您所在的位置: 上海有色 > 有色金属产品库 > 黄硫镉矿 > 黄硫镉矿百科

黄硫镉矿百科

镉矿

2019-02-11 14:05:38

镉是银白色有光泽的金属,熔点320.9℃,沸点765℃,相对密度8.642。有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉[1]。也可与硫直接化合,生成。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻,日本因镉中毒曾呈现“痛痛病”。  可用多种办法从含镉的烟尘或镉渣(如煤或炭复原或硫酸浸出法和锌粉置换)中取得金属镉。进一步提纯可用电解精粹和真空蒸馏。镉首要用于钢、铁、铜、黄铜和其他金属的电镀,对碱性物质的防腐蚀能力强。镉可用于制作体积小和电容量大的电池。镉的化合物还很多用于出产颜料和荧光粉。、、用于制作光电池。

高硫铝土矿除硫技术

2019-02-21 11:21:37

我国铝土矿资源丰富,已探明的铝土矿储量达23亿t。其间含硫高的一水硬铝石型铝土矿储量达1.5亿t,占总储量的11.0%左右。这类矿石以中高铝、中低硅、高硫、中高铝硅比矿石为主,且此类矿石高档次所占份额大,需加工脱硫才干运用,因而研讨经济合理的脱硫办法,具有巨大的潜在工业含义。       在氧化铝出产流程中,铝土矿中的硫不只构成Na2O的丢失,并且溶液中S2-进步后会使钢材遭到腐蚀,蒸腾和分化工序的钢制设备因腐蚀而损坏,添加溶液中铁含量。在拜耳法出产氧化铝过程中假如铝土矿中硫的含量超越0.3%,就能导致氧化铝档次因铁的污染而超支,别的还能使氧化铝的溶出率下降。跟着氧化铝工业的不断发展,科学研讨者对脱硫办法进行了许多的研讨工作,但效果及运用均不尽人意。因而有必要对高硫铝土矿进行进一步脱硫研讨,到达拜耳法氧化铝厂对铝土矿含硫的要求。       铝土矿中硫首要以黄铁矿(FeS2)办法存在,因为黄铁矿简略用黄药等捕收剂浮选,而含铝矿藏以氧化物和氢氧化物办法存在,亲水,不易被黄药捕收,因而,浮选用黄药理论上简略完成黄铁矿和含铝矿藏的别离。用浮选的办法下降铝土矿中硫的含量,最早被原苏联人员选用。在我国,浮选脱除铝土矿中的含硫矿藏还未见文献报导。因而,针对我国铝土矿的特色,用选矿脱除铝土矿中含硫矿藏的研讨具有重要含义。       针对河南某地出产的铝土矿的特色,选用黄药等作捕收剂,对反浮选除掉铝土矿中的硫化物进行了实验研讨。       一、实验部分       (一)实验质料       河南高硫矿,碳酸钠(分析纯,上海虹光化工厂),六偏磷酸钠(分析纯,天津市科密欧科技有限公司),(分析纯,天津市科密欧化学试剂开发中心),硫酸铜(化学试剂,天津市博迪化工有限公司),丁基黄药(株洲选矿药剂厂),戊基黄药(长沙矿冶研讨院选矿所),松醇油(株洲选矿药剂厂),单质碘和碘化钾(分析纯,汕头市西陇化工厂)。对河南高硫矿进行了化学分析。首要化学成分列于表1。   表1  试样的首要化学组成(质量分数)/%Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST61.6212.654.603.003.001.810.080.420.96       (二)实验设备及仪器       实验一切设备及仪器包含浮选机,拌和机,pH计,过滤设备,电炉,烘箱,管状炉,石英管,滴定管等。       (三)实验办法       各添加剂预先装备成必定的浓度备用。药剂添加次序为:六偏磷酸钠→→硫酸铜→丁基黄药→戊基黄药→松醇油,实验中各药剂的用量及添加药剂后的拌和时刻见表2。实验所用脱硫浮选办法为简略的一段浮选。浮选产品别离过滤、洗刷、烘干后分析。   表2  药剂用量及拌和时刻药剂称号药剂用量/(g·L-1)拌和时刻/min碳酸钠 六偏磷酸钠硫酸铜 丁基黄药 戊基黄药 松醇油2.5 7.65×10-3 4.00×10-4 1.88×10-2 3.13×10-2 3.13×10-2 0.125  1 1 2 1 2 1       二、条件实验       选用六偏磷酸钠作为按捺剂,和硫酸铜作为活化剂,丁基黄药和戊基黄药作为捕收剂,对高硫铝土矿进行一段浮选脱硫条件实验,研讨各添加剂用量对浮选成果的影响。       (一)碳酸钠用量的影响       在pH>11的高碱环境下,黄铁矿表面会有亲水的氢氧化物生成,进而浮选遭到按捺。碱性增强对黄铁矿的按捺不断增强。低pH值系统中难以浮选,乃至浮选没有泡沫,这与铝土矿结构以及实验条件有关。碳酸钠另一效果是对黄铁矿具有活化效果。在CO32-与HCO3-离子效果下,铁的氢氧化物又可转变成铁的碳酸盐,使黄铁矿表面掩盖的氢氧化物和硫酸盐脱落暴露出新鲜的表面。因而碳酸钠添加量对浮选的效果有较大的影响。按表2所示条件,进行了碳酸钠用量对脱硫效果的影响的研讨,成果见表3。   表3  碳酸钠用量条件实验成果碳酸钠用量/(g·L-1)pH值产品称号产率/%S档次/%S收回率/%0.59.70低硫铝土矿 高硫尾矿82.44 17.560.41 3.5435.25 64.751.010.10低硫铝土矿 高硫尾矿89.91 10.090.420 5.7739.35 60.652.510.43低硫铝土矿 高硫尾矿96 40.44 13.4444 563.510.78低硫铝土矿 高硫尾矿93.4 26.580.48 7.7846.67 53.33       由表3可知,跟着碳酸钠用量的添加和矿浆pH值升高,高硫尾矿中硫的档次越来越高,硫的收回率在逐步下降,低硫铝土矿的产率较大起伏的升高,到碳酸钠用量为2.5g/L,pH值为10.43时,硫的档次达最大值,随后又开端下降,硫的收回率持续下降,低硫铝土矿的产率也到达最大值后又下降。由此可见碳酸钠对浮选具有较大影响。归纳考虑以上要素,高硫矿浮选碳酸钠用量应为2.5g/L,pH值为10.43左右。       (二)按捺剂用量的影响       六偏碳酸钠在含量高时对一水硬铝石具有按捺效果,但在pH>10时,其按捺效果较弱,只要在较高用量的条件下才具有较强的按捺效果。六偏磷酸钠的按捺效果为在浮选过程中损坏和削弱一水硬铝石与捕收剂之间相互效果,增强一水硬铝石表面的亲水性。它的效果办法有3种:消除活化离子;在矿藏表面构成亲水薄膜;消除矿藏表面的活化薄膜。六偏磷酸钠一起可对矿浆起涣散效果。按表2所示条件,进行六偏磷酸钠用量对脱硫效果的影响,成果见表4。   表4  六偏碳酸钠用量条件实验成果六偏碳酸钠用量/(×10-3g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿93 70.54 6.5852.02 47.987.65低硫铝土矿 高硫尾矿96 40.44 13.4444 5615.30低硫铝土矿 高硫尾矿95.34 4.660.48 10.7947.68 52.32       由表4可知,跟着六偏碳酸钠用量的添加,高硫尾矿中硫的档次先进步然后下降,硫的收回率也是先进步后下降,低硫铝土矿的产率在小起伏规模内改变。六偏碳酸钠用量以7.65×10-3g/L为宜。       (三)活化剂用量的影响       活化剂的效果是在矿藏表面生成促进捕收剂效果的薄膜。浮选电化学以为,某些硫化矿藏具有半导体性质和必定的电子传导才能,表面的静电位是HS-离子能否在其表面氧化生成元素S0的要害,当表面静电位Ems高于HS-氧化成S0的平衡电位时,则这种氧化在热力学上能够完成。黄铁矿表面静电位Ems高于HS-氧化成S0的平衡电位,因而HS-可能在黄铁矿表面氧化成元素(S0)。王淀佐等人测定了黄铁矿的表面静电位,在pH>8今后一直高于EHS-/S0,所以HS-能够在其表面氧化。Na2S参加矿浆中后,矿浆中存在许多的HS-离子,黄铁矿因为表面静电位较高,对HS-离子有较强的电催化效果,HS-在其表面有如下反响:   HS(aq)-→HS(ad)-     HS(aq)-→H++S(ad)0+2e-       S0吸附于黄铁矿表面使其变得疏水,因而黄铁矿具有杰出的诱导可浮性。       当黄铁矿表面氧化较深时,可被Cu2+活化。其机理为Cu2+可替代黄铁矿品质中的Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。铜离子比较简略进入黄铁矿的晶格,铜和硫的亲和性比铁和硫的亲和性更大,使黄铁矿表面构成铜膜,铜离子不影响矿藏晶格深处,在黄铁矿表面上掩盖铜相当于分散处理黄铁矿表面,即影响到黄铁矿表面的导电类型。黄铁矿为电子型半导体,晶格表面层上富集电子的表面,因而不能安稳的吸附黄药。一些二价Cu2+从其表面取得电子,Cu2+浓度下降为Cu2+,使黄铁矿表面层电子浓度下降。黄铁矿表面导电性的转化,这时能安稳地吸附黄药。       综上所述,首要对黄铁矿起到诱导浮选效果,但因为黄铁矿镶嵌于结构杂乱的铝土矿中,且黄铁矿的含量小,尤其是当黄铁矿表面氧化较深时,对黄铁矿就起不了诱导浮选效果,而Cu2+能够进入黄铁矿晶格中替代Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。因而和硫酸铜均可起到活化效果,其用量多少对硫档次影响很大。按表2所示条件,别离进行了和硫酸铜用量对脱硫效果的影响研讨,成果别离见表5和表6。   表5  用量条件实验成果用量/(×10-4g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿95.25 4.750.50 10.1649.73 50.272低硫铝土矿 高硫尾矿94.12 5.880.48 8.5747.51 52.494低硫铝土矿 高硫尾矿96 40.44 13.4444 5610低硫铝土矿 高硫尾矿96.62 3.380.61 1161.27 38.73   表6  硫酸铜用量条件实验成果硫酸铜用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿92.89 7.110.48 7.2348.59 51.411.88低硫铝土矿 高硫尾矿96 40.44 13.4444 563.75低硫铝土矿 高硫尾矿93.20 6.800.55 6.5553.6 46.4       由表5可知,跟着用量的添加,高硫尾矿中硫的档次先下降后升高,随后又下降,硫的收回首先升高后下降,低硫铝土矿的产率改变不大。用量以4×10-4g/L为宜。       由表6可知,跟着硫酸铜用量的添加,高硫尾矿中硫的档次先升高后下降,改变的起伏比较大,硫的收回首先逐步升高然后较大起伏的下降,低硫铝土矿的产率改变不大。硫酸铜用量以1.88×10-2g/L为宜。       (四)捕收剂用量及其品种的影响       在浮选中运用捕收剂,能够进步有用矿藏表面的疏水性。黄铁矿捕收剂首要是黄药类等捕收剂。在许多情况下,已成功地运用单一种捕收剂。但混合运用多种硫代捕收剂可大大进步硫化矿浮选目标。按表2所示条件,丁基黄药及戊基黄药用量对脱硫效果的影响成果别离见表7和表8。   表7  丁基黄药用量条件实验成果丁基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿94.29 5.710.55 7.8253.49 46.511.56低硫铝土矿 高硫尾矿95.10 4.900.57 8.5456.41 43.593.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿97.06 3.740.50 12.9251.68 48.32   表8  戊基黄药用量条件实验成果戊基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿96.62 3.380.56 12.4556.17 43.831.56低硫铝土矿 高硫尾矿95.69 4.310.45 12.344.78 55.223.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿96.5 3.50.57 11.5957.74 42.26       由表7可知,跟着丁基黄药用量的添加,高硫尾矿中硫的档次和收回率都随之添加,然后下降,低硫铝土矿的产率在小规模内增大。丁基黄药对浮选效果具有较大影响。丁基黄药用量以3.13×10-2g/L为宜。       由表8可知,跟着戊基黄药用量的添加,高硫尾矿中硫的档次在小起伏内先升高后下降,硫的收回率在较大起伏内先升高后下降,低硫铝土矿的产率改变不大。戊基黄药对硫的收回率影响较大。戊基黄药用量以3.13×10-2g/L为宜。       三、优化条件的浮选成果       通过以上各条件实验的影响,得出高硫铝土矿一段浮选除硫的最佳条件实验为:碳酸钠用量2.5g/L,六偏磷酸钠用量为7.65×10-3g/L,拌和1min,用量为4.0×10-4g/L,拌和1min,硫酸铜用量为1.88×10-2g/L,拌和2min,丁基黄药用量为3.13×10-2g/L,拌和1min,戊基黄药用量为3.13×10-2g/L,拌和2min,松醇油用量为0.125g/L,拌和1min,实验成果见表9。   表9  原矿一段浮选实验成果产品称号产率/%S档次/%S收回率/%低硫铝土矿 高硫尾矿 原矿96 4 1000.44 13.44 0.9644 56 100       由表9可知,在优化的浮选条件下,原矿通过一段浮选即可取得硫档次高达的13.44%,收回率56%,而产率仅为4%的高硫尾矿;一起取得产率为96%,硫档次为0.44%的低硫铝土矿。这一成果比前苏联研讨人员浮选高硫铝土矿一段浮选尾矿含硫达9%的工艺目标还好。       对浮选所得低硫铝土矿和高硫尾矿进行化学分析,分析成果见表10。为了便于对照,将原矿相应数据也列于表10中。   表10  浮选产品化学分析成果(质量分数)/%产品称号Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST1)低硫铝土矿 高硫尾矿 原矿62.10 51.96 61.6212.83 8.18 12.654.17 14.94 4.602.95 4.71 3.003.07 1.43 3.001.85 0.95 1.810.08 0.11 0.080.42 0.40 0.420.44 13.44 0.96        1) 此为化学分析成果,不是荧光分析成果       由表10可知,一段浮选高硫尾矿的A/S比为6.35,与A/S比为4.87的原矿比较,高硫尾矿的A/S比高,这是因为铝比硅更简略浮选,成果导致高硫尾矿中A/S比稍高。因为被浮选的高硫尾矿产率不大,因而对低硫铝土矿的A/S比的影响不大。高硫尾矿中硫和铁含量比原矿明显进步,铁略有进步,其它元素含量都偏低。而低硫铝土矿与原矿比较,除了铝,硅以及钾比原矿略低高外,其它元素都有所下降。       四、结语       (一)选用浮选的办法,以碳酸钠为pH调整剂,六偏磷酸钠为按捺剂,和硫酸铜为活化剂,丁基黄药和戊基黄药为捕收剂,松醇油为起泡剂,进行高硫铝土矿的一段反浮选,取得硫含量高达13.44%,收回率56%,氧化铝含量为51.96%,而产率仅为4%的高硫尾矿,一起取得产率为96%,氧化铝含量为62.10%,硫档次为0.44%的低硫铝土矿。因为铝比硅更简略浮选,高硫尾矿的A/S比升高,但因为高硫尾矿的产率低,仅为4%,因而对低硫铝土矿的A/S比影响不大。       (二)对原矿进行一段浮选的最佳条件是:碳酸钠用量为2.50g/L,六偏磷酸钠用量为7.65×10-3g/L,用量为4.00×10-4g/L,硫酸铜用量为1.88×10-2g/L,丁基黄药用量为3.13×10-2g/L,戊基黄药用量为3.13×10-2g/L,松醇油用量为1.25×10-1g/L。矿浆最佳浮选pH值规模是10.4~10.5左右。       (三)本研讨测验一起运用2种活化剂,即和硫酸铜,活化的效果大于单一活化剂的效果,进步硫的浮选收回率。丁基黄药与戊基黄药2种捕收剂按份额混合运用可进步硫的档次及收回率。

处理铜镉渣生产镉

2019-02-11 14:05:38

一、电积法出产金属镉 以铜镉渣为质料出产金属镉的电积法工艺流程如图1所示。图1  从铜镉渣出产金属镉电积法的工艺流程 铜镉渣的成分一般动摇规模为:2.5%~12%Cd,35%~60%Zn,4%~17%Cu,0.05%~2.0%Fe铜镉渣中还含有少数As,Sb,SiO2,Co,Ni,T1,In等杂质。 为了加快浸出进程,有的工厂在浸出前将铜镉渣堆积在空气中氧化。这样也增加了铜溶解的丢失,只要在处理含铜较低的铜镉渣时才适用这种处理。浸出进程得到的铜渣成分为:30%~50%Cu,10%~15%Zn,0.3%~1.0%Cd。 在浸出中,除了锌和铜的溶解外,还有一些Ni,Co,In,T1进入溶液,得到的浸出液成分为:120~130g/LZn,8~16g/LCd,0.3~0.8g/LCu,3~9g/LFe,0.05~0.1g/LCo,0.05~0.1g/LNi。浸出液经加锌粉净化除掉铜后,送去加锌粉置换沉积镉。置换沉积镉一般分两段操作。在榜首段坚持温度为333K,使溶液中的镉降到1g/L中止。过滤别离铜镉渣后的溶液再进行第二段操作,可进一步使镉的含量降到10~15mg/L。第二段得到的海绵镉(Ⅱ)含镉低,反回铜镉渣的浸出进程。第二段置换后的溶液中含有Co,T1,In等,用黄药除钴后去进一步收回T1与In。 榜首段置换沉积镉得到的海绵(Ⅰ)用镉电解液浸出。溶液中硫酸的浓度为200~250g/L,浸出温度353~363K,参加MnO2或KMnO4以加快镉海绵的溶解,浸出终了的pH值为4.8~5.2,铜水解进入渣中。 别离铜渣后的镉绵浸出液,加SrCO3除铅,加锌粉置换除铜,加KMnO4氧化T1与Fe,再水解沉积。 镉溶液的电积一般选用电解液不循环操作准则,其作业条件及技能指标: 参加电解液成分/(g·L-1)      160~220Cd,20~30Zn,12~15H2SO4 电积后废液成分/(g·L-1)      15~20Cd,150~180H2SO4 电解液温度/K                  303~308 电流效率/%                    70~92 槽电压/V                   2.5~2.6 电积周期/h                 24 电能耗费/(kW·h·t-1)     1400~1700 选用电解液循环的出产方式,能够得到较高的电流效率。 前苏联许多湿法炼锌厂选用电积法工艺流程。我国湿法炼锌厂选用电解液循环准则的电积法。例如株洲冶炼厂处理这种Cu-Cd渣的电积法流程见图2。Cu-Cd渣的化学分为: 5.64%Cu,14.31%Cd,40.26%Zn,1.27%Pb,0.076%Ni,0.0212%Co,0.0075%In,0.0024%Ge,0.0029%Ga,0.0329%T1,4.07%Fe。图2  株洲冶炼厂从Cu-Cd渣出产镉的工艺流程 株洲冶炼厂用铜镉渣出产镉的首要冶炼进程技能条件如下: (一)Cu-Cd渣的浸出 用50m3的机械拌和浸出槽进行浸出。将硫酸缓慢地参加盛有Cu-Cd渣的浸出槽中,坚持浸出的最高酸度为10~15g/L,温度为353~363K。当酸度降至5~4g/L时,参加软锰矿,在pH值为4.8~5.0时,加石灰乳(现改用ZnO粉)中和至pH=5.2~5.4时便中止拌和。整个浸出进程连续6~8h。 经28m2的胶质压滤机压滤,所得压滤渣成分:20%~30%Cu,<1%Cd,送铜冶炼处理收回铜。滤液成分:8~15g/LCd,80~140g/LZn,0.050g/LCu。 (二)置换 置换在50m3的机械拌和槽中进行。置换前加H2SO4将浸出的滤液酸化至pH=3~4,缓慢地参加锌粉进行置换反响,待分析溶液含镉小于100mg/L时即送压滤。 置换得到的海绵镉含60%~80%Cd,再堆积7~10天天然氧化后送去造液。置换后的贫液含有15~30g(T1)/m3时,可加锌粉置换出后再送湿法炼锌体系。 (三)造液 在9m3的机械拌和槽中造液。将海绵镉与浓硫酸参加槽中,坚持溶解85~90℃,经2~3h待溶液酸度降至0.5~1g/L,便参加KMnO4氧化除铁,然后参加镉绵使pH值降至3.8~4.0,再用石灰乳中和至pH=5.4,便送去过滤。 (四)净化 在17m3机械拌和槽中净化。在50℃条件下,参加新鲜镉绵置换除铜后,再加KMnO4氧化除铁。净化后溶液的成分:200~250g/LCd,20~30g/LZn,低于0.05g/LFe,低于0.0005g/LCu,低于0.001g/L(As+Sb)。 (五)电积 在钢筋混凝土内衬铅皮的电解槽中进行电解液循环。槽的尺度为2800×850×1250mm,每槽可装阳极26片,阴极25片。用一台2000A与0~36V的硒整流器供电。 电积进程的技能条件如下: 同名极距                    10mm 电解液循环量                0.103m3/min 电解液温度                  298~305K 电流密度                    45~75A/m2 槽电压                      2.4~2.5V 电解周期                    24h 电解液成分分/(g·L-1)        60~70Cd,                             120~145H2SO4 (六)精粹熔铸 在容量1t的铸铁锅中进行精粹。 熔铸温度为723~823K,表面掩盖一层NaOH,铸成7.5kg的镉锭,其成分:镉99.99%以上,铅低于0.004%,锌低于0.002%,铜低于0.001%,铁低于0.002%。镉的一级品率,均到达100%。 二、置换法出产金属镉 因为电积法出产镉的电耗大,许多工厂将电积法改为置换法。 美国熔炼与精粹公司的电锌厂,原选用电积法处理来自锌出产第二段净化的镉渣出产镉,现改为置换法,其工艺流程见图3。图3  美国熔炼与精粹公司从镉渣出产镉的工艺流程 芬兰科科拉电锌厂使用第二段净化产出的镉渣出产镉,也是选用置换法出产流程连续作业。科科拉电锌厂处理镉渣成分如下:1号15%~25%Cd,约1%Cu,0.05%Co,0.005%~0.05%Ni,60%Zn;2号22.4%Cd,0.7%Cu,54.5%Zn。 前苏联乌斯基-卡敏诺哥尔斯克铅锌联合厂商的电锌厂是在离心反响器中以置换沉积法处理Cu-Cd渣,其出产流程见图4。图4  钨斯基-卡敏诺哥尔斯克电锌厂处理铜镉渣出产工艺流程 离心反响别离器外形为圆柱体,中心装有空心轴,轴上装有特殊结构的别离盘,空心轴的转速到达3000r/min。 在离心反响器中置换沉积的速度超越一般置换沉积槽的沉积速度300倍,每升容积的出产率到达200L/h。在第二段离心反响器中所得的低镉绵用锌废电解液溶解,加热到343K,反响终了的pH=4.5~5.5,然后用KMnO4净化除,再送往离心反响器中置换沉镉。

镉知识

2019-03-08 09:05:26

镉是银白色有光泽的金属,密度8.64,熔点320.9℃,沸点765℃,有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉。也可与硫直接化合,生成。镉溶于酸,但不溶于碱。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻。 镉的首要矿藏有硫镉矿、菱镉矿及方镉矿等,但均不构成独自矿床。镉赋存于锌矿、铅锌矿和铜铅锌矿石中,尤其是在淡色的闪锌矿中含量较高,一般为0.1-0.5%,高达5%,镉在浮选时大部分进入锌精矿,在焙烧过程中富集于烟尘中。在湿法炼锌厂的硫酸锌溶液净化过程中产出的铜镉渣(含镉4~20%),火法炼锌厂的粗锌精馏过程中产出的镉灰(含镉10~30%)和某些铜、铅冶炼厂的富镉尘均可提取镉。因为镉污染环境,铅锌冶炼厂有必要从排放物中收回镉。镍镉和铁镉蓄电池的极板等各种工业废料也是提取镉的二次质料。 镉的提取办法分为从铜镉渣中提隔的湿法和从富镉尘中提镉的联合法。湿法提镉为我国大都工厂所选用,首要包含:铜镉渣浸出、置换堆积海绵镉、海绵镉溶解、镉液净化、电解堆积和熔化铸锭等工序。 铜镉渣首要含有锌、镉、铜等金属及其氧化物,还含有少数的砷、锑、铁、钴、镍、等。用15克/升的硫酸溶液在80~90℃浸出,当酸含量降至4~5克/升时加MnO2,使镉、铁氧化,加石灰水[Ca(OH)2]中和除铁、砷和锑。此刻,浸出液成分为Cd>10克/升、Fe 因为浸出和置换过程中能发生剧毒的(AsH3),其他过程中也发生含镉的有害气体,所以应有杰出的通风排气等安全措施。 联合法提镉是我国火法炼锌厂和铜铅冶炼厂选用的办法。镉尘先经焙烧脱去砷、锑等杂质,得到浸出功能杰出的焙砂,再用稀硫酸浸出。浸出液经氧化水解脱去铁、砷,有时还加碳酸(SrCO3)脱铅。净化后的含镉溶液用锌粉置换得到海绵镉,加压成团,在铸铁锅中于熔融烧碱维护下,铸成粗镉锭。将粗镉参加精馏塔内精馏提纯,杂质从塔的下部渣锅中排出;精镉由塔顶镉蒸气冷凝产出,纯度在99.99%以上。镉的收回率可达99.7%。 被镉污染的空气比被镉污染的食物对人体的损害更严峻。冶金车间工作环境空气中含金属镉和可溶性镉尘的极限值规定为200微克/米3,氧化镉烟雾的极限值为100微克/米3。含镉大于0.5ppm的废水不许排放。 镉用于制作轴承合金、特殊易熔合金、耐磨合金、焊锡,镉对盐水和碱液有杰出的抗蚀功能,能够用作钢构件的电镀防腐层,但近年来因镉有毒性,此项用处有减缩的趋势。镍-镉和银-镉电池具有体积小,容量大的长处。镉是制作钎焊合金和低熔点合金的首要成分之一。镉具有较大热中子抓获截面,因而含银80%、铟15%和镉5%的合金可用作原子反响堆的控制棒。

镉的用途

2019-03-08 12:00:43

用处:镉作为合金 组土元能配成许多合金,如含镉0.5%~1.0%的硬铜合金 ,有较高的抗拉强度和耐磨性。镉(98.65%)镍(1.35%)合金是飞机发动机 的轴承材料。许多低熔点合金 中含有镉,闻名的伍德易熔合金 中含有镉达12.5%。镍-镉和银-镉电池具有体积小、容量大等长处。镉具有较大的热中子抓获 截面,因而含(80%)铟(15%)镉(5%)的合金可作原子反应堆的控制棒。镉的化合物曾广泛用于制作颜料、塑料稳定剂 、荧光粉等。镉还用于钢件镀层防腐,但因其毒性大,这项用处有减缩趋势。        用于电底、制作合金等;并可做成原子反应堆中的中子吸收 棒。镉氧化电位高,故可用作铁、钢、铜之保护膜,广用于电镀上,并用于充电电池、电视映像管、黄色颜料及作为塑料之安靖剂。镉化合物可用于虫剂、菌剂、颜料、油漆 等之制作业。

镉镍电池

2017-06-06 17:50:00

镉镍电池 (nickel-cadmium battery) 是指采用金属镉作负极活性物质,氢氧化镍作正极活性物质的碱镍镉电池性蓄电池。正、负极材料分别填充在穿孔的附镍钢带(或镍带)中,经拉浆、滚压、烧结、化成或涂膏、烘干、压片等方法制成极板;用聚酰胺非织布等材料作隔离层;用氢氧化钾水溶液作电解质溶液;电极经卷绕或叠合组装在塑料或镀镍钢壳内。   镉镍电池标称电压为1.2V,有圆柱密封式(KR)、扣式(KB)、方形密封式(KC)等多种类型。具有使用温度范围宽、循环和贮存寿命长、能以较大电流放电等特点,但存在“记忆”效应,常因规律性的不正确使用造成电性能下降。   镉镍电池的电池表达式为:(-)Cd︱KOH(NaOH)︱NiOOH(+)   电池反应为:   放电时:Cd+NiOOH+H2O→Ni(OH)2+Cd(OH)2   充电时:Ni(OH)2+Cd(OH)2→Cd+NiOOH+H2O   大型袋式和开口式镉镍电池主要用于铁路机车、矿山、装甲车辆、飞机发动机等作起动或应急电源。圆柱密封式镉镍电池主要用于电动工具、剃须器等便携式电器。小型扣式镉镍电池主要用于小电流、低倍率放电的无绳电话、电动玩具等。由于废弃镉镍电池对环境的污染,该系列的电池将逐渐被性能更好的金属氢化物镍电池所取代。

镉常识

2019-03-14 09:02:01

镉是银白色有光泽的金属,密度8.64,熔点320.9℃,沸点765℃,有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉。也可与硫直接化合,生成。镉溶于酸,但不溶于碱。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻。  镉的首要矿藏有硫镉矿、菱镉矿及方镉矿等,但均不构成独自矿床。镉赋存于锌矿、铅锌矿和铜铅锌矿石中,尤其是在淡色的闪锌矿中含量较高,一般为0.1-0.5%,高达5%,镉在浮选时大部分进入锌精矿,在焙烧过程中富集于烟尘中。在湿法炼锌厂的硫酸锌溶液净化过程中产出的铜镉渣(含镉4~20%),火法炼锌厂的粗锌精馏过程中产出的镉灰(含镉10~30%)和某些铜、铅冶炼厂的富镉尘均可提取镉。因为镉污染环境,铅锌冶炼厂有必要从排放物中收回镉。镍镉和铁镉蓄电池的极板等各种工业废料也是提取镉的二次质料。  镉的提取办法分为从铜镉渣中提隔的湿法和从富镉尘中提镉的联合法。湿法提镉为我国大都工厂所选用,首要包含:铜镉渣浸出、置换堆积海绵镉、海绵镉溶解、镉液净化、电解堆积和熔化铸锭等工序。  铜镉渣首要含有锌、镉、铜等金属及其氧化物,还含有少数的砷、锑、铁、钴、镍、等。用15克/升的硫酸溶液在 80~90℃浸出,当酸含量降至4~5克/升时加MnO2,使镉、铁氧化,加石灰水[Ca(OH)2]中和除铁、砷和锑。此刻,浸出液成分为Cd>10克/升、Fe<1克/升、Cu 0.05克/升,pH=5.2~5.4。浸出液调整pH为3~4后,参加锌粉(为理论量的1.2~1.3倍)置换,得到海绵镉。硫酸锌滤液(含Cd<50毫克/升=回来锌体系。海绵镉经天然氧化后,用含40~70克/升H2SO4的溶液浸出。用KMnO4氧化并加石灰水中和水解,以进一步除铁。过滤后的滤液用新鲜海绵镉置换除铜。电解滤液得到电积镉。镉电积的操作与锌电积类似,但因为镉易长成树枝状结晶,所以用低电流密度(65~100安/米2)电解。电流效率80~90%,槽压2.4~2.5伏。电解液成分(克/升):Cd 60~150、Zn 30~40、H2SO4 100~160,温度25~30℃,为了改进镉在阴极分出状况,可增加动物胶。电镉在熔融烧碱覆盖下熔化并脱锌,制成镉锭、镉棒和镉粒等形状。含杂质较多的树枝状镉,可用真空蒸馏法独自处理。    因为浸出和置换过程中能发生剧毒的(AsH3),其他过程中也发生含镉的有害气体,所以应有杰出的通风排气等安全措施。    联合法提镉是我国火法炼锌厂和铜铅冶炼厂选用的办法。镉尘先经焙烧脱去砷、锑等杂质,得到浸出功能杰出的焙砂,再用稀硫酸浸出。浸出液经氧化水解脱去铁、砷,有时还加碳酸(SrCO3)脱铅。净化后的含镉溶液用锌粉置换得到海绵镉,加压成团,在铸铁锅中于熔融烧碱维护下,铸成粗镉锭。将粗镉参加精馏塔内精馏提纯,杂质从塔的下部渣锅中排出;精镉由塔顶镉蒸气冷凝产出,纯度在99.99%以上。镉的收回率可达99.7%。  被镉污染的空气比被镉污染的食物对人体的损害更严峻。冶金车间工作环境空气中含金属镉和可溶性镉尘的极限值规定为200微克/米3,氧化镉烟雾的极限值为100微克/米3。含镉大于0.5ppm的废水不许排放。  镉用于制作轴承合金、特殊易熔合金、耐磨合金、焊锡,镉对盐水和碱液有杰出的抗蚀功能,能够用作钢构件的电镀防腐层,但近年来因镉有毒性,此项用处有减缩的趋势。镍-镉和银-镉电池具有体积小,容量大的长处。镉是制作钎焊合金和低熔点合金的首要成分之一。镉具有较大热中子抓获截面,因而含银80%、铟15%和镉5%的合金可用作原子反响堆的控制棒。

从含镉烟尘中提取镉

2019-03-04 16:12:50

在湿法炼锌工艺中,硫化锌精矿欢腾焙烧时镉富集在烟尘中,成为提镉的质料。当烟尘中镉可溶率低于90%时,可在500-550℃下进行硫酸化焙烧,将可溶镉提高到95%以上。烟尘提镉的根本进程是:烟尘浸出→置换沉镉→压团熔铸→粗镉精馏。    (一)浸出    榜首段在始酸较低(<20g/L)和结尾较高pH(75.2)条件下进行中性浸出,以除掉浸出液中的铁砷等杂质。第二段在高始酸(>30g/L)和结尾低pH下进行酸性浸出。浸出温度90℃,时刻16h,液固比(3-6):1。两段浸出Cd浸出率可达95%,渣含Cd<2.0%。    (二)置换    浸出液用Zn置换Cd,反响分两次进行,一次投人反响所需锌粉量的95%,置换操控溶液含Cd lg/L,得到较纯的海绵镉;第2次参加超越理论用量较多的锌粉,得出含锌高的海绵镉,其含量为0.3%-0.5%,作为提取的质料。两次置换的技能条件为:     置换次数      温度/℃    时刻/min    溶液含Cd(置换前/后)      一次          50-60      30-35       15-19/1-2.4      二次          45-50        50        1-2.4/0.03-0.1    (三)压团熔铸    置换产出海绵镉经压团,并在烧碱覆盖下熔铸成锭。压团压力>12kPa,镉团含水约7%。熔铸温度400-500℃,时刻2-3h,烧碱单耗120-150kg/t。粗镉含Cd 98.5%-99.2%。    (四)粗镉精馏    粗镉先在镉内熔化,然后守时定量加人精馏塔内,熔融状况镉在塔内流经层层相叠的塔盘时,替换进行加热蒸腾和冷凝回流。纯镉蒸气上升至冷凝器冷成液态,守时放出铸成精镉锭。高沸点杂质铜、铁等向下流进渣镉,守时排出。产出精镉纯度可达99.995%,契合国标精一级品要求。

戊基钾黄药

2019-02-26 16:24:38

戊基钾黄药 分子式:C5H11OCSSK性状:谈黄色或灰白色有刺激性气味的粉末或颗粒,能溶于水。首要用途:戊基钾黄药是一种强捕收剂,首要浮选氧化了的硫化矿或氧化铜矿和氧化铅矿(通过或进行硫化)的杰出捕收剂,该品对铜一镍硫化矿及含金黄铁矿等的浮选也能获得较好的选别作用。规格:项目 目标 粒状 粉状 戊基钾黄药 % ≥ 90.0 90.0 游离碱 % ≤ 0.2 0.2 水及挥发物 % ≤ 4.0 4.0 直径(mm) 3-6 —长度(mm) 5-15 — 有效期(月) 12

高硫铝土矿的选别技术

2019-01-29 10:09:51

前苏联南乌拉尔铝土矿采用浮选法脱除硫化矿物和碳酸盐的工业试验取得成功。该矿石中一水软铝石和一水硬铝石占46%,方解石占19.0%,赤铁矿占12%,高岭石占6.6%和黄铁矿占4%。矿石经三段碎矿、三段磨矿,最终磨矿粒度为-200目占94%。浮选流程:硫化物经一次粗选、二次精选、二次扫选,分别得硫化物精矿和尾矿;其尾矿再浮选碳酸盐,经二次精选和二次扫选,分别可得到碳酸盐精矿和铝土矿精矿。其试验结果见表1,铝土精矿矿供拜耳法生产铝,碳酸盐精矿供烧结法炼铝,硫精矿作为氧化镍矿熔炼的硫化剂,矿石得到充分综合利用。 表1  浮选工业试验指标产品名称产率/%品位/%回收率/%Al2O3SiO2Fe2O3CO2SAl2O3SiO2Fe2O3CO2S硫精矿 碳酸盐精矿 铝土矿精矿 原 矿8.42 27.26 64.32 100.0027.90 19.42 50.49 40.124.54 4.01 8.18 6.7429.86 4.99 13.95 12.835.09 27.17 2.76 9.6128.68 0.69 0.19 2.225.86 13.19 80.95 100.005.67 16.23 78.10 100.0019.60 10.60 69.80 100.004.46 77.07 18.47 100.0086.02 8.47 5.51 100.00     北乌拉尔铝土矿采用筛分-光电拣选-浮选联合流程的工业试验也取得成功,其原矿铝土矿主要为一水硬铝石,铝硅比高达15,但硫和碳酸盐等有害杂质含量较高,分别为1.5%S和3.5%~3.6%CO2。硫主要分布于黄铁矿类型矿石,CO2则集中于碳酸盐矿石中。碎矿后硫和碳酸盐绝大部分集中在+200mm粒级,-200mm粒级中杂质含量较低,可供拜耳法炼铝。粗粒级进行光电选矿和浮选,光电拣选的精矿供拜耳法炼铝原料,尾矿用浮选脱硫,硫精矿作氧化镍溶炼的硫化剂,浮选尾矿烧结法炼铝。该流程特点是利用硫化物和碳酸盐在矿石中的不均匀性和光学性质上的差异采用简单的筛选和光电选别。     为此,在20世纪80年代初建成日处理能力为250~300t贝斯铝土矿选矿厂,主要处理南乌拉尔和北乌拉尔铝土矿,脱除硫化物和碳酸盐等有害杂质。该厂从碎矿、预选、磨矿、分级和浮选、脱水过滤等均进行了系统的工业试验,并取得了良好可靠的技术经济指标。

铜镉渣提取镉绵工艺研究

2019-02-21 11:21:37

镉没有独自矿床,常与铅锌矿共生,含镉0.01%~0.07%,选矿时大部分进入锌精矿。约95%的镉是从锌冶炼进程中收回的,冶炼出产质料首要有湿法净液工序的铜镉渣、锌蒸馏的富镉兰粉、铜铅锌冶炼的烟尘、锌白工厂的浸出渣等,其间镉的含量动摇较大。现在我国锌冶炼进程中镉归纳收回率在80%左右,锌精矿中含镉平均在0.1%~0.2%左右,镉档次低,富集提取难度大。某公司锌精矿中镉档次只要0.15%左右,在选用传统湿法炼锌焙烧-浸出-净化-电积工艺中,总有适当部分镉被涣散,导致收回率下降,污染环境。现在,该公司以海绵镉作为产品出售,且产出的海绵镉含镉仅50%~60%,不能满意真空精粹对镉绵的要求,所以本文针对该公司现有镉出产现状对铜镉渣提取镉绵工艺进行了优化研讨。 一、试验质料及试剂 试验质料为驰宏公司中浸液净化所得铜镉渣,铜镉渣经80℃真空烘干36h,至分量安稳,测水份为19.82%,烘干样送分析Zn、Cu、Cd等首要元素,成果为(%):Zn 23.16、Cu 7.76、Cd 17.95、Co 0.02、Fe 0.19、Sb 0.074。质料能谱分析标明,98%的铜以金属单质的形状存在,周围集合有硫酸锌,未见高富集的金属锌独自存在,镉绝大部分以金属镉的方式存在,伴有少数。 置换锌粉为吹制锌粉,无结块、无杂物、总锌>98%、活性锌成分>92%,锌粉粒度-0.251~+0.147mm;其它试剂有98%浓硫酸,分析纯氧化锌、二氧化锰及石灰;首要器件:500mL烧怀、LabTech EH35A plus主动控温加热仪、IKARW20digital数显拌和器、温度计、分析天平、真空泵、真空干燥箱、三角漏斗、兰格BT100-1J恒流泵,PHS-3D型pH计和6503型高温复合电极。 二、试验准则流程 试验准则流程见图1。该流程将产出的镉绵经过火法工艺经粗炼和真空精粹出产高纯精镉。经过火法和湿法相结合的工艺,用精馏提镉替代电解精粹镉,并改造现有工艺流程,制备高档次镉绵,镉档次由现在的50%~60%进步到80%以上,经压团熔炼后可直接进行接连精馏,撤销接连熔炼工序和电积,完结精镉出产的接连化作业,优化工人操作环境,进步主动化水平,削减镉环境污染,完结镉提取闭路循环,到达零排放。图1  准则工艺流程 三、成果与评论 (一)铜镉渣一段浸出 1、结尾pH的影响 浸出试验条件∶液固比6∶1,时刻6h,温度80~85℃,始酸浓度10~15g/L,进程操控溶液pH=1.5~1.8,在5.5h后,调整矿浆结尾pH,过滤,浸出渣用pH=4.5~5.0的酸洗刷。成果见表1。 表1  结尾pH的影响表1标明,pH=5.22时,镉浸出率98.31%,溶液含Cd 25.25 g/L;当结尾pH=5.74时,渣含锌进步至7.64%,当浸出渣含锌较高时,将不使用于后续铜渣火法处理,一起pH升高,锌的水解趋势加大,所以浸出结尾pH不该超越5.4。 2、浸出时刻的影响 浸出试验条件∶液固比6∶1,温度80~85℃,始酸浓度10~15g/L,进程操控溶液pH=1.5~1.8,在每次完毕浸出之前0.5h,调整溶液pH至2.0~2.5,拌和0.5h,浸出渣用pH=4.5~5.0的酸洗刷。试验成果见表2。 表2  浸出时刻的影响成果标明,随时刻的延伸,渣含锌逐步下降,但几组试验成果改变不大,镉浸出率均大于99%,渣含镉小于0.65%,渣含铜可达33.5%以上,当试验时刻为2h,试验成果已到达浸出的要求,原因是用500 mL的烧怀进行试验,试验温度安稳、拌和充沛。但出产中应该操控时刻4~6h,以使反响充沛完结。表2所列4组试验数据渣含锌均比较低,这是因为结尾pH偏低的原因,结尾pH为4.0~4.5,但铜含量略微偏高,溶液成分见表3。 表3  不同浸出时刻的滤液(二)浸出渣二段逆流浸出 为尽可能操控镉的涣散,进步锌的收回及铜渣的档次,对一段浸出渣(一段扩大试验渣,含Zn6.22%,Cu 24.27%,Cd 0.49%,水51.4%)进行了二段逆流浸出。二段浸出试验条件:液固比5∶1,温度75~80℃,操控pH=2.0~2.5,时刻3h。 完结成果:二段浸出渣含Cu 29.86%,Cd 0.26%,滤液含Zn 3.9g/L。滤液返铜镉渣一段浸出工序,滤渣送铜冶炼厂火法提铜。 (三)海绵镉选择性富集 使用扩大试验滤液进行一次锌粉置换出产海绵镉。置换前溶液含Cd 24.50g/L,考虑置换前液总体积较少,试验在500mL烧怀中进行,试验溶液体积300mL,温度50~55℃,反响时刻45~60min,锌粉用量为溶液中镉理论用量的80%,锌粉参加时刻10min。海绵镉过滤洗刷,真空烘干。试验数据见表4。 表4  一次锌粉置换试验成果表4标明,当置换前液锌含量在30~40g/L时,一次置换海绵镉产品含镉可达85%以上,海绵镉含锌小于2.5%,但置换前液锌含量在80~130g/L时,一次置换海绵镉产品含镉即下降至78.42%,含锌进步至3.25%。 一次置换后溶液还有3~5g/L的镉,用锌粉置换剩余镉,镉渣回来一段铜镉渣浸出,滤液除钴后,回来锌冶炼中性浸出。 (四)海绵镉造液浸出 因为一次置换前液含锌高但含镉低,锌镉比为(4~5)∶1,故一次置换所得到的海绵镉不只含锌高,镉档次较低,且还有部分其它杂质,不能满意粗镉精粹工艺的要求(镉档次大于80%、Zn小于4%),而且不易压团,所以将一次海绵镉需进行造液浸出,除杂。 因试验室所制取的海绵镉数量少,海绵镉造液浸出试验所用质料由驰宏公司供给。海绵镉成分为(%)∶Cd 53.53、Zn 10.46、Cu 0.14、Fe 0.091。 海绵镉造液浸出试验条件及操作:将露天天然氧化后的海绵镉用高酸浸出,硫酸开始浓度400~500g/L,液固比1∶1,温度90~95℃,试验选用机械拌和,并通入适量空气,反响3h以上,依据残酸量及Cu量,参加新鲜海绵镉降酸除铜,然后稀释至液固比3∶1(与质料之比),并用石灰浆液调整酸度至4.0左右,参加除铁,无铁后参加石灰乳调整酸度至5.0~5.2,过滤,滤渣回来铜镉渣浸出,滤液用于下一工序锌粉二次置换。分析测定滤渣含Cd 2.94%,Zn 2.48%,溶液含Zn 25g/L,Cd 176g/L。 (五)粗镉提取研讨 造液浸出液用锌粉进行二次置换出产镉绵,试验条件为:置换前溶液含Cd 176g/L,Zn 25g/L,考虑置换前液的总体积较少,试验在500mL烧怀中进行,溶液体积300mL,温度50~55℃,反响时刻0.5~1.0h,锌粉用量为溶液中镉理论用量的1.1%~1.2%,锌粉缓慢参加,参加时刻10min。镉绵天然过滤,真空烘干,产品含镉95.12%,Zn 2.17%。 二次置换镉绵纯度较高,镉绵含镉大于80%,锌含量小于4%,可满意下一步镉绵粗炼和真空精粹的要求。 四、定论 断定了铜镉渣选择性浸出,海绵镉选择性富集和镉绵提取工艺优化条件。经工艺优化后镉绵含镉达80%以上,含锌小于4%,可满意后续镉绵真空精粹对质料的要求。

镉为何物?

2018-12-06 09:54:59

镉(cadmium)   一种化学元素,化学符号Cd,原子序数48,原子量112.411,属周期系ⅡB族。1817年德国F.施特罗迈尔从碳酸锌中发现镉,K.S.L.赫尔曼和J.C.H.罗洛夫也在氧化锌中发现镉,其英文名称来源于拉丁文cadmia,含义是菱锌矿。镉在地壳中的含量为2&times;10-5%,在自然界中都以化合物的形式存在,主要矿物为硫镉矿(CdS),与锌矿、铅锌矿、铜铅锌矿共生,浮选时大部分进入锌精矿,在焙烧过程中富集在烟尘中。在湿法炼锌时,镉存在于铜镉渣中。   镉是银白色有光泽的金属,熔点320.9℃,沸点765℃,相对密度8.642。有韧性和延展性。镉在潮湿空气中缓慢氧化并失去金属光泽,加热时表面形成棕色的氧化物层。高温下镉与卤素反应激烈,形成卤化镉。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可形成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体危害严重,日本因镉中毒曾出现&ldquo;痛痛病&rdquo;。   可用多种方法从含镉的烟尘或镉渣(如煤或炭还原或硫酸浸出法和锌粉置换)中获得金属镉。进一步提纯可用电解精炼和真空蒸馏。镉主要用于钢、铁、铜、黄铜和其他金属的电镀,对碱性物质的防腐蚀能力强。镉可用于制造体积小和电容量大的电池。镉的化合物还大量用于生产颜料和荧光粉。

镉镍碱性电池

2017-06-06 17:50:02

镉镍碱性电池,镉镍碱性蓄电池,(nickel-cadmium battery) 是指采用 金属 镉作负极活性物质,氢氧化镍作正极活性物质的碱镍镉电池性蓄电池。正、负极材料分别填充在穿孔的附镍钢带(或镍带)中,经拉浆、滚压、烧结、化成或涂膏、烘干、压片等方法制成极板;用聚酰胺非织布等材料作隔离层;用氢氧化钾水溶液作电解质溶液;电极经卷绕或叠合组装在塑料或镀镍钢壳内。   镉镍电池标称电压为1.2V,有圆柱密封式(KR)、扣式(KB)、方形密封式(KC)等多种类型。具有使用温度范围宽、循环和贮存寿命长、能以较大电流放电等特点,但存在&ldquo;记忆&rdquo;效应,常因规律性的不正确使用造成电性能下降。   镉镍电池的电池表达式为:(-)Cd︱KOH(NaOH)︱NiOOH(+)   电池反应为: 放电时:Cd+NiOOH+H2O&rarr;Ni(OH)2+Cd(OH)2   充电时:Ni(OH)2+Cd(OH)2&rarr;Cd+NiOOH+H2O   大型袋式和开口式镉镍电池主要用于铁路机车、矿山、装甲车辆、飞机发动机等作起动或应急电源。圆柱密封式镉镍电池主要用于电动工具、剃须器等便携式电器。小型扣式镉镍电池主要用于小电流、低倍率放电的无绳电话、电动玩具等。由于废弃镉镍电池对环境的污染,该系列的电池将逐渐被性能更好的 金属 氢化物镍电池所取代。镉镍碱性电池的&ldquo;记忆效应&rdquo;,某些类型的电池在使用过程中,由于长期得不到完全的放电,导致电池的实际容量小于真实容量的现象。由于和人的记忆模式相似,故称为记忆效应。事实上,该现象是由于电池中的某些元素的特性引起的。镍镉电池存在很严重记忆效应。虽然普遍地认为镍氢电池不存记忆效应,但从实验的结果来看,镍氢电池的记忆效应仍然存在,只是没有镍镉电池那么严重。 消除记忆效应的方法:对电池进行几次完全的充放电,容量可以得到部分恢复。&nbsp;

镍镉电池

2018-05-11 19:19:53

镍镉电池镍镉电池的应用广泛程度仅次于铅酸蓄电池,其比能量可达55W&bull;h/kg,比功率超过190W/kg。可快速充电,循环使用寿命较长,是铅酸蓄电池的两倍多,可达到2000多次,但价格为铅酸蓄电池的4~5倍。它的初期购置成本虽高,但由于其在能量和使用寿命方面的优势,因此其长期的实际使用成本并不高。缺点是有&ldquo;记忆效应&rdquo;,容易因为充放电不良而导致电池可用容量减小。须在使用十次左右后,作一次完全充放电,如果已经有了&ldquo;记忆效应&rdquo;,应连续作3~5次完全充放电,以释放记忆。另外镉有毒,使用中要注意做好回收工作,以免镉造成环境污染。

处理高镉锌(锌隔合金)生产镉

2019-01-30 10:26:21

火法炼锌厂都是采用精馏精炼制得精镉。在精锌精馏过程中从镉塔产出一种含镉在15%~30%或5.6%~20.8%的高镉锌。从这种高镉锌中提取镉一般采用精馏塔分离高沸点的杂质制得粗镉,然后加NaOH和NaNO3进行碱性精炼除去残余的锌,进入纯镉的生产过程。

从含镉烟尘中提取镉与铊

2019-02-20 11:03:19

一、概述     选用湿 法和火灶台组成的联合法从含镉烟尘中提取镉与,是我国葫芦岛锌厂自行开发的技能。它包含焙烧、浸出、净化、置换、压团熔炼和精馏工序,其间焙烧工序,可依据含镉质料性质决议取舍。       联合法提镉工艺流程的首要特色如下:       (一)产品质量高       精镉纯度可安稳在99.995%以上,超越电镉(99.96%)质量。       (二)收回率高       粗镉冶炼收回率大于85%,精馏收回率达99.7%以上。       (三)操作简洁,人员少,劳动条件较好。       (四)操作条件较简略,耗电少。       (五)精馏设备结构较杂乱,须用报价较贵重的SiC盘。       图1为联合法提取镉和的工艺流程图。    图1  联合法提镉和的工艺流程       二、质料       竖罐炼锌的提镉质料为焙烧蒸腾富集的烟尘,其间流态化焙烧烟尘是在氧化性气氛下蒸腾的,镉的可溶解较高;反转窑焙烧烟尘是在微复原气氛下蒸腾的,含硫高,镉的可溶率低,有时需求再焙烧。       含镉烟尘粒度较细,密度较小,最好选用真空吸送运送,吸送路度不超越150m,吸送高度不超越15m较为有用。     表1为含镉烟尘化学成分实例。   表1  含镉烟尘化学成分实例烟尘称号成分,%镉可 溶率%堆积密度t/m3CdZnPbAsInTtBiFeS流态化焙烧、 电收尘烟尘5~725~3015~200.1~0.50.0040.020.11.5~2.08~1085~950.4~0.5一次焙烧旋风 收尘器烟尘10~1220~2320~250.05~0.100.0040.020.1072~510~1640~450.9~1.1二次焙烧电 收尘烟尘15~2418~2225~300.1~0.60.0040.0260.2120.2~0.512~2040~451.3~1.5       三、技能操作条件       (一)硫酸化焙烧       当含镉的可溶率低于90%时,需进行焙烧。一般流态化焙烧的含镉烟尘镉的可溶率在90%以上,流态化焙烧烟尘二次焙烧的含镉烟尘,镉的可溶率40%~50%,故后者需进行硫酸化焙烧。焙烧进程中除有价金属转化为硫酸盐外,还可蒸腾除掉许多砷、锑等杂质。硫酸化焙烧在用直接加热的反转窑内进,可下降硫酸耗费,削减废气量,便于吸收处理。       葫芦岛锌厂硫酸化焙烧选用φ1000×12000mm、内衬115mm耐火砖的反转窑,用煤气直火加热。硫酸参加量约为理论量的150%左右,焙烧带的温度操控为500~550℃。温度过高不只镉易蒸腾丢失,并且构成炉结。硫酸化焙烧设备腐蚀严峻,硫酸耗费大,劳动条件欠好。如果在二次焙烧进程中,添加脱硫办法,进步镉尘的镉可溶率,则可撤销硫酸化焙烧。       硫酸化焙烧窑操作条件实例如下:       窑头温度           350~400℃       焙烧带温度         500~550℃       窑尾温度           300~350℃       料酸质量比         1∶0.8~0.9       加料量             600~700kg/h       焙烧后镉可溶率     >95%       (二)浸出       硫酸化焙烧后,在设有经过设备的机械拌和槽内进行中性与酸性浸出,规划较小时,两次浸出可在同一槽内替换进行。       中性浸出       操控较低的始酸和较高结尾pH值,以便于Fe3+水解沉积,一起除掉大部分As得到较纯的含镉溶液。       酸性浸出       坚持较高的始酸和终酸,在90℃以上的温度下浸出,使残存的难溶金属进一步溶解,以取得较高的金属收回率。但酸浸液中,除和硫酸锌等首要成分外,还含有较多的杂质金属离子及硫酸铟,经萃取提铟后,回来作下一次中浸运用,其间杂质离子,重复水解沉积。       浸出加料       含镉烟尘粒度较细,简单飞扬。规划时宜用湿式球磨浆化,砂泵运送加料,以改进操作环境和减轻劳动强度。     表2为浸出技能操作条件实例。   表2  浸出技能操作条件实例浸出阶段温度,℃始酸,g/L终酸固液比浸出时刻,h弄清时刻,h操作周期,h中浸80~9010~20pH5.0~5.21∶5~62~43~516酸浸>9030~4020~30g/L1∶32~32~316       表3为浸出工序目标实例。   表3  浸出工序目标实例一浸出阶段浸出液成分,g/L渣率%CdZnInFeAs酸度中浸15~2050~70 3~80.2~1pH5~5.240~50酸浸20~3060~800.1~0.27~81~220~3530~40   表3  浸出工序目标实例二浸出阶段浸出率,%浸出渣成分,%CdZnInCdZnInPb中浸70~8075~85 5~88~10 30~40酸浸10~1510~1580~901.5~2.03~40.01~0.0240~50       (三)水洗进程       酸浸渣经两次水洗后,用真空吸滤,滤渣含铅达45%~55%,送铅冶炼,洗液反回中性浸出。       表4为两次水洗技能操作条件实例。   表4  水洗技能操作条件实例洗次温度℃拌和时刻h弄清时刻h固液比洗液含酸g/L一次50~700.5~11~21∶2 二次50~700.5~1 1∶2<15       圆盘过滤机操作条件:       温度   常温;真空度    53~73kPa;       过滤才能100~120kg/(m2·h);渣含水40%~45%。       (四)净化       中浸后的含镉溶液,仍含有部分铁和砷等杂质。置换进程中易发生气体、黑沫外溢、海绵镉松懈等现象,劳动条件恶化,影响海绵镉的质量,因而需净化除铁、砷。作业进程是向溶液内鼓入空气,使Fe2+氧化成Fe3+,并操控较高pH值,使铁、砷水解沉积除掉。依据实践经历,溶液中的铁、砷比需求大于10,砷才或许除尽。净化的首要技能条件如下:        1、操控溶液的pH值。铁的氧化反响速度随pH值的升高而增大,当pH<3时,氧化反响很难进行。净化中一般坚持pH=5.0~5.2。因为Fe2(SO4)3水解生成Fe(OH)3时游离部分硫酸,使pH值逐渐下降至4~4.5,因而需求参加氧化锌中和游离酸,以坚持pH=5.0~5.2。        2、鼓风量操控在60~90m3/(m2·h)。        3、操作温度约80~90℃。        4、溶液中金属离子浓度一般不超越130g/L。        5、参加CuSO40.1~0.2kg/m3,能够加快铁的氧化反响。净化后溶液含铁0.01~0.05g/L。       表5为净化技能操作条件实例。   表5  净化技能操作条件实例项目单位条件溶液中金属离子浓度g/L80~140温度℃80~90pH值 5.0~5.2单位时刻鼓风量m3/(m3·h)60~90硫酸铜用量kg/m30.1~0.2净化时刻H1~2净化后溶液含铁g/L0.01~0.1弄清时刻h3~4       表6为净化工序目标实例。   表6  净化工序目标实例序号净化前液,g/L净化后液,g/L净化渣,%CdZnFeAsCdZnFeAsSbCdZnFeAs例123685.80.2523650.130.03 1.5149.55.1例221706.00.3920.5690.12  1.618114.6       (五)置换       锌粉置换分两段进行,榜首段置换镉,第二段富集。       置换进程中须参加适量的硫酸,以溶解锌粉外表的ZnO膜,添加锌粉活性,加快置换反响。置换温度不宜过高,以防海绵镉在高温下复溶。净化后液尚含有微量砷,故置换进程中仍有微量的发生,因而,置换作业必须在设有排风设备的密闭机械拌和槽内进行,以防中毒。       一次置换       参加理论锌粉量的95%左右,参加的锌粉能够彻底反响,置换后液含镉尚坚持1g/L左右。这样不只能下降海绵镉含锌,并且简直悉数保存于溶液中。       表7为一次置换技能操作条件实例。   表7  一次置换技能操作条件序号置换前液,g/L技能操作条件一次置换后液体分,g/LCdZnT1H2SO4②温度,℃时刻,min锌粉参加量ZnCdT1114.75680.0401550~603090①77.52.420.04219720.0502050~603595①85.21.080.05 ①为理论量的百分数; ②因为锌粉质量低(ZnO,CdO含量高,锌档次低),致使耗酸量大。       二次置换       一次置换后液中参加稍过量的锌粉,得高锌海绵镉,其含量为0.3%~0.5%,是提取的质料。其流程可参见图1。二次置换后液,含Zn70~100g/L,用于收回锌。       表8为二次置换技能操作条件实例。   表8  二次置换技能操作条件序号置换前溶液,g/L技能操作条件一次置换后液体分,g/LCdZnT1H2SO4温度,℃时刻,min锌粉参加量ZnCdT1pH12.4277.50.043.045~5050120①680.1110.0194.021.0885.20.052.545~5050120①880.030.0024.8 ①为理论量的百分数。       (六)压团熔炼       一次置换产出的海绵镉是表面积较大的粒状海绵体安排,简单氧化,需用油压机限制成团。镉团在熔融的烧碱覆盖下熔铸成镉锭。镉团参加熔体烧碱中,简单引起溅液,须设密封加料设备。镉的熔铸进程实际上也是碱法精粹进程,海绵镉中的杂质金属大部分都能溶解于烧碱中。表9为压团熔炼技能操作条件。表10为熔炼进程中杂质脱除实例。   表9  压团熔炼技能操作条件项目单位实例项目单位实例成团压力MPa12~15熔炼温度℃400~500镉团含水%7~8熔炼时刻h2~3镉团密度kg/cm34.5~5烧碱单耗kg/kg120~150   表10  镉团熔炼进程中杂质脱除状况,%序号海绵镉团成分粗镉成分杂质脱除率ZnPbFeCuAsZnPbFeCuAsZnPbFeCuAs12.730.640.0690.1040.1930.00880.4560.00410.0960.006499.528.530.58.095.422.251.230.09350.0990.1360.00570.4710.01040.0670.004999.8628922.096.432.251.460.0670.1490.1150.00390.7250.00490.080.00299.8519345.598.3       (七)粗镉精馏       粗镉精馏工艺是葫芦岛锌厂于1957年首要创建的。其原理根本沿袭锌的精馏,但工艺设备独具特色。       粗镉中杂质含量较多,改变也较大,葫芦岛锌厂的粗镉化学成分及其物理性能列于表11。   表11  葫芦岛锌厂粗镉化学成分及杂质金属的物理性质金属含量%熔点℃沸点℃固态密度kg/cm3Cd98.5~99.23207678.65Zn0.005~0.014199067.13Pb0.2~0.8327152511.34As0.004~0.01814615(提高)5.72T10.001~0.005303145711.82Fe0.005~0.01133527407.80Cu0.07~0.2108323608.90       由表11可知,粗镉中的杂质,除砷在615℃提高外,其它金属杂质的沸点,都远高于镉的沸点,而砷与锌虽可与镉一起蒸馏,但与烧碱的熔炼进程中,砷与锌均可熔于烧碱中,再经过粗馏而降到0.002%以下,到达精镉标准。铜与铁的沸点很高,在镉的沸点温度下,其蒸气压很小,故在镉粗馏进程中,微量铜、铁进入精镉可视为机械搀杂。据此,粗镉精馏进程,实质上是镉铅的分馏,然后可在一台精馏塔内完成镉的精馏。这是与锌精馏的差异。       粗镉精馏进程大致如下:       粗镉在熔化锅内熔化后,守时定量参加加料器,而接连流入塔内的液体在塔内经加热蒸腾和冷凝回流替换进行,纯镉蒸气上升至榜首和第二冷凝器别离冷凝成液状,冷却到必定温度,流入精镉锅,定时铸成镉锭,高沸点金属经回流富集逐渐下贱,进入渣锅,定时排出。       镉精馏炉可用烟煤、煤气或其它气体燃料加热,炉温安稳,易于操控,因而其加热设备右因燃料而异。表12为葫芦岛锌厂粗镉精馏顶用发生炉煤气加热的操作温度实例。   表12  粗镉精馏操作温度近制实例操控部位温度,℃燃烧室中部①1070~1080燃烧室底部①1040~1050燃烧室上部①620~640冷凝器680~700冷却器570~590粗镉熔化锅380~420加料器400~450粗镉锅400~450渣锅500~550(排渣提温)800~850 ①此外温度可依据产品质量、产值作恰当变化,但温度变化每次不大于±5℃。   表13为粗镉、精镉及镉渣成分实例。   表13  粗镉、精镉及镉渣成分实例,%序 号粗镉精镉镉渣ZnPbFeCuAsZnPbFeCuAsCdPbZnCuFeAsT110.00880.4560.00410.00960.00640.00020.000670.000490.0001<0.00270~7213~150.02~0.083.1~4.62.1~3.13.5~4.90.1~0.220.00570.4710.01040.0670.00490.00020.000720.000490.00010.00230.00390.7250.00490.080.0020.00020.000740.00050.00010.002       四、技能经济目标       (一)粗镉部分        1、镉收回率85%以上。        2、锌收回率90%以上。        3、物料单耗(以每吨镉计):  硫酸9~10t氧化锌0.5~0.6t硫酸铜10~20kg烧碱150~160kg锌粉700~750kg生活水~200t汽(78.4~98.1kPa)~40t电240~250kW·h       (二)精镉部分        1、镉总收回率99.7%以上。        2、镉直接产出率98%以上。        3、物料单耗(以每吨镉计):烧碱12~14kg,煤650~700kg,水1.5~2t。       五、首要设备挑选       (一)浸出、净化、置换槽       浸出槽可选用钢板衬花岗岩(60~80mm),耐腐耐磨。葫芦岛锌厂已用六年仍无缺。净化槽也可用此原料。置换槽可选用钢衬木板槽,运用作用尚好。       所需槽数N按下式核算:   N=V(t/24V有)       式中V-日处理矿浆或溶量,m3;            V有-所选槽的有用容积,m3,为槽几许容积的0.85~0.9;            t-操作周期,h,浸出取8,净化取4~6,一次置交换30~40min,二次置交换40~50min。       (二)精镉炉       精镉炉由塔本体、燃烧室、换热室组成,并与熔镉锅、加料器、镉蒸气冷凝器及冷却器、精镉锅、渣锅等设备相连,构成一个密封体系。图2为镉精馏炉示意图。    图2  镉精馏炉标意图   1―加料器;2―塔盘;3―塔盘底座;4―渣锅;5―冷凝器       塔体是精镉炉的主体,塔盘尺度、组合和每块盘的设置,可参照锌的精馏理论核算挑选断定,也可依据实践依照精镉炉的特色经过核算断定。        1、塔体的挑选核算       (1)塔日处理量   Mcd=G/365n       式中Mcd-精镉塔日处理量,kg/d;            G-年处理粗镉量,kg/a;            n-塔的工作率。       (2)塔内物料分配率:可按冶金核算和实践数据设定塔内物料分配比(见表14)。   表14  精镉炉塔内物料分配率项目代表符号选用分配系数图例及关系式参加粗镉P11  关系式: P1=P3+P5 P3=P1+P2-P4 P5=P4-P2回流量P20.1产出镉渣P30.005蒸腾量P41.095产出精镉P50.995       (3)塔内镉液加热蒸腾所需热量Q需   Q需=Q加+Q气kJ/h       式中Q需-塔内镉液加热至沸点所需热量,kJ/h,   Q加=P1c(t沸-t液)            P1-参加塔内粗镉量,kg/h;            c-镉液加热到沸点时的比热容,kJ/(kg·℃)            t沸-镉液沸点温度,℃,取767;            t液-入塔镉液温度,℃,550~600;            Q气-塔内镉液气化所需热量,kJ/h;   Q气=P1P4c气            P4-塔内镉液气化分配值;            c气-镉的气化潜热,kJ/kg。       经过SiC塔壁单位面积传入的热量核算:   Q壁单=(t外-t内)/[(S1/λ1)+(S2/λ2)]       式中Q壁单-塔壁单位面积传热量,kJ/(m2·h);            S1-塔盘壁厚,m;           λ1-塔盘壁导热率,9.30~10.47W/(m2·℃);            S2-塔盘表面釉和涂料厚度,m;           λ2-塔盘釉质和涂料导热率,或外加SiC套和SiC填料的导热率,W/(m2·C)(精镉塔因为热容量小,盘内温度动摇大,常在塔外加SiC套,在套与塔之间填入SiC灰捣固,约30mm厚,SiC套壁厚亦为30mm。大容积塔体可不加套);        t内、t外-别离为塔盘内、外壁温度,℃,可取   t内=780℃,t外=1040℃。       (4)塔壁单位面积出产强度       塔壁单位面积出产强度一般可取45~50kg/(m2·h),或1080~1200kg/(m2·d)       (5)需求塔盘数       塔体首要由蒸腾盘和回流盘组成,别离核算如下:       蒸腾盘       一般用W形盘,热效率较高。每块蒸腾盘的传热量按下式核算:   Q盘=Q壁单F盘       式中Q盘-每块蒸腾盘传热量,kJ/h;           Q壁单-塔壁单位面积传热量,kJ/(m2·h);            F盘-每块盘受热表面积,m2,可自选尺度,也可依据国内沿袭塔盘尺度,精镉炉用盘为360×250×85mm,壁厚为40mm,按壁厚中心线计,一个盘受热表面积为0.091m2。       蒸腾盘数按下试核算:   n蒸=Q气/Q盘       式中n蒸-塔中蒸腾盘数,块;            Q气-镉液气化所需热量,kJ/h;            Q盘-盘块蒸腾盘传热量,kJ/h。       此外,金属在塔中预热盘数(n预)的求法根本同蒸腾盘,但塔外壁温度应取低些,一般外壁温度可取1020℃,塔内壁温度取760℃。所得盘数仍为蒸腾盘,相加为所需蒸腾盘总数。       回流盘数       一般用平底槽形盘,其数量亦可仿工厂锌精馏规划铅塔的经历公式选定,即   n回=E(n蒸+n预)       式中n回-回流盘数,块;            n蒸-蒸腾盘数,块;            n预-蒸腾段预热用蒸腾盘数,块;            E-蒸腾段蒸腾盘总数与回流段塔盘的份额系数,镉精馏塔可取0.6~0.7。        2、塔盘选型与塔体组合       组成精镉炉的有加料盘、底盘、导流盘、蒸腾盘、回流盘等,首要是蒸腾盘和回流盘。其结构方式和特性与锌的精馏塔盘根本相同,唯塔盘尺度变小许多,长宽份额也有别。       葫芦岛锌厂镉精馏炉运用的塔盘一种为276×176×85mm,厚度38mm,另一种为360×250×85mm,厚度40mm。       蒸腾盘为W形,周边的沟槽可存金属液体,以加大塔盘的蒸腾才能,其结构尺度可参看图3。对其要求是,两盘间的空间高度应习惯塔内最大蒸气流速小于5m/S,塔盘上气孔面积也应习惯气流速度的要求。此外盘内液面应坚持必定高度。  图3  蒸腾盘       回流盘为平底长方形,盘内有多道浅格,以使盘内金属熔体成S形活动,以利金属气液两相热交换和杂质金属分凝。       对回流盘结构要求首要是,上气孔面积不小于盘面积的40%,盘内液面应有恰当高度(见图4。)    图4  回流盘       塔盘组合       塔本体首要由底盘、蒸腾盘、加料、回流盘、导流盘等组成。葫芦岛锌厂的镉精馏炉的塔体是由14块蒸腾盘、1块缓冲盘、8块回流盘、1块加料盘和底盘、导流盘堆叠而成。底盘和悉数蒸腾盘置于燃烧室中间,蒸腾盘内的金属镉经加热蒸腾导入回流盘分凝后进入冷凝器。底盘中心有孔,座落在底座上,蒸腾盘余下的铅铁锌液经底座流入渣锅内,定时排出。蒸腾盘上为加料盘和回流盘,一般高出燃烧室上盖,因为镉精馏塔内气压较低,需由外部供热保温,部分回流盘仍在低温保温状况中。最上面为倒扣盘,镉蒸气即由此导入冷凝器。       镉塔组合的原则是相邻两盘应互转成180°装置,使沿盘短边安置的溢流孔交织装备,迫使金属蒸气与金属液体沿着弯曲的途径经过整个塔盘,并不断完成蒸馏与分凝进程,然后到达金属的提纯与别离的意图。塔盘组合实例见图5。  图5  塔盘组合实例图       表15为葫芦岛锌厂镉精馏炉塔体及首要附属设备规格。   表15  葫芦岛锌厂镉精粹炉塔体及其附属设备规格,mm称号原料件数长宽高塔   件反扣盘SiC1360250100导流顶盖SiC136025050回流盘SiC836025085加料盘SiC1545250100加料压盖SiC114525030蒸腾盘SiC1536025085缓冲盘SiC1360 ,,25085底盘SiC136025085底座SiC1610485210底座盖SiC126034060上外套SiC1420310600中外套SiC1420310920下外套SiC1420310920冷凝器本体SiC1515350630压盖SiC156031535冷却器本体SiC1405375185压盖SiC116037530加料器 1Cr18Ni9Ti1   精镉产出锅 1Cr18Ni9Ti1   粗镉熔化锅 1Cr18Ni9Ti1   渣锅 1Cr18Ni9Ti1          六、装备参阅图       图6为粗镉车间装备参阅图实例。  图6  粗镉车间装备参阅   1―排风机;2―烟囱;3―排风管道;4―浸出槽;5―除铁槽; 6―置换槽;8―溜槽;9―泵;10―料斗;11―立式泵;12―铸锭; 13―熔化炉;14―油压机;15―精镉炉;16―过滤机;17―高位槽; 18―精镉模;19―真空泵;20―贮酸罐;21―扬液器

镉的性质、用途及提取镉的原料

2019-02-11 14:05:38

镉是元素周期表第五周期第ⅡB族元素,为重有色金属。元素符号Cd,原子序数48,相对原子质量112.41,银白带蓝色光泽的金属。1817年德国人司脱马耶从碳酸锌中发现一种新元素,与此同时海尔曼和罗洛夫也自氧化锌中发现了这种新元素。依据拉丁文“Cadima”(菱锌矿)命名为Cadmium。     最早报导出产镉的国家是德国,1852年约出产100kg镉,1918年产值已超越100t。今后,美国成为镉的首要出产国,1930年产值多于1000t,1940年挨近3000t,占其时国际镉产值的70%。1977年国际镉产值达最高值1.9793万t,1989年商场经济国家精镉产值为1.617万t,消费量超越出产值约2300t。     镉是一种具有延性的金属。晶体结构为六角晶系,硬度比锌软,其首要物理性质列于表1。镉有8种天然的安稳要素,还有11种不安稳的人工放射性同位素。 表1  镉的重要物理性质性质数值性质数值熔点T/K593.9热导率λ/(W·m-1·K-1)96.8(300K)沸点T/K1038电阻率ρ/(Ω·m)6.86×10-8(273K)熔华热Q/(kJ·mol-1)6.11磁化率x/(m3·kg-1)-2.21×10-9(S)气化热Q/(kJ·mol-1)100.0摩尔体积Vm/cm313.00密度ρ/(kg·m-3)8650(293K)线胀系数α/k-129.8×10-67996(熔点液体)电子亲和势(Me-Me)A/(kJ·mol-1)-26       镉的化学性质与锌相似,在常温下不与枯燥空气效果,在湿空气中缓慢氧化并失去光泽,加热时生成棕色的氧化层。镉蒸气焚烧发生棕色的烟雾。镉不溶于碱液,而溶于大多数酸中,如硫酸、和硝酸,并生成相应的镉盐,但溶解速度比锌慢。镉极易溶于浓硝酸铵溶液,可利用这种溶液从铜和铁的镀镉件大将镉剥下。氧化镉和氢氧化镉与相应的锌化合物不同,不溶于过量的,在酸性硫酸盐溶液中镉离子可被金属锌置换。镉在所有安稳化合物中都呈二价状况,其离子无色。镉可构成配位离子如Cd(NH3)42+、Cd(CN)42-、和CdI42-。     镉是一种有毒物质,被镉污染的空气比被污染的食物对人体的损害更为严重。它进入人体后首要损害人的脏,也会引起泡性肺气肿。要严格控制含镉废气、废水的排放。空气中含镉尘的极限值为200μg/m3,氧化镉烟雾的极限值为100μg/m3。含镉大于0.5×10-4%的废水不许排放。     1919年镉开端用作铁和钢防锈的电镀层。到1941年此项使用已成为它的首要用处。但由于本钱高和发生的毒性废物需经特殊处理,镉在电镀中的用量在逐步下降,镉的各种用处和商场消费量见表2。镉的首要用处是出产镍镉电池,日本用于镍镉电池的消费量约占镉消费量的80%。 表2  镉的首要用处和消费量用处消费量1977~19801989~1990质量分数w/%m/t质量分数w/%m/t电池2334505510175颜料274050203700电镀345100101850安稳剂121800101850其他46005925合计1500018500       镉是一种较稀有的元素,它的地壳丰度在和银之间,为1.6×10-6%,海水含镉1×10-8%,估量国际镉储量约54万t。镉在自然界中以矿藏存在,没有独自矿床,常与铅矿共生,在选矿进程中大部分被选入锌精矿。有些锌精矿含镉达1%~2%,一般在0.06%~0.5%之间。绝大多数的金属镉来自锌冶炼进程的中间产品。在湿法炼锌厂的硫酸锌溶液净化进程中产出的铜镉渣(含镉4%~20%),火法炼锌厂的粗锌精馏进程中产出的镉灰(含镉10%~30%)和某些铜、铅冶炼厂产出的富镉尘等都是提镉的首要质料。镍镉和铁镉蓄电池的极板等工业废料常作为提镉的二次质料。

处理镍镉电池厂的废料生产镉

2019-01-30 10:26:21

目前镉大量消费在Ni-Cd电池生产中,这种电池厂产生大量的含镉废料,从这种废料中回收镉的生产流程如图1所示。图1  从Ni-Cd电池生产废料中回收镉 瑞典某厂处理这种废料的生产数据如下: 处理废料量               365t/a 回收镉量                 17t/a 回收镍量                 44t/a 回收钴量                 1t/a 产出浸出渣量             40t/a 产出铁渣量               55kg/a 渣中的总镉量             41kg/a 渣中可溶镉量             2.1kg/a 镉的回收率               99.76%

锌、镉金属冶炼方法

2019-02-27 12:01:46

湿法冶炼是将锌精矿焙烧为ZnO,用硫酸溶液(锌电解尾掖)浸出,将所得ZnSO,溶液经过电解提取金属锌的办法。该锌的纯度高达99.997%以上,且此法比火法冶炼简单采纳环保办法,针对一向成为向题的浸出残渣的处理,也发明晰新办法。现在国际出产锌锭的80%,日本锌锭的60%选用湿法冶炼。锌精矿的焙烧运用多膛焙烧炉,现在运用欢腾焙烧炉。在1170-1270K焙烧,则可得到含硫约为1.0%(硫化物形状的硫低于0.5%)的培烧矿。当锌精矿中有铁时,则生成难溶于稀硫酸溶液的铁酸锌(ZnO.Fe3 O3),下降锌的收回率。关于收回这种形状的锌将在今后介绍。炉气含8-10SO2,为制作硫酸的质料。因为焙烧矿也有粗粒,所以在破坏后用电解尾液浸出。浸出办法是用单式的酸性或复式的中性一酸性的接连浸出法。浸出液中的Fe2+经MnO2或空气等氧化,沉积出Fe(OH)3,此刻砷、锑、锗等有害杂质也因共沉而除去。过滤洗刷后,调整泌液为中性送往净液工序。此滤液中除锌外还含有铜、钻、镍、镉,因而,有必要除去这些杂质。开始加锌粉和As203或Sb203,置换沉积铜、钻、镍后除去,用压滤机过滤,滤饼送往炼铜厂。滤液中再加锌粉,置换沉积镉,过滤后的沉积作为镉的质料。滤液送往电解工序。钴和α-亚硝墓β-酚反响生成溶解度小的有机化合物而除去,为削减试剂的用量,在用锌粉彻底除去铜、镉后参加溶液中除钻。净化后原液的标准组成的一例为Zn100-160kg/m3,Mn3kg/ m3 ,Cu3, Cd<0.2g/m3,Co<0.5g/m3,Ni<0.05g/m3,As, Sb,Ge<0.03g/m3, C1<50g/m3,F<10g/m3因冶炼厂各异而多少不同。电解提取是使用锌的氢超电压大,所以净化工序在湿式冶炼中最为重要。该净化后的原液和锌电解液(Zn50-60kg/m3,H2S04150-200kg/m3)混合,为使阴极表面平坦加胶、为避免酸雾加豆饼渣,阳极用Pb-Ag合金(0.7-1.0%Ag),阴极用铝极,用250-600A/m2的阴极电流密度电解24-48小时,剥掉在铝极上分出的锌,用低频电炉熔融.铸为锌锭。

碲化镉

2017-06-02 16:18:18

金属 碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质  棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。   密度:6.20   熔点:1041℃   碲化镉的用途   光谱分析。也用于制作太阳能 电池 ,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海 有色网www.smm.cn 。我们会为您提供最为详细的相关资讯。&nbsp;本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

镉的行业发展

2019-10-29 11:45:23

镉于1817年被德国人发现,在此后的100年间,德国一向是唯一且重要的镉出产国。现在,亚洲是镉的主要生产区。镉一般是作为锌精矿的伴生品进行出产的。废镍镉电池也是回收镉的一个重要来源。镉的主要消费范畴是可充电的镍镉电池的出产,其他的终端使用包括:颜料、涂层、电镀,以及塑料生产。但是镉的毒性问题是其开展使用的最大绊脚石,尤其是在欧盟的法律中,镉在许多使用范畴都遭到极大的约束:一方面是镉需求遭到各国法律规定的约束,增长缓慢;另一方面却是镉一向以锌的伴生品产值不断增加,这就导致了镉产能过剩。近年来,随着太阳能蓄电池产业的快速开展,镉使用范畴又找到了一个新的增长点,太阳能电池有高光吸收率、转换效率高、电池功能安稳等许多优势,使用前景广阔,对于镉的需求也相当可观。

镉的用途简介

2018-09-27 10:10:23

镉作为合金组土元能配成很多合金,如含镉0.5%~1.0%的硬铜合金,有较高的抗拉强度和耐磨性。镉(98.65%)镍(1.35%)合金是飞机发动机的轴承材料。很多低熔点合金中含有镉,着名的伍德易熔合金 中含有镉达12.5%。镍-镉和银-镉电池具有体积小、容量大等优点。镉具有较大的热中子俘获截面,因此含银(80%)铟(15%)镉(5%)的合金可作原子反应堆的控制棒。镉的化合物曾广泛用于制造颜料、塑料稳定剂 、荧光粉等。镉还用于钢件镀层防腐,但因其毒性大,这项用途有减缩趋势。用于电底、制造合金等;并可做成原子反应堆中的中子吸收棒。镉氧化电位高,故可用作铁、钢、铜之保护膜,广用于电镀上,并用于充电电池、电视映像管、黄色颜料及作为塑料之安定剂。镉化合物可用于杀虫剂、杀菌剂、颜料、油漆等之制造业。

黄铁矾的水解沉淀

2019-02-18 15:19:33

黄铁矾习惯上也统称为黄钾铁矾,在酸性溶液中具有很小的溶解度。矾是指两种或两种以上金属的硫酸盐所组成的复盐,它比其对应的单盐更易从溶液中结晶分出,还能构成较大的晶粒,有利于固液别离。黄铁矾是一组Fe(Ⅲ)的碱式硫酸盐的复盐,其分子式一般可写成M2O·3Fe2O3·4SO3·6H2O或MFe3(SO)2(OH)6,式中M+为下列一价阳离子(或称矾离子)之一:H3O+、Na+、K+、NH4+、Ag+、Rb+和 Pb2+等。在黄铁矾的化学组成中,高铁离子与硫酸根离子的比值(Fe3+∶SO42-=1.5)远大于1∕2,因此归于碱式盐而不是正盐。与正盐比较,它是在溶液酸度较低和SO3百分含量较小的条件下构成的,并可看成是氢氧化物向正盐过渡的中间产品。在正盐中,高铁离子的键合物是SO42-离子中的O2-离子,在氢氧化物中则为OH-离子。溶液酸度增大就会向正盐改变,酸度下降则分出氢氧化物。 自然界巳知有6种黄铁矾,别离为:黄钾铁矾,草黄铁矾,黄铵铁矾,银铁矾,黄钠铁矾和铅铁矾。它们都是在酸性环境中构成的,多为黄铁矿氧化成褐铁矿的中间产品,多发作在硫化矿氧化带发育的开始阶段。一价阳离子M+的品种对黄铁矾的沉积有影响。在160~200℃规模内别离参加Na2SO4,Na2CO3,NH4OH或K2SO4作为沉积黄铁矾的一价阳离子源进行比较,发现沉积后溶液中残留的铁浓度很不相同,残留铁浓度按此次序递减,但到180℃以上这种不同变小。几种黄铁矾中草黄铁矾最不安稳,尽管没有碱金属存在时能够见到草黄铁矾H3OFe3(SO4)2(OH)6生成,但即便少数碱金属的参加便会使之转化为碱金属黄铁矾,水合质子   H3O+被碱金属离子替代的程度随温度上升而添加。钾的铁矾安稳性最高,NH4+离子半径比K+大,Na+、Li+等离子的半径尽管比K+小,但它们的水合分子数多,其水合离子的半径大,因此它们的铁矾的安稳性都不及钾的铁矾。不过考虑到钾盐较贵,工业上铵一般是沉积黄铁矾首选的一价阳离子源。 黄铁矾一旦构成,就很安稳,不溶于酸,因此黄铁矾的沉积反响可用于从硫酸盐溶液中除铁,然后下降给定酸度下铁的溶解度。沉积反响可用下式标明:   (1) 如上式所见,黄铁矾沉积进程中有游离酸发作,需求随反响进程处以中和以坚持沉积要求的溶液pH值。因此,沉积黄铁矾运用的中和剂不只用以中和初始酸,也用以中和高铁水解发作的酸。不过如前所述,中和不宜运用强碱如,即便很稀的强碱液也很难操控pH值。在电解锌厂的实践中是用锌焙砂(首要含ZnO)作中和剂。 文献汇集了各种黄铁矾的自由能数据,从黄铁矾离解成它的组成成分的平衡常数能够核算在给定条件下铁的溶解度。黄钾铁矾沉积构成的速度随温度而异。在25℃下黄铁矾的构成速度缓慢,从pH值0.82~1.72规模的溶液中沉积彻底或许需耗时6个月。进步温度可改进沉积速度,80℃以上时沉积速度变得较快,100℃时可在数小时内沉积彻底。温度100℃以上沉积速度明显加速,不过就黄铁矾的安稳性而言,沉积温度有一个上限。尽管此温度上限会因溶液的组成而异,但180~200℃似为黄铁矾安稳性的上限。 诚如上述,除pH值和温度外,黄铁矾的构成及其安稳性还与一价阳离子浓度、铁浓度以及有无晶种或杂质存在等许多要素密切相关。假如把黄铁矾看作一种难溶电解质,其离解反响式可写为:    (2) 相应地,溶度积写为    (3) 能够看出,参加碱金属硫酸盐可促进黄铁矾的构成。不过上式中以一价阳离子M+的浓度方次最低,对溶液中铁的沉积影响最小,黄铁矾能够从含K+低至0.02mol∕L的溶液中沉积,但一般来说,铁沉积的程度随一价阳离子M+对Fe3+之浓度比添加而进步,且试验证明,抱负状况的M+浓度应满意分子式MFe3(SO4)2(OH)6所规则的原子比。从含Fe3+0.025至3mol∕L的溶液都彻底能够沉积黄铁矾,沉积的下限是10-3mol∕L。只需溶液中有过量的M+离子存在,沉积的黄铁矾的数量和成分与初始溶液中的Fe3+浓度无关。另一方面,OH-离子的浓度方次最高,因此溶液酸度对铁矾分出影响最大。在工厂实际操作条件(沉积温度~100℃)下,黄铵铁矾沉积时溶液中残留的Fe3+浓度与初始H2SO4浓度存在以下联系: [Fe3+]/[H2SO4]=0.01 上式标明,初始H2SO4浓度越高,黄铁矾沉积残留的Fe3+浓度也越高。并且到达平衡所需求的时刻也越长。 黄铁矾沉积基本上是一个成核与成长的进程,其沉积数量和速度与晶种的运用很有联系。在均相系统中发作沉积反响发作固体表面或许需求一个诱导期,晶种的存在可望消除这种诱导期并加速铁矾沉积的速度。尽管因为反响设备的尺度然后壁效应、所用试剂的纯度等许多要素都或许影响新相成核进程,因此文献对晶种的效果的报导颇有收支,有的乃至以为晶种效果不大,但一般的观念都必定晶种对黄铁矾构成的促进效果。晶种的参加可大大添加黄铁矾的沉积速度并按捺诱导期,沉积的初始速度随晶种参加量呈线性添加。参加晶种还可使黄铁矾在更低的pH值及温度下沉积。 铅、银及其他二价金属如Cu、Ni、Co等在黄铁矾沉积中的行为也不容忽视。在酸度不高的条件下铅可按下式构成铅铁矾:    (4) 铅铁矾的生成量与铁浓度及酸度有关。铁浓度越高,能构成铅铁矾的酸度也越高。这类铁矾还会与其他黄铁矾如草黄铁矾和碱金属的黄铁矾构成固溶体。假如溶液中的铅浓度本来有收回价值,则铅铁矾的生成会构成铅的丢失。为避免铅铁矾的生成,提出过3种办法,(1)将酸度进步到能阻挠铅铁矾能构成的浓度,在95℃下铅铁矾能溶于1mol∕L硫酸;(2)在180~190℃规模内沉积铁,在此温度规模内铅铁矾不安稳;(3)在有足够高的碱金属离子浓度下有用地沉积铁,这样会构成比铅铁矾更安稳的碱金属黄铁矾。例如,在Fe3+为0.1mol∕L,H2SO4为0.1mol∕L、PhS为4.5kg/m3的矿浆中,在150℃、K2SO4或Na2SO4或(NH4)2SO4为0.3mol∕L下就能够有用避免铅铁矾的构成。而碱金属离子浓度较低时则会发作碱金属与铅的混合黄铁矾。 贵金属如银也易沉积为银铁矾或含银铅铁矾    (5) 当从含100×10-4%以下Ag的溶液中沉积黄钠铁矾时,有95%以上的银被结合到铁矾中。而二价金属如Zn2+,Cu2+,Ni2+则只在很小程度上结合到碱金属黄铁矾中,这使得黄铁矾法能够很方便地用于从这些金属的溶液(尤其是硫酸盐溶液)中除铁而不构成金属丢失。金属结合到碱金属黄铁矾中的次序是:Fe3+>Cu2+>Zn2+>Co2+>Ni2+。但这些金属结合到铅铁矾中的量要大得多。三价金属如Ga和In比较简单结合到黄铁矾类化合物中。 还有一种观念以为,二价金属离子替代的是黄铁矾结构中的Fe3+而不是碱金属离子。二价金属结合到黄铁矾中的总的趋势是随其离子浓度、pH及碱金属离子浓度添加而加强,并随Fe3+浓度削减而下降。

含硫、磷、砷的氧化矿捕收剂

2019-02-27 08:59:29

烃基磺酸钠、烷基硫酸钠、烃基、烃基胂酸等。从它们的分子结构看,也是一端为极性基其它端为非极性基的复极性化合物。本章所述药剂都可作氧化矿捕收剂,前两种可替代脂肪酸,而含磷、砷的捕收剂选择性强,对锡石和黑钨浮选作用较好。一、结构 烃基磺酸钠视其烃基不同又可分为烷基磺酸钠 和烷基芳基磺酸钠,它们的通式如下: RSO3Na R-Ar-SO3Na RO-SO3Na 烷基磺酸钠烷基芳基磺酸钠 烷基硫酸钠 二、性质 (1)烃基磺酸钠和烷基硫酸钠均为白色粉状物,易溶于水,毒性很低。 (2)烃基磺酸分子中的C-S键很安稳,因而烃基磺酸钠不易分化,配成溶液后,放置好久均可运用, 不会失掉洗刷才能和捕收才能。 (3)烷基硫酸钠与烃基磺酸钠不同,能水解称醇和 :RO-SO3Na+H2O→ROH+NaHSO4 特别是在加热条件下水解更快,因而,烷基硫酸钠 溶液放置过久,会部分水解下降其捕收才能,运用时应当天制造的溶液当天运用为好。

高砷硫低镍钴硫化矿浸矿菌的选育与生物浸出研究

2019-02-21 11:21:37

生物冶金技能工业化始于20世纪60年代的铜矿、铀矿,到了20世纪80年代生物冶金技能发展愈加敏捷,并在铜、铀、金等生物冶金方面大规模工业运用,生物冶金的研讨与运用范畴已由铜、铀、金等的提取向镍、钴、锌、钼、磷、煤脱硫等范畴拓宽,到1999年镍钴矿的生物提取也相继完成了工业运用,标志着镍钴矿的生物冶金已从实验室走向工业化运用。实践证明,选用生物法提镍钴生产成本远低于传统工艺的生产成本。 从80年代起,国内一些从事根底研讨的单位如北京有色金属研讨总院、中国科学院进程工程研讨所、中南大学等开端硫化镍矿细菌浸出机制的研讨,对细菌浸镍的电化学机制进行研讨后以为,镍黄铁矿的细菌浸出受复合作用机制操控。北京有色金属研讨总院已从金川镍矿选育出优秀浸镍菌株,贫矿和尾矿镍浸出率别离达88%和87%以上,通过激光诱变技能选育耐受高pH值的浸镍硫杆菌,初步解决金川镍矿耗酸脉石多而导致的pH值不稳,然后影响细菌活性的难题,展现了生物冶金技能在我国镍矿资源的开发利用方面具有杰出的运用远景。 本研讨挑选高砷硫低镍钴硫化矿为研讨目标,其含镍首要矿藏是辉砷镍矿,在浸出镍的一起,砷也一起浸出。而砷含量高,对细菌的正常成长与繁衍活动影响大。与现在文献报导的含镍黄铁矿或含镍磁黄铁矿的细菌浸出比较,需进行抗砷细菌的挑选与改进研讨,进步细菌浸矿功率。本研讨通过选用化学分析和偏光矿相显微镜矿藏判定等现代工艺矿藏学研讨办法、现代微生物驯化育种技能和浸矿活性检测技能以及矿石摇瓶细菌浸出办法等,具体研讨了生物浸出工艺矿藏学、抗毒性强的高效浸矿菌种的选育和细菌浸出要害工艺参数,取得了高砷硫低镍钴硫化矿生物浸出的高效浸矿菌种和生物浸出最优工艺参数,为进一步展开低档次硫化镍钴矿的生物提取研讨供给了技能根底。 一、研讨办法、材料和浸矿菌种 (一)研讨办法 矿石工艺矿藏学研讨办法:挑选具有代表性的矿石标本,通过切开、粗磨、细磨和抛光等工序制成光片,然后在矿相显微镜下进行矿藏品种的判定和矿藏数量的计算,并通过矿石样品中ICP2MS化学分析,定量查定矿藏的化学组成。 浸矿菌的选育与驯化办法:依据矿石的理化性质和矿石组成,挑选合适的原始浸矿菌株,在9K培育基中参加必定浓度的Ni2+,Co2+金属离子和,然后逐渐进步Ni2+,Co2+金属离子和浓度,并每次转接于高砷硫低镍钴硫化矿粉浸出系统中进行进步浸矿功能和抗毒性驯化。一起,选用亚铁离子氧化速率法、生物显微镜直接计数法及氧化复原电位法测定驯化菌的浸矿活性。 矿石细菌摇瓶浸出实验办法:称取必定量的矿粉,加到300ml的三角瓶中,放入压力锅中蒸汽消毒20min,冷却后接入已消毒的细菌根底培育基,调酸度至所需的pH值,使之安稳,然后接入细菌,置于空气恒温摇床振动浸出。在浸出进程中,每天测定矿浆pH值、电位一次,用20%的稀H2SO4或10%NaOH溶液调矿浆pH值。浸出完毕后,浸出渣过滤、洗刷、烘干,浸出渣和浸出液别离分析化验。 (二)实验和检测仪器 偏光矿相显微镜:矿藏的判定;控温无级调速摇床:菌种的培育;高压灭菌锅:器皿和培育基的灭菌;Thermo orion model 868电位pH计:检测细菌培育和浸出进程pH值;电位差计:检测菌液与矿浆的电位(vs.SCE),选用的电极为标准甘电极和铂电极;生物显微镜(含CCD数码摄像和传输)系统:检测溶液中的细菌活性;原子吸收光谱分析仪:分析浸出液和浸渣的金属元素的含量;分光光度计:检测细菌浓度及分析浸出液和浸渣的金属 (三)材料 运用的化学试剂(分析纯)首要有:硫酸亚铁、硫酸铵、硫酸镁、、磷酸氢二钾、、、硫酸、、、磷酸、等。 (四)浸矿菌种 实验用的原始浸矿菌种为Retech Ⅰ,Retech Ⅲ,Retech Ⅴ。 二、工艺矿藏学研讨成果 矿石的化学组成见表1。矿石中首要有利成分是镍和钴,其他有用组分 表1  矿石的化学组成Mn,Pb,Cu,Zn含量较低,有害组分为砷。构成矿石的金属矿藏的组分首要是铁、硫,构成脉石矿藏的组分首要是二氧化硅和三氧化二铝,氧化钙和氧化镁等均较低。 构成矿石的各种矿藏的相对含量见表2。矿石中金属矿藏首要是黄铁矿,其次是白铁矿、胶黄铁矿和褐铁矿、赤铁矿;含镍矿藏为辉砷镍矿、碧矾、针镍矿、斜方砷镍矿、镍华等。脉石矿藏首要是石英、水云母,还有少数绿泥石;碳酸盐类矿藏很少,还有少数菱铁矿、菱镁矿。 表2  矿石的矿藏组成及相对含量 黄铁矿是有利组分镍、钴的首要载体矿藏;黄铁矿遍及结晶程度差,结构松懈,易被细菌浸蚀,镍、钴也简单被浸取。 矿石中存在一部分颗粒微细的含镍矿藏,并且涣散在结构细密的脉石中,不易单体解离或暴露,在生物浸出中含菌高铁液难于与之触摸,这将是影响镍浸出率的首要原因。 上述矿石的物质组成研讨成果标明,生物浸出进程中矿石耗酸量小;因为矿石中金属硫化矿的硫和铁含量较高,并且以黄铁矿中的硫和铁为主,因而细菌浸出镍、钴时,也氧化黄铁矿而产出较多的酸和浸出较多的铁,这关于生物浸出液中的镍和钴的提取发生晦气影响。 三、浸矿微生物的挑选、驯化与活性测定 (一)浸矿微生物的挑选 依据矿石的理化性质和矿石组成,从生物冶金国家工程实验室浸矿菌种库中挑选合适的实验用菌株,别离编号为Retech Ⅰ,Retech Ⅲ,Retech Ⅴ,用无铁9K培育基进行高砷硫低镍钴硫化矿挑选性驯化研讨,其成果如表3所示。 表3 浸矿菌株的挑选实验成果由表3可见,Retech Ⅲ的菌种较习惯于该高砷硫低镍钴硫化矿石浸出,镍钴浸出作用较好。因而,菌种的驯化作业以RetechⅢ菌种进行。 (二)浸矿微生物的驯化 对菌株Retech Ⅲ的驯化首要是为了进步其对该矿石性质的习惯性和对金属离子Ni2+,Co2+和砷的耐受才能。驯化进程是直接在9K培育基中参加必定浓度的Ni2+,Co2+金属离子和,然后逐渐进步Ni2+,Co2+金属离子和浓度,并每次转接于矿石浸出系统中进行驯化。第一代驯化条件:Ni2+1g·L-1,Co2+0.5g·L-1,As0.5g·L-1;第二代驯化条件:Ni2+2.5g·L-1,Co2+1.5g·L-1,As1.0g·L-1;第三代驯化条件:Ni2+5.0g·L-1,Co2+3.0g·L-1,As2.5g·L-1。实验成果见表4。 表4 RetechⅢ习惯性驯化浸出实验成果实验成果标明,通过实践矿石和金属离子Ni2+,Co2+,驯化后的菌株,其抗毒性和浸镍、钴才能得到进步,标明该菌株的习惯性和浸出活性经驯化后在实践矿石中的安稳性增强。 (三)浸矿微生物的活性测定 浸矿微生物的活性是细菌浸矿的重要参数。为了调查Retech Ⅲ三代驯化菌的浸矿活性,选用了亚铁离子氧化速率法、生物显微镜直接计数法及氧化复原电位法测定了Retech Ⅲ三代驯化菌的浸矿活性,测定条件为:9K培育基,Ni2+5.0g·L-1,Co2+3.0g·L-1,As2.5g·L-1,初始菌浓度3.78×105cells·ml-1,摇床温度30℃、转速145r·min-1,成果见图1~3。图1  Retech Ⅲ三代驯化菌氧化Fe2+为Fe3+速率的改变曲线图2  细菌培育时菌液氧化复原电位的改变曲线图3  细菌培育时刻与菌液中活细菌浓度对数的改变曲线 对Retech Ⅲ三代驯化菌的浸矿活性测定成果标明:该菌株具有较高的活性,将Fe2+氧化为Fe3+速率到达1.4g·(L·h)-1;细菌繁衍速度快,细菌浓度由初始时的3.78×105cells·ml-1培育60h到达1.67×108cells·ml-1,安稳时较长;溶液的电位挨近600(mV,vs.SCE),氧化才能强。 四、镍和钴生物浸出实验成果与分析 (一)有菌与无菌比照实验 实验条件:矿浆浓度5%,矿浆pH值为2.0,浸出时刻为16d,浸出温度30.3℃,摇床转速为145r·min-1,其他实验条件及成果见表5。 表5 有菌与无窥比照实验成果(二)浸出介质初始pH值对生物浸出镍和钴的影响 实验条件:矿浆浓度5%,细菌接种量为20%,浸出时刻为20d,浸出温度30.3℃,摇床转速为145r·min-1,其他实验条件及成果见表6。 表6 浸出介质初始pH值实验成果实验成果标明:浸出介质的初始pH值对该高砷镍钴矿中镍和钴的浸出影响较显着,过高和过低的初始pH值都晦气于镍和钴的浸出。因而,挑选适宜的浸出介质pH值(1.50~2.0),并可以安稳操控该pH值,对进步镍和钴的浸出率是非常有利的。一起,也标明晰浸出实验所运用的细菌,其最佳成长的pH值是在1.50~2.0之间。 (三)细菌接种量与生物浸出镍和钴之间的联系  细菌接种量及实验成果见表7,其他实验条件为:矿浆浓度为5%,浸出介质初始pH值为1.90,浸出时刻为20d,浸出温度30.3℃,摇床转速为145r·min-1。 表7 细菌接种量实验成果 实验成果标明:镍、钴浸出率受细菌接种量的巨细影响,在无菌浸出时镍、钴浸出率别离只要23.92%和26.25%,接种量达30%后,镍、钴浸出率别离到达71.23%和97.52%,标明增大细菌接种量有利于加速镍、钴的浸出速率。其首要原因是增大细菌接种浓度,缩短了细菌在新的浸出环境中的习惯期,即缩短了细菌的阻滞期而快速进入细菌成长繁衍期和安稳时。 (四)矿浆浓度对生物浸出镍和钴的影响 矿浆浓度及实验成果见表8,其他实验条件为:细菌接种量为20%,浸出介质初始pH值为1190,浸出温度30.3℃,摇床转速为145r·min-1。 表8 矿浆浓度实验成果实验成果标明:在浸出时刻满足长的情况下,矿浆浓度对镍钴的细菌浸出影响不大;只要在短时刻的细菌浸出进程中,矿浆浓度对镍、钴的浸出速率存在较大影响。细菌浸出10d,矿浆浓度在10%以内,镍的浸出率均挨近60%,钴的浸出率均挨近80%,而矿浆浓度在15%以上,镍和钴的浸出速率急剧下降,镍和钴的浸出率别离下降到45%和60%左右;细菌浸出20d,矿浆浓度5%~30%,镍和钴的浸出率别离到达70%和97%。 (五)浸出周期对生物浸出镍和钴的影响 浸出周期及实验成果见表9,其他实验条件为:矿浆浓度为10%,细菌接种量为20%,浸出介质初始pH值为1.90,浸出温度30.3℃,摇床转速为145r·min-1。 表9 浸出周期实验成果实验成果标明:浸出周期对镍、钴浸出率有较大影响。跟着浸出周期的延伸,镍、钴浸出率进步,但当浸出周期延伸到20d后,持续延伸浸出周期,镍、钴浸出率进步的起伏逐渐削减,浸出周期延伸到100d,镍、钴浸出率别离到达85.46%和99.23%,矿石中的钴根本被彻底浸出。 (六)生物浸出工艺参数优化实验成果 高砷低档次硫化镍钴矿生物浸出工艺参数优化实验是依据矿石的生物浸出工艺矿藏学研讨成果和镍钴硫化矿的生物浸出特征,调查了生物浸镍钴的首要影响要素。通过对浸出介质、浸矿微生物、浸出周期、矿浆浓度、温度等首要影响要素的实验研讨,取得的最优工艺参数如下:浸矿菌株为Retech Ⅲ三代驯化浸矿菌株、矿浆浓度为10%、细菌接种量为20%、浸出矿浆pH值为1.5~2.0、浸出矿浆温度为30℃、浸出时刻为20d、摇床转速为145r·min-1。依照上述最优工艺参数进行实验,镍和钴的浸出率别离到达72.33%和98.58%。 五、定论 (一)某高砷硫低镍钴硫化矿矿石中存在一部分颗粒微细并涣散在结构细密的脉石中的含镍矿藏,是影响镍细菌浸出率的首要原因;因为矿石中酸可溶脉石量少以及黄铁矿中的硫和铁含量高,因而生物浸出进程中,矿石耗酸量小,而细菌氧化黄铁矿而产出较多的酸和浸出较多的铁,这关于生物浸出液中的镍和钴的提取发生晦气影响。 (二)挑选的Retech Ⅲ菌种通过驯化后较习惯于某高砷硫低镍钴硫化矿的浸出,镍钴浸出作用较好,菌可以耐受较高的镍、钴和砷等重金属离子浓度的毒性,浸矿活性高,细菌氧化Fe2+为Fe3+的才能到达1.4g·L-1·h-1;细菌繁衍速度快,细菌培育60h,菌浓度由初始时的3.78×105cells·ml-1上升到1.67×108cells·ml-1,安稳时较长;溶液的电位挨近600(mV,vs.SCE),氧化才能强。 (三)通过对生物浸出镍、钴工艺条件优化研讨后,进步了某高砷硫低镍钴硫化矿的镍、钴细菌浸出率,取得了合适该矿石性质的高效浸矿菌株Retech Ⅲ三代驯化菌和细菌浸出的工艺技能参数,镍、钴的浸出率别离到达85.46%和99.23%。

戊基黄原酸钠(钾)

2019-02-27 08:59:29

品名:戊基黄原酸钠(钾) 英文名称: SODIUM (POTASSIUM) AMYL XANTHATE(SAX,PAX) 牌 号:B1-06分子式:C5H11OCSSNa(K) 性状:淡黄色或灰白色有刺激性气味的粉末(或颗粒),能溶于水。首要用途:戊基黄原酸钠(钾)是一种强捕收剂,首要应用于需求捕收力强而不需求选择性的有色金属矿藏的浮选。例如,它是浮选氧化了的硫化矿或氧化铜矿和氧化铅矿(通过或进行硫化)的杰出捕收剂。该品对铜-镍硫化矿及含金黄铁矿等的浮选也能获得较好的选别作用。规格: 项 目 指 标 粒 状 粉 状 戊基黄原酸钠(钾) % ≥ 90.0 90.0 游离碱 % ≤ 0.2 0.2 水及挥发物 % ≤ 4.0 4.0直径(mm) 3~6 - 长度(mm) 5~15 - 有效期(月) 12 12 包 装 120公斤/铁桶 900公斤/多层板箱,50公斤/塑编袋等120公斤/铁桶 60公斤/塑编袋

老厂锡石多金属氧硫混合矿选矿实践

2019-01-24 09:36:25

老厂网状矿选矿厂是云锡集团矿业开发有限责任公司日处理1300t的重选厂。该厂自1992年投产以来,一直以处理氧化脉锡矿为主,分为一、二两个系统,采用三段磨矿、三次选别、次精矿集中复洗、溢流单独处理的选矿工艺流程。近年来,随着原矿资源的变化,砂锡资源逐渐消失,继而出现的是复杂难选的含铁较高的锡、铁、砷、铜等相互共生的锡石多金属氧硫混合矿、残渣矿、渣子矿等。为了适应原矿性质的变化,该厂在原矿制备、工艺流程改进、新设备应用等方面进行了一系列的实践探索,目前主要选矿指标已达到同类选矿厂的较好水平。其中,锡粗精矿品位18%~19%,锡回收率为75%~79%。在生产实践中,我们掌握了一些锡石多金属氧硫混合矿选矿的特点,在改进工艺流程方面探索出了一些新路子,获得了该类型选矿厂技术管理的一些经验。 一、原矿性质 原矿具有以下特点: 1、含锡、铜、砷、铁高,属锡石多金属共生的氧硫混合矿,经济价值高。 表1  原矿光谱分析结果表2  原矿多元素化学分析结果表3  原矿粒度分析结果表4  锡物相分析结果2、锡石结晶粒度较细,单体解离度差。当原矿破碎至-1.2mm时,有36.59%的锡石属包裹体,并与黄铁矿、磁黄铁矿、褐铁矿、毒砂、云母、方解石、石英、萤石等致密共生,呈包裹及半包裹状态赋存,属难选的锡矿石。 二、生产流程及其特点 原矿采用三段开路碎矿、一段磨矿流程,锡重选采用三段磨矿、三段摇床选别、次精矿集中复洗、溢流单独处理流程;脱杂硫化物回收铜硫金属采用一次粗选、一次扫选、三次精选的混合浮选工艺。生产原则流程见下图。选矿原则流程图 (一)采用高效破碎设备,改造原矿制备流程,实施多碎少磨、以碎代磨网状矿选矿厂原设计处理大陡山网状矿,选前设有复杂的破碎系统和重介质脱废系统。1992年后,选矿厂几经改造,逐步形成了现在处理锡石多金属氧硫混合矿、残渣矿、渣子矿等多个矿种,生产规模为日处理1300t的重选厂。 该厂原矿制备作业原是采用PEF颚式破碎机一次粗碎、两次中细碎,3台中1500mm×3000mm棒磨机作为一段磨矿的工艺流程。存在问题是矿石破碎最终产品粒度粗,+80mm产率占10%,导致一段磨矿机人磨矿石粒度粗,处理能力低,磨矿机技术效率低,磨不细及过粉碎同时存在,因此原矿制备流程的技术改造势在必行。 由于碎矿的效率高,而磨矿的效率低,作为选矿前的矿料破碎,增大破碎任务而减小效率低的磨矿任务是实施多碎少磨、以碎代磨的技术实质。在充分论证的基础上,决定技术改造的基本方案是采用具有世界先进水平的诺德伯格(Nordberg)GPl00圆锥破碎机代替2台PEF250mm×400mm和l台PEF150mm×750mm颚式破碎机,靠设备优越的技术性能来确保产品粒度。2004年3月投资90多万元安装1台诺德伯格GP100M圆锥破碎机作为中碎设备,2007年1月又投资安装1台诺德伯格GP100MF圆锥破碎机作为细碎设备。 诺德伯格GP100系列圆锥破碎机具有以下特点:1、设备结构简单、性能可靠、调节维修方便,产品粒度均匀,衬板损耗小;2、处理能力大,破碎效率高,可以挤满给矿,满腔破碎;3、设备运转平稳、噪音小。诺德伯格GP100MF圆锥破碎机技术参数见表5。 表5  诺德伯格GP100MF圆锥破碎机技术参数为了保证圆锥破碎机的给矿质量,包括控制最大粒度,减少排泥量及排除杂物。具体改造方案是:1、保持碎矿机前的筛分洗矿作业,减少破碎机给矿含泥量,为顺利排矿和减少粉尘创造条件;2、保留PEF250mm×400mm颚式破碎机作二次碎矿,排矿粒度控制在85mm以下;3、将ZDSM1555型单层直线振动条筛改为双层,上层条筛间距50mm,下层中22mm的有眼筛板。上层条筛筛上产品进入PEF250mm×400mm颚式破碎机,下层有眼筛板筛上产品进入GP100M圆锥破碎机。4、坚持在皮带运输机上使用电磁除铁装置,减少异物引起的故障。 表6  改造前后处理残渣矿碎矿产品粒度组成经过原矿制备系统的改造,碎矿最终产品粒度从35ram下降到25mm,实现了多碎少磨,以碎代磨,细碎入磨。由于一段磨矿人磨粒度的降低,扩大了一段磨矿处理能力。2007年1月23日实际生产流程考察测定,2台磨机合计处理能力由44.12t/h提高到51.00t/11,处理氧化矿能力提高了15.6%。磨矿产品粒度-1.2mm达到92.74%,磨机技术效率达79.87%,碎矿系统改造取得了好的效果。 (二)选前抛废。提高入选品位 该厂在处理残渣矿、渣子矿、锡石多金属氧硫混合矿时,由于这类矿石的采矿贫化率较高,因而矿石的预选是值得注意的问题。我们考虑振筛结合手选的工艺,以尽早丢弃大量单体粗废石。2006年3月在完成对碎矿流程的调整后,利用直线振筛改变筛孔形状和尺寸,将振筛上层条筛间距定为50mm宽,筛上物料结合手选工艺,对处理低品位矿石进行大量抛废。2006年1~10月份共处理坑下供给残渣矿455t。通过抛废措施,人选品位由0.15%提高到0.34%,抛废率达36%。入选量由日处理1000t,、提高到日处理1400t。生产实践表明,这是“该丢早丢”、节省磨矿费用、降低选矿成本的有效方法。 (三)浮选脱杂除硫工艺的运用 网选厂由于处理矿种的多样性,选别工艺流程上也针对处理矿种的多变性,采取以变对变的策略,在处理氧化矿、残渣矿、渣子矿时采用纯重选生产工艺;在处理锡石多金属共生的氧硫混合矿时则采用浮选-重选生产工艺,首先采用浮选脱除硫化物杂质,降低硫化物对重选锡石分选的影响,然后用云锡传统的阶段磨矿、阶段选别的重选流程回收锡金属。2001年6月,网选厂开始采用浮选脱杂工艺,几年来的生产实践表明,浮选脱杂效果的好坏直接影响到重选锡石回收的效果。由于该厂过去是纯重选流程,原矿制备入选粒度较粗,因此浮选脱杂效果不太理想。但要改变人选粒度困难较大,一是磨矿能力不够,二是厂房条件限制;再者,该厂以选锡为主,附带从脱杂泡沫中回收铜金属。由于锡石性脆,为避免锡石过粉碎而影响锡的回收,不宜细磨,工艺上除硫浮选脱杂是为选锡服务。浮选脱杂的好坏对提高锡的回收率有着重要的影响。 网选厂浮选脱除硫化物杂质占原矿产率为19%~25%,锡损失率为4%以下。通过浮选脱杂,原矿锡品位从0.744%。1.385%提高到0.886%~1.772%。由于大密度硫化物杂质的脱除,致使摇床精矿端分带明显,锡精矿接取易于操作,为锡金属的有效回收创造了良好的条件。 (四)复洗系统工艺的改进 复洗系统,是砂矿系统各段摇床的次精矿集中选别的工艺流程。2006年以前,该厂采用各段床的次精矿集中预先复洗,中矿再磨再选的一次磨矿、两次选别流程。2006年1~6月,根据生产存在的问题,复洗系统流程又改进为:各段床次精矿集中预先复洗,预先复洗中矿经磨矿后进入一次复洗,一次复洗中矿再磨后进两次复洗。流程改造为两次磨矿、三次选别的工艺。改造后复洗系统锡综合回收率由改造前的14.97%提高到改造后的16.77%,提高了1.8%,年创经济效益124万元。 2006年6月以来,由于锡石多金属共生的氧硫混合矿含杂质较高,锡与铁、硫、砷等杂质致密共生,嵌布粒度细,几种矿物密度接近,密度差值小,因而摇床难以分选。另外,由于各段床次精矿粒度较粗,其间没有解离的连生体大量富集到次精矿复洗系统,对复洗系统再度形成高杂质给矿,极大地影响着复洗系统的产品质量及选矿回收率。因此,该厂再次将复洗系统工艺改进为:各段别次精矿集中入磨,磨后浮选脱杂,脱杂后人预复床选别,预复床中矿再磨后进复一床。形成浮选—重选结合、两段磨矿两次摇床分选的新工艺。该工艺旨在减小硫化物对复洗系统分选的影响,同时对脱杂泡沫中的有价铜金属进行回收,使资源得以充分回收利用,达到提高复洗系统产品质量及选矿回收率的目的。 改造前后的生产统计数据对比:改造前复洗系统锡粗精矿品位16.09%,回收率15.87%,改造后粗精矿品位16.84%,回收率17.15%。通过技术改造,不仅锡回收率提高了1.28%,而且还提高了锡产品质量。年创经济效益85万元。 (五)高频振动细筛的应用 网状矿选厂选别车间一段磨为西1500mm×3000mm球磨机与螺旋分级机闭路磨矿。由于螺旋分级机是按矿石在介质水中的沉降速度不同进行分级,一方面分级效率低,进入浮选脱杂作业粒度粗,导致浮选脱杂不彻底,浮选机沉槽,被迫常常开启槽底事故闸阀放粗砂,影响生产;一方面又存在部分细粒单体锡石的再磨形成过粉碎。考虑到筛分是按物料粒度分级,因此,该厂于2007年1月引进HGZS高频振动细筛配合螺旋分级机联合使用,与一段磨矿形成闭路,作为一段磨矿的预先筛分和检查筛分。高频振动细筛具有处理量大,筛分效率高、能耗少、运行可靠、重量轻、操作维修方便等特点。通过2007年2月8日生产考察测定,高频振动细筛筛分效率达90.35%。 (六)脱杂硫化物中铜的回收 脱杂硫化物经磨矿后采用一次粗选、一次扫选、三次精选的浮选工艺。该锡石多金属氧硫混合矿中的铜、硫、砷三种矿物活性较强,可浮性相当好,铜硫分离困难。按照常规的药剂制度很难使硫、砷杂质有效抑制。在铜硫分离中,CaO的用量是整个分离浮选的关键性因素,CaO的添加必须达到14kg/t才能使硫、砷杂质有效抑制。CaO用量为8kg/t时,铜精矿中含砷品位5.18%,砷的混杂率为91.92%。CaO用量增加到14kg/t后,铜精矿中含砷降到1.537%,砷的混杂率降到9.16%。 三、结语 网状矿选矿厂经过多年来的生产实践,初步掌握了处理锡石多金属氧硫混合矿选矿的技术关键: 1、解离是选锡的前提。由于锡石多金属氧硫混合矿中的有用矿物多为致密共生,如不把锡石从矿石中解离出来,就无法进行锡的选收,因此选前必须进行充分的破碎及磨矿。在磨矿时应遵循的原则是:既要达到锡石的充分单体解离,又要避免其过粉碎。生产实践经验是“阶段磨矿,阶段选别”,尽量做到“该收早收,该丢早丢”。 2、脱除硫化物杂质是选锡的关键。由于这类矿石含有大量的硫化物,且其密度较大,单用重选无法脱除,因此必须在重选前或重选后进行浮选脱硫,才能获得质量好的锡精矿和较高的锡回收率。浮选脱硫应遵循的原则是:既要尽量把硫化物浮净,又要尽量减少锡在硫化物中的损失。为此,要合理掌握磨矿细度、浮选浓度、矿浆酸碱度以及准确添加各种浮选药剂。 3、脱杂硫化物中的浮选铜硫分离,必须使用高碱流程,石灰用量须达到14kg/t,pH值达11以上。石灰是该矿种铜硫分离浮选药剂中最显著的因素。锡石多金属氧硫混合矿选矿难度大,今后还要致力于探索新的路子,做好细粒锡石、伴生铜金属的回收及硫砷分离工作,不断改进选矿工艺,使有限的矿山资源得到充分有效回收。 参考文献 1、马正堂.降低破碎产品粒度,提高磨矿生产效率[J].有色金属:选矿部分,2005(6):28-32. 2、锡的选矿编写组.锡的选矿[M].北京:冶金工业出版社,1978:86-87. 3、段希祥.碎矿与磨矿[M].2版.北京:冶金工业出版社.2006:114-115.

硫的知识

2019-03-12 11:03:26

元素称号:硫俗称:元素符号:S元素原子量:32.066晶体结构:晶胞为正交晶胞。 莫氏硬度:2.0 元素类型:非金属发现进程:古代人类已认识了天然硫。硫散布较广。单质物理性质:一般为淡黄色晶体,它的元素名来历于拉丁文,本意是鲜黄色。单质硫有几种同素异形体,菱形硫(斜方硫)和单斜硫是现在已知最重要的晶状硫。它们都是由S8环状分子组成。 密度 熔点 沸点 存在条件 菱形硫(S8) 2.07克/厘米3 112.8℃444.674℃ 200℃以下 单斜硫(S8) 1.96克/厘米3 119.0℃444.6℃ 200℃以上 硫单质导热性和导电性都差。性松脆,不溶于水,易溶于(弹性硫只能部分溶解)。无定形硫主要有弹性硫,是由熔态硫敏捷倾倒在冰水中所得。不安稳,可转变为晶状硫(正交硫),正交硫是室温下仅有安稳的硫的存在方式。化学性质: 化合价为-2、+2、+4和+6。榜首电离能10.360电子伏特。化学性质比较生动,能与氧、金属、、卤素(除碘外)及已知的大多数元素化合。还可以与强氧化性的酸、盐、氧化物,浓的强碱溶液反响。它存在正氧化态,也存在负氧化态,可构成离子化合物、共价化合成物和配位共价化合物。元素来历:重要的硫化物是黄铁矿,其次是有色金属元素(Cu、Pb、Zn等)的硫化物矿。天然的硫酸盐中以石膏CaSO4·2H2O和芒硝Na2SO4·10H2O为最丰厚。可从它的天然矿石或化合物中制取。火山口处存在许多。元素用处:大部分用于制作硫酸。橡胶制品工业、火柴、焰火、硫酸盐、盐、硫化物等产品中也需求许多。部分用于制作药物、虫剂以及漂染剂等。元素辅佐材料:硫在自然界中存在有单质状况,每一次火山爆发都会把许多地下的硫带到地上。硫还和多种金属构成硫化物和各种硫酸盐,广泛存在于自然界中。单质硫具有明显的橙黄色,焚烧时构成激烈有刺激性的气味。金属硫化物在焚烧时发生的气味可以断语,硫在远古时代就被人们发现并使用了。在西方,古代人们以为硫焚烧时所构成的浓烟和激烈的气味能驱除魔鬼。在古罗马博物学家普林尼的作品中写到:硫用来打扫住屋,由于许多人以为,硫焚烧所构成的气味可以消除全部妖魔和全部凶恶的实力,大约4000年前,埃及人现已用硫焚烧所构成的二氧化硫漂白布疋。在古罗马闻名诗人荷马的作品里也讲到硫焚烧有消毒和漂白效果。中西方炼金术士都很注重硫,他们把硫看作是可燃性的化身,以为它是组成全部物体的要素之一。我国炼丹家们用硫、硝石的混合物制成黑色。不管在西方仍是我国,古医药学家都把硫用于医药中,我国闻名医师李时珍编著的《本草纲目》中,将到硫在医药中的运用:治腰久冷,除凉风顽痹寒热,生用治疥廯。的广泛应用促进了的提取和精粹,跟着工业的开展,硫在制取硫酸中起着关键效果,而硫酸就是工业之母,无处不需求它。1894年出生在德国的美国工业化学家弗拉施发明用过热水的办法,将硫从地下深处直接提取出来。世界上每年耗费许多的硫,其间一部分用于制作硫酸,另一部分用于橡胶制品、纸张、硫酸盐、硫化物等的出产,还有一部分硫用于农业和漂染、医药等。1789年法国化学家拉瓦锡宣布近代榜首张元素表,把硫列入表中,断定硫的不可分割性。18世纪后半页,德国化学家米切里希和法国化学家波美等人发现硫具有不同的晶形,提出硫的同素异形体。硫在地壳中的含量为0.048%

黄药与方铅矿作用机理

2019-02-12 10:08:06

据20世纪70年代的研讨以为,其效果机理大致有两种:一种是黄药的氧化产品一双黄药起首要效果;另一种是矿藏表面的金属起首要效果。前者经过很多电化学实验测定,后者首要经过红外线光谱查验。还有非必须的观点,例如,有人以为或许是表面的元素硫起效果。    1973年曾经,黄药与方铅矿表面反响产品的判定是先萃取然后作光谱判定的。1973年发布了直接用红外线光谱判定的成果证明,方铅矿表面只要金属构成,而没有双黄药。     1974年宣布的动电位测定成果标明,构成黄原酸铅时,铅过量或黄原酸过量,测得的动电位不同,前者为-20 mV,后者为-50 mV,而双黄药的电位与pH值有关,pH=7时,动电位为-70 mV,pH=11时,动电位为-140 mV。黄药处理过的方铅矿表面,其动电位挨近黄原酸铅,而与双黄药相差颇远。实测时,黄药浓度比正常浮选的浓度高,因此,以为在正常浮选条件下,方铅矿表面不会构成双黄药。    很多电化学的测定标明,当方铅矿的表面电位为-0.2V和2.0 V时,发作化学吸附,当表面电位持续增加到2.0 V以上,逐步构成双黄药。又由实验得知,氮气泡不向小于2.0 V的方铅矿电极粘附,当表面电位大于2.0 V时氮气泡就粘附,则证明双黄药存在有利于矿粒向气泡附着。电化学测定成果提出的化学吸附反响式为: PbS  +  2X-  → PbX2+S+2e方铅矿     黄药离子 黄原酸铅     用方铅矿作电极对黄药溶液进行长时间的电解,发现一起构成黄原酸铅和双黄药,两者之比介于3~0.5,随不同的方铅矿电极而不同。晶格中的硫离子在电解条件下,不是构成元素硫,而是氧化成硫代硫酸盐。发作的反响是先构成一层化学吸附的黄药,然后堆积几层双黄药,最终一起构成黄原酸铅及双黄药。    20世纪30年代曾有人试过直接用双黄药作为捕收剂,成果证明双黄药对方铅矿有捕收效果。可是,在方铅矿表面,是双黄药直接物理吸附,抑或是双黄药向方铅矿表面化学吸附,乃至发作化学反响构成黄原酸铅,好久未有结论。1975年宣布用放射性同位素示踪原子的黄药及双黄药对方铅矿表面的效果研讨标明,化学吸附的是黄原酸铅,而双黄药仅仅物理吸附。而且,物理吸附首要发作在方铅矿表面的“阳极区”。这种物理吸附的双黄药或许分散到“阴极区”。而在阴极区,双黄药被复原而构成,或许的表面反响是:  PbS      +     X2   ——   PbX2  + S方铅矿表面      双黄药           黄原酸铅     此式如果是体相反响,在25℃时的反响自由能是-13.86 kj/mol,假定表面反响与体相反响能量类似,则能够为上式是能够自发进行的。因此现在以为,双黄药的物理吸附进一步与方铅矿表面的阴极区效果,会构成黄原酸铅。

湿法炼锌黄铁矾法

2019-01-07 17:38:37

黄铁矾法作为有效的除铁方法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,当时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独立地开发了这项技术并几乎同时申请了专利。此后黄铁矾法迅速得到广泛应用,成为电解锌生产中主要的除铁技术,目前世界上至少有16家大型电解锌厂采用了此技术。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且维持这一pH值,并在95℃左右加入一价阳离子从酸性硫酸盐溶液中沉淀黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾沉淀后,溶液中铁的浓度一般降到1~5kg∕m3。 湿法炼锌中黄铁矾法典型的操作分3个基本步骤:中性浸出、热酸浸出和黄铁矾沉淀。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解沉积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液造成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾沉淀段处理,先用锌焙砂调整酸度,再加入硫酸铵或硫酸钠沉淀碱金属黄铁矾。沉铁后液返回中性浸出,黄铁矾渣则弃去。需要指出,沉淀黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,以免损失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸相当稳定,实践上黄铁矾渣弃去前可在类似热酸浸出的条件下进行酸洗,溶解回收渣中残存的铁酸锌,而黄铁矾本身不致溶解。 黄铁矾法的3个基本步骤的具体操作条件及顺序在不同厂家不尽相同,但目的是相同的;最大限度地回收锌而不考虑少量的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的沉淀可以合而为一,即所谓转化法,其总反应如下:    (1) 该合并步骤的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣返回循环。若精矿中含有较大量的Pb和Ag,则采用另外的流程,得到含Pb∕Ag的渣、黄铁矾沉淀和中性Zn电解液。这类流程中包含有一个预中和作业。在通常的黄铁矾流程中是用焙砂降低热酸浸出液的酸度,从而迅速而有效地沉淀黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而损失。在热酸浸出和黄铁矾沉淀作业之间引入一个预中和作业可以降低黄铁矾中的金属损失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣返回热酸浸出段溶解其中的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后加入所需要的中和剂进行黄铁矾沉淀。 图1为集成的黄铁矾法流程示意图。它的设计中结合了各种黄铁矾法方案中的大多数改进环节。图1  集成黄铁矾法 除应用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取中用作除铁工艺,尤其是在硫酸盐体系中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是采用黄钾铁矾沉铁。由于硫酸化焙烧本身提供了K+离子,沉淀黄钾铁矾时无需外加高成本的硫酸钾。 黄铁矾法的优点是沉淀容易过滤,Zn,Cd和Cu在沉淀中的损失最少,可以同时控制硫酸根和碱金属离子,容易与各种湿法冶金流程结合。但它也有其自身的缺陷,例如:1)所用试剂成本较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需要充分洗涤以除去吸附的有害环境或可供利用的金属;4)需要在控制条件下存放以免分解放出有害组分污染环境。通过热分解或水热分解将黄铁矾转化为赤铁矿供生产铁并将硫酸钠/硫酸铵循环至黄铁矾沉淀作业,可望克服这些缺点。