您所在的位置: 上海有色 > 有色金属产品库 > 锑氧化物 > 锑氧化物百科

锑氧化物百科

锑的氧化物

2019-02-18 15:19:33

锑与氧可构成一系列氧化物,其中有Sb2O3、Sb2O4、Sb2O5、Sb6O13、Sb2O及气态的SbO,但只要前三种在工业上具有含义,其他氧化物多为锑的不同出产过程中的过渡产品,氧化锑的物理和化学性质列于下表。 表  氧化锑的物理和化学性质品种物理性质化学性质三氧化二锑 Sb2O3在常温下为白色粉末,受热时为黄色,有立方和斜方两种晶系,立方转变为斜方的温度为570℃。立方晶系为Sb4O6分子组成,密度为5.28g∕cm3,斜方晶体为5.67g∕cm3,熔点656℃,蒸发热36.33~37.29kJ∕mol,沸点依据不同材料为1327℃或1435℃; 蒸气压(Pa)与温度的关系式为: 立方晶形Sb2O3lgp=14.320~10357∕T 斜方晶形Sb2O3lgp=13.433~9625∕T 液体Sb2O3lgp=7.443-3900/T锑或硫化锑在空气中加热蒸发出来的Sb2O3,主要为立方晶系;由SbCl3水解生成的Sb2O3为斜方晶体。Sb2O3为氧化物,在水中的溶解度仅0.01g∕L,也难溶于稀硫酸和稀硝酸,浓硝酸可使其氧化为高价氧化物。易溶于碱性金属硫化物构成硫代亚锑酸盐,能彻底溶于 酒石酸,如溶于酒石酸钾,构成,即吐酒石。Sb2O3易被C或CO还原为金属锑四氧化二锑 Sb2O4白色结晶属立方晶系,密度为6.59~7.5g∕cm3,生成热-895.811kJ∕mol具有不熔化和不蒸发的特色。最适合时生成温度为500~900℃,超越900℃即开端离解,达1030℃能够彻底离解。微溶于水,溶于,不溶于其他酸类,但溶于碱溶液。分子式可写为SbO2,其组成可认为是Sb2O3和Sb2O5的混晶Sb2O5棕黄色粉末,分子式为Sb2O5·nH2O,大约相当于Sb2O5·3.5H2O,可由SbCl4水解取得,加热至700℃,即变为白色粉末一般认为是一种水合物的胶体,稍溶于水,不溶于硝酸,可溶于碱性溶液

锑的氧化物及其水合物

2019-02-11 14:05:30

一、三氧化二锑及亚锑酸    Sb4O6为白色立方晶体,熔点929K,沸点1698K。和磷的氧化物相同,三氧化二锑也是以Sb4四面体为结构根底的,以Sb4O6方式存在的分子晶体,其结构和P4O6类似。 Sb4O6是偏碱性的氧化物,难溶于水,易溶于酸和碱。                              Sb2O3+3H2SO4Sb2(SO4)3+3H2O                                Sb2O3+2NaOH2NaSbO2+H2O    亚锑酸盐在碱性介质中是一个较强的还原剂: [H3SbO6]4-+H2O+2eSbO2-+5OH-         ψBθ=-0.4V 二、及锑酸 为淡黄色粉末,是偏酸性氧化物,难溶于水,不溶于硝酸溶液,但溶于碱生成锑酸盐。如溶于KOH溶液生成锑酸钾K[Sb(OH)6],锑酸钾是判定Na+的试剂。锑酸   H[Sb(OH)6]是一元酸(K=4.0×10-6),它与同周期的H6TeO6、H5IO6有相同的结构,都是六配位八面体结构,并且它们互为等电子体。锑酸及其盐最杰出的性质是氧化性,且从As、Sb到Bi,其+Ⅴ氧化态的氧化性顺次增强。 H[Sb(OH)6]+2HClH[Sb(OH)4]+Cl2+2H2O

稀土氧化物

2017-06-06 17:50:02

稀土氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc) 和钇(Y)共17 种元素的氧化物。稀土氧化物在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。稀土氧化物的原子结构可以用4fx5d16s2 表示,x 从0→14。稀土元素从 金属 变成离子后,4f 轨道的外侧仍包围着5s25p6的电子云,失去6s2 电子及5d1 或4f 失去一个电子,形成4fx5s25p6的电子结构。在稀土 金属 中,6s 电子和5d 电子形成导带,4f 电子则在原子中定域,这种4f 电子的定域化和不完全填充都将反映在它们的种种物性之中。目前来说,稀土氧化物有多种,如LnO,Ln2O3 和LnO2,其中Ln2O3较常见。 

钴的氧化物及氢氧化物

2019-01-31 11:06:04

一、钴的氧化物 钴能生成三种氧化物:CoO,Co3O4,Co2O3。前两种安稳,后者只能在低于3oO℃下存在。而CoO2只能在阳极氧化法中制得,常呈含水的氢氧化物呈现。 (一) CoO:它是钴的碳酸盐或钴的其它氧化物或Co(OH)3在中性或微复原性气氛中煅烧的终究产品。纯CoO在室温下易于吸收氧而生成高价的氧化物Co2O3,Co3O4,煅烧温度越高,吸收的氧越少。如要获得适当纯的CoO,煅烧温度有必要高于1050℃,且煅烧后须在慵懒气氛或弱复原性气氛中冷却。高于850℃时CoO是安稳的,1000℃时离解压为3.36×10-12大气压。随制取办法不同,CoO呈灰绿色至暗灰色,CoO分子量为94.97,理论上含钴为78.65%,用于冶金和化学方面的多为灰色CoO,一般含Co76%,常含有少数Co3O4。 CoO晶体为面心立方体,晶格参数为4.2sA,比重6.2~6.6,生成热为55.6~57.5千卡/摩尔分子,熔点为1810℃。钴氧化成CoO在不同的温度规模内的自由焓改变式分别为:   当温度在120~200℃时,高价氧化钴开端被H2和CO复原。CoO复原反响的平衡常数跟着温度的改变如下:     CoO水化物的分子式为Co(OH)2,溶度积约为1.6×10-18,它极易溶解于热酸中。 (二)Co2O3:分子量为165.88,理论含钴量为71.03%。许多人在氧压为100大气压下氧化CoO或低温从Co(N3O)3,CoCl3中制得含氧量挨近或等于Co2O3计量式中的含氧量再经结构分析依然不是Co2O3。但只在阳极氧化法中制得含水的Co2O3,在低于200℃时脱水得到Co2O3。 (三)Co3O4:理论含钴量为73.43%,分子量为240.82,黑色。在400~900℃的空气中或在300~400℃的氧气中氧化CoO时生成Co3O4。Co3O4于250~400℃的氧气中,因为接连氧化或或许因为化学吸附,而变为Co2O3,但仍坚持Co3O4的尖晶石结构。当高于450℃时离解或脱吸,氧化物的成分可回复或Co3O4。 当CoCO3或含水三氧化二钴在空气中加热到高于265℃而不超越800℃时,构成Co3O4。 因为钴的氧化物相互间易于生成固溶体,因此,难于测定各自的离解压及安稳温度规模,一般以为Co2O3·nH2O在250~280℃彻底分解为Co3O4。Co3O4的离解压可按lg Po2=- +13.3636算出,故知空气中Co3O4在910~920℃内大部分离解为CoO,至980℃可按下式离解彻底,生成的CoO仍具有原Co3O4的尖晶石结构。  Co3O4极难溶干稀硫酸中。 图1是600℃~1490℃间氧在固体金属钴中的溶解度。875℃时氧的溶解度急剧下降是因为钴发生了晶形改变。当溶解O20.26%(适当于CoO1%)时则呈现共晶,其温度为1446℃。与含CoO3.3%和CoO14.6%相对应的凝结温度为1600℃和1700℃。图1  Co-O系状态图 二、钴的氢氧化物 (一)Co(OH)2:它是弱的化合物,极易溶解于酸,而难溶于水。  溶度积为1.6×10-18。当NaOH参加钴盐溶液中,则生成Co(OH)2,因颗粒、吸附离子、时刻、温度和碱度等要素的不同,可呈蓝色、绿色和赤色。pH=6~7和室温时,开始分出的蓝色沉淀物为α-Co(OH)2。老化变为安稳的玫瑰色β-Co(OH)2,两者的溶度积均约为10-12.8。 Co(OH)2在常温下易被空气中的氧部分地氧化成Co(OH)3:Co(OH)2在无机酸和有机酸中能很好溶解并生成相应的盐。多种氧化剂在有碱存在的情况下,能将Co(OH)2和二价钴盐的溶液氧化成Co(OH)3。 (二)Co(OH)3:这是一种易吸水的不安稳化合物,难溶于水,溶度积为2.5×10-43。较易溶于和中,难溶于硫酸中。

稀土氧化物

2017-06-06 17:50:03

稀土氧化物稀土元素氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc) 和钇(Y)共17 种元素的氧化物。稀土元素在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。                                                                            氧化铷(Rb2O),是铷的氧化物之一,呈黄色,有很强的潮解性。   铷在空气中燃烧时,主要生成的是过氧化铷,只有少量的氧化铷和超氧化铷生成。当 金属 铷被露置于空气中时,它会很快氧化,失去 金属 光泽,并产生一系列有颜色的氧化产物。其中生成了铷的低氧化物,例如青铜色的Rb6O和红棕色的Rb9O2。铷最终的氧化产物主要是过氧化铷。Ln 系稀土元素的原子结构  稀土元素的原子结构可以用4fx5d16s2 表示,x 从0→14。稀土元素从 金属 变成离子后,4f 轨道的外侧仍包围着5s25p6的电子云,失去6s2 电子及5d1 或4f 失去一个电子,形成4fx5s25p6的电子结构。在稀土 金属 中,6s 电子和5d 电子形成导带,4f 电子则在原子中定域,这种4f 电子的定域化和不完全填充都将反映在它们的种种物性之中。   4f 电子位于原子内层轨道,5s25p6 电子云对其有屏蔽作用,4f 轨道伸展的空间很小,所以受结晶场、配位体场等的影响很小;与此相反,其自旋(MS)与轨道(ML)的相互作用都很大,使得f- f 电子轨道L 与自旋S 相互耦合作用,E4f 分裂成许多能级有微小差别的能级亚层,每一个亚层对映一个光谱项2s+1L。   稀土元素化合价有多种价态,并存在变价作用。铈、钐、铕等在一些化合物中,其原子价为3 价、4 价或2 价和3 价共存,而且这种原子价的变化有的极快,有的极慢,十分引人注目。稀土离子电价高,半径大,易受极化,极化强度愈高折射率愈大,在陶瓷颜料中利用稀土离子的高折射率,使装饰画面色泽鲜艳。与普通釉彩颜料相比,加入稀土的颜料色泽加深。   从La 到Lu 的稀土元素都容易失掉2 个6s 电子,1 个5d电子或4f 电子,形成三价正离子(4fx5s25p6),因此稀土元素的氧化物大多是Ln2O3。此外镧系元素的4f0、4f7、4f14(全空、半充满、全充满)电子排列较稳定,一般具有该结构型的离子都是无色的。  稀土氧化物有多种,如LnO,Ln2O3 和LnO2,其中Ln2O3较常见。随着原子序数的递增,电子被填充在4f 轨道上,其电子结构、离子的价态及三价离子的颜色详见附表1。   稀土离子的4f 亚层被外层(5s2)(5p6)电子壳层所屏蔽,致使4f 亚层受邻近其它离子的势场(结晶场)影响很小,其线状谱线基本保持自由离子的线状光谱特征,这与过渡元素的d- d 跃迁不同,d 亚层处于过渡 金属 离子的最外层,没有屏蔽层的保护,受配位场或晶体场影响较大,谱线不稳定,容易造成同一元素在不同化合物中的吸收光谱出现差别,导致颜色不稳定。稀土元素的电子能级和谱线比其它元素丰富多样,它们在从紫外光、可见光到红外光区都有吸收或发射现象,是非常好的色谱较广的 有色 物质。              以上是稀土氧化物的介绍,更多信息请详见上海 有色金属 网。 

钽铌五氧化物制取

2019-03-05 12:01:05

铌钽氧化物能够用在空气中加热金属、碳化物氧化、氮化物氧化等办法制取,生产上一般选用中和沉积法和晶体热分化法制取。此外还有氯化物水解法。制备办法不同,氧化物的一些物理化学性质不尽相同。例如,氧化铌的密度可在4.3~5.2g/cm3之间改变;中和法和水解法氧化物残留有F或Cl,简略受潮;晶体分化法产品无F或Cl污染问题,粒度细,不受潮。       一、中和沉积法   中和沉积法是工业上使用最多的办法。质料主要是含钽或铌的反萃取液,用作沉积剂,反应为:   H2NbF7+7NH3+5H2O=Nb(OH)5↓+7NH4F H2NbOF5+5NH3+4H2O=Nb(OH)5↓+5NH4F H2TaF7+7NH3+5H2O=Ta(OH)5↓+7NH4F       中和为放热反应,沉积结尾pH=8~9,中和时沉积物易吸附F-、SO4-等,为下降氟等杂质的吸附,操控沉积温度为80℃,沉积物过滤也用80~90℃的纯水洗刷,至滤液中含F-<0.1g/L。所得滤饼先烘干,然后进行热解,氢氧化物热解进程分别为:       此办法的缺点在于:过滤难度大;所得的氢氧化物沉积吸附性强,难于彻底脱除F-;沉积、过滤、洗刷、枯燥、煅烧需求很多设备。       二、晶体分化法       晶体分化法的质料为草酸铌晶体。该晶体由溶剂萃取的反萃取液蒸腾浓缩或将氢氧化铌溶于草酸溶液中取得。工艺上选用工业氧化铌和工业草酸,溶解温度70~75℃,溶解后趁热过滤除掉固体杂质,随之冷却结晶,离心过滤后的晶体再重结晶一次即可取得合格晶体。最终将晶体进行热分化。分化时晶体在100℃下脱去结晶水,180℃开端分化(焚烧),350℃氧化铌开端向嫩黄色(氧化铌晶格氧缺点引起)改变,500℃时分化结束。分化反应为:   2(NH4)3[NbO(C2H4)3]+21O2→Nb2O5+6NH3↑+12CO2+15H2O       该办法的工艺、设备和设备原料、操作等都很简略。产品不含氟,纯度高(>99.99%),有利于使用。       我国工业级和高纯级氧化铌和氧化钽国家标准见表1~表4。   表1  五氧化二铌国标(GB3627-83)(不大于)     (%)元  素FNb2O5-1FNb2O5-2FNbO-3元  素FNb2O5-1FNb2O5-2FNbO-3Ta0.050.10.3Cu0.0030.0050.005Ti0.0010.0040.01Al0.0030.0050.05F0.0030.010.03Si0.0050.020.04Mo0.0020.005-As,Sb,Pb--0.005Cr0.0020.005-S,P--0.01Mn0.0020.005-F---0.15Fe0.0050.020.04粒度/目-60-60-60Ni0.0050.020.04       表2  五氧化二钽世界(GB3626-83)(不大于)     (%)元  素FTa2O5-1FTa2O5-2FTa2O5-3元  素FTa2O5-1FTa2O5-2FTa2O5-3Nb0.0030.050.3Ni0.0040.01-Ti0.0010.0050.03Cu0.0040.01-F0.0010.006-Al0.0020.0040.015Mo0.0010.0030.005Si0.0040.020.05Cr0.0010.004-F-0.100.150.15Mn0.0010.0040.005粒度/目-80-80-80Fe0.0040.020.003       表3  高纯氧化铌国标(GB10578-89)(不大于)    (10-4%)杂质元素特级 FNb2O5-045一级 FNb2O5-04二级 FNb2O5-035杂质元素特级 FNb2O5-045一级 FNb2O5-04二级 FNb2O5-035Ta1530100Mo3510Al3510Ni2310B2--Pb3--Bi1--Si71350Cr2310Sn135Cu3510Ti135F5090150F-3510Fe3510粒度/目-60-60-60Mn135       表4  高纯氧化铌国标(GB10577-89)(不大于)    (10-4%)杂质元素特级 FTa2O5-045一级 FTa2O5-04二级 FTa2O5-035杂质元素特级 FTa2O5-045一级 FTa2O5-04二级 FTa2O5-035Nb153080Mo3510Al3510Ni1310B1--Pb3--Bi1--Si71350Cr1310Sn135Cu3510Ti135F3070150F-3510Fe3510粒度/目-60-60-60Mn135

铁氧化物的分解、还原与再氧化(一)

2019-02-14 10:39:59

氧化物的分化、复原及再氧化反响是烧结进程中化学反响中一个重要部分,它影响烧结矿的矿藏组成及液相的构成,然后影响烧结矿的质最。例如恰当操控烧结气氛以削减铁氧化物的复原进程,促进Fe2O3生成而削减FeO的构成,这有利于烧结矿复原性的进步。   (一)铁氧化物的分化    烧结猜中有许多氧化物,在铁猜中主要是铁或锰氧化物,在熔剂中有钙镁氧化物,这些氧化物在烧结进程中是否发作分化反响决定于它们的化学反响式的平衡常数(Kp)及等压位的改变(ΔZ)一般金属氧化物的分化可按下式表明:                                      2MeO=2Me+O2    如MeO及Me是以固相存在而不相互熔解,则上式的反响平衡常数即等于分化压力:                                       Kp=Po2    分化压力与反响的标准等压位的关系为:                                     ΔZo=-KTlnPo2    当气相中氧的分压为P′o2时,则    当Po2>P′o2时,ΔZ<0氧化物分化,    当Po2<P′o2时,ΔZ>0反响向生成氧化物的方向进行;    当Po2=P′o2时,ΔZ=0反响趋于平衡状况。    在大气中P′o2=0.21而大多数金属氧化物的分化压力比0.21气压小得多,所以大多数金属氧化物在大气中是比较安稳的。 [next]     MnO2,Mn2O3,Fe2O3的分化压力比较大,MnO2在460℃的分压为0.21,550℃的分压为1.0大气压(98066.5帕),Mn2O3到达相应分压的温度为927℃及1100℃因而铁锰的高档氧化物(即氧化程度高的氧化物)在烧结进程中枯燥带或预热带就开端分化乃至已很剧烈,而Fe2O3在1383℃分化压力为0.21,在1452℃分化压力为1.0,要比锰的高档氧化物分化困难一些。在烧结条件下,烧结冷却带的气体的实践压力为0.9大气压(0.9×98066.5帕),所以氧的分压为0.18~0.气压(0.9×98066.5帕);预热带废气含氧8~10%,氧的分压在0.072~0.09大气压(×98066.5帕),在焚烧带烧结温度可达1350~1450℃,氧的分压接近碳粒处则比预热带的更低,因而Fe2O3发作分化或剧烈分化。磁铁矿Fe3O4在1500℃只要10-7.5气压(×98066.5帕),所以在烧结条件下分化是不可能的。但在有SiO2存在的条件下,温度高于1300~1350℃,它可按下式进行分化:                           2Fe3O4+3SiO2=3(FeO)2·SiO2+O2    浮士体(FexO)的热分化在烧结条件下是不可能的,由于它的分化压力在同一温度下比Fe3O4还低。    可以用下式核算FeO的分化温度:    因而在烧结条件下FeO不可能分化。烧结猜中还有许多氧化物,其分化压力比FeO还要小,因而要求分化温度更高。但凡ΔZ°负值愈大,金属与氧亲和力越大,即该金属氧化物愈不易分化,从图中看到钙、镁氧化物,其ΔZ°最小,因而在烧结的温度及气氛下不发作任何分化。   (二)铁氧化物的复原    在烧结进程中,接近燃料颗粒处存在着复原性气体CO以及赤热燃料粒,所以有很强的复原性气氛,因而烧结猜中铁、锰等氧化物及液相中的铁、锰氧化物将遭到复原。    即A,B,C,D分别为Fe2O3、Fe3O4、FeO及Fe的安稳区,见图2当有过剩的固定碳存在时,铁的各级氧化物的复原反响产品决定于气化反响的平衡曲线CO2+C=2CO,见图3.

铁氧化物的分解、还原与再氧化(二)

2019-01-25 15:49:20

根据理论计算表明,Fe2O3还原成Fe3O4的平衡气相中,CO%含量要求很低,即CO2/CO的比值很大。微量CO的混合气体就足以完全还原赤铁矿成为磁铁矿。还原反应可能在烧结的预热带进行。特别是在固体燃料的燃烧带进行。从实验室研究表明,气相中存在CO2(CO-CO2混合气体中)并不减缓赤铁矿的还原。对于FeO4还原成FeO反应中,平衡气相在700℃时CO2/CO的比值为1.84,1300℃时为10.76.对于FeO还原成Fe的反应,平衡气相在700℃时,CO2/CO的比值为0.67,1300℃时为0.297温度升高,比值不断降低。在实际烧结过程中,当使用惰性物料(例如石英砂)烧结时,燃料燃烧产物中CO2/CO=0.76-1.00之间。因而从热力学的观点考虑,Fe3O4有可能被还原为FeO,而FeO不可能还原成为Fe.但必须指出,在烧结料层中气体组成的分布是极不均匀的。在焦粉粒的周围CO2/CO可能很小,而离焦粉粒子较远的区域CO2/CO可能很大,氧的含量可能较多。在前一种情况下,铁的氧化物甚至可能波还原到金属铁。而在后一种情况下,Fe3O4和FeO有可能被氧化。因此在烧结的条件下,不可能使所有的Fe3O4甚至所有的Fe2O3还原。此外,实际的还原过程取决于过程的动力学条件,如矿石本身的还原性,矿石和还原剂的接触时间和表面积。虽然烧结料中铁矿石的粒度小,比表面积大,但由于高温持续时间短(1~1.5分),(CO向矿粒中的扩散条件差,以及Fe3O4本身还原性不好,所以Fe3O4的还原将受到限制。因此从热力学来分析Fe3O4有可能还原成FeO而事实上还原的多少还取决于高温区平均气相组成和动力学条件。    还原最终作用还决定于烧结过程温度水乎及燃料消耗。当烧结料中加入石灰石时,有利于形成易熔化合物降低燃烧特温度,使还原反应过程受限制,其结果使得烧结矿中FeO下降。相反,当料中加入MgO形成难熔的化合物,燃烧带温度上升,所以烧结矿中的FeO也上升,见图4.[next]   (三)烧结过程中铁氧化物的再氧化    使用高品位赤铁矿粉的烧结试验表明:在正常配碳的条件下(4.75%C),赤铁矿几乎全部还原为磁铁矿,但在燃烧带上部受氧化作用,烧结矿Fe++逐步减少。随着固定碳的减少,氧化更加剧烈,以至可以重新回到赤铁矿的水平。图5表明赤铁矿粉不同配碳烧结时料层中Fe++的分布情况。    由图可知:当配焦粉7%时,燃烧带的Fe++可达30%以上,这说明有FexO出现。在配焦粉5.7%时, Fe++最高达23%,正说明赤铁矿全部还原为磁铁矿。而在距离燃烧带约60%的地区又重新氧化到赤铁矿。对于在高燃料配比的情况下(7%焦粉),氧化作用较弱仅使已还原的氧化物再氧化到磁铁矿的水平。    当烧结磁铁矿时,氧化反应也得到相当大的发展。特别在燃料偏低的情况下,燃烧带温度在1350℃以下,氧化进行得非常剧烈。磁铁矿的氧化带先在预热带开始进行,然后在燃烧带不含燃料的烧结料中,最后在烧结矿冷却带中进行。    当燃料消耗稍高于正常时,这种再氧化过程对烧结矿的最后结构并无影响。在较低的燃料消托时所得到的烧结矿结构,通常含有沿着解理平面被氧化的最初的磁铁矿粒,因为在这种条怍下热量及还原气氛都较弱,不足使它们还原。这种结构类型常常是天然氧化磁铁矿及假象赤铁矿的特征。很值得注意的,在液相中析出的磁铁矿也趋向于具有沿解理平面的氧化,这可能与结晶不均质性的规律有关。而浮士体的氧化经常沿颗粒边缘进行。    当烧结矿的最后结构形成后,烧结矿经受到很微弱的第二次氧化。在一般情况下,分布在硅酸盐液相之间的磁铁矿结晶来不及氧化。磁铁矿部分氧化只是在烧结矿的孔隙表面、裂缝以及各种有缺陷附近的颗粒才能发生。

镨钕氧化物富集物质量标准

2019-01-03 14:43:33

镨钕氧化物富集物质量标准

氢还原钨氧化物制取钨粉的工艺

2019-03-05 09:04:34

金属钨粉是制取碳化钨基硬质合金及金属钨材的首要质料,当时制取金属钨粉的首要办法为钨氧化物氢复原法,WO3氢复原制取钨粉的反响为:有关进程的热力学和动力学原理,前人已进行了全面的研讨,积累了很多研讨成果,但考虑到当时钨粉的粒度和描摹是生产中的关键问题,为确保必定的粒度,复原进程往往是在远离平衡的条件下、依据制备特定粒度的要求,以操控工艺参数,因而这儿侧重介绍影响钨粉粒度的要素及其操控,有关热力学和动力学原理可参阅有关教科书。 一、钨氧化物复原进程中影响粒度的要素 (一)复原进程中颗粒长大的机理 在复原进程中生成钨粉的粒度随复原条件而异,即在某些条件,如高温、高湿度的条件下将发作长大,关于其长大机理,现在有多种观念,下面是两种首要的观念。 1、化学气相搬迁长大机理 水合钨氧化物具有比纯氧化钨高得多的挥发性。复原进程中首要水蒸气与氧化钨或细粒钨粉效果构成水合氧化钨,它通过气相搬迁到其他颗粒上再复原,然后导致颗粒长大。高温文湿氢复原具有最有利的化学气相搬迁条件。 2、氧化-复原机理 粉末颗粒愈细,比表面以及表面活性愈大,因而,细颗粒粉末有或许被气相的水蒸气或氧气氧化并生成挥发性水合氧化钨,然后进行化学气相搬迁,在较粗颗粒上被复原,使颗粒长大。 (二)影响粉末粒度和粒形改变的首要要素 1、温度 升高温度可加速复原反响,相应地添加水蒸气的生成速度,促进化学气相搬迁反响。促进颗粒长大和团粒化。 2、水蒸气分压 水蒸气是化学气相搬迁反响的基本条件,其量包含中含有的和复原反响中发生的水蒸气。它在复原进程中不是一个稳定值。对反响速度起效果的一切要素和影响分散进程的一切要素(如温度、粒层厚度、的流向和流速、粉末的粒度、舟皿的几许形状等)、推舟速度都影响水蒸气的实践分压进而影响到粉末粒度和描摹。温度及湿度(氢的露点)对WO2相对增长速度的影响见表1。 表1  在不同温度和温度下,WO2粒度的相对增长速度3、质料粉末的性状 研讨标明,氧化钨的复原活性对钨粉的粒度有显着的效果。复原活性大的质料简单得到细粒度钨粉。 4、杂质和添加剂 杂质元素对钨粉颗粒改变的影响,可分为三类: 第一类以碱金属为代表,它们能起氧的载体效果,延伸氧在粉末层内的停留时刻,促进化学气相搬迁反响,增强钨粉的颗粒长大。 第二类以钙、镁、硅为代表,它们对钨粉颗粒长大的效果不显着。 第三类以铝为代表,它们能在钨的晶体表面生成稳定性很高的氧化物薄层,按捺钨粉颗粒的长大。 5、操作准则 因为颗粒长大进程首要是发作在WO3复原成WO2的进程中,为得到细颗粒,必定要确保在复原的初期处于低温、低水蒸气分压状况。因而推舟速度过快,一方面使物料敏捷进入高温区,有利于WO2.9等颗粒长大,一起使复原速度加速,H2O蒸气浓度添加,这些都有利于颗粒的长大,因而为得到细颗粒一般要求推舟速度慢。一起炉内温度较低,温度梯度较小。 装舟量过多,料层过厚,将导致内部的水蒸气难以排出,使内部颗粒长大,一起导致上基层粒度不均匀。 二、氢复原钨氧化物制取钨粉的工艺 现在复原进程通常在回转式管状炉、四管马弗炉及多管炉中进行,相对而言,后者的温度均匀,产品粒度简单操控,且粒度均匀。 详细工艺有: (一)黄钨工艺,即以WO3为复原的质料。 (二)蓝钨工艺,即以蓝色氧化钨为质料。蓝色氧化钨是指WO3或APT在300~420℃下,在转炉内部分复原所得的产品,它的成分首要为WO2.9或铵钨青铜(ATB),亦或许含少数WO2.72乃至钨酸盐,用蓝色氧化钨作质料的特电是其粒度较黄钨易于操控。 (三)紫钨工艺,即用WO2.72(W18O49)为质料进行复原,用以制取超细颗粒钨粉,其实质是首要将APT在回转炉内、在必定温度和弱复原气氛下制备W18O49,此刻,在原APT晶粒内构成W18O49的棒状晶体的集合物,当原APT晶粒为50~60μm时,则晶粒中构成的W18O4,棒状晶体直径小于2μm,这种W18O49进一步在四管复原炉中复原,得超细钨粉,其BET直径约0.08~0.9  μm,这些超细钨粉的粒度远比黄色WO3或蓝钨复原的产品粒度细,且均匀。一起它们在进一步碳化制取WC的进程中亦小易长大,例如用其制备的钨粉其BET粒往为0.084μm。在1460℃下碳化2h,所得的超细碳化钨粉的BET粒径仅0.214μm,与国外的先进水平适当。碳化进程中颗粒长大的趋势远小于从蓝钨复原的产品。 唐新和展开的从有机胺钨酸盐热分化制得钨及碳化钨超细粉末。获得非常有意义的成果。这种从所谓“自复原钨酸盐”制得的粉末,功能优秀,现已获得国家专利。

钨氧化物还原过程中影响粒度的因素

2019-02-21 15:27:24

一、复原进程中颗粒长大的机理 在复原进程中生成钨粉的粒度随复原条件而异,即在某些条件,如高温、高湿度的条件下将发作长大,关于其长大机理,现在有多种观念,下面是两种首要的观念。 (一)化学气相搬迁长大机理 水合钨氧化物具有比纯氧化钨高得多的挥发性。复原进程中首要水蒸气与氧化钨或细粒钨粉效果构成水合氧化钨,它通过气相搬迁到其他颗粒上再复原,然后导致颗粒长大。高温文湿氢复原具有最有利的化学气相搬迁条件。 (二)氧化-复原机理 粉末颗粒愈细,比表面以及表面活性愈大,因而,细颗粒粉末有或许被气相的水蒸气或氧气氧化并生成挥发性水合氧化钨,然后进行化学气相搬迁,在较粗颗粒上被复原,使颗粒长大。 二、影响粉末粒度和粒形改变的首要要素 (一)温度 升高温度可加速复原反响,相应地添加水蒸气的生成速度,促进化学气相搬迁反响。促进颗粒长大和团粒化。 (二)水蒸气分压 水蒸气是化学气相搬迁反响的基本条件,其量包含中含有的和复原反响中发生的水蒸气。它在复原进程中不是一个稳定值。对反响速度起效果的一切要素和影响分散进程的一切要素(如温度、粒层厚度、的流向和流速、粉末的粒度、舟皿的几许形状等)、推舟速度都影响水蒸气的实践分压进而影响到粉末粒度和描摹。温度及湿度(氢的露点)对WO2相对增长速度的影响见表1。 表1  在不同温度和温度下,WO2粒度的相对增长速度(三)质料粉末的性状 研讨标明,氧化钨的复原活性对钨粉的粒度有显着的效果。复原活性大的质料简单得到细粒度钨粉。 (四)杂质和添加剂 杂质元素对钨粉颗粒改变的影响,可分为三类: 第一类以碱金属为代表,它们能起氧的载体效果,延伸氧在粉末层内的停留时刻,促进化学气相搬迁反响,增强钨粉的颗粒长大。 第二类以钙、镁、硅为代表,它们对钨粉颗粒长大的效果不显着。 第三类以铝为代表,它们能在钨的晶体表面生成稳定性很高的氧化物薄层,按捺钨粉颗粒的长大。 (五)操作准则 因为颗粒长大进程首要是发作在WO3复原成WO2的进程中,为得到细颗粒,一定要确保在复原的初期处于低温、低水蒸气分压状况。因而推舟速度过快,一方面使物料敏捷进入高温区,有利于WO2.9等颗粒长大,一起使复原速度加速,H2O蒸气浓度添加,这些都有利于颗粒的长大,因而为得到细颗粒一般要求推舟速度慢。一起炉内温度较低,温度梯度较小。 装舟量过多,料层过厚,将导致内部的水蒸气难以排出,使内部颗粒长大,一起导致上基层粒度不均匀。

铝土矿原料特点,多成氧化物、氢氧化物和含氧的铝硅酸盐存在

2019-03-11 09:56:47

铝是地壳中散布最广泛的元素之一,属亲石亲氧元素。铝在天然界中多成氧化物、氢氧化物和含氧的铝硅酸盐存在,很少发现铝的天然金属。    天然界已知的含铝矿藏有258种,其间常见的矿藏约43种。实际上,由纯矿藏组成的铝矿床是没有的,一般都是共生散布,并混有杂质。从经济和技能观念动身,并不是一切的含铝矿藏都能成为工业原料。用于提炼金属铝的首要是由一水硬铝石、一水软铝石或三水铝石组成的铝土矿。原苏联因缺少铝土矿资源,使用霞石和明矾石提炼氧化铝。我国的硫磷铝矿能够归纳收回氧化铝。     一水硬铝石又叫水铝石,结构式和分子式分别为AlO(OH)和Al2O3?H2O。斜方晶系,结晶无缺者呈柱状、板状、鳞片状、针状、棱状等。矿石中的水铝石一般均含有TiO2、SiO2、Fe2O3、Ga2O3、Nb2O5、Ta2O5、TR2O3等不同量类质同象混入物。水铝石溶于酸和碱,但在常温常压下溶解甚弱,需在高温高压和强酸或强碱浓度下才干彻底分化。一水硬铝石构成于酸性介质,与一水软铝石、赤铁矿、针铁矿、高岭石、绿泥石、黄铁矿等共生。其水化可变成三水铝石,脱水可变成α刚玉,可被高岭石、黄铁矿、菱铁矿、绿泥石等告知。     一水软铝石又叫勃姆石、软水铝石,结构式为AlO(OH),分子式为Al2O3?H2O。斜方晶系,结晶无缺者呈菱形体、棱面状、棱状、针状、纤维状和六角板状。矿石中的一水软铝石常含Fe2O3、TiO2、Cr2O、Ga2O3等类质同象。一水软铝石可溶于酸和碱。该矿藏构成于酸性介质,首要产在堆积铝土矿中,其特征是与菱铁矿共生。它可被一水硬铝石、三水铝石、高岭石等告知,脱水可转变成一水硬铝石和α刚玉,水化可变成三水铝石。     三水铝石又叫水铝氧石、氢氧铝石,结构式Al(OH),分子式为Al2O3?3H2O。单斜晶系,结晶无缺者呈六角板状、棱镜状,常有呈细晶状集合体或双晶,矿石中三水铝石多呈不规则状集合体,均含有不同量的TiO2、SiO2、Fe2O3、Nb2O5、Ta2O5、Ga2O3等类质同象或机械混入物。三水铝石溶于酸和碱,其粉末加热到100℃经2h即可彻底溶解。该矿藏构成于酸性介质,在风化壳矿床中三水铝石是原生矿藏,也是首要矿石矿藏,与高岭石、针铁矿、赤铁矿、伊利石等共生。三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉,可被高岭石、多水高岭石等告知。     铝土矿的化学成分首要为Al2O3、SiO2、Fe2O3、TiO2、H2O+,五者总量占成分的95%以上,一般>98%,非必须成分有S、CaO、MgO、K2O、Na2O、CO2、MnO2、有机质、碳质等,微量成分有Ga、Ge、Nb、Ta、TR、Co、Zr、V、P、Cr、Ni等。Al2O3首要赋存于铝矿藏-水铝石、一水软铝石、三水铝石中,其次赋存于硅矿藏中(首要是高岭石类矿藏)。     在内生条件下,因为有二氧化硅的广泛存在,Al2O3与SiO2常紧密结合成各类铝硅酸矿藏,这些矿藏一般铝硅比小于1,而工业上对铝矿石一般要求Al2O3≥40%,Al/Si>1.8~2.6,因而内生条件下很少构成工业铝矿床。     现在,已知的国内外工业铝土矿多是在表生条件下构成的。在表生条件下铝土矿的生成首要有两种方式:即风化-残积(余)成矿(红土成矿)和风化-转移-堆积成矿或风化-改造-再堆积成矿(堆积成矿)。风化-残积(余)成矿是含铝母岩在湿热气候条件下,具分泌杰出的有利地势(如残丘、低山和台地),因为水、CO2和生物等的风化分化效果,母岩中易溶物质K、Na、Ca、Mg和SiO2被淋失排出,活动性小的物质Al、Fe、Ti残留原地构成红土型铝土矿。风化-转移-堆积成矿是含铝岩石、红土风化壳或已构成的红土矿床,在重力、水和天然酸(硫酸、碳酸、有机酸)等效果下,经机械的或化学的风化、剥蚀、转移等物理、化学改造效果,于山坡凹地、谷地、近海湖盆地或沿海(氵舄)湖、限制海盆内构成铝土矿,在水介质环境中构成堆积铝土矿。     铝土矿矿石含有镓、钒、铌、钽、钛、铈及放射性元素等有用组分,这些有价值的伴生组分可归纳收回。而矿石中的硫、CO2、MgO、P2O5则是有害组分,不利于铝的冶炼收回。     铝土矿矿石依据其所含的首要含铝矿藏分为:三水铝石型、一水软铝石型和一水硬铝石型。国外铝土矿矿石首要是三水铝石型,次为一水软铝石型,而一水硬铝石型铝土矿很少。但我国则首要是一水硬铝石型铝土矿,三水铝石型铝土矿很少。     国外的三水铝石型铝土矿具高铝、低硅、高铁的特色,矿石质量好,合适耗能低的拜耳法处理。我国的一水硬铝石型铝土矿,整体特征是高铝、高硅、低硫低铁、中低铝硅比,矿石质量差,加工难度大,氧化铝出产多用耗能高的联合法。

锑资源应用之锑化合物

2019-01-31 11:06:17

锑化合物种类繁复,运用规模适当广泛,在医药、电子、玻璃制作、阻燃、陶瓷、珐琅、印染、化工、化学分析等方面都有运用。 葡萄糖酸锑钠是医治黑热病的首选药,作用很好,且很少发作副作用。可由葡萄糖酸钠与锑酸作用制得。酒石酸氧锑钾(吐酒石)和锑—273(次没食子酸 锑钠)都是医治血吸虫病的药物。前者经过打乱血吸虫体代谢到达消除血吸虫的意图;后者则能将肠系膜静脉中血吸虫转入,堵塞于肝小血管,被吞噬细胞所包 围,最终消除。酒石酸氧锑钾由三氧化锑与酒石酸氢钾溶液共热后结晶制得;锑—273则由次没食子酸和三氧化锑在中性溶液中作用制得。 锑与ⅢA族、ⅥA族元素构成的化合物InSb、AlSb、GaSb、Sb2Se3、Sb2Te3 等都是很好的半导体材料。金属锑和铟在高温熔合,再经熔炼提纯即为锑化铟的单晶,该单晶可制成具有特殊功能的红外线勘探器材。 氧化锑(Sb2O3)、锑酸钠(NaSbO3)、水合锑酸钠(NaSb(OH)6)等都可用于玻璃出产中作弄清剂,仅仅Sb2O3用于普通玻璃,而 NaSbO3和NaSb(OH)6用于显像管玻壳、光学玻璃及各种高档玻璃。Sb2O3作玻璃弄清剂运用时,要和硝酸盐并用,其原理为在 1000~1200℃温度下,被硝酸盐放出的氧所氧化;当温度到达1300℃以上时又放出氧,然后起弄清作用;在冷却过程中Sb2O3再变成Sb2O5,这样便把氧气气泡吸收除掉。一般玻璃种Sb2O3的用量为0.05%~0.5%。NaSbO3、NaSb(OH)6作为玻璃弄清剂比Sb2O3 作用要好,它们独自运用,所起作用与Sb2O3类似,也是高温时生成Sb2O3而放出氧,冷却时Sb2O3再转变成Sb2O5吸收氧气气泡,然后到达弄清 玻璃的意图。 在钠钙玻璃中参加一定量的Sb2O3、、碳粉,熔炼后再经显色热处理,即得到报价便宜、便于推行的锑红玻璃。此种玻璃用作信号玻璃和艺术玻璃 等。别的,由Te—Ge—Sb—S制成的硫族化合物玻璃是一种半导性开关用玻璃。 锑系阻燃剂在无机阻燃剂中占有越来越重要的位置。Sb2O3、非胶体Sb2O5、胶体Sb2O5、SbCl3、NaSbO3等分别开发出了组成不 同、特性不同、运用于不同场合的系列种类,广泛运用于橡胶、塑料、化纤、地毯、涂料等阻燃制品中。跟着Sb2O3超微细技能的开展,使咱们可以得到粒径更 细的Sb2O3,其添加功能更好,对被阻燃基材物理功能的恶化更少。胶体Sb2O5的均匀粒径仅0.03um,约为一般Sb2O3粒径的1/100,因为 极细,基本上不恶化树脂基材的物理功能,一起对树脂的色彩也罕见影响。试验证明,胶体Sb2O5阻燃性高于同系列的非胶体Sb2O5、及NaSbO3等,是锑系阻燃剂中最好的一种。 SbCl5用于查验生物碱和;NaSbO3和焦锑酸钾(K2H2Sb2O7·4H2O)都可用于钠离子的判定。SbCl3常作为无机和有机氯化反 应的催化剂。 Sb2O3是最重要的锑化合物之一,除了前面说到的用处外,它还可用作石油化工和组成纤维的催化剂;用于制作媒染剂、乳白剂;用作组成锑盐的质料。 在珐琅工业中用作添加剂,以添加釉的不透明性和表面光泽。别的,它仍是一种优秀的白色颜料,其遮盖力略次于钛白,而与锌白附近。在钛白的出产 中,Sb2O3能有效地按捺钛白的光致反响。使用Sb2O3杰出的抗粉化、对光安稳功能以及阻燃功能,人们现已制备出各种用处的含锑二氧化钛,如钛镍黄、 化纤钛白、超细含锑二氧化钛等。

锑的氢化物及卤化物

2019-02-11 14:05:30

一、锑的氢化物 SbH3是一种无色、易燃、极毒的气体,气味似。SbH3毒性比AsH3弱。 SbH3微溶于水,易溶于有机溶剂。SbH3不稳定,室温下即分化: 2SbH32Sb+3H2 SbH3分化时也能构成相似“砷镜”的“锑镜”反响,砷镜能溶于NaClO,而锑镜则不溶于NaClO。这是差异砷和锑的办法之一。 SbH3具有强还原性,易为湿润空气中的氧所氧化: 2SbH3+3O2Sb2O3+3H2O 二、锑的卤化物 锑的三卤化物在溶液中会激烈地水解,生成难溶于水的卤化锑酰沉积:                      SbCl3+2H2OSb(OH)2Cl+2HCl                           └→SbOCl↓(氯化氧锑或酰)+H2O

锑的卤化物

2019-02-18 15:19:33

锑能直接与卤素化合生成各种SbX3和SbX5型化合物,但不生成SbBr5和SbI5。下表是锑的卤素化合物的物理性质。 表  锑卤素化合物的物理性质性质SbF3SbCl3SbBr3SbI3SbF5SbCl5分子量178.75228.11361.48502.46216.74299.02存在形状斜方品系油状液体色彩无色白色赤色无色密度∕(g·cm-3)4.3793.064.1484.852.99 (21℃)2.336(20℃)熔点∕℃280±173.496.0±0.5170.563.2±0.1沸点∕℃346±10222.628740115068(1.82kPa)-915.5-382.2-259-100-45.8±6.2127184207216±1263±1221.422.2±0.238.255.5±0.14 (444℃)102.8±1.3 (298℃)46.72 (496℃)53.2 (540℃)43.45 (449℃)175.8±2.5 (298℃)93.3 (496℃)94.9 (560℃)95.44 (449℃)10896144106.6±0.4锑的氯化物的物理化学性质如下: SbCl3:熔化后为通明油状液体,商业上称为“锑油”,具有激烈腐蚀性,在湿润空气中发作SbOCl烟雾,易溶于水,少数水可使其构成清亮的溶液,稀释时发作水解反响,视稀释程度沉积出SbOCl或Sb4O5Cl2氯氧化锑。其蒸气压与温度的联系如下: 温度/℃     50.3       99.7        149.8    199.3      223.5 蒸气压/Pa    146.65    2399.796    16038.64   59514.94  101324.72 SbCl5:欢腾时即发作分化,放出,转变为SbCl3;反之若通于SbCl3溶液可获得SbCl5,可溶于和内,能与无机和有机物反响生成一系列合作物,是一种强氧化剂。

锑的硫化物

2019-02-18 15:19:33

具有工业含义的锑的硫化物是和五硫化二锑。硫化锑的物理和化学性质列于下表。 表  硫化锑的物理和化学性质品种物理性质化学性质Sb2S3有结晶和无定形两种形状,前若属斜方晶系,色骨灰,有金属光泽,密度4.642g∕cm3,硬度HB2~2.5.比热容(20~500℃)0.34158J∕(g·K),熔点550℃,沸点1080~1000℃,蒸发热61296J∕mol,熔化热23430~28953J∕mol 蒸气压(Pa)与温度的关系式为: lgp=14.671-11200∕T(673K≤T<773K) lgp=9.915-7068∕T(773K≤T≤1223K) 结晶三硫化锑在自然界以辉锑矿存在,无定形三硫化锑为人工制作,因生成条件和粒度巨细不同而有黑、灰、红、黄、棕、紫各种色彩几乎不洛于水(18℃时溶解度约0.0176%),在沸水中可徐缓氧化为Sb2O3,受热易分化,600℃时已很明显,880℃时的分化压可达2452.58Pa;易氧化,当粒度为0.1mm时加热至290℃,即自发焚烧,其反响为:2Sb2S3+9O2=2Sb2O3+6SO2 这个反响是蒸发焙烧的根底;用Cl2或FeCl3可使其氧化为SbCl3,分出元素硫,是氧化-水解法制取锑白的根底。Sb2S3能与Na2S构成Na3SbS3,是碱性浸出湿法炼锑的根底; Sb2S3与Sb2O3可交互反响转化为金属锑和SO2,但在慵懒气氛下则构成2Sb2S3·Sb2O3(锑玻璃),Sb2S3能被铁置换分出金属锑,这个反响是沉积熔炼的根底五硫化二锑 Sb2S5常呈金黄色无定形粉末,商业上称为金黄锑,密度为4.12~4.2g∕cm2分子组成为Sb2S3·2S,在空气中易自燃,加热至120~170℃即可悉数分化为Sb2S3和元素硫,工业上多选用硫酸或与硫代锑酸钠作用以制备Sb2S5

铁精矿反浮选除氟和碱金属氧化物

2019-02-21 15:27:24

铁精矿中的氟一般以萤石或稀土氟化物的方式存在,通常在碱性介质中,以很多水玻璃或适量淀粉按捺铁矿藏,选用阴离子捕收剂反矿藏,如我国包钢选厂铁精矿选用阴离子捕收剂反浮选工艺除氟,以水玻璃作为涣散和按捺剂,铁精矿中的氟含量可从1%~2.4%降至0.65%左右,但仍然存在着铁份丢失较大和除氟率不高级问题。别的,还能够选用在强碱性介质中加淀粉作按捺剂、加Ca++作活化剂、以阴离子捕收剂一起浮氟和硅的工艺。 铁精矿中的碱金属氧化物主要以含碱金属硅酸盐矿藏的方式存在(如长石类矿藏等)。依据该类硅酸盐矿藏的物理化学性质特色,一般选用阳离子捕收剂反浮选工艺,一起研讨证明,参加有利于进步碱金属氧化物的脱除率,但需求延伸浮选时刻,以确保铁精矿中含硅矿藏的浮出。

锑的氢化物

2019-02-18 15:19:33

(H3Sb)为无色剧毒气体,有邪臭味,颇似硫化氧,熔点-88℃,沸点-17℃,  -15℃时的密度是空气的4.344倍,生成时是吸热反应,△H298Θ=145.256kJ∕mol。H3Sb微溶于水,在室温下1L气体可溶于5L水中。H3Sb稍溶于酒精和。在室温下可渐渐分化为锑和氢,200℃时则分化很快。具有强还原性,当有空气或氧气存在时,在低温下即可分化为锑和水,温度进步可着火焚烧发生三氧化二锑和水。

稀土选矿技术之氢氧化物溶解度

2019-01-21 09:41:30

氢氧化物溶解度

不同温度下钛表面生成的氧化物研究

2019-01-25 13:37:03

钛及钛合金表面烤瓷通常在800 ℃以下进行[1-3],检测200 ℃~750 ℃范围内不同温度区段氧化的TA2 和TC4试样表面生成的氧化物类型和结构,可以了解在临床烤瓷温度下,钛材表面的氧化情况,有助于认识钛材与瓷结合的机制。  1.材料和方法:取退火、磨光的纯钛(TA2)和Ti-6Al-4V 合金(TC4) 板材,截成20mm×10mm×1mm的块状(18块TA2,21块TC4),喷砂处理试样表面,然后置于75 %乙醇中超声清洗,吹干。两种钛材试样各分为6组,每组3个试样,分别于200 ℃~300 ℃、300 ℃~400 ℃、400 ℃~500 ℃、500 ℃~600 ℃、600 ℃~700 ℃和600 ℃~750 ℃在烤瓷炉(VACUMAT 100,德国)中进行氧化处理10 min。其余3个TC4试样经600 ℃~750 ℃氧化后,用500目细砂纸磨去表面氧化物,用PW1700型自动化粉末衍射仪(荷兰)对试样进行X线衍射检查。  2.结果:在200 ℃~300 ℃氧化后,TC4表面有α-Ti峰和β-Ti峰,以α-Ti峰为主;此外还出现了Ti2O3峰,说明表面已有氧化物形成。在300 ℃~400 ℃氧化后,又出现了TiO2,说明钛进一步被氧化。在400 ℃~500 ℃处理后,α-Ti峰进一步增强,β-Ti峰变化不明显;氧化钛峰增多,有Ti2O3、TiO和板钛矿型氧化钛(TiO2B),表明氧化加重。在500 ℃~700 ℃范围内,随温度升高β-Ti峰增强,α-Ti峰下降。经500 ℃~600 ℃氧化后,出现了TiO、Ti2O3、TiO2、TiO2B和锐钛矿型氧化钛(TiO2A)峰。在600 ℃~700 ℃氧化后有大量的氧化物在钛表面形成,出现了TiO 、 Ti2O3、Ti3O5、TiO2A、TiO2B和金红石型氧化钛(TiO2R)峰。经600 ℃~750 ℃氧化后,α-Ti峰增强、β-Ti峰也较明显,TC4表面有TiO2、TiO2R和Ti3O5等氧化物形成。在600 ℃~750 ℃氧化后,用细砂纸将表面高度磨光的TC4,α-Ti峰强度增高,但是仍能见到TiO、TiO2和Ti3O5峰。  TA2经200 ℃~300 ℃氧化,形成的主要是α-Ti峰,还有一个很低的TiO2R峰。在300 ℃~750 ℃范围中,随氧化温度升高,α-Ti峰逐渐增强,峰的数目也增多,逐渐出现了TiO2A 、TiO2R及Ti2O3峰。TA2在750 ℃氧化后试样呈现浅蓝色。  3.讨论:①钛的氧化物有10多种。在牙科烤瓷热处理条件下,温度升高可造成钛表面氧化物量的增加,但是否还会造成氧化物质的改变,目前尚未见报道[1,2]。我们研究发现,TA2在200 ℃~650 ℃范围内短时间氧化时,除了本身固有的α-Ti峰外,还有TiO2、Ti2O3、TiO2R 等峰出现。TC4氧化时,峰值变化明显,除了本身固有的α-Ti和β-Ti峰外,还有TiO、Ti2O3、TiO2B、TiO2A、TiO2、Ti3O5峰等。表明随着氧化温度升高,钛表面生成的氧化物不仅量增加,其种类和结构类型也随之增多。②本项研究发现在不同温度条件下氧化的钛材,其表面生成氧化物的量、种类和结构都有变化。 在750 ℃以下短时间氧化,钛材表面的氧化物主要是TiO2,此外还有Ti2O3、Ti3O5、TiO。 磨去表面氧化膜后TC4仍能检测出TiO,这说明TiO形成的位置较深。在表层TiO2下方可依次出现Ti2O3和TiO,这3种氧化物中氧原子和钛原子含量的比分别为2∶1、3∶2和1∶1,即由表层向深层氧含量逐渐减少[1-3]。我们对200 ℃~750 ℃氧化的钛材表面氧化物作了初步的定性分析,基本掌握了在该温度区段钛材表面氧化物形成的情况。但要探明钛表面氧化膜的成份与结构在钛与瓷结合中的作用机制,仍需作进一步研究。

锑化合物多种用途

2019-03-07 10:03:00

锑化合物种类繁复.运用规模适当广泛,在医药、电子、玻璃制作、阻燃剂、陶瓷、珐琅、印染、化工、化学分析等方面都有运用。 葡萄糠酸锑钠是医治黑热病的首选药,作用很好,且很少发作副作用,可由葡萄糖酸钠与锑酸作用制得。酒石酸锑氧钾C4H4O7KSb·I/2H2O(吐酒石)和锑一273(次没食子酸锑钠)都是医治血吸虫病的药物,前者经过打乱血吸虫虫体代谢到达消除血吸虫的意图.后者则能将肠系膜睁脉中血吸虫转人.堵塞于肝小血管.被吞咙细胞所围住,最终消火。酒石酸锑敏钾由三氧化锑与酒石酸氢钾溶液共热后结晶制得;锑一273则由没食子酸和三氧化锑在中性液中作用制得。 锑与IIIA族、VIA族元素构成的化合物InSb, AISb, GaSb, Sb2Se3, Sb2Te3等都是很好的半导体材料。金属锑和铟在高a熔合.再经熔炼提纯即为锑化锢的单晶.该单晶可制成具有特殊功能的红外线勘探器材。        氧化锑(Sb203 )、锑酸钠(NaShO3)、水合锑酸钠[NaSb(OH)6]等都可用于玻璃生产中作弄清剂,仅仅Sb2O3用于普通玻璃,而NaShO3和NaSb(OH)6用于显像管玻壳、 光学玻璃及各种高档玻璃。 Sb2O3作玻璃弄清剂运用时,要和硝酸盐并用,其原理为在1000-1200℃温度下,Sb2O3,被硝酸盐放出的氧所氧化(Sb2O3 → Sb205);当温度到达1300℃以上时又放出氧(Sb2O5→Sb2O3),然后起弄清作用;在冷却过程中Sb203再变为Sb205.这样便把氧气气泡吸收除掉。一般玻璃中Sb203的用量为0.05~0.5%.NaSbO3和NaSb(OH)6作为 玻璃弄清剂比Sb203作用要好.它们独自运用,所起作用与Sb2O3类似,也是高温时生成Sb2O3而放出氧,冷却时Sb2O3再转变为Sb2O5吸收氧气气泡,然后到达弄清玻璃的意图. 在钠钙玻瑞中加人一定量的Sb203、硫黄、炭粉,熔炼后再经显色热处理.即得到报价便宜、便于推行锑红玻璃.此种玻璃用作信号玻璃和艺术玻璃等。 锑系阻燃剂在无机阻燃剂中占有越来越重要的位置,阻燃荆已成为锑的最大运用领域.其耗费盘占锑总耗费盘的80%以上。选用Sb2O3、非胶体Sb205、胶体Sb2O5、SbCl3 , NaSbO3等,已别离开发出了组成不同、特性不问、运用于不同场合的系列种类,广泛运用于橡胶、塑料、化纤、地毯、涂料等阻燃制品中。跟着Sb203超微细技能的开展,可以得到粒径更细的Sb203,其添加功能更好,对被阻燃基材物理功能的恶化更少。胶体Sb2O5的均匀粒径仅0.03μm,约为般Sb2飞粒径的1/100.因为极细,基本上不恶化树脂基材的物理功能,一起对树脂的色彩也罕见影响。实验证明,胶体Sb205阻燃性高于同系列的非胶体Sb205、Sb2O3,及NaSbO3等.是锑系阻燃剂中最好的一种。 SbCl3用于查验生物碱和元素。NaSbO3,和焦锑酸钾(K2H2Sb207·4H20)都可用于钠离子的判定。SbCl3常作为无机和有机氯化反响的催化剂。       Sb203是最重要的锑化合物之一,除了前面说到的用处外,它还可用作石油化工和组成纤维的催化剂;用于制作媒染剂、乳白剂;用作组成锑盐的质料;在珐琅工业中用作添加剂,以添加面釉的不透明性和表面光泽。别的.Sb203仍是一种优秀的白色颜料.其遮盖力略次于钛白,而与锌白附近。在钛白的生产中.Sb203能有效地按捺铁白的光致变色反响。使用Sb203杰出的抗粉化、对光安稳功能以及阻姗燃功能,人们现已制备出各种用处的含锑二氧化钛,如钛镍黄、化纤钛白、超细含锑二氧化钛等。

金属氧化物的酸溶和金属离子水解反应

2019-01-24 11:10:32

在这类反应中不发生电子迁移,溶液中的离子活度仅与溶液的pH值有关,而与电位无关。铀矿堆浸中氧化铀(六价)的溶解,金属离子的水解反应均属于此类反应。其通式如下:由于此类反应的热焓为零,水的活度为l,所以反应的标准吉布斯自由能变为:当体系中的A离子和B离子的活度均等于1时,式(2)变为:从式(4)看到,此时的pH值仅与反应的标准吉布斯自由能变有关。我们称此pH值为标准pH值,用pH标表示。它的物理含义是:在标准状态下,体系中的反应物与生成物的活度均为1时的pH值。它是表示金属离子水解程度的一个重要标志。当介质的pH值大于标准pH值时,金属离子就水解,金属的氢氧化物就会沉淀;当介质的pH值小于标准pH值时,金属离子的活度便大于1,即金属氢氧化物的沉淀溶解。这类反应的平衡条件为:在用硫酸作溶浸剂堆浸铀矿石或铜矿石时,往往出现底部的渣品位高于中上层渣品位,个别时候,甚至出现底部的渣品位高出入浸矿石的品位就是由于pH值控制不当,致使已浸出的离子水解反应平衡时UO22+的浓度与pH值的关系如下:铀矿堆浸时,矿石中的UO3的溶解浸出反应为:很显然,UO3的溶解依赖于溶浸液的酸度,其关系如下:  铜矿石中的黑铜矿(CuO),硅孔雀石(CuSiO2·2H2O)等氧化铜矿石,硫酸堆浸时的反应可表示为:这类浸出反应平衡时的Cu2+浓度与pH值的关系式如下:在堆浸工艺中,除了铀、金、铜、银等有价值的金属外,脉石矿物中的某些元素,如铁、铝、钙、镁等也同时与溶浸剂(特别是在采用酸性溶浸剂时)发生化学反应,因而Fe2+,Fe3+,Al3+,Mg2+,Ca2+等离子进入浸出液,其中高价的铁、铝离子经常引起结垢,妨碍生产的顺利进行。这类结垢,与溶液的pH值紧密相关。例如,用硫酸堆浸铀、铜矿石时,往往有大量的亚铁和高铁离子进入浸出液,经过若干个循环,亚铁氧化成高铁,由于Fe3+的水解沉淀pH值低于Fe2+,因而引起大量沉淀。Fe3+,Fe2+水解反应,及与pH值的关系如下:溶液中的Al3+在pH值为3.1时,也因水解而沉淀,反应如下:则                    当矿石中的黑云母[H2K(Mg,Fe)3Al(SiO2)3]及碱性硅酸盐矿物的含量高时,矿石中的铁、铝、镁等元素很容易被酸性溶浸剂所浸出,如不采取防结垢措施,矿堆的结垢是不可避免的。

氧化锑

2017-06-06 17:50:00

氧化锑还原熔炼(reduction smelting of antimony oxide)在高温下用还原剂将氧化锑还原成金属锑的过程,为火法炼锑的挥发焙烧(挥发熔炼)一还原熔炼工艺的组成部分。主要发生还原和造渣两种反应,整个过程由炉料准备、还原熔炼和出渣等作业组成。主要反应   三氧化锑的标准生成吉布斯自由能变化负值比一氧化碳或二氧化碳的标准生成吉布斯自由能变化负值小,液态氧化锑与碳和碳燃烧生成的一氧化碳发生多相还原反应:Sb2O3(1)+3CO(g)=2Sb(1)+3CO2(g)                                   (1)Sb2O3(1)+1.5C(s)=2Sb(1)+1.5CO2(g)                               (2)Sb2O3(1)+3C(s)=2Sb(1)+3CO(g)                                        (3)三个反应都能自动进行。其中固体碳还原生成一氧化碳的反应(3)趋势最大。从动力学观点看,三氧化锑熔化后,只有浸染固体碳表面时,反应才明显进行。而系统中存在液态三氧化锑与一氧化碳间的还原反应进行较为显著,因此反应(1)是上述诸还原反应中的主要反应。原料锑氧中含有一些杂质和造渣成分,还原剂也含有矿物、脉石成分,需要加熔剂造渣。但三氧化锑是两性化合物,能与杂质氧化物发生造渣反应,降低氧化锑的还原效率。一些氧化物,如PbO、As2O3与氧化锑同时熔化或互熔,会影响氧化锑的还原速度。还有一些难熔氧化物,如SiO2、CaO、Al2O3等夹杂在Sb2O3熔体中,会阻碍还原反应的进行。因此,氧化锑还原的完全程度,取决于造渣反应的好坏。为了使杂质和造渣成分顺利渣化,生成的炉渣不阻碍CO2气体与炭粒的接触和CO气体的扩散,必须选择具有熔点低、密度小和流动性好的渣型,浮在熔体表面,减弱对还原反应的不利影啊,保持熔体中的还原气氛,并减少锑的氧化挥发。还原过程生成的炉渣,由于有大量CO和CO2气体穿过,冷却后形成许多空洞,故称泡渣。工艺过程   往氧化锑粉中配入粒度小于5mm的无烟煤还原剂,配入量按反应(2)式计算,过剩系数为1.05~1.45(以三氧化锑质量计)。三氧化锑含量愈低,。过剩系数愈大。再配入熔剂碳酸钠,配入量按Na2O/SiO2=2/3~l/3计算,或按含SiO2 40%~45%,Na2O/CaO不小于1的比例计算。炉料经混合分批加入炉内,在1373~1473K下还原熔炼。氧化锑被还原成金属锑、砷、铅、铜等杂质氧化物也被还原成金属进入粗锑。在还原过程中,脉石和部分砷化物与氧化钠作用,生成泡渣,浮在锑液表面,呈均匀熔体,与锑液分层后,从炉口分次清除,另行处理回收锑。粗锑熔体一般是在同一炉内进行精炼。从反射炉炉尾排出的烟气温度为973~1023K,烟气含尘量40~48g/m3,采用水冷却和表面冷却,经袋式除尘室除尘后尾烟气直接放空。由于含SO2很低,不须高空排放。烟气中带有大量升华的三氧化锑,俗称次锑氧,占进料锑氧质量16%左右,在冷却系统和收尘室收集,返回反射炉熔炼。为获得高的还原效率和高的直收率,要控制好四方面技术条件。(1)降低炉料中脉石含量:入炉锑氧平均含锑不小于75%,还原剂的灰分不大于10%,使用木炭还原剂可获得较好的效果。(2)选择好渣型:根据炉料脉石性质,配入最小的熔剂量,使生成流动性好和易熔性泡渣,以利于炉料还原和与锑分离。(3)炉料均匀混合,料批量适当;采取多次熔化还原和除渣作业,并多次翻动炉料,能显著缩短还原熔炼时间。(4)炉料熔化还原过程均在1373~1473K下进行,避免较大的温度波动,以加快氧化锑的还原速度;并同时使炉渣过热,以利于锑珠聚集沉降。主要设备   还原熔炼可以在反射炉或电炉中进行。但大多采用反射炉。反射炉的一端为燃料燃烧火膛,另一端设炉气排出口,炉拱有加料孔,炉墙设有工作门和出渣口。炉膛面积8~12m2,火膛与炉膛面积比为1:4~1:5。炉底为捣固与高铝质耐火砖砌筑混合结构,熔池用生铁板围成,内衬大型高铝质耐火砖。其余部位用粘土质耐火砖砌成。炉子采用长焰烟煤或煤气燃烧供热。泡渣处理   泡渣主要含锑珠、硅酸钠、铝酸钠、砷酸钠、亚锑酸钠以及钙镁氧化物等,它的成分随原料和熔剂不同而异。电炉还原熔炼锑精矿制取的氧化锑,以碳酸钠、石灰石或石灰作熔剂,典型的泡渣成分(质量分数ω/%)为:Sb 1~2,S 1,SiO2 40~50,Na2O 15~20,CaO10~15,Al2O3 2~10,FeO 2~6,MgO 1~5,还含少量砷和重有色金属、电炉泡渣与精矿搭配,再在反射炉沉淀熔炼,回收全部有价组分。反射炉和鼓风炉熔炼焙烧制取三氧化锑,以碳酸钠作熔剂,其泡渣成分(质量分数ω/%)为:Sb 36~40,SiO2 23~28,Na2O 7~9,CaO 2~4,Al2O3 3~8,Fe 4~5,MgO 1~2。泡渣与锑精矿搭配,入鼓风炉挥发熔炼,这种处理方法锑回收率高,不产出含铁粗锑和高砷锑氧,取代了坩埚炉和鼓风炉还原熔炼工艺。发展趋势   氧化锑反射炉还原熔炼是生产粗锑的主要方法。20世纪60年代,中国采取扩大炉膛容积等技术措施,提高了处理能力,获得更好的技术经济指标。粗锑的机械铸锭、锑氧的空气输送和反吸风收尘室的采用,提高了系统的装备水平,锑的直收率在76%~80%,冶炼时间为2.5~4h/t,燃烧煤耗为240~320kg/t。反射炉炼锑的发展方向是:(1)改进炉体结构,合理配料,选择渣型,采用气体燃料供热,缩小炉头和炉尾温差,提高还原效率和处理能力;(2)根据还原工艺特点,实现工艺参数自动控制;采取炉料制粒技术,强化还原过程,实现还原熔炼过程连续化。 

锑的金属间化合物

2019-01-24 17:45:48

锑与元素周期表中许多族的金属容易生成金属间化合物,简称锑化物。 第Ⅰ族金属的锑化物有:Li3Sb,Na3Sb,K3Sb,KSb,Cu3Sb,Cu2Sb和Ag3Sb;第Ⅱ族金属的锑化物有:Mg3Sb2,Ca3Sb2,ZnSb,CdSb和Ca3Sb;第Ⅲ族金属的锑化物有:BSb,AlSb,GaSb和InSb;第Ⅵ族的锑化物有:Sb2S3,Sb2Se3和Sb2Te3;第Ⅷ族的锑化物有:FeSb2,Ni2Sb3和NiSb。这些金属间化合物多具有半导体性质,在这个领域最重要的是锑与第Ⅲ和第Ⅵ族金属形成的锑化物。 目前已有研究报道锑的半导体化合物多达18种,而研究较多的是AlSb,GaSb和InSb。这些金属间化合物属混合键型。 AlSb是Al-Sb二元系中唯一稳定的化合物,其禁带宽度值高达1.6eV,熔点为1050℃。AlSb的电子迁移率为900cm2∕(V·s),空穴迁移率为400cm∕(V·s)。

锑氧化汞

2017-06-06 17:50:12

锑氧化汞,又称(红汞、锑酸汞),化学式Hg2O7Sb7,分子量1365.5。主要用途 市场 上常液体和粉状有两种规格,颜色为咖啡红,纯度为99.995%,多为俄罗斯产。主要应用于火箭发射、军事、探矿等领域,因其稀有 价格 昂贵。锑氧化汞在某些特定条件下可释放中子,因此在核工业上有广泛用途。注意与常用的红药水(红汞,汞红)并非同一物质。 特别提示现在网上传说有一种红汞核弹,采用锑氧化汞作为中子源,可实现核武器小型化(据说可做到棒球大小),但网上各种介绍均来源于维基百科,并无其他旁证,且拥有中子源还不是发生核聚变的充要条件,还要有必要的温度及压力,仅从网上现有的介绍,恐不能实现核聚变。因此所谓红汞核弹可能并不存在。锑氧化汞主要用途 市场 上常液体和粉状有两种规格,颜色为咖啡红,纯度为99.995%,多为俄罗斯产。主要应用于火箭发射、军事、探矿等领域,因其稀有 价格 昂贵。锑氧化汞在某些特定条件下可释放中子,因此在核工业上有广泛用途。注意与常用的红药水(红汞,汞红)并非同一物质。 

纳米金属氧化物在钙钛矿电池中的应用研究进展

2019-01-04 13:39:36

纳米金属氧化物半导体已被广泛应用于场效应管、气体探测器、锂离子电池以及超级电容器等诸多电子器件。随着染料敏化电池、有机薄膜太阳能电池以及无机有机杂化电池技术的不断革新,纳米金属氧化物已作为此类电池中重要的电极材料应用于太阳能电池领域。钙钛矿是一种具有高吸光系数、高载流子迁移率与寿命和可控带隙的半导体,加之制备工艺简便,成本低廉,受到国内外学术界的广泛关注。短短数年间此类“钙钛矿型太阳能电池”(PSCs)的小面积的单电池效率已突破20%,1cm2以上大面积电池也达到了15%以上的认证效率。钙钛矿电池结构可分为量子点敏化型、介观结构钙钛矿电池和平板结构钙钛矿电池三大类,如图1所示。图1量子点敏化、平板和介观结构钙钛矿电池结构示意图钙钛矿电池中的纳米氧化物致密层钙钛矿电池中的致密层主要发挥载流子的选择性传输的作用。由于分离后的自由电子与空穴易在界面处产生复合,因此引入一层致密层材料有利于通过电极材料间的能级势垒差选择性地让载流子通过,抑制界面复合。依据通过的载流子种类的不同,可以将致密层区分为电子选择层或空穴选择层;或相对应的以阻挡的载流子命名为空穴阻挡层或电子阻挡层。一般而言,性能优异的致密层需要满足以下三点要求:第一,光学性能良好。即不影响钙钛矿层对可见光的吸收。第二,能带结构与电极、敏化材料等相匹配,通过电池各功能层间合适的能带架构,达到高效选择性注入所需载流子,并阻挡另一种载流子的目的。第三,致密层薄膜厚度合适。一方面,致密层厚度增加有利于提高覆盖率,减少致密层孔洞数量,降低复合率;另一方面,致密层本身电阻影响电池性能。钙钛矿电池中的纳米氧化物骨架在介观结构的钙钛矿电池中,纳米氧化物发挥两大主要作用:第一,TiO2、ZnO、SnO2等电子传输材料可以作为介观结构钙钛矿电池的电子传输层,参与电池中载流子输运过程;第二,由于钙钛矿自身即可传递载流子,上述材料及Al2O3、ZrO2等高带隙氧化物也可以作为钙钛矿生长结晶的骨架,用于支撑钙钛矿层的生长。相比较于平板型电池,介观结构电池在测试时往往具有更高的稳定性,电池的迟滞效应相对较小,载流子收集效率相对较高。本节将介绍近两年来氧化物半导体载流子传输材料与介孔绝缘骨架材料在介观结构钙钛矿电池中的制备及其改性方法对钙钛矿电池性能的影响。介观结构电子传输层自2012年首个全固态钙钛矿电池问世以来,以TiO2介孔纳米颗粒为代表的电子传输层被广泛地应用于钙钛矿电池中。与致密层材料类似,符合电池能级结构匹配、高载流子迁移率的半导体均可能作为介观结构的电子(或空穴)传输层材料。介孔层一般使用商用TiO2介孔颗粒浆料经稀释后旋涂,后经高温热处理而制备,但若想使用ZnO、SnO2等非TiO2介孔层,或调节介孔层性能,或设计无需高温烧结能够应用于柔性钙钛矿电池中的介孔层,则需通过溶胶–凝胶法、水热法、电化学法等制备介孔层材料。除了纳米颗粒,多维结构也被应用于钙钛矿电池电子输运层中。尽管多维结构的电池效率略低于传统介孔结构,但基于DSSCs与HSCs中一维纳米阵列光阳极的研究表明,一维的纳米结构相比纳米颗粒具有更高的表面积以及更好的光散射能力;并且,一维纳米结构独特的形貌为电子输运提供了连续的传输路径,因此此类结构有可能应用于高性能钙钛矿电池。而其合成方法有水热法、电纺丝等多种方法,如图2所示.图2基于TiO2“纳米碗”电子传输层的钙钛矿电池制备流程示意图类似于致密层的改性,介孔层改性不仅能够影响介孔层本征电子传输特性,也能够影响其与钙钛矿层的界面。此外,由于TiO2具有光催化活性,在紫外光照射下会发生价电子受激跃迁,形成价带空穴h+,而光生空穴有很强的氧化性,因此表面包覆也有助于降低TiO2对钙钛矿的降解作用,提升钙钛矿稳定性。由前述致密层改性及本节介孔层改性可以看出,改性不仅可能影响钙钛矿电池内载流子的输运性能,还可能影响制备的钙钛矿层形貌结构及电池的稳定性。但无论是在平板结构还是介观结构钙钛矿电池中,氧化物改性均围绕着两大主题,即通过改变半导体本征特性与改变致密层/钙钛矿界面影响钙钛矿电池性能。介观结构绝缘骨架层以绝缘Al2O3介孔层为骨架的介观结构钙钛矿电池,电池结构如图3所示,这种结构的电池效率达到了10.9%,比选用介孔TiO2电子传输层高约2%。由于Al2O3是一种宽带隙半导体材料,其导带底远高于钙钛矿导带底,因此能带结构阻挡了电子的传递,从而使纳米Al2O3颗粒仅仅起到了支撑钙钛矿生长的骨架作用。相比介孔TiO2电子输运层,绝缘Al2O3骨架有以下两大优势:图3(左)含介孔TiO2颗粒和(右)含介孔Al2O3颗粒钙钛矿电池载流子传输示意图首先,在含有Al2O3介孔层的钙钛矿电池中,由于电子在钙钛矿内的传递速度大于在TiO2介孔颗粒中的传递速度,电子直接由钙钛矿传递到致密层表面,传输速率更快,从而使电池效率更高。其次,使用Al2O3绝缘骨架的电池有更好的稳定性。TiO2是一种光催化材料,为解决长期稳定性,需要对TiO2介孔层进行一些表面修饰以减缓其对钙钛矿层的降解。而对于Al2O3,则有报道指出添加一层Al2O3介孔颗粒有助于提升电池性能及稳定性,这是由于Al2O3绝缘层起到了屏蔽电极间载流子复合引起的漏电流。此外,绝缘介孔骨架还常常用于无HTM的钙钛矿电池中。总结与展望纳米氧化物功能层对电池效率有着至关重要的作用。研究表明,纳米氧化物材料的形貌设计、修饰改性等显著地影响其物化性能或钙钛矿/氧化物界面性质,进而影响钙钛矿电池的性能。但由于钙钛矿电池结构体系繁多、界面复杂,对于其中的纳米氧化物材料,仍有许多科学问题尚待解决:氧化物改性以提高钙钛矿电池稳定性氧化物纳微结构设计及界面改性应用于柔性钙钛矿电池上的氧化物致密层/介孔层制备工艺随着钙钛矿电池单电池效率不断提升,以及未来柔性电池的实际使用需求,氧化物层设计要求不需经过高温烧结、且能在大尺寸上保持电极形貌、性能的均匀性。而现有制备方法中,溅射等物理法成本高昂,而溶胶–凝胶旋涂等化学法往往由于致密层均匀性不佳而使钙钛矿电池性能缺乏竞争力。因此亟需兼顾电极性能与制备成本的氧化物致密层与介孔层制备方法。文章选自:《无机材料学报》作者:王伟琦, 郑惠锋, 陆冠宏等

锑的有机化合物

2019-02-18 15:19:33

锑的有机化合物是指Sh-C键的化合物,品种许多,大致可分为三价锑和五价锑两大类,前者包含1~4个有机基团(SbR4、SbR3、H2SbX和RSbX2),后者包含1~6个有机基团(R5Sb、R4SbX、R3SbX2、R2SbX3、RSbX4及SbR6),此外还有有机二锑R2Sb-Sb-R2,含有多于一个Sb-Sb键(RSh)a的低聚合和多聚合化合物以及芳香有机锑的衍生物锑,许多二羟基锑酸的衍生物RabO(OH)2和锑酸衍生物。最近研讨较多,具有重要意义的是乙二醇锑和硫酵锑。

部分稀土硝酸盐分解成氧化物的最低温度

2019-01-04 09:45:31

部分稀土硝酸盐分解成氧化物的最低温度

锑的硫化物和硫代酸盐

2019-02-11 14:05:30

一、硫化物    Sb2S3为橙红色沉积,显,既溶于酸又溶于碱。                           Sb2S3+6OH-SbO33-+SbS33-+3H2O                          Sb2S3+6H++12Cl-2[SbCl6]3-+3H2S↑    Sb2S3还能溶于碱性硫化物如Na2S或(NH4)2S中:                                  Sb2S3+3S2-2AsS33-    Sb2S5可溶于浓HCl中,并发作氧化复原反响:                          Sb2S5+12HCl(热,浓)2H3[SbCl6]+3H2S↑+2S↓    Sb2S5的酸性比Sb2S3的更强,因而,Sb2S5比Sb2S3更易溶于碱性硫化物溶液中。                                Sb2S5+3Na2S2Na3SbS4    Sb2S3具有复原性,与多硫化物反响生成硫代酸盐:                                   Sb2S3+3S2-2SbS43-+S    二、硫代酸盐    与砷相同,硫代亚锑酸钠(Na3SbS3)和硫代锑酸钠(Na3SbS4)遇酸当即反响生成相应的硫化物和H2S。                             2SbS43-+6H+Sb2S5↓+3H2S↑                             2SbS33-+6H+Sb2S3↓+3H2S↑

如何分辨氧化锑真假?

2018-08-29 09:50:38

近些年来,各种三氧化二锑新品种的涌现,如:复合阻燃剂,改性三氧化二锑、纳米三氧化二锑、有机锑等等,但随品种的增多,市场也常出现假冒产品,某些生产厂商为了价格竞争和利润,销售一些掺假三氧化二锑,而且手段也越来越隐蔽,不仅目视外观无法辨别,即使有化验手段的橡胶企业也很头疼,因这类假货按国标试验方法分析三氧化二锑纯度时,检测结 果也常能"顺利"通过,企业应用了这类不合格的三氧化二锑常造成硫化胶欠硫不熟、不仅使橡胶产品性能及质量下降,还会造成喷霜,有的浅色制品发生变颜色,常找不到原因,使技术人员十分烦恼,也给企业带来经济和信誉方面的损失。以下为验证和应用举例,用三种试验方法进行比较,分别是:1.国标测纯度法(定量法) 2.原子吸收光谱法(定性定量法) 3.化学快检法(定性法),鉴别是否合格。1#样品(间接法三氧化二锑)1.国标测纯度方法 (99.8%)合格2.原子吸收光谱法 (99.8%)合格3.化学快检方法 (定性) 合格2#样品(纳米活性三氧化二锑)1. 国标测纯度法 (99.9%)合格2. 原子吸收光谱法(73.5%)不合格3. 化学快检方法 (定性) 不合格3#样品(直接法三氧化二锑)1. 国标测纯度法 (97.8%)不合格2. 原子吸收光谱法(98.2%)不合格3. 化学快检方法 (定性) 不合格备注:国标规定指标如下:间接法三氧化二锑纯度:99.5% 以上为合格品,99.8%为一级品。直接法三氧化二锑纯度:99.0%以上为合格品。以上仅为纯度指标,还需要注意白度,粒度,杂质,不溶物等综合指标.