部负责人邢树文说,可燃冰在我国的海域圈定了一系列的找矿前景区,也猜测了资源量。本年咱们正在活跃进行这方面的试采预备。 南海北部神狐海域的天然气水合物试挖掘现场距香港约285公里,采气点坐落水深1266米海底下200米的海床中。自5月10日正式出气至今,已累计产出超12万立方米含量高达99.5%的天然气。完结接连超一周的安稳产气,标志着我国进行的初次天然气水合物试采宣告成功。 我国地质调查局副总工程师、天然气水合物试采现场总指挥叶建良标明,从5月10日正式出气试焚烧成功,到现在为止,咱们现已接连挖掘八天了,日产超越一万方以上,最高日产到达了3.5万方,这种接连安稳的出气,到达了咱们本来预订的方针。 可燃冰,是由天然气和水在高压低温的条件下构成的类冰状的结晶化合物,猜测资源量相当于已发现煤、石油、天然气等化石动力的两倍以上,是国际公认的一种清洁高效的未来代替动力。 因绝大部分埋藏于海底,所以可燃冰挖掘难度非常巨大。现在,日本、加拿大等国都在赶紧对这种未来动力进行试挖掘测验,但都因种种原因未能完结或未到达接连产气的预订方针。 此次试挖掘成功,不只标明我国天然气水合物勘查和开发的核心技能得到验证,也标志着我国在这一范畴的归纳实力到达国际顶尖水平。 国土资源部我国地质调查局副局长李金发:这一次天然气水合物的试挖掘成功,咱们是优先抢占了领跑和技能高地,完结了我国在天然气水合物开发上的领跑。它将会是继美国引领页岩气革新之后的,由我国引领的天然气水合物革新,将会推进整个国际动力使用格式的改动。 我国可燃冰挖掘技能领跑国际 日均安稳产气超越一万方,以及继续超一周的接连产气时刻,这两个方针在之前还没有一个国家可以成功完结。而完结这一历史性的腾跃,我国科学家们又是在怎么做到的呢? 天然气水合物的试挖掘一直是一项国际性难题。2013年日本曾测验进行过海域天然气水合物的试挖掘作业,尽管成功出气,但六天之后,因为泥沙堵住了钻井通道,试采被逼中止。 李金发说,榜首每日试采的取气量要到达一万方以上,第二是接连产气一周。咱们一切的方针都超越了预订方针,所以我国是国际海域天然气水合物开发成功的榜首个国家。 为完结这一方针,我国科学家使用降压法,将海底本来安稳的压力下降,然后打破了天然气水合物储层的成藏条件,之后再将涣散在相似海绵空地中相同的可燃冰集合,使用我国自主研制的一套水、沙、气别离核心技能最终将天然气取出。 叶建良受访时标明,咱们这次运用了地层流体抽取法,从单纯考虑降压变成了重视流体的抽取,经过确保流体的抽取来完结安稳的降压。降压计划充分体现了优越性,也是确保咱们这次试采成功一个关键因素,这也是在国际上从理论到技能办法的一个立异。

纯钨化合物的制取

2019-01-07 07:51:26

为从碱分解钨矿物原料所得的粗钨酸钠溶液制取纯APT或WO3,原则上都要完成下列任务:净化除去杂质P、As、Si;将钨由Na2WO4溶液形态转型为(HH4)2WO4溶液,(NH4)2WO4溶液蒸发结晶得APT,此外还要经历除钼过程,为完成上述任务,常用的流程综合如图1所示,即常用的工艺有: (1)Na2WO4溶液经离子交换除P、As、Si并转型得纯(NH4)2WO4溶液后,结晶得APT。 (2)Na2WO4溶液用化学沉淀法除P、As、Si后再转型得(NH4)2WO4溶液,转型主要是用萃取法,亦有用离子交换法的。 (3)Na2WO4溶液用化学沉淀法除P、As、Si后再用经典法得APT,现已基本被淘汰。图1  从粗Na2WO4溶液制取纯钨化合物原则流程图

白钨矿(Scheelite)(又称钨酸钙矿)

2019-01-21 10:39:06

Ca[WO4] 【化学组成】由于W和Mo离子半径几乎相等,因此,白钨矿中W与Mo为完全类质同像,成 为白钨矿—钼钨矿系列。高温时,Mo含量高;与辉钼矿共生的白钨矿中,Mo含量也高。部分的Ca可被Cu和TR代替。 【晶体结构】四方晶系;a0=0.525nm,c0=1.140nm;Z=4。白钨矿晶体结构简单,是由稍扁平的[WO4]四面体和Ca离子沿c轴相间排列而成。 【形态】晶体常呈四方双锥,也有的沿{001}呈板状(图H-22)。依(110)成双晶普遍。集合体多呈不规则粒状,较少呈致密块状。   图H-22白钨矿晶体 【物理性质】白色、黄白、浅紫等,油脂光泽或金刚光泽;透明至半透明。解理{111}中等;断口参差状。硬度4.5~5。相对密度5.8~6.2(相对密度随Mo的增加而降低)。性脆。具发旋旋光性,在紫外光照射下发浅蓝色至黄色(依Mo的含量而定,Mo增加,荧光变浅黄至白)的荧光。 【成因及产状】主要产于接触交代矿床。也可见于高—中温热液矿床。 【主要用途】重要钨矿石矿物。

铋的硅氟酸溶液电解

2019-03-04 11:11:26

铋的电解液由与铋组成,所用阳极是经开始火法精粹的粗铋。开始火法精粹首要包含两个工序:榜首工序是熔析除铜后加硫拌和除铜、铅,然后用洗刷脱硫;第二工序是用惯例的碱性精粹与氧化精粹除砷、锑。 阳极选用立模浇铸,阴极选用铜板,悬挂在电解槽中,在直流电效果下,发作下列反响:铋的溶液电解工艺流程图如图1所示。图1  铋的溶液电解工艺流程 各种杂质在电解中的行为与在氯化溶液中类似,不用造液。电解液含铋在80~100克/升,H2SiF8 330~350克/升,室温,当电流密度40~80安/米2时,槽压0.3伏,阴极分出纯度达99.9%。 日本住友公司国富冶炼厂曾选用电解精粹铋、阳极的典型分析为Bi 98.77%,Pb 0.12%、Ag 0.022%、Cu 0.032%、As 0.03%、Sb 0.026%。选用笔直型阳极浇铸机铸成挂耳型阳极,每块重约为70千克,阳极袋套用聚料。运用18个衬沥青的钢筋混凝土电解槽,尺度为:长×宽×深=3350×760×850毫米。28块阳极,24块阴极,板距离为130毫米。电解液含铋40克/升,游离330~350克/升,每出产一吨铋加胶一克,电解的总电流为850安,总电压4.5伏,选用硅整流器,槽电压0.2伏,电流密度60安∕米2,电流效率93%,残极率约40%,阳极泥率0.5%,分出铋洗刷后脱落熔化铸成5千克锭。电铋质量为:铋高于99.99%,铜与铅均为2ppm,铁与锌均为3ppm,微量银、砷、锑。

苄基胂酸浮选黑钨和锡石细泥

2019-02-27 08:59:29

苄基胂酸是我国创始的黑钨和锡石细泥有用捕收剂。苄基肿酸和混合甲对黑钨的捕收功能极为类似,能够在相同的浮选流程和相同的药剂准则下相互替代运用,得到极为挨近的浮选成果。黑钨比严重,粗粒黑钨用重选法处理能够得到很高的目标但黑钨性脆,在采选过程中简单发生矿泥,重选法收回遭到粒度约束,对矿泥的处理目标较低,湖南、广东、江西一些摇床等重选法收回黑钨细泥的选厂,一般收回率只要20%-40%,适当一部分钨金属从矿泥丢失。用浮选法处理黑钨细泥,收回率比重选法高,因而用重选法处理粗粒矿砂,浮选法处理矿泥的重浮联合流程来进步选厂钨收回率是可取的。

纯钨化合物的制取—从钨酸盐溶液中除钼

2019-02-13 10:12:38

现在许多用户对钨制品中钼含量约束十分严苛,我国GB 10116-88规则0级APT含铝量应不超越20×10-6,因而钨冶金中除钼为重要的工序之一。    在钨冶金中,视原猜中钼含量的不同以及详细工艺流程的不同,除钼可能是从Na2W04溶液或净化转型所得的(NH4)2W04溶液或APT结晶母液中除掉(当原猜中铝钼含量很少时)。现在研讨的除钼办法甚多,但在工业中使用最广的都是根据钨、钼对硫的亲和力的不同,首要在pH =7.5~8的条件下(对(NH4)2W04溶液而言,pH值提至pH =10~11)向溶液中参加S2-,此刻,Mo042-与S2-作用:                                 Mo042-+4S2-+4H20 ==== Mo042-+80H-                               Mo042-+nS2-+nH20 ==== Mo04-nSn2-+2nOH-而WO42-根本不变,因而使溶液中钨和钼别离以WO42-、Mo04-nSn2-+形状存在,然后使用两者性质的差异进行别离,现在已工业化的别离工艺为:    A  选择性沉积法从钨酸盐溶液中除钼、砷、锡、锑    作者首要用量子化学核算的办法开始找出WO42-与Mo042-在微观性质上的差异,再用分子规划办法定向寻觅,发现参加M115对Mo042-有特殊的亲和力,构成沉积进入渣相,而WO42-不反响,保留在溶液中,经过滤后,钨钼到达高效别离。与此一起发现SnO32-、AsO43-、SbO43-等亲硫元素的含氧阴离子都能被硫化成硫代酸根离子,因而也能一起除掉。本工艺的特点是:    (1)适用性广,能从各种钨酸盐溶液(包含Na2W04溶液、(NH4)2 W04溶液及APT结晶母液等)中一次性除掉上述多种杂质。    (2)除钼率高,对原始溶液中钼含量根本上没有约束,工业条件下其除钼作用如表1所示。表1    选择性沉积法除钼的工业生产成果料液品种批量/(m3·批-1)料液成分/(g·L-1)净液成分/(g·L-1)离子交流解吸顶峰液32.50.892090.0041982×10-5钨酸铵溶液14.50.552260.0122126×10-5离子交流解吸顶峰液18.03.72100.0122006×10-5离子交流解吸顶峰液10.00.042200.0012105×10-5离子交流解吸顶峰液5.02.451800.0071704×10-5离子交流解吸顶峰液7.00.72100.0062003×10-5APT结晶母液400.12300.00529      (3) W03回收率高,沉钼渣中含Mo15%~20% , W032%~4%,相当于除掉lkg Mo丢失0.2~0.3kgW03,对含lg/L Mo、200g/L W03的溶液而言,回收率达99.8%~99.9%。    本工艺在我国钨冶金技术市场中占有率已达72%。    B  离子交流法    根据强碱性阴离子交流树脂上的胺功用团对Mo04-nSn2-的亲和力比WO42-大,故将W042- ,Mo042-混合液加S2-转化后,用凝胶型或大孔型强碱性阴离子交流树脂吸附,钼优先吸附在树脂相,交流后液则为含钼很少的钨溶液。对吸附有Mo04-nSn2-的树脂则加氧化剂如NaC10、H202等进行解吸,其反响为:                     Mo04-nSn2-+4nNaC10+nH20 ==== Mo042-+nS042-+2nH++4nNaC1因而Mo04-nSn2-变成Mo042-解吸。其首要参数和目标如下:    a  料液制备进程    对(NH4) 2 WO4料液含W03:100~250g/L, pH = 9~10, S2-参加量按生成MoS42-计过量0.57~1.43g/L,40~90℃保温1~2.5h。再在室温保温10~16h。    b  除钼进程    当除钼进程在离子交流柱进步行时:吸附流速2~8cm/min,至钼穿透停止。淋洗钨溶液含NH4Cl 1~3 mol/L,pH=8.5~13,流速2~8cm/min 。解吸钼选用NaC10+NaCl溶液(其间NaCl浓度为0.5~3.5 mol/L,NaC10浓度为含有效氯1~15 g/L)或H202的碱性液,pH=11~14。    使用上述氧化剂将树脂上吸附的Mo04-nSn2-氧化为Mo042-和SO42-,然后完成将其解吸的意图。    c 除钼作用    当溶液中MO/W03=0.05%左右,交流后液MO/W03约为0.005%。    d 回收率    当溶液中MO/W03 =0.05%左右,钨进入交流后液的回收率为85%~90%,进入淋洗液为7%~8%。钼进入解吸液回收率为87%~96%。    因为在离子交流柱进步行时,交流容量小,一起解吸进程氧化速度很慢。因而,肖连生等进行了改善,将除钼的吸附进程在移动床中进行,而将氧化解吸在流化床内进行,大幅度提高了交流容量和解吸速度,交流容量达Mo 70kg/ m3树脂,W03的丢失相当于lkg W03/kg Mo。    C  MoS3沉积法    a  根本原理    上述硫化后的溶液加HCl中和到pH =2.5~3,则MOS42-成MoS3沉积,然后与钨别离,反响为:                                   MOS42-+2HCl ==== MoS3+H2S+2C1-    b  工业实践    MoS3沉积法除钼的操作进程、设备及首要操控条件、净化目标综合于表2中。 表2   三硫化钼沉积法除钼的工业实践操作进程及设备首要操控条件净化目标在耐酸珐琅反响锅中将Na2WO4溶液加热至70~80℃,参加理论量125%~150%的NaHS,拌和2~2.5h,用3~5mol/L的HCl(若除钼后直接用萃取法则用2~3mol/L H2SO4)中和至pH=2.5~3,煮沸1.5~2h后用耐酸真空抽滤器过滤MoS42-转化阶段:pH=7.2~7.3,温度为70~75℃,时刻为2~2.5h,NaHS加量为确保转化后溶液中游离S2-浓度1.5~3g/L;MoS3沉积阶段;pH=2.5~3,煮沸时刻1.5~2h除钼率98%~99%,或除钼后的溶液中Mo/W=0.01%~0.05%;钨的回收率大于98%     硫化钼沉积法除钼的缺陷是除钼作用欠佳,钨的回收率较低,一起放出有毒气体H2S,因而适宜含钼较低的Na2W04溶液,故在我国已被筛选。    D  有机溶剂萃取法除钼    现在用萃取法除钼的计划繁复,其间较老练的为季铵盐萃取,其实质是先参加S2-使溶液中的MoO42-+转化为MoS42-后,以季铵盐作萃取剂萃取钼,其反响为:                           2(R3CH3N)+Cl-+MoS42- ==== (R3CH3N)2+MoS42-+2C1-    富钼的有机相用次溶液反萃,使MoS42-氧化成MoO42-进入溶液(与离子交流法除钼的解吸进程类似),反萃后有机相回来萃取。    黄蔚庄等处理的料液成分为W0375~85 g/L、Mo 0.03~0.17g/L、pH=8.2~8.4,经硫化后萃取,有机相为1.2% N263 +20% TBP,其他为火油,反萃剂为0.3 mol/L NaOH和30g/L NaCl 的次溶液,选用6级逆流萃取,二级逆流反萃,萃余液中MO/W03≤0.O1%,进程中W03丢践约0.5%,有机相丢践约3L/tW03。

氢还原钨氧化物制取钨粉的工艺

2019-03-05 09:04:34

金属钨粉是制取碳化钨基硬质合金及金属钨材的首要质料,当时制取金属钨粉的首要办法为钨氧化物氢复原法,WO3氢复原制取钨粉的反响为:有关进程的热力学和动力学原理,前人已进行了全面的研讨,积累了很多研讨成果,但考虑到当时钨粉的粒度和描摹是生产中的关键问题,为确保必定的粒度,复原进程往往是在远离平衡的条件下、依据制备特定粒度的要求,以操控工艺参数,因而这儿侧重介绍影响钨粉粒度的要素及其操控,有关热力学和动力学原理可参阅有关教科书。 一、钨氧化物复原进程中影响粒度的要素 (一)复原进程中颗粒长大的机理 在复原进程中生成钨粉的粒度随复原条件而异,即在某些条件,如高温、高湿度的条件下将发作长大,关于其长大机理,现在有多种观念,下面是两种首要的观念。 1、化学气相搬迁长大机理 水合钨氧化物具有比纯氧化钨高得多的挥发性。复原进程中首要水蒸气与氧化钨或细粒钨粉效果构成水合氧化钨,它通过气相搬迁到其他颗粒上再复原,然后导致颗粒长大。高温文湿氢复原具有最有利的化学气相搬迁条件。 2、氧化-复原机理 粉末颗粒愈细,比表面以及表面活性愈大,因而,细颗粒粉末有或许被气相的水蒸气或氧气氧化并生成挥发性水合氧化钨,然后进行化学气相搬迁,在较粗颗粒上被复原,使颗粒长大。 (二)影响粉末粒度和粒形改变的首要要素 1、温度 升高温度可加速复原反响,相应地添加水蒸气的生成速度,促进化学气相搬迁反响。促进颗粒长大和团粒化。 2、水蒸气分压 水蒸气是化学气相搬迁反响的基本条件,其量包含中含有的和复原反响中发生的水蒸气。它在复原进程中不是一个稳定值。对反响速度起效果的一切要素和影响分散进程的一切要素(如温度、粒层厚度、的流向和流速、粉末的粒度、舟皿的几许形状等)、推舟速度都影响水蒸气的实践分压进而影响到粉末粒度和描摹。温度及湿度(氢的露点)对WO2相对增长速度的影响见表1。 表1  在不同温度和温度下,WO2粒度的相对增长速度3、质料粉末的性状 研讨标明,氧化钨的复原活性对钨粉的粒度有显着的效果。复原活性大的质料简单得到细粒度钨粉。 4、杂质和添加剂 杂质元素对钨粉颗粒改变的影响,可分为三类: 第一类以碱金属为代表,它们能起氧的载体效果,延伸氧在粉末层内的停留时刻,促进化学气相搬迁反响,增强钨粉的颗粒长大。 第二类以钙、镁、硅为代表,它们对钨粉颗粒长大的效果不显着。 第三类以铝为代表,它们能在钨的晶体表面生成稳定性很高的氧化物薄层,按捺钨粉颗粒的长大。 5、操作准则 因为颗粒长大进程首要是发作在WO3复原成WO2的进程中,为得到细颗粒,必定要确保在复原的初期处于低温、低水蒸气分压状况。因而推舟速度过快,一方面使物料敏捷进入高温区,有利于WO2.9等颗粒长大,一起使复原速度加速,H2O蒸气浓度添加,这些都有利于颗粒的长大,因而为得到细颗粒一般要求推舟速度慢。一起炉内温度较低,温度梯度较小。 装舟量过多,料层过厚,将导致内部的水蒸气难以排出,使内部颗粒长大,一起导致上基层粒度不均匀。 二、氢复原钨氧化物制取钨粉的工艺 现在复原进程通常在回转式管状炉、四管马弗炉及多管炉中进行,相对而言,后者的温度均匀,产品粒度简单操控,且粒度均匀。 详细工艺有: (一)黄钨工艺,即以WO3为复原的质料。 (二)蓝钨工艺,即以蓝色氧化钨为质料。蓝色氧化钨是指WO3或APT在300~420℃下,在转炉内部分复原所得的产品,它的成分首要为WO2.9或铵钨青铜(ATB),亦或许含少数WO2.72乃至钨酸盐,用蓝色氧化钨作质料的特电是其粒度较黄钨易于操控。 (三)紫钨工艺,即用WO2.72(W18O49)为质料进行复原,用以制取超细颗粒钨粉,其实质是首要将APT在回转炉内、在必定温度和弱复原气氛下制备W18O49,此刻,在原APT晶粒内构成W18O49的棒状晶体的集合物,当原APT晶粒为50~60μm时,则晶粒中构成的W18O4,棒状晶体直径小于2μm,这种W18O49进一步在四管复原炉中复原,得超细钨粉,其BET直径约0.08~0.9  μm,这些超细钨粉的粒度远比黄色WO3或蓝钨复原的产品粒度细,且均匀。一起它们在进一步碳化制取WC的进程中亦小易长大,例如用其制备的钨粉其BET粒往为0.084μm。在1460℃下碳化2h,所得的超细碳化钨粉的BET粒径仅0.214μm,与国外的先进水平适当。碳化进程中颗粒长大的趋势远小于从蓝钨复原的产品。 唐新和展开的从有机胺钨酸盐热分化制得钨及碳化钨超细粉末。获得非常有意义的成果。这种从所谓“自复原钨酸盐”制得的粉末,功能优秀,现已获得国家专利。

由纯钨酸钠溶液转型制备纯钨酸铵溶液

2019-03-05 09:04:34

一、有机溶剂萃取法转型 (一)基本原理 1、莘取剂。钨萃取工艺中,常用的萃取剂主要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。 在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁酯(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表1。 表1  某些萃取剂萃钨的功能注:N235-三烷基胺;N263-季胺盐。 在用有机胺时,先用无机酸(常用H2SO4)与有机相效果,使胺生成胺盐,例如用2~3mol∕L H2SO4效果,则:用H2SO4≥5mol∕L效果时,则:2、萃钨进程。先用无机酸(如H2SO4)将Na2WO4溶液酸化至pH=2.5~3.0,钨以(HW6O21)5-、(H2W12O40)6-、(W12O39)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。 关于叔胺萃钨(Ⅵ)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1∶3~1∶2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2WO4溶液pH=1~3条件下,用体积比为:% Alamine336∶癸醇∶火油为7∶7∶86的有机相萃钨(Ⅵ)的通式为:依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12O40H2)6-、(W6O21H)5-(低钨浓度下)和(W12O40)8-。 当Na2WO4溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12O40)4-、(PW12O40)3-、(AsW12O40)3-与叔胺生成的萃合物是密度大于1g∕cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。 3、反萃进程。为了直接获得(NH4)2WO4溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:可见,虽然有机相中萃合物的组成不同,但都是1mol钨耗费2mol氮。所用的浓度一般为3~4mol∕L NH4OH,反萃终了的平衡水相应保持在pH=8.5左右。 (二)工业实践 用叔胺萃钨的准则流程参见图1。图1  从粗Na2WO4溶液制取钨化合物准则流程图 叔胺萃钨工艺中各阶段的条件及目标见表2。 表2  叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取比较(o∕a)=1,混合2~3min,温度25~40℃,3~5级逆流钨萃取率大于99%,萃余液中低于0.1g∕L WO3①有机相φ∕%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol∕L; ②Na2WO4料液:(WO3)90~100g∕L,pH=2.5~3 ③萃取洗剂和反洗剂为纯水; ④酸化剂为(H2SO4)0.1~0.2mol∕L ⑤反萃剂为(NH4OH)3~4mol∕L萃洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中WO3含量低于0.5g∕L反萃取比较(o∕a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流反萃取率大于99%,反萃液中250~300g∕L WO3反洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中低于0.5g∕L WO3酸化比较(o∕a)=5,混合2~3min,温度25~40℃,2~3级逆流    纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。 工艺条件: 有机相φ∕%;20叔胺,20异辛醇,60火油; 料液组成/(g·L-1);(WO3)45~55;(Mo)0.03~0.05;(SiO2)0.03~0.06;(F-)0.1;(NaCl)50~60。 设备。萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高10m,有两个弄清区,脉冲频率50次∕min,振幅20min,塔总体积30m3,生产才能按两相总计为50m3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o∕a)为(5~10)∶1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。 钨和其他成分在流程中的分配见表3。 表3  钨和其他成分在流程中的分配    (g∕L)美国联合碳化物公司用苏镇压煮所得的Na2WO4溶液为55~110g∕L WO3,2.1~4.5g∕L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51. 8g∕L WO3,0.0012g/L Mo,0.75g∕L SiO2。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较O∕A为1,洗刷比较(O∕A)为 1∶0.75。然后用3mol∕L NH4OH反萃钨,比较(O∕A)为1∶(1~1.1)。将反萃液循环至(NH4)2WO4溶液中WO3浓度为225g∕L停止。这时反萃液中含0.4g/L SiO2以上。将溶液在55℃和2.7mol∕L NH4OH条件下弄清约1.5h,使SiO2沉积分出。萃取和反萃取均在50℃下进行。 中科院赵由才等曾研讨用伯胺及磷酸三丁酯(TBP)为萃取剂别离钨酸钠或钼酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。 二、离子交流法转型 乌兹别克斯坦某厂使用活动床经过AH-80П树脂将经典法净化所得的Na2WO4溶液转型为(NH4)2WO4,其准则流程见图2。图2  用AH-80П将Na2WO4溶液转型的流程 —树脂运动道路;----各种溶液运动道路 1-吸附柱;2-洗刷柱;3-解吸柱;4-再生柱:5-交流后液贮槽; 6-中和槽;7-(NH4)2WO4液贮槽;8-中和槽;9-过滤器 Na2WO4溶液含125g∕L WO3;0.01~0.08g∕L Mo;≤0.05g∕L P、As;115~135g∕L NaCl+Na2CO3;pH=2.5~3.0。溶液中钨主要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80П树脂(Cl-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1∶(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g∕cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含WO3 0.02g∕L,WO3吸附率达99.95%。饱满WO3的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g∕L HCl再生成Cl-型后,进行再吸附。 依据测定当溶液中WO3浓度为15~20g/L时,AH-80П的全改换容量达1g干树脂吸附1610mg WO3,比经典的人工白钨酸分化再溶的工艺WO3回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。 在生产条件下,当用HNO3系统,则树脂亦可用BП-14K型。 三、沉积人工白钨-酸分化法转型 其实质是将净化除杂后的Na2WO4溶液首要参加CaCl2使Na2WO4转化为CaWO4沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:生成的CaWO4(又称人工白钨)再与HCl效果转化为H2WO4,H2WO4进而用NH4OH溶解得(NH4)2WO4溶液。

钨氧化物还原过程中影响粒度的因素

2019-02-21 15:27:24

一、复原进程中颗粒长大的机理 在复原进程中生成钨粉的粒度随复原条件而异,即在某些条件,如高温、高湿度的条件下将发作长大,关于其长大机理,现在有多种观念,下面是两种首要的观念。 (一)化学气相搬迁长大机理 水合钨氧化物具有比纯氧化钨高得多的挥发性。复原进程中首要水蒸气与氧化钨或细粒钨粉效果构成水合氧化钨,它通过气相搬迁到其他颗粒上再复原,然后导致颗粒长大。高温文湿氢复原具有最有利的化学气相搬迁条件。 (二)氧化-复原机理 粉末颗粒愈细,比表面以及表面活性愈大,因而,细颗粒粉末有或许被气相的水蒸气或氧气氧化并生成挥发性水合氧化钨,然后进行化学气相搬迁,在较粗颗粒上被复原,使颗粒长大。 二、影响粉末粒度和粒形改变的首要要素 (一)温度 升高温度可加速复原反响,相应地添加水蒸气的生成速度,促进化学气相搬迁反响。促进颗粒长大和团粒化。 (二)水蒸气分压 水蒸气是化学气相搬迁反响的基本条件,其量包含中含有的和复原反响中发生的水蒸气。它在复原进程中不是一个稳定值。对反响速度起效果的一切要素和影响分散进程的一切要素(如温度、粒层厚度、的流向和流速、粉末的粒度、舟皿的几许形状等)、推舟速度都影响水蒸气的实践分压进而影响到粉末粒度和描摹。温度及湿度(氢的露点)对WO2相对增长速度的影响见表1。 表1  在不同温度和温度下,WO2粒度的相对增长速度(三)质料粉末的性状 研讨标明,氧化钨的复原活性对钨粉的粒度有显着的效果。复原活性大的质料简单得到细粒度钨粉。 (四)杂质和添加剂 杂质元素对钨粉颗粒改变的影响,可分为三类: 第一类以碱金属为代表,它们能起氧的载体效果,延伸氧在粉末层内的停留时刻,促进化学气相搬迁反响,增强钨粉的颗粒长大。 第二类以钙、镁、硅为代表,它们对钨粉颗粒长大的效果不显着。 第三类以铝为代表,它们能在钨的晶体表面生成稳定性很高的氧化物薄层,按捺钨粉颗粒的长大。 (五)操作准则 因为颗粒长大进程首要是发作在WO3复原成WO2的进程中,为得到细颗粒,一定要确保在复原的初期处于低温、低水蒸气分压状况。因而推舟速度过快,一方面使物料敏捷进入高温区,有利于WO2.9等颗粒长大,一起使复原速度加速,H2O蒸气浓度添加,这些都有利于颗粒的长大,因而为得到细颗粒一般要求推舟速度慢。一起炉内温度较低,温度梯度较小。 装舟量过多,料层过厚,将导致内部的水蒸气难以排出,使内部颗粒长大,一起导致上基层粒度不均匀。

六水合硫酸镍

2017-06-06 17:49:58

六水合硫酸镍在业内统称就叫做硫酸镍。以下我们来了解一下六水合硫酸镍的详细内容!分子式 NiSO4·6H2O分子量 262.85别名 Nickelous sulfate;Morenosite 分子结构式 性状 绿色结晶体,正方晶体。低于31.5摄氏度结晶NiSO4.7H2O, 31.5至53.3摄氏度为六水盐。103.3摄氏度失去六个结晶水。 易溶于水,水溶液呈酸性,微溶于酸、氨水。质量标准    GB/T 1287-94项目Item                                             优级纯   分析纯   化学纯                                                      (GR)      (AR)      (CP)含量(NiSO4·7H2O)Assay,%                           ≥ 99.0      98.5      98.0水不溶物Insoluble matter in water,%                ≤ 0.005     0.01      0.02氯化物(Cl)Chloride,%                               ≤ 0.001     0.001     0.005硝酸盐(NO3)Nitrate,%                               ≤ 0.003     0.003     0.02钠(Na)Sodium,%                                     ≤ 0.01      0.02      0.05钙(Ca)Calcium,%                                    ≤ 0.005     0.02      0.1铁(Fe)Iron,%                                       ≤ 0.0005    0.001     0.005钴(Co)Cobalt,%                                     ≤ 0.002     0.01      0.05铜(Cu)Copper,%                                     ≤ 0.001     0.002     0.005锌(Zn)Zinc,%                                       ≤ 0.002     0.01      0.05铅(Pb)Lead,%             &nb

纯钨化合物的制取-化学法净化-转型工艺

2019-02-13 10:12:38

A  Na2W04溶液净化除磷、砷、硅、氟    Na2W04溶液中的硅、磷、钼、氟、锡等杂质有必要预先除掉。按现在生产工艺,一般要求净化后的Na2W04溶液(含W03150g/L )的杂质含量标准如下:Mo<0.05g/L; As<0.Olg/L; P<0.Olg/L;Si                              Na2Si03+MgC12 ==== MgSi03+2NaC1                                 2NaF+MgC12 ==== MgF2+2NaCl                          Na2HP04+MgC12+NH40H ==== MgNH4P04+2NaCl+H20                           Na2HAs04+MgC12+NH4OH ==== MgNH4As04+2NaCl+H20    上述难溶化合物的溶度积见下表1。 表1        磷、砷、硅、氟的某些镁盐的溶度积化合物Mg3(PO4)2,25℃Mg3(PO4)2,100℃Mg3(AsO4)2,25℃MgF2,27℃溶度积1.62×10-254.47×10-322.04×10-206.4×10-9化合物MgNH4PO4,25℃MgNH4AsO4,25℃MgSiO3,25℃ 溶度积2.5×10-13~1.8×10-121.29×10-12      b  工业实践    工业上镁盐法和铵镁盐法的操作过、工艺条件、设备、首要操控要素综合于表2。[next] 表2     镁盐法和铵镁盐法工业实践办法操作进程及条件、设备首要操控要素优缺陷镁盐法在搅拌和煮沸条件下用3~4mol/L HCl或Cl2中和至游离NaOH1±0.2g/L,煮沸20~30min,参加密度1.16~1.18g/m3的MgCl2液至游离NaOH0.2~0.4g/L,煮沸30min,弄清过滤。首要设备为钢制蒸汽加热拌和槽和压滤机温度:煮沸 终究pH=9左右为宜长处:一次性沉积过滤除磷、砷、硅、操作简略;缺陷:渣量及WO3丢失大铵镁盐法在搅拌和煮沸条件下用3~4g/L,煮沸30min后加NH4Cl液至pH=8~9,沉积过滤硅渣。加NH4OH至滤液pH= 10~11,参加核算量MgCl2液,在50 ℃左右拌和30~60min,弄清过滤在除硅阶段,温度及pH值的操控同上。在除磷、砷阶段,pH值过低时磷、砷的铵镁盐会水解生成溶解度较大的磷、砷氢镁(pH=7左右),乃至生成钨的铵钠复盐沉积(pH=6左右)长处:渣量及WO3丢失小,除杂效果比镁法好;缺陷:需二次沉积过滤,操作较繁     镁盐法产出的磷砷渣经NaOH煮洗后,其渣成分(干量)为:2%~9%WO3,0.4%~1.4%As,0.3%~0.5%P,3.8%~16.7%SiO2,30.3%~44.4%MgO。    B   由纯Na2WO4溶液转型制备纯(NH4) 2W04溶液    a   有机溶剂萃取法转型    基本原理    (1)萃取剂    钨萃取工艺中,常用的萃取剂首要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。    在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁醋(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表3。 表3     某些萃取剂萃钨的功能有机相组成/%(v)分配比DW萃取条件10%N235+90%火油2.18Na2WO4料液:152.7g/LWO3,pH=3.09,比较(o/a)=1,级数1,室温10%TOA(正三辛胺)+90%火油2.4010%TIOA(三异辛胺)+90%火油0.07315%N235+15%仲辛醇+70%火油18.915%N263+15%仲辛醇+70%火油4.12       注:N235——烷基胺;N263——季胺盐。     在用有机胺时,先用无机酸(常用H2S04)与有机相效果,使胺生成胺盐,例如用2~3mol/L H2SO4效果,则:                                              2R3N(org)+H2SO4(aq)====(R3NH)2S04(org)    用H2SO4≥5mol/L效果时,则:[next]                          R3N(org)+H2SO4(aq)====(R3NH)HS04(org)    (2)萃钨进程    先用无机酸(如H2SO4)将Na2W04溶液酸化至pH =2.5 ~3.0,钨以(HW6021)5- 、(H2W12040)6-、(W12039)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。    关于叔胺萃钨(VI)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1:3~1:2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2W04溶液pH=1~3条件下,用体积比为:%Alamine336:癸醇:火油为7:7:86的有机相萃钨(VI)的通式为:                           n                          ——(R3NH·HS04)2(org)+(WxOyHz)n-(aq)                            2                           =(R3NH)n·Wx0yHz(org)+n(HSO42-)(aq)    依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12040H2)6-、(W6021H)5-(低钨浓度下)和(W12040)8-。    当Na2W04溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12040)4- ,(PW12040)3- ,(AsW12040)3-与叔胺生成的萃合物是密度大于1g/cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。    (3)反萃进程    为了直接获得(NH4) 2W04溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:          (R3NH)4H2W12039(org)+24NH40H(aq)====4R3N(org)+12(NH4)2 WO4(aq)+15H20        (R3NH)6(H2W12040)(org)+24NH40H(aq)===6R3N(org)+12(NH4)2 W04(aq)+16H20        (R3NH)5H(H2W12040)(org)+24NH40H(aq)====5R3N(org)+12(NH4)2 W04(aq)+16H20    可见,虽然有机相中萃合物的组成不同,但都是1 mol钨耗费2mo1。所用的浓度一般为3~4mo1/L NH40H,反萃终了的平衡水相应保持在pH=8.5左右。    工业实践用叔胺萃钨的准则流程拜见下图。[next]     叔胺萃钨工艺中各阶段的条件及目标见表4。 表4    叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取 比较(o/a)=1,混合2~3min,温度25~40℃,3~5级逆流 钨萃取率大于99%,萃余液中低于0.1g/L WO3 ①有机相φ/%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol/L;  ②Na2WO4料液:(WO3)90~100g/L,pH=2.5~3;  ③萃取洗剂和反洗剂为纯水;  ④酸化剂为(H2SO4)0.1~0.2mol/L;  ⑤反萃剂为(NH4OH)3~4mol/L萃洗 比较(o/a)=4~5,混合2~3min,温度25~40℃,3~5级逆流 洗出液中WO3含量低于0.5g/L反萃取 比较(o/a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流 反萃取率大于99%,反萃液中250~300g/L WO3反洗 比较(o/a)=4~5,混合2~3min,温度25~40℃,3~5级逆流 洗出液中低于0.5g/L WO3酸化 比较(o/a)=5,混合2~3min,温度25~40℃,2~3级逆流      纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。    工艺条件:    有机相沪φ/%:20叔胺,20异辛醇,60火油;    料液组成/(g·L-1):(W03)45~55;(Mo)0.03~0.05;(Si02)0.03~0.06;(F-)0.1;(NaCl)50~60。    设备    萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高l0m,有两个弄清区,脉冲频率50次/min,振幅20mm,塔总体积30m3,生产才能按两相总计为50M3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o/a)为(5~10):1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。    钨和其他成分在流程中的分配见表5。表5    钨和其他成分在流程中的分配(g/L)物料称号WO3MoSiO2F-NaClNH3NH4Cl料液45~550.03~0.050.03~0.060.150~60  萃余液(pH=2~2.5)0.1~0.3 0.01~0.030.0550~60  酸化余液(pH=1.5~2)0.018~0.03 0.010.04   反萃液250~3000.2~0.30.08~0.180.25 10~2020~25反萃液4~8    3~5 蒸腾结晶母液40~600.4~0.80.1~0.40.4~0.5 (pH=7)40~50[next]     美国联合碳化物公司用苏镇压煮所得的Na2W04溶液为55~110g/L W03,2.1~4.5g/L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51.8g/L W03,0.0012g/L Mo,O.75g/L Si02。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较0/A为1,洗刷比较(0/A)为1:0.75 。然后用3mol/L NH40H反萃钨,比较(O/A)为1:(1~1.1)。将反萃液循环至(NH4)2 WO4溶液中W03浓度为225g/L停止。这时反萃液中含0.4g/L Si02以上。将溶液在55℃和2.7mol/L NH40H条件下弄清约1.5h,使Si02沉积分出。萃取和反萃取均在50℃下进行。    中科院赵由才等曾研讨用伯胺及磷酸三丁醋(TBP)为萃取剂别离钨酸钠或铝酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。    b  离子交流法转型    乌兹别克斯坦某厂使用活动床经过AH-80II树脂将经典法净化所得的Na2W04溶液转型为(NH4)2 W04,其准则流程见下图。    Na2W04溶液含125g/L W03;0.01~0.08g/L Mo;0.05g/L P、As;115~135g/L NaCl+Na2C03;pH=2.5~3.O。溶液中钨首要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80II树脂(C1-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1:(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g/cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含W03 0.02g/L, W03吸附率达99.95%。饱满W03的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g/L HC1再生成C1-型后,进行再吸附。    依据测定当溶液中W03浓度为15~20g/L时AH-80II的全交流容量达1g干树脂吸附1610mg W03,比经典的人工白钨酸分化再溶的工艺W03回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。    在生产条件下,当用HN03系统,则树脂亦可用BII-14K型。    c  沉积人工白钨-酸分化法转型    其实质是将净化除杂后的Na2W04溶液首要参加CaCl2使Na2WO4转化为CaW04沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:                             Na2W04+CaCl2 ==== 2NaC1+CaW04(s)    生成的CaW04(又称人工白钨)再与HCl效果转化为H2W04, H2W04进而用NH4OH溶解得(NH4)2WO4溶液。

2017-07-03 10:53:04

钨条包括钨棒,钨钢棒,烧结钨棒,主要是用来锻造成材料的成分,刀具和弹头,灯泡钨丝,电接触点和热导体,曲轴和气缸钨丝桶,耐热钢的各种成分。掺杂的钨条用于生产灯丝或电子管灯丝,这就保证具有显著的抗高温。纯钨是一种从地上开采的天然金属。在原始形式 下,纯钨是很脆的。简介钨是世界上少有的一种有色矿产品,年产量很低,用途非常广泛,主要用于铸造配料用原料。钨来源于一种白色砂型矿体,矿线特别微小,经过采掘、研磨、水重选、提炼等多道工艺,得到品位达到95%以上的钨矿粉,再经过高温电炉提炼成型生产出的成品才是钨条。钨的熔点:3500℃。钨矿主要分布在中国和俄罗斯,中国现在是世界上最大的钨出口国。通常钨条的纯度都应在99.95%以上,而且必须出具权威机构的检验分析测试报告,例如:国家有色金属及电子材料分析测试中心分析测试报告。分类铸造碳化钨、 碳化钨粉、钨粉、氧化钨、合成白钨、钨丝、钨钼合金丝、钨绞丝、杜美丝、钨铼合金丝、钨铈电极、钨板、钼基钨极、掺杂钨条、钨条、钨杆、钨加热子。优点淬火和回火后硬度高;耐磨性好;高温下工作性能好。用途1、加工用车刀刀头、照明器材用钨丝及各种导热体2、制造高级汽车的曲轴、缸筒的配料,铸造各种耐热钢材的配料3、广泛用于枪支、火炮、火箭、卫星、飞机、舰船的制造 钨资源分布我国是产钨大国,钨资源储量520万吨,为国外30个产钨国家总储量(130万吨)的3倍多,产量及出口量均居世界第一。湖南、江西、河南三省的钨资源储量居全国的前三位,其中湖南、江西两省的钨资源储量占全国的55.48%。湖南以白钨为主,江西以黑钨为主,其黑钨资源占全国黑钨资源总量的42.40%。我国的钨矿大体上分布于我国南岭山地两侧的广东东部沿海一带,尤其是以江西的南部为最多,储量约占全世界的二分之一以上。此外,江西的大余、湖南的汝城、安化、临武、资兴、荼陵等地;以及广西和云南、四川、福建等省也有钨矿资源。国外钨矿的主要产地是加拿大和美国。 

纯钨化合物的制取工艺流程图

2019-01-25 15:50:14

为从碱分解钨矿物原料所得的粗钨酸钠溶液制取纯APT或W03,原则上都要完成下列任务:净化除去杂质P,As,si;将钨由Na2W04溶液形态转型为(NH4)2 WO4溶液,(NH4)2 WO4溶液蒸发结晶得APT,此外还要经历除钼过程,为完成上述任务,常用的流程综合如下图所示,即常用的工艺有:    (1) Na2W04溶液经离子交换除P,As,Si并转型得纯(NH4)2 W04溶液后,结晶得APT o    (2) Na2W04溶液用化学沉淀法除P,As,Si后再转型得(NH4)2 W04溶液,转型主要是用萃取法,亦有用离子交换法的。    (3) Na2W04溶液用化学沉淀法除P,As,si后再用经典法得APT,现已基本被淘汰。

锡石、黑钨细泥捕收剂苄基胂酸的研制

2019-02-27 08:59:29

关于黑钨、锡石细泥的捕收剂,国内外已研讨过不少,众所周知的有脂肪酸(皂),烷基硫酸钠,经肪酸(皂),乙烯麟酸,烷基麟酸,烃基肿酸,美狄兰,磺丁二酞胺酸等。实践证明混合肿酸是黑钨、锡石矿泥杰出的捕收剂,目前我国正在运用。本文介绍了苄基胂酸组成原理,经过组成条件实验,找出组成苄其(?)酸最好的条件是:苄氯与的克分子比为0.9∶1,反响温度80℃,反响时间为4.5小时。在小型实验的基础上进行了工业实验,工业实验结果表明,用这种办法出产苄基胂酸是可行的。

金属氧化物的酸溶和金属离子水解反应

2019-01-24 11:10:32

在这类反应中不发生电子迁移,溶液中的离子活度仅与溶液的pH值有关,而与电位无关。铀矿堆浸中氧化铀(六价)的溶解,金属离子的水解反应均属于此类反应。其通式如下:由于此类反应的热焓为零,水的活度为l,所以反应的标准吉布斯自由能变为:当体系中的A离子和B离子的活度均等于1时,式(2)变为:从式(4)看到,此时的pH值仅与反应的标准吉布斯自由能变有关。我们称此pH值为标准pH值,用pH标表示。它的物理含义是:在标准状态下,体系中的反应物与生成物的活度均为1时的pH值。它是表示金属离子水解程度的一个重要标志。当介质的pH值大于标准pH值时,金属离子就水解,金属的氢氧化物就会沉淀;当介质的pH值小于标准pH值时,金属离子的活度便大于1,即金属氢氧化物的沉淀溶解。这类反应的平衡条件为:在用硫酸作溶浸剂堆浸铀矿石或铜矿石时,往往出现底部的渣品位高于中上层渣品位,个别时候,甚至出现底部的渣品位高出入浸矿石的品位就是由于pH值控制不当,致使已浸出的离子水解反应平衡时UO22+的浓度与pH值的关系如下:铀矿堆浸时,矿石中的UO3的溶解浸出反应为:很显然,UO3的溶解依赖于溶浸液的酸度,其关系如下:  铜矿石中的黑铜矿(CuO),硅孔雀石(CuSiO2·2H2O)等氧化铜矿石,硫酸堆浸时的反应可表示为:这类浸出反应平衡时的Cu2+浓度与pH值的关系式如下:在堆浸工艺中,除了铀、金、铜、银等有价值的金属外,脉石矿物中的某些元素,如铁、铝、钙、镁等也同时与溶浸剂(特别是在采用酸性溶浸剂时)发生化学反应,因而Fe2+,Fe3+,Al3+,Mg2+,Ca2+等离子进入浸出液,其中高价的铁、铝离子经常引起结垢,妨碍生产的顺利进行。这类结垢,与溶液的pH值紧密相关。例如,用硫酸堆浸铀、铜矿石时,往往有大量的亚铁和高铁离子进入浸出液,经过若干个循环,亚铁氧化成高铁,由于Fe3+的水解沉淀pH值低于Fe2+,因而引起大量沉淀。Fe3+,Fe2+水解反应,及与pH值的关系如下:溶液中的Al3+在pH值为3.1时,也因水解而沉淀,反应如下:则                    当矿石中的黑云母[H2K(Mg,Fe)3Al(SiO2)3]及碱性硅酸盐矿物的含量高时,矿石中的铁、铝、镁等元素很容易被酸性溶浸剂所浸出,如不采取防结垢措施,矿堆的结垢是不可避免的。

2017-06-06 17:50:12

钨一种 金属 元素。原子序数74。钢灰色或银白色,硬度高,熔点高,常温下不受空气侵蚀;主要用途是制造灯丝和高速切削合金钢、超硬模具,也用于光学仪器,化学仪器方面 tungsten;wolfram——元素符号W钨是属于 有色金属 ,也是重要的战略 金属 ,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的 金属 ,熔点极高,硬度很大。钨的性质:钨是稀有高熔点 金属 ,属于元素周期表中第六周期(第二长周期)的VIB族。钨是一种银白色 金属 ,外形似钢。钨的熔点高,蒸气压很低,蒸发速度也较小。钨的化学性质很稳定,常温时不跟空气和水反应,不加热时,任何浓度的盐酸、硫酸、硝酸、氢氟酸以及王水对钨都不起作用,当温度升至80°—100°C 时,上述各种酸中,除氢氟酸外,其它的酸对钨发生微弱作用。常温下,钨可以迅速溶解于氢氟酸和浓硝酸的混合酸中,但在碱溶液中不起作用。有空气存在的条件下,熔融碱可以把钨氧化成钨酸盐,在有氧化剂(NaNO3、NaNO2、KClO3、PbO2)存在的情况下,生成钨酸盐的反应更猛烈。高温下能与氯、溴、碘、碳、氮、硫等化合,但不与氢化合。钨的用途:  目前世界上开采出的钨矿,约50%用于优质钢的冶炼,约35%用于生产硬质钢,约10%用于制钨丝,约5%其他用于其他用途。钨可以制造枪械、火箭推进器的喷嘴、切削 金属 的刀片、钻头、超硬模具、拉丝模等等,钨的用途十分广泛,涉及矿山、冶金、机械、建筑、交通、电子、化工、轻工、纺织、军工、航天、科技、各个工业领域。   18世纪50年代,化学家曾发现钨对钢性质的影响。然而,钨钢开始生产和广泛应用是在19世纪末和20世纪初。   1900年在巴黎世界博览会上,首次展出了高速钢。因此,钨的提取工业从此得到了迅猛发展。这种钢的出现标志了 金属 切割加工领域的重大技术进步。钨成为最重要的合金元素。   1900年,俄国发明家А.Н.Ладыгин首先建议在照明灯泡中应用钨。在1909年Кулидж制定基于粉末冶金法,采用压力加工的工艺方法之后,钨才有可能在电真空技术中得到广泛的应用。   1927——1928年采用以碳化钨为主成分研制出硬质合金,这是钨的工业发展史中的一个重要阶段。这些合金各方面的性质都超过了最好的工具钢,在现代技术中得到了广泛的使用。 钨以纯 金属 状态和以合金系状态广泛应用于现代技术中,合金系状态中最主要的是合金钢、以碳化钨为基的硬质合金、耐磨合金和强热合金。钨的种类: 主要的钨矿有十几种,我国主要有两种;黑钨矿(钨锰铁矿)和白钨矿(钨酸钙矿)。   1.黑钨矿(FeMn)WO4。颜色有暗灰色、淡红褐、淡褐黑、发褐及铁褐等颜色。半 金属 光泽、 金属 光泽及树脂光泽。通常为叶片状、弯曲  钨锑矿山片状、粒状和致密状;也有的呈厚板状、尖柱状等单斜晶系晶体,常与白色石英一起以脉络的形式充填在花岗岩及其附近的岩石裂缝中。硬度5-5.5,比重7.1-7.5。参差状断口。性脆,有弱磁性。黑钨矿是炼钨和制造钨酸盐类的主要原料。   2.白钨矿CaWO4。颜色为灰白色,也有黄褐、绿和淡红色等。油脂光泽。它属正方晶系,形成双锥状的假八面体或板状晶体,晶面有时可见斜条纹,其中插生双晶者较为常见。也有的晶体呈皮壳状、肾状、粒状和致密块状。硬度4.5-5;比重5.9-6.2。性脆,贝壳状或参差状断口。受荧光灯照射时,白钨矿可发出美丽的浅蓝色荧光。白钨矿产于我国江西大余、湖南汝城、安化、临武、云南文山等地。多成砂矿,以上钨矿物可用重选(摇床、跳汰等)、浮选、溜槽、淘重砂法等方法得到黑钨精矿或白钨精矿。更多有关钨请详见于上海 有色 网

钨常识

2019-03-14 09:02:01

钨  钨是常用的难熔金属,密度19.35,熔点3410°C,沸点5660°C。钨的硬度大、密度高、高温强度好。常温下钨在空气中是安稳的,400℃开端失去光泽,表面构成蓝黑色细密的三氧化钨保护膜。740℃时三氧化钨由三斜晶系转变为四方晶系,保护膜被损坏。在高于600℃的水蒸气中钨氧化为二氧化钨。钨在常温下不易被酸、碱溶液和腐蚀,但溶解于浓硝酸和的混合酸。钨能被氧化性熔盐如等敏捷腐蚀。  钨在地壳中的均匀含量为1.3×10-6,在花岗岩中含量均匀为1.5×10-6。钨在自然界首要呈六价阳离子,其离子半径小,电价高,具有强极化才能,易构成络阴离子,因而钨首要以络阴离子方式[WO4]2-,与Fe2+、Mn2+、Ca2+等阳离子结合构成黑钨矿或白钨矿。钨的重要矿藏均为钨酸盐,现在在地壳中仅发现有20余种钨矿藏和含钨矿藏,即黑钨矿族:钨锰矿、钨铁矿、黑钨矿;白钨矿族:白钨矿(钙钨矿)、钼白钨矿、铜白钨矿;钨华类矿藏:钨华、水钨华、高铁钨华、钇钨华、铜钨华、水钨铝矿;不常见的钨矿藏:钨铅矿、斜钨铅矿、钼钨铅矿、钨锌矿、钨铋矿、锑钨烧绿石、钛钇钍矿(含钨)、硫钨矿等。其间具有挖掘经济价值的只要黑钨矿(Fe、Mn)WO4和白钨矿(CaWO4)。  钨及其合金是现代工业、国防及高新技术使用中的极为重要的功用材料之一,广泛使用于航天、原子能、船只、汽车工业、电气工业、电子工业、化学工业等许多范畴。钨大部分用于出产硬质合金和钨铁。钨与铬、钼、钴组成的耐热耐磨合金用于制造刀具、燃气轮机叶片和焚烧管等。钨可与钽、铌、钼等组成难熔合金。钨铜和钨银合金用作电触摸点材料。高密度的钨镍铜合金用作防辐射的防护屏。金属钨的丝、棒、片等用于制造电灯泡、电子管的部件和电弧焊的电极。  我国钨矿资源丰厚,储量居世界第一位,全国已探明钨矿储量散布在21个省、自治区,其间保有储量在20万吨以上的有8个省区,依次为湖南、江西、河南、广西、福建、广东、甘肃、云南,这8个省区钨的储量占全国保有储量的91.7%。我国钨矿资源有以下特色:   (1)储量非常丰厚,散布高度会集。我国已累计探明钨储量达600多万吨,并且还有很大的找矿潜力,资源远景甚为可观。钨矿储量首要会集散布于湖南、江西、河南、福建、广西、广东等6省区,算计占全国钨储量的83.4%。   (2)矿床类型较全,成矿作用多样。现在,除现代热泉堆积矿床和含钨卤水-蒸腾岩矿床外,简直世界上一切已知钨矿床成因类型在我国均有发现。按成矿温度,有汽化高温至低温的热液矿床;按成矿藏质来历,有层源的层控钨矿床与来自岩源的岩控钨矿床以及多源复合矿床;按矿床产状形状类型,有各种方式的脉型、整合于堆积缔造的层型、沿花岗岩体与碳酸盐质围岩触摸带产出的不规则带型(夕卡岩)、沿成矿花岗岩产状形状产出的细脉-浸染岩体型等矿床;按矿藏元素组合,有W-(Sn、Bi、Mo)、W-Be、W-(Cu、Pb、Zn、Ag)、W-Nb-Ta、W-Au-Sb、W-Li、W-Cu-Fe、W-REE等矿床。因为我国钨矿成矿作用多样又遍及替换出现,因而不只构成杂乱多样的矿床类型,并且常在同一矿田或矿床中,出现多型矿床(矿体)共生的特色。   (3)矿床伴生组分多,归纳利用价值大。我国许多钨矿床伴共生有利组分多达30多种。首要有锡、钼、铋、铜、铅、锌、金、银等;其次为硫、铍、锂、铌、钽、稀土、镉、铟、镓、钪、铼、砷、萤石等。在采选冶过程中归纳收回这些有利组分,不只是合理开发利用好矿产资源,也是进步矿山挖掘经济效益的重要途径。   (4)伴生在其他矿床中的钨储量可观。全国伴生钨储量约占总储量的25%,大部分随主矿产开发而归纳收回。如云南个旧锡矿,湖北大冶有色金属公司所属铜矿山(如大冶龙角山、铜录山、封山洞等),江西铜业公司所属的铜矿山(如永平铜矿、东乡铜矿、德兴铜矿等)以及一些钼矿山等,在选矿过程中均已归纳收回钨精矿,成为矿山的精矿产品之一。   (5)富矿少,贫矿多,档次低。在保有储量中,钨档次(WO3)大于0.5%的仅占20%(首要是石英脉型黑钨矿);而在白钨矿的工业储量中,档次大于0.5%的仅占2%左右。与国外比较,我国白钨矿质量处于下风,而黑钨矿档次高、矿床大、易采易选处于优势。  (6)开发利用以黑钨矿为主,白钨矿次之。黑钨矿是我国长期以来的挖掘目标,但储量组成却是白钨矿居多,黑钨矿较少。白钨矿尽管储量多,但富矿少,档次低,难选矿石多,仅占钨矿产量的10%左右;而黑钨矿尽管储量比白钨矿少,但富矿多,且易采易选,占钨矿产量的90%以上。现在,许多钨矿山因为采选矿石档次低,采选本钱高,因而导致矿山经济效益差

银钨

2017-06-06 17:50:12

什么是银钨?银和钨无论在液态还是固态都不能互溶。制备银钨合金只能采用粉末冶金法做成烧结材料,也可以用挤压法。材料的特点是硬度高,抗电弧侵蚀、抗黏着和抗熔焊的能力强。用粉末冶金法制造。大于60%钨的合金多采用浸透法生产。用作低压功率开关、起重用开关,火车头用开关、大电流开关的预接点,以及重负荷的继电器、空气断路器等。加钴可改善银对钨的润湿性,降低接触电阻。银钨的应用:广泛应用于耐高温材料、高压开关用电工合金、电加工电极、微电子材料,做为零部件和元器件广泛应用于航天、航空、电子、电力、冶金、机械、体育器材等 行业 。银钨技术参数:产品名称 符号 银 杂质 钨 密度g/cm3 电导IACS% 硬度HB≥ 抗弯强度   银钨30 AgW30 70±1.5 0.5 余量 11. 75 75 75   银钨40 AgW40 60±1.5 0.5 余量 12.4 66 85   银钨50 AgW50 50±2.0 0.5 余量 13.15 57 105   银钨55 AgW55 45±2.0 0.5 余量 13.55 54 115   银钨60 AgW60 40±2.0 0.5 余量 14 51 125   银钨65 AgW65 35±2.0 0.5 余量 14.5 48 135   银钨70 AgW70 30±2.0 0.5 余量 14.9 45 150 657   银钨75 AgW75 25±2.0 0.5 余量 15.4 41 165 686   银钨80 AgW80 20±2.0 0.5 余量 16.1 37 180 726银钨合金综合了银和钨优点,高熔点、高比重、易切削、高导电、耐磨耐损、抗熔焊、抗氧化等;是电极中的极品,可以做出一般加工设备及刀具很难加工出的高光洁度的电极;用银钨电极比普通的电极更能达到最佳光洁度的效果,从而使模具达到非常高的精度。特性:断弧性能好 导电导热好热膨胀小   高温不软化●电阻焊电极:综合了钨和铜的优点,耐高温、耐电弧烧蚀、强度高、比重大、导电、导热性好,易于切削加工,并具有发汗泠却等特性,由于具有钨的高硬度、高熔点、抗粘附的特点,经常用来做有一定耐磨性、抗高温的凸焊、对焊电极。●电火花电极:针对钨钢、耐高温超硬合金制作的模具需电蚀时,普通电极损耗大,速度慢.而钨铜高的电腐蚀速度,低的损耗率,精确的电极形状,优良的加工性能,能保证被加工件的精确度大大提高.●高压放电管电极:高压真空放电管在工作时,触头材料会在零点几秒的时间内温度升高几千摄氏度.而钨铜的抗烧蚀性能、高韧性,良好的导电、导热性能给放电管稳定的工作提供必要的条件。●电子封装材料:既有钨的低膨胀特性,又具有铜的高导热特性,其热膨胀系数和导电导热性可以通过调整材料的成分而加以改变,从而给材料的使用提供了便利更多有关银钨请详见于上海 有色 网

钨灯

2017-06-06 17:50:12

钨灯(halogen lamp)是填充气体内含有部分卤族元素或卤化物的充气白炽灯。在普通白炽灯中,灯丝的高温造成钨的蒸发,蒸发的钨沉淀在玻壳上,产生灯泡玻壳发黑的现象。1959年时,发明了卤钨灯,利用卤钨循环的原理消除了这一发黑的现象。1959年人们发现了卤钨循环原理后制造出卤钨灯,它给热辐射光源注入了新的活力,这类灯体积小,光维持率达到95%以上,光效和寿命均明显地优于白炽灯。近年来,人们已生产出可直接应用于电网电压220V或110V的卤钨灯,其尺寸可小到Ø14×54mm,具有灯丝稳定性和抗震性都优异的特性,泡壳有透明和磨砂二种不同规格,内带保险丝符合IEC A32—2标准,灯头为G9型易于联接,它的主要技术参数见表1所示。近年来又推出多种节能卤钨灯新品种,如在石英泡壳上采用涂敷TiO2 / SiO2红外反射层技术(IRC)制成JD型和JDR型新颖卤钨灯,通过让可见光透过,而将红外线反射回灯丝的过程,使灯的光效有30%-45%的提高,寿命达3000h。由于钨灯的显色性特别好,而且体积小易于装饰,因此至今仍倍受人们青睐和广泛使用.卤钨循环的过程是这样的:在适当的温度条件下,从灯丝蒸发出来的钨在泡壁区域内与卤素物质反应,形成挥发性的卤钨化合物。由于泡壁温度足够高(250ºC),卤钨化合物呈气态,当卤钨化合物扩散到较热的灯丝周围区域时又分化为卤素和钨。释放出来的钨部分回到灯丝上,而卤素继续参与循环过程。 氟,氯,溴,碘各种卤素都能产生钨的再生循环。它们之间的主要区别是发生循环反应所需的温度以及与灯内其他物质发生作用的程度有所不同现在大量生产各种溴钨灯和垫钨灯,某些灯中还部分采用氯作为循环剂。为了使灯壁处生成的卤化物处于气态,钨灯的管壁温度要比普通白炽灯高得多。相应地,卤钨灯的泡壳尺寸就要小得多,必须使用耐高温的石英玻璃或硬玻璃。由于玻壳尺寸小,强度高,灯内允许的气压就高,加之工作温度高,故灯内的工作气压要比普通充气灯泡高得多。既然在卤钨灯中钨的蒸发受到更有力的抑制,同时卤钨循环消除了泡壳的发黑,灯丝工作温度和光效就可大为提高,而灯的寿命也得到相应延长。钨灯分为主电压卤钨灯(可直接接入220V-240V电源)及低电压卤钨灯(需配相应的变压器)两种,低电压卤钨灯具有相对更长的寿命,安全性能灯优点。选择钨灯的秘诀:灯的色温,寿命,安全性及是否隔除紫外线。更多有关钨灯请详见于上海 有色 网

常压酸浸法从硅镍矿中提取镍的研究

2019-02-20 10:04:42

地球上的镍资源比较丰厚,国际上已查明的镍金属储量约为6200万t[1]。我国属国际上镍资源较丰厚的国家之一,占总储量的9%左右,位居国际第四[2,3]。镍在地壳中的均匀含量为0.01%,但可挖掘的矿床并不多,现在首要有硫化镍矿床、红土型镍矿床和风化壳硅酸镍矿床3类,在现有储量中,红土矿和硅酸镍矿占70%,硫化矿占30%,但现在约60%的镍产品来自于硫化矿[4]。可是国际上可供挖掘的硫化矿资源越来越少,跟着国际经济的高速开展,镍需求添加,报价上扬,开发使用红土镍矿和硅酸镍矿已成为非常火急的使命。湿法处理工艺是现在处理红土镍矿和硅酸镍矿的首要工艺,首要有浸法[5]、高压酸浸法[6]、常压酸浸法[7]、微生物浸出[8]等工艺流程。 我国南方某硅镍矿含镍0.70%,独立的镍矿藏有红砷镍矿、斜方砷镍矿等,其他镍矿藏多呈涣散状况散布于其他含镍矿石中,具有必定的开发使用价值。本研讨对该硅镍矿进行了常压酸浸提镍的研讨,为该矿的开发使用打下根底。 一、矿石性质 本研讨矿样矿石矿藏组成杂乱,矿藏品种繁复,许多矿藏含镍甚微。其间金属矿藏有红砷镍矿、斜方砷镍矿、含镍磁铁矿、含镍铬铁矿、含镍黄铁矿、含镍蛇纹石、毒砂、黄铜矿、闪锌矿、褐铁矿等。脉石矿藏有透闪石、阳起石、橄榄石、辉石、叶蛇纹石、绢云母、方解石、滑石、金云母、磷灰石、石墨、锆石、石英、绿泥石、皂石。 矿石中含镍矿藏嵌布特征也很杂乱,相当多的镍呈涣散状况散布于蛇纹石、含钴镍磁铁矿、含镍铬铁矿中。多元素分析成果见表1。 表1  试样多元素分析成果(%,质量分数)二、选矿计划断定 因为实验样中独立镍矿藏仅有红砷镍矿、斜方砷镍矿,含量甚微,且粒度很细,因而不能用机械选矿办法予以富集,只能选用化学选矿或冶炼富集办法来提取镍。对氧化镍矿的化学选矿或冶炼富集办法,又分为火法和湿法两大类。前者分造锍熔炼、镍铁法和粒铁法,后者又有碱法和酸法处理等工艺。火法富集炼制镍、镍铁能耗高,因而湿法提取镍日趋得到注重。湿法提镍中的碱法工艺可取得较高的浸出率,但大多需复原等预处理和高温加压设备。酸浸可比较简略取得高的浸出率,且矿石不需预先处理,因而本研讨拟选用酸浸法对该矿样进行研讨。 三、实验 (一)实验设备和药剂 实验运用XMQ2150×50锥型球磨机磨矿,SENCO恒速拌和器和SENCOW201恒温水浴;实验用水为自来水,实验试剂均为分析纯;单元实验样重270g。 (二)浸出实验条件及流程 浸出剂的挑选实验详细调查了硫酸、硝酸、3种酸对试样的浸出作用,实验条件为试样270g、磨矿细度-0.074mm占84%、拌和强度120r·min-1、固液比1﹕5,改动浸出剂品种,用量均为1.7mol·L-1,硫酸、硝酸、3种浸出剂室温下浸出8h挑选最佳浸出剂。实验流程见图1。图1  浸出实验根本流程 四、成果与评论 (一)浸出剂品种及用量对镍的浸出率的影响从实验成果可知,硫酸、硝酸、3种浸出剂中,硫酸的浸出作用最好,实验成果见图2。图2  浸出剂硫酸用量实验成果 由图2可知,在硫酸浓度低于2.60mol·L-1时,浸出液中的镍档次随浸液中硫酸浓度的增大而升高,反响在浸出率也随之升高,但当硫酸浓度高于2.60mol·L-1后,浸液中的镍档次改变不大,浸出率也不再升高,因而挑选浸出剂硫酸浓度为2.60mol·L-1作为后续实验条件。 (二)浸出矿浆液固比对镍的浸出率的影响 实验中固定浸出剂的浓度为2.60mol·L-1,跟着浸出液固比的增大,浸出时所参加的硫酸总量添加。从图3能够看出,在浸出矿浆液固比低于6﹕1时,跟着浸出矿浆液固比的增大,镍的浸出率不断升高,但当浸出矿浆液固比到达7﹕1时,镍的浸出率不再升高,因而选取浸出矿浆液固比6﹕1作为后续实验条件。图3  浸出矿浆液固比条件实验成果 (三)物料细度对镍的浸出率的影响 跟着磨矿时刻的添加,浸出物料细度越细,浸出液中镍、铁含量越高,对应的镍浸出率也越大。但添加浸出矿样的细度,不光添加磨矿本钱,而且在工业生产中,矿石磨的太细,浸出矿浆在浓缩时沉降速度变慢乃至部分过细矿粒难以沉降,晦气于固液别离。可见,从磨矿本钱和固液别离两个方面归纳考虑,后续实验都以磨矿细度为-0.074mm占78.60%为实验条件。 (四)浸出时刻对镍浸出率的影响 浸出时刻是影响镍浸出的一个不行疏忽的重要要素,原则上时刻越长,其物料中元素的浸出率越高,但在浸出反响到达溶解平衡后,各元素就不再溶出。 从图4能够看出,跟着浸出时刻的添加,镍的浸出率有所添加,但当浸出时刻到达8h今后,镍的浸出率改变现已不大,反响在浸出液中的镍离子浓度也不再升高,阐明浸出时刻到达8h左右,浸出反响到达溶解平衡,再添加浸出时刻现已没有意义,因而后续实验选取浸出时刻8h作为实验条件。图4  浸出时刻实验成果 (五)浸出温度对镍浸出率的影响 从实验成果可知,浸出温度的升高对镍的浸出率影响不大,可是温度是影响浸出的重要要素,而且化学反响速度常数与温度呈指数联系,进步温度对进步浸出速度、缩短浸出时刻是非常有利的。 从图5能够看出,浸出温度为60℃,浸出6h就可到达室温下浸出8h时的浸出作用,阐明浸出温度的升高有利于进步浸出进程的浸出速度,而且浸出温度保持在60℃有利于浸出液中杂质离子的去除。因而,归纳考虑主收回金属镍的浸出率和浸出液中的主杂质离子铁的除掉,断定浸出条件温度为60℃时浸6h。图5  浸出温度60℃时浸出时刻条件实验成果 (六)一次浸出重复性实验 从以上各实验成果能够得到硫酸一段浸出的最优工艺参数,为了验证这些参数的牢靠性和浸出的稳定性,在此条件下进行重复性实验。从实验成果(表2)的数据能够看出,通过条件实验断定的最优工艺参数是牢靠的,浸出的各项目标也比较稳定,到达了预期的实验成果。 表2  一次浸出重复性实验成果(七)屡次浸出对浸出作用的影响 早年面实验成果能够看出,选用硫酸作浸出剂浸出该红土镍矿能够得到较好的浸出作用,可是一次浸出浸出液中的镍含量偏低,这对后续镍化学精矿的制取是非常晦气的,若选用蒸腾浓缩来进步浸出液中的镍含量,则需求很多的热能,为了节省能耗,考虑将浸出液进行屡次浸出,也就是将一次浸出的浸出液参加下次浸出的矿浆中,确保浸出条件与第一次浸出时相同,顺次进行屡次浸出,实验成果见表3。 表3  浸出液屡次浸出实验成果由表3中数据可见,浸出液通过屡次浸取,浸出液中的Ni2+离子得到富集,值得注意的是:因为浸出是在60℃条件下进行,浸出液中的Ni2+离子不是简略的倍数富集,它还含有必定的蒸腾浓缩富集。从沉镍的视点考虑,浸出液经3次浸取后,Ni2+离子浓度已到达沉镍要求,进一步进步Ni2+离子浓度(或通过超越3次的重复浸出),浸出液中的铁与镁的含量也会得到富集,它们对镍的浸出会有必定影响,因而归纳考虑浸出率要素,浸出液通过3次浸出即满足。 五、定论 1、该试样属硅镍矿,赋存有涣散的镍矿藏,用一般的物理选矿办法难以收回其间的镍钴资源,选用化学浸出法是开发使用该资源的有用手法。 2、选用硫酸浸出化学选矿工艺,在磨矿细度-0.074mm占78.60%、液固比6﹕1、硫酸浓度2.60mol·L-1、拌和强度170r·min-1、60℃条件下浸出6h,浸出贵液中镍的浸出率为86%左右,浸渣中含镍0.12%左右,取得了较好的浸出目标。 3、屡次浸出实验阐明,浸出液镍离子浓度有较好的富集,但浸出液中铁与镁的含量也会富集,对后续浸出液处理晦气,归纳考虑各要素,浸出液经3次浸出即满足。 参考文献 [1] 朱景和.国际镍红土矿开发与使用的技能分析[J].我国金属通报,2007, (35) :22. [2] 朱训.我国矿情. 第二卷[M].北京:科学出版社,1999. [3] 陶炳昆,殷先明.我国镍资源方式及开发对策[J].我国地质经济, 1991, (10):13. [4] 张友平,周渝生,李肇毅,李维国.红土矿资源特色和火法冶金工艺分析[J].铁合金, 2007, (4) : 18. [5] 尹飞,阮书峰,江陪海,王成彦,陈永强.低档次红土镍矿复原焙砂浸实验研讨[J].矿冶, 2007, (3) : 29. [6] 肖振民.国际红土型镍矿开发和高压酸浸技能使用[J].我国矿业,2002,11(1) :56. [7] 刘瑶,自范,王德全.对低档次镍红土矿常压浸出的开始讨论[J].有色金属,2007,(5) : 28. [8] 刘学,温建康,阮仁满.真菌衍生有机酸浸出低档次氧化镍矿[J].稀有金属,2006,30 (4) : 490. 作者单位 东北大学资源与土木工程学院(车小奎) 北京有色金属研讨总院矿藏资源与冶金材料研讨所(车小奎、邱沙) 北京科技大学土木与环境工程学院(车小奎、罗仙平)

酸溶性钛渣的酸解工艺

2019-02-13 10:12:38

用酸溶性钛渣作质料比钛铁矿作质料有以下长处。     a.因为钛渣中的TiO2含量高,产品总收率可进步2%~3%,并可节省相应的储运、枯燥、原矿破坏的费用;     b.因为钛渣中钛含量高、铁含量低,因而酸耗也明显下降,每吨钛的酸(H2SO4)耗可节省25%~30%,但反响时硫酸浓度较高;     c.无副产品硫酸亚铁,也不需求用铁屑来复原,防止废铁屑带进的杂质对成品质量的影响;     d.能耗低,可节省0.6t蒸汽/钛,节电8%、节油或燃气4%、节水5%、节省制作本钱12%;     e.工艺流程短,可省去复原、亚铁结晶与别离和浓缩3个工艺操作进程;     f.反响生成的钛液稳定性好,晶种增加量也较少;     g.废酸,废水、废渣排放量以每吨钛计比普通钛铁矿酸解工艺要少得多,三废管理的费用相对少。      因为酸溶性钛渣在高温冶炼时要参加复原剂(无烟煤),因而产品中不含Fe2O3而含有二价的FeO和金属铁,所以在酸解进程中不只不需求参加铁屑来复原高价铁,有时因为三价钛含量过高还要参加少数的氧化剂。别的因为酸溶性钛渣中二氧化钛含量高、总铁含量低、不含有Fe2O3,因而反响时放热低,需求蒸汽加热的时刻较长,反响时的硫酸浓度要求较高(91%)老练和浸取的时刻较长。       图1为运用加拿大QIT索利尔酸溶性钛渣的酸解反响进程,从图中能够看出:反响前的80min为加酸、投矿和拌和的进程,此刻的压缩空气流量为600m3/h,随后加稀释水7min,因为硫酸稀释放热温度从50℃升至80℃,然后通蒸汽加热25min温度上升至120℃,主反响当即开端,在5min内温度从120℃猛增至200℃左右。主反响期间保持约15min,从加稀释水前20min到主反响期间压缩空气的流量增大至800~1000m3/h,保温吹气0.5h,此刻压缩空气量可降至500m3/h,中止吹气老练约4h,在此期间温度从190℃缓慢降至85℃,接着在不超越90℃的情况下浸取约7h,浸取期间拌和用的压缩空气流量约800m3/h,所得钛液的相对密度为1.550g/cm3。[next]     图2是一个运用加拿大QIT索利尔酸溶性钛渣的工艺流程和物料平衡示意图。

2017-06-06 17:50:00

钨一种金属元素。原子序数74。钢灰色或银白色,硬度高,熔点高,常温下不受空气侵蚀;主要用途是制造灯丝和高速切削合金钢、超硬模具,也用于光学仪器,化学仪器方面 tungsten;wolfram——元素符号W。钨,中国钨业历史开始在赣州书写的那一刻,一直是让赣州人骄傲的“黑金”。毫不夸张地说,从白炽灯开始使用,我国的钨就照亮了世界。而作为中国钨业发祥地的赣州,其钨业就像骄傲的“黑美人”,虽几经曲折发展,却一直续写着“世界钨都”百年钨业的辉煌。五年是一个刻度对于勤劳勇敢、求新思变的赣州人来说,五年却可以创造“点石成金”的传奇。目前,赣州已成为全国钨矿及钨冶炼产品的主产区和集散地。全国2/3的钨精矿在赣州实现冶炼加工,赣州钨产品约占全国份额为:APT(仲钨酸铵)65%、钨铁40%、钨粉30%、钨条40%、钨丝10%、硬质合金8%,其销售收入占全国钨工业销售收入的35%,一批硬质合金及终端产品已远销欧美、日韩等发达地区和国家。从“旧路子”到“新战略”在上个世纪80年代末期,赣州钨产业呈现“低、小、散、乱”的局面,滥采乱挖、资源流失现象严重,多头出口,精矿供大于求,加上行业恶性竞争,国外公司趁机打压价格,世界上稀缺的钨精矿的价格竟大大低于生产成本,最低时每吨不到2万元。富矿只能卖出土价钱,赣州人被嘲笑为“捧着金饭碗讨饭”,优势资源反而一度成了包袱。“旧路子”是走不下去了,于是,赣州积极寻求“新战略”。2004年,让赣州人充满记忆与激情的年份,一幅承载“用3年至5年时间,把稀土、钨等产业培植成为产值分别超百亿元产业集群”梦想的蓝图在赣南山水间奔腾、舒展,这为赣州的钨产业发展注入强劲的活力。顿时,资源整合的东风迅速吹遍赣南大地。在钨业整合中,赣州坚持“整合资源,控制开采,集约利用,深度加工,形成产业”和“资源减量化、利用高效化、发展可持续”的思路,实行计划开采,总量控制,打击非法生产、超计划生产和非法加工、经营、运销行为。赣州还建立和完善了企业和政府的主体责任制,矿业管理监察制度,对钨资源实行统一开采、统一加工、统一经营、统一管理,制定和实施全市钨行业自律条约和联合报价制度。铁心硬手的资源整合显现成效。赣州取缔非法采矿点百余处,关闭一批资源枯竭、存在安全隐患的矿山,钨矿山持有的93本采矿证减少为66本,每年的钨开采量由2003年前的3万吨下降为现在的不到2万吨,钨矿综合回收率从原来不到70%提高到80%以上。而产值却成几何增长,2006年赣州钨企业实现销售收入110.3亿元,实现利税16.2亿元,比2000年销售收入7.1亿元、利税0.43亿元增长14.5倍和36.7倍,成为我市首个产值、销售收入突破百亿元的优势产业。如今,“赣州人坐拥‘金山’愁饭吃”的局面已经一去不复返。科技领航助钨业“腾飞”资源整合可以提高资源的利用率,但是真正反映出一个地区的发展水平和竞争实力的则是精深加工的技术水平。崇义是产钨大县,钨产业的利税由过去每年一两千万元跃升到两亿多元,钨业创造的税收对县财政的贡献率超过50%。每年的开采量基本保持在5000吨左右,但是为什么效益不一样呢?业内人士告诉我们,是科技创新、精深加工让“丑小鸭”变成了“金凤凰”。赣州的仲钨酸铵生产技术居世界领先地位,白钨综合回收技术和黑白钨混合矿浮选技术得到推广。章源钨业公司采用“振动球磨-离子交换-连续结晶”新工艺,生产1微米至50微米范围内各种粒度、不同晶型的仲钨酸铵,产品质量优于国际特级品标准。赣州以创建钨与稀土新材料产业国家火炬计划特色产业基地为契机,以促进钨和稀土新材料产业集群发展为切入点,先后与清华大学、中南大学等高校院所,建立了产学研战略联盟关系,从而使资源优势转化为产业优势,产业优势进一步转化为促进经济增长的坚强力量。目前,赣州APT(仲钨酸铵)生产已普遍使用了先进的除杂工艺和黑白钨混合冶炼技术,超细APT制备纳米钨粉等已经开发和生产,钨钛固溶体产品填补了我省的空白。为保障深度加工、生产高端产品的企业对矿产资源需求,赣州要求,至少要有三道工序以上在赣州进行深度加工的企业才提供原矿。对钨、稀土、氟化工等重点产业,聘请了国家级的专业机构进行规划,积极做大做强有色基地,同时建立深加工企业优先发展机制,资源所在地和加工所在地经济利益共享机制,部门联动服务机制等三大机制,扶优扶强现有的精深加工企业,引导资源向深加工配置。如今,赣州正在成为钨产业投资的热土和钨产业聚集的洼地,厦门钨业、天津特精等一大批知名钨企业“牵手”赣州。目前,赣州拥有规模以上钨企业80家。“钨业航母”开始新征程为了让企业走上世界的舞台参与顶尖水平的产品竞争,赣州通过市场化运作手段,推进矿产资源证券化、资本化,章源钨业公司上市就是成功的例子。而且赣州还首开先河,在国际金融危机中,积极推进钨、稀土等优势矿产资源战略储备体系建设,筹资启动钨、稀土产品收储计划。原来因国际金融危机停产的钨矿山现全部恢复生产,赣州完成了全市钨、稀土储备体系建设研究,并积极争取开展国家钨、稀土矿产资源储备试点。五年来,赣州对矿产资源掌控力得到提升,也换来了钨矿的价值回归。即使受国际金融危机影响,目前钨矿价格仍能达到8万元/吨。市场定价的话语权已开始从下游走向上游,从国外转向国内。2009年在世界金融危机影响下依然实现销售收入122.37亿元,比2000年的7.07亿元增长了16.31倍;利税10.19亿元,比2000年的4237万增长了23.05倍。在新起点上,赣州的决策者审时度势,绘就了“用5年左右的时间,打造千亿元产值的稀土钨产业集群”的蓝图。激情点燃智慧,智慧成就跨越。在新蓝图指引下,赣州稀土、钨产业集群“航母”发动“新动力马达”,开启了跨越式发展新征程。经历了破与立的阵痛,如今,凭着“点石成金”的秘诀,赣州终于守得云开见月明,不但成为钨资源储量和开采的大市,更逐渐成为资源流通、交易、深度加工的基地,实现了“世界钨都”的华丽转身。 

钨精矿

2017-06-06 17:50:12

钨属于稀有元素,在地壳中含量仅为0.007%,我国钨(钨精矿)储量约占世界总储量的55%,居首位。华北、西北和西南都有产出,尤其是西起广西,经湖南、广东, 江西,东至福建的南岭山脉一带,钨矿最多。其中又以江西南部最为集中,大小矿山达数百处,大吉山、西华山、岿美山、盘古山等都是世界有名的钨矿山。我国选冶钨矿物原料与国外不同 国外长期以来开发的钨矿,主要是白钨矿,占总生产能力的60%。而我国尽管白钨矿已探明储量376万t,占全国钨矿总储量的71%,但由于一些大型、超大型钨多 金属 矿床的矿石物质成分复杂,嵌布粒度细,选冶技术尚未彻底解决,因而现阶段开采仍以石英脉型黑钨矿为主,占全国采出矿量的90%。   性质:   钨属亲石元素,主要以钨酸盐的形态存在于伟晶岩和热液矿床中;已知的钨矿约有15种,其中主要有黑钨矿和白钨矿两种。   (1)黑钨矿(Fe,Mn)WO4,又名钨锰铁矿,含WO3约76%,呈褐黑色至黑色,显半 金属 光泽,比重为7.1~7.9;属单斜晶系,晶体常呈厚板状,晶面上常有纵纹。黑钨矿常与石英脉共生在一起。   (2)白钨矿CaWO4,又名钨酸钙矿,含WO3约80%,常呈灰白色,有时略带浅黄、浅紫、浅褐等色,显金刚光泽或油脂光泽,比重为5.9~6.1;属四方晶系,晶形常呈双锥状,集合体多为不规则粒状或致密块状。白钨矿常与辉钼矿、方铅矿和闪锌矿共生在一起。   已知的含钨矿石主要有石英—黑钨矿矿石,硅卡岩—白钨矿矿石和砂矿等类型。   用途:钨精矿是生产钨铁、钨酸钠、仲钨酸铵(APT)、偏钨酸铵(AMT)等钨化合物的主要原料,其下游产品主要有三氧化钨、蓝色氧化钨、钨粉、碳化钨、硬质合金、钨钢、钨条、钨丝等。   生产工艺:   钨精矿的选矿工艺一般是由钨矿石(黑钨矿或白钨矿)经破碎、球磨、重选(主要有摇床、跳汰)、浮选、电选、磁选等工艺过程,生产出达到国家标准的黑钨精矿或白钨精矿,钨精矿的主要成份三氧化钨含量可达到65%以上。 钨广泛应用于刀刃具、模具等的生产中。这种暴涨主要是供求关系所造成的,而造成这种供求关系的深层次原因,除了包含加工制造业发展因素以外,还有出口过量的因素在内。由于我国的汽车工业、机械加工工业以及采矿业的不断发展, 市场 对硬质合金、高速钢刀刃具的需求正在快速递增,同时对耐震钨丝、钨合金、钨电极等焊接材料的需求也以同样的比例增长。而在供给方面,尽管所有的钨矿点都在高速运转,但今年一季度 产量 仍然不比去年.今年一季度我国钨精矿 产量 为16300吨,比去年同期下降1.6%。

钨触点

2017-06-06 17:50:12

随着汽车制造业的不断发展,对钨触点材料的要求迅速增加。用户对钨触点材料的要求为:杆材无裂纹、划伤,表面光洁;断面晶粒细小均匀,纤维短;平直度、同心度及圆度好;硬度高,冲击韧性好;蒸气压力低,蒸发速度小,热膨胀系数小,耐弧性能好且稳定。对钨触点材料物理及力学性能的参数要求参见表1。麦IW;、WAI触点材料的物理及力学性能为了满足用户要求,近年我厂技术人员做了大量工作。对钨触点材料生产过程中所产生劈裂、脆断、断面晶粒大小不均,杆径同。O度、平直度达不到要求的原因进行了综合分析,并针对性地采取了一系的措施钨是属于 有色金属 ,也是重要的战略 金属 ,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的 金属 ,熔点极高,硬度很大。开关中用于实现电路接通或分断的接触点。在人等体表的感觉点中,特别指产生触觉和压觉者而言。一般使用冯·弗莱(M.von Frey)刺激毛(德 Reizhaar 系将不同长度和粗细的刚毛成直角地粘附在木柄上),轻轻地接触皮肤,以测量触点的位置、分布和刺激阈等。触点分布在全身皮肤和开口部(口腔和肛门等)那种容易与外部接触的体表部(平均每平方厘米为25个),但在有毛部位而触点多位于紧贴毛囊的上部(距毛的某部0.2毫米),其感受器应是毛根部的游离末梢和神经篮(nervebasket)。另一方面,在手掌和足跖等无毛部位分布更密,其终末器被认为是迈氏触觉体。“压点”通常虽被作为同义语使用,但在特殊的情况下,也指帕氏小体的位置。用途:钨触点广泛用于汽车、摩托车、电喇叭、磁电机等电器产品中。钨做电触点或接触子材料使用,耐电弧烧蚀;耐熔着性好;由电热作用引起的 金属 表面蒸发,转移、消耗少;遮断电流能力强;并具有良好的耐磨损,动击性能。比较其它 金属 或合金材料 价格 低廉,因此钨触点和钨圆片广泛应用于工业、农业、科技和国防各个领域。

氟锑酸

2017-06-06 17:50:12

氟锑酸为质子酸SbF5与HF的混合物,属于超强酸。SbF5能与氟离子形成正八面体形阴离子SbF6-。氢离子能自由运动,几乎不受束缚,因此该物质有强酸性,酸性达纯硫酸的二千亿亿倍。为已知物质中酸性最强的物质。氟锑酸或称六氟锑酸、六氟合锑酸,是氢氟酸和五氟化锑反应后的产物.以一比一的比例混合时成为现在已知最强的超强酸,实验证明能分解碳氢化合物,产生碳正离子以及氢气.   氢氟酸(HF)和五氟化锑(SbF5)反应强烈放热.HF会释放质子H+,然后氟离子F?会与SbF5形成八面体型的SbF6?阴离子.SbF6?是非配位阴离子,亲核性和碱性都很弱.于是质子实际上是"裸露"在水溶液中,使得混合物体系呈现极强的酸性,比纯硫酸要强2×10^19倍.氟锑酸结构  用X射线晶体学研究两份HF-SbF5反应形成的结晶,发现化学式分别为[H2F][Sb2F11]和[H3F2][Sb2F11],都含有Sb2F11作阴离子.据估计,Sb2F11离子的碱性比SbF6还要弱,因此更加稳定.氟锑酸会与水起强烈甚至爆炸性的反应,而且它会与目前已知所有的溶剂反应。能溶解氟锑酸的溶剂有SO2ClF、液态二氧化硫及氟氯烃。盛HF-SbF5的容器可用特氟龙制造。   性状:   1、沸点:无(注意,混合物固定无沸点)   2、熔点:无(注意,混合物固定无熔点)   3、氟锑酸和发烟氟锑酸中均不含水,SbF5为溶剂,HSbF6及HF是溶质。故氟锑酸和发烟氟锑酸均为无色油状液体。   4、氧化性:因为其中含五价锑,故氧化性极强。

纯钨化合物离子交换法净化转型工艺

2019-01-07 17:38:37

一、基本原理 离子交换法净化并转型工艺的原理在于:在碱性溶液中强碱性阴离子交换树脂对WO42-、Cl-以及杂质AsO43-、PO43-、SiO32-、SO42-等的亲和力不同,常用强碱性阴离子交换树脂对不同阴离子的亲和力顺序大体为:表1列出了钨冶金中常用的阴离子交换树脂的性质,从其分离系数β值也可看出上述规律,因此当含上述阴离子杂质的Na2WO4溶液与Cl-型的树脂接触时,当溶液中Cl-浓度很小,则将发生变换反应,WO42-被吸附,反应为:表1  用于钨离子交换的某些树脂的性质牌号201×17(717)WAW201Amberlite 4200CAmberlite 400C在交换柱内动态吸附时穿透交换容量,(WO3与干树脂质量比)0.25~0.28(交换前液WO3 20g∕L)0.30~0.35(交换前液WO3 30g∕L)0.28~0.31~0.32~0.32与不同阴离子分离系数(1)0.85 (2)0.6937.6~31.7 ([OH]=4~10g∕L)37.9~3.08 [OH]=4~10g∕L)50.7~40.9 [OH]=4~10g∕L)2.5~3.78(1)9.5~11.1 ([As]=0.04~0.16) (2)10.6~10.8 ([WO3]=16g∕L [As]=0.37~0.69g∕L)10~14 ([As]=0.04~0.16g∕L)12.8~20.5 ([As]=0.04~0.16g∕L)0.65~1.09 ([WO3]=25 g∕L Cl-37~0.7 g∕L)3344.7其他阴离子,特别是相对亲和力小的SiO32-、PO43-离子将留在交换后液中与WO42-分离,阳离子Na+同样留在交换后液中与WO42-分离。 吸附有WO42-的树脂再用NH4Cl解吸,反应为:因而经过吸附和解吸就同时实现了将Si、P、As、Sn等杂质除去,同时将Na2WO4溶液转型成了(NH4)2WO4。 (一)影响交换容量的因素 201×7树脂的全交换容量约为WO3 360mg∕g干树脂,表1中的数据为给定浓度的Na2WO4溶液流过树脂层时的穿透交换容量,穿透交换容量随溶液中Cl-浓度、WO42-浓度(以WO3计)、OH-浓度以及线速度而变,人们对210×7树脂的吸附进行了全面研究,具体如下: 1、Cl-浓度的影响。由于Cl-对树脂的亲和力与WO42-相近,因此,Cl-浓度严重影响交换容量,根据试验测定,当起始Cl-浓度由0g∕L增至4.2g∕L,则相同条件下,穿透交换容量减小约1∕2。 2、WO3浓度的影响。参照交换反应可知,每交换1mol WO42-,将使溶液中增加2mol Cl-,因此WO3浓度严重影响交换容量,试验表明,当WO3浓度由10g∕L增至40g/L,则在相同条件下交换容量降低50%~60%。 3、NaOH浓度。尽管OH-对树脂的相对亲和力比WO42-小得多,但当其浓度较大时,同样与WO42-进行竞争吸附,当原液含WO3 14.85g∕L、起始OH-浓度由10-3g∕L增至40g∕L,则交换容量减少30%左右。 4、直线速度。线速度过快,即溶液流过树脂层时,与树脂接触的时间太短,来不及完全交换发生过早穿透,使交换容量降低,一般以5~10cm/min为宜。 (二)影响解吸效果的因素 解吸过程通常用NH4Cl+NH4OH作解吸剂,NH4OH的作用主要是防止溶液pH值过低,以致形成APT结晶。 NH4Cl的浓度及流速明显影响解吸效果如图1、图2所示。图1  不同NH4Cl浓度的解吸曲线 1-4.5mol∕L NH4Cl;2-3.5mol∕L NH4Cl; 3-2.5mol∕L NH4Cl;4-1.5mol∕L NH4Cl图2  不同解吸线速度时的淋洗曲线 1-2cm∕min;2-4cm∕min:3-6cm∕min 二、工业实践 (一)原则流程 参见图3,图中应当说明的问题有: l、吸附前树脂为Cl-型,吸附时WO42-与Cl-交换入树脂相。AsO43-、SiO32-、PO43-等主要进入交换后液。 2、当处理标准黑钨精矿或白钨精矿时,交换前液中杂质较少,一般不需用淋洗剂淋洗除杂,仅用水清洗后直接解吸;当处理低品位复杂的钨中矿时,交换前液中杂质较高,要经过淋洗除杂过程。 3、解吸后的树脂即Cl-型。不作处理即可转入下周期的吸附。图3  从粗Na2WO4溶液制取纯钨化合物原则流程图 (二)设备 我国采用离子交换柱进行动态交换,柱底有筛板,交换前液及解吸液均先后从上流过树脂层进行吸附和解吸过程,其特点是结构及操作简单,常用的规格及其生产能力如表2所示。 表2  常用离子交换柱的规格及生产能力(三)主要工艺条件及技术经济指标 主要工艺条件及技术经济指标如下。 粗钨酸钠溶液成分:WO3 15~30g∕L; 交按时线速度:6~10cm∕min; 淋洗及解吸线速度:2~4cm∕min; 吸附过程除杂率:As为85%~95%;P及SiO2为90%~95%;Sn为95%以上; 吸附、淋洗总除杂率:P、As、SiO2、Sn均为95%~99%; 过程总回收率大于99%; 生产1t的WO3消耗0.45~0.65t NH4Cl,1~1.5kg树脂。 产品质量:解吸液经蒸发结晶后,当结晶率控制90%左右,则产品APT中杂质能符合GB10116-88APT-0级要求,但钼、锡的含量可能由于原料中含量较高而超标,K及Na亦可能由于NH4Cl中K、Na过高而超标。

氟锑酸

2017-06-02 15:19:57

氟锑酸为质子酸SbF5与HF的混合物,属于超强酸。SbF5能与氟离子形成正八面体形阴离子SbF6-。氢离子能自由运动,几乎不受束缚,因此该物质有强酸性,酸性达纯硫酸的二千亿亿倍。为已知物质中酸性最强的物质。氟锑酸或称六氟锑酸、六氟合锑酸,是氢氟酸和五氟化锑反应后的产物.以一比一的比例混合时成为现在已知最强的超强酸,实验证明能分解碳氢化合物,产生碳正离子以及氢气.   氢氟酸(HF)和五氟化锑(SbF5)反应强烈放热.HF会释放质子H+,然后氟离子F?会与SbF5形成八面体型的SbF6?阴离子.SbF6?是非配位阴离子,亲核性和碱性都很弱.于是质子实际上是"裸露"在水溶液中,使得混合物体系呈现极强的酸性,比纯硫酸要强2×10^19倍.氟锑酸结构  用X射线晶体学研究两份HF-SbF5反应形成的结晶,发现化学式分别为[H2F][Sb2F11]和[H3F2][Sb2F11],都含有Sb2F11作阴离子.据估计,Sb2F11离子的碱性比SbF6还要弱,因此更加稳定.氟锑酸会与水起强烈甚至爆炸性的反应,而且它会与目前已知所有的溶剂反应。能溶解氟锑酸的溶剂有SO2ClF、液态二氧化硫及氟氯烃。盛HF-SbF5的容器可用特氟龙制造。   性状:   1、沸点:无(注意,混合物固定无沸点)   2、熔点:无(注意,混合物固定无熔点)   3、氟锑酸和发烟氟锑酸中均不含水,SbF5为溶剂,HSbF6及HF是溶质。故氟锑酸和发烟氟锑酸均为无色油状液体。   4、氧化性:因为其中含五价锑,故氧化性极强。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

卤水合成镁氧反应条件的确定

2019-01-21 18:04:35

一、前言 镁氧(MgO)是重要的耐火原料,可以广泛应用于冶金、建筑、化工等行业。镁氧的制取有多种途径,重质镁氧是煅烧菱镁矿和白云石、硫酸镁热分解以及氯化镁水解而制得。以卤水石灰为原料,从溶液中沉淀出氢氧化镁,然后进行热处理可以制得具有不同活性的镁氧。从理论上讲,卤水合成氧化镁,由于反应产物Mg(OH)2的溶解度远小于Ca(OH)2,反应Mg2++Ca(OH)2=Ca2++Mg(OH)2↓在一般条件下理应进行得比较容易和充分,而在实际生产过程中,要想制得品质优良、能耗较低、工艺流畅的镁氧产品却并非易事,会受到多种因素的制约,其反应条件需要我们通过试验和研究逐一加以确定。 二、反应条件的确定 (一)卤水中SO42-的去除 从测得的卤水试样成份看:Mg2+=1.97mol/L≈2mol/L,SO42-=0.607mol/L≈0.6mol/L,卤水中SO42-的含量远高于海水。由于KspCaSO4=9.1×10-6(25℃),较低。因此,当向卤水中直接加入Ca(OH)2时,势必在Mg(OH)2析出的同时伴随有CaSO4沉淀的产生。实验证明,用不去除SO42-的卤水直接与灰乳反应制得的Mg(OH)2含40%的CaSO4,制得的MgO产品含30%的CaO。 去除卤水中SO42-的办法是向卤水中预先加入CaCl2溶液,使之形成CaSO4沉淀而除去。CaCl2溶液为后道反应过程所产生的母液,母液中CaCl2的浓度视卤水中的Mg2+、SO42-的含量以及沉淀的反应时所加灰乳浓度而定,本着有效去除SO42-,减少工艺流程液体处理量,在实际许可的范围内应尽量使母液中CaCl2的浓度高一点。这里我们可获得的母液CaCl2含量在0.8mol/L~1mol/L。 反应SO42-+CaCl2(母液)→CaSO4↓+2Cl-的当量点视最后加入的CaCl2不再使卤液产生沉淀为准,再适当过量一点。关键的问题是若不严格控制CaCl2的加料速度,沉淀物的沉降速度将很缓慢,难与母液分离。我们在不同的时间内向一定量卤水中加入CaCl2溶液,测定各沉淀的沉降速度,结果如表1。 表1  CaCl2的加料速度与CaSO4沉降速度的关系由表1可看出,只要将CaCl2的加料时间控制在30min左右,就会获得沉降性能较好的粘连晶簇的石膏沉淀。 (二)反应终点的确定 准确确定石灰卤水合成Mg(OH)2反应的当量点对于提高产品的质量,改善料浆的物理性能具有非常重要的意义,为了消除实际操作过程中难以避免的计量误差,我们采用pH值显示的方法确定反应终点。 准确称取NaOH、CaCl2,配制1mol/L的灰乳,将此灰乳按量分批加入一定量去SO42-卤水中(Mg2+=1mol/L),控制一定的加料速度和搅拌速度,使其充分反应,记录反应溶液pH值的变化,结果如表2、图1。 表2  反应液pH值随反应进程的变化图1  反应溶液PH值随反应进程的变化 由图1可看出,反应初期PH几乎维持在9.80,这是因为加入的石灰乳全部消耗在Mg(OH)2的形成上,当反应接近等当点时(PH=10.46),Mg2+与石灰反应基本完全,若再加入少量灰乳出现PH的突变,沉淀过程的PH变化反映了反应的进程,因此我们可以根据PH来确定反应的终点,此处的反应终点为10.46,实际上为了保证产品的纯度,避免出现不完全反应,我们一般将PH控制在10.4左右。 (三)反应程序的确定 所谓反应程序,这里主要是指反应的操作程序。反应的操作程序的不同,直接影响产物的颗粒大小,从而影响Mg(OH)2料浆的沉降和过滤性能,不适当的反应程序所产生的Mg(OH)2呈胶状物,结晶非常细小(小于1μm),比表面积大,沉降过滤性能差。对这一问题的解决,已经成为工艺过程最为关键的技术之一。目前解决的办法,主要有两个:一是让反应处于浓CaCl2介质中,从而减缓反应的速度,促使产物颗粒长大;二是通过晶种回输的办法使得Mg(OH)2颗粒不断长大,但这种工艺目前在国外只适用于含镁量低的海水的提镁过程,卤水提镁过程使用该法没有先例。我们通过制定特定的反应程序,成功地将晶种法运用到这一过程,取得了非常理想的效果。具体研究结果将在今后的文章中作详细介绍。 (四)灰乳浓度、加料速度及反应搅拌速度的确定 如上所述,反应程序的设计对产物的沉降、过滤性能具有重要的影响,而温度、灰乳浓度、加料及搅拌速度、反应时间、C/M等同样对反应的进程、反应产物的品质及物理性能具有重要的作用。考虑从实际出发,反应只能在常温条件下(25℃左右)进行,从理论上讲,该反应的反应速度是很快的,反应时间这项指标,实际上是与灰乳的加料速度联系在一起的,关于C/M主要取决于反应终点,已确定为PH=10.4。因此,我们这里仅仅需要确定的是:灰乳浓度、灰乳的加料速度,以及反应的搅拌速度。 试验方案按正交表L9(34)进行设计,选定因素及水平见表3。试验共进行9次,每次试验均取等量的相同晶种,置于1L烧杯中,采用晶种法将含1mol/LMg2+的去SO42-卤水与灰乳连续反应四次,各次反应结束后倾出1/4浆料,控制PH=10.4,最后测定浆液沉降速度、过滤系数K及其产品纯度,再按正交试验法计算规则进行数据处理、绘图及分析。(如图2)。图2  沉淀反应各因素对技术指标的影响 试验结果显示,无论是从料浆的沉降、过滤性能看,还是从产品的纯度看,均以A1、B1、C3条件为最佳,即:灰乳浓度取0.5mol/L、灰乳加料速度取8mL/min,搅拌速度取200r/min。但仔细分析一下,当转速在150r/min~200r/min范围内变化时,对三项指标的影响均不很大,因此,搅拌速度可控制在150r/min~200r/min之间任一数值。关于灰乳的浓度,若取0.5mol/L,虽然有利于促进反应的转化,提高产品的纯度,但是,反应终了母液中Ca2+含量太低,用来去除卤水中的SO42-,所需的母液量势必增大。整个过程所需处理的溶液量增加,反应容器变大。由图2看出,灰乳浓度若取1.2mol/L,料浆K值及产品纯度并无较大变化,而反应母液中Ca2+达0.7mol/L~0.8mol/L。 表3  沉淀反应条件试验因素水平表综上所述,较为合理的灰乳浓度:1mol/L~1.2mol/L,灰乳加料速度:8mol/min、搅拌速度:150r/min~200r/min 三、结语 文章系统分析了石灰-卤水法提取镁氧产品反应过程的几个主要影响因素,通过试验和研究反应的几个主要条件,加以逐一确定,从而保证了在实际生产过程中,使产品品质更优良,能耗更低,工艺更简洁、更流畅、更合理。对综合开发沿海卤水资源具有重要的现实意义,最终的反应条件是:反应终点定为PH=10.4;灰乳的浓度:1mol/L~1.2mol/L,灰乳加料速度:8mL/min;搅拌速度:150r/min~200r/min,反应运用晶种法提高产物的沉降过滤性能;在卤水去SO42-过程中,CaCl2的加料时间定为30min。

锑的氢化物及卤化物

2019-02-11 14:05:30

一、锑的氢化物 SbH3是一种无色、易燃、极毒的气体,气味似。SbH3毒性比AsH3弱。 SbH3微溶于水,易溶于有机溶剂。SbH3不稳定,室温下即分化: 2SbH32Sb+3H2 SbH3分化时也能构成相似“砷镜”的“锑镜”反响,砷镜能溶于NaClO,而锑镜则不溶于NaClO。这是差异砷和锑的办法之一。 SbH3具有强还原性,易为湿润空气中的氧所氧化: 2SbH3+3O2Sb2O3+3H2O 二、锑的卤化物 锑的三卤化物在溶液中会激烈地水解,生成难溶于水的卤化锑酰沉积:                      SbCl3+2H2OSb(OH)2Cl+2HCl                           └→SbOCl↓(氯化氧锑或酰)+H2O