您所在的位置: 上海有色 > 有色金属产品库 > 碳酸镉分解 > 碳酸镉分解百科

碳酸镉分解百科

处理铜镉渣生产镉

2019-02-11 14:05:38

一、电积法出产金属镉 以铜镉渣为质料出产金属镉的电积法工艺流程如图1所示。图1  从铜镉渣出产金属镉电积法的工艺流程 铜镉渣的成分一般动摇规模为:2.5%~12%Cd,35%~60%Zn,4%~17%Cu,0.05%~2.0%Fe铜镉渣中还含有少数As,Sb,SiO2,Co,Ni,T1,In等杂质。 为了加快浸出进程,有的工厂在浸出前将铜镉渣堆积在空气中氧化。这样也增加了铜溶解的丢失,只要在处理含铜较低的铜镉渣时才适用这种处理。浸出进程得到的铜渣成分为:30%~50%Cu,10%~15%Zn,0.3%~1.0%Cd。 在浸出中,除了锌和铜的溶解外,还有一些Ni,Co,In,T1进入溶液,得到的浸出液成分为:120~130g/LZn,8~16g/LCd,0.3~0.8g/LCu,3~9g/LFe,0.05~0.1g/LCo,0.05~0.1g/LNi。浸出液经加锌粉净化除掉铜后,送去加锌粉置换沉积镉。置换沉积镉一般分两段操作。在榜首段坚持温度为333K,使溶液中的镉降到1g/L中止。过滤别离铜镉渣后的溶液再进行第二段操作,可进一步使镉的含量降到10~15mg/L。第二段得到的海绵镉(Ⅱ)含镉低,反回铜镉渣的浸出进程。第二段置换后的溶液中含有Co,T1,In等,用黄药除钴后去进一步收回T1与In。 榜首段置换沉积镉得到的海绵(Ⅰ)用镉电解液浸出。溶液中硫酸的浓度为200~250g/L,浸出温度353~363K,参加MnO2或KMnO4以加快镉海绵的溶解,浸出终了的pH值为4.8~5.2,铜水解进入渣中。 别离铜渣后的镉绵浸出液,加SrCO3除铅,加锌粉置换除铜,加KMnO4氧化T1与Fe,再水解沉积。 镉溶液的电积一般选用电解液不循环操作准则,其作业条件及技能指标: 参加电解液成分/(g·L-1)      160~220Cd,20~30Zn,12~15H2SO4 电积后废液成分/(g·L-1)      15~20Cd,150~180H2SO4 电解液温度/K                  303~308 电流效率/%                    70~92 槽电压/V                   2.5~2.6 电积周期/h                 24 电能耗费/(kW·h·t-1)     1400~1700 选用电解液循环的出产方式,能够得到较高的电流效率。 前苏联许多湿法炼锌厂选用电积法工艺流程。我国湿法炼锌厂选用电解液循环准则的电积法。例如株洲冶炼厂处理这种Cu-Cd渣的电积法流程见图2。Cu-Cd渣的化学分为: 5.64%Cu,14.31%Cd,40.26%Zn,1.27%Pb,0.076%Ni,0.0212%Co,0.0075%In,0.0024%Ge,0.0029%Ga,0.0329%T1,4.07%Fe。图2  株洲冶炼厂从Cu-Cd渣出产镉的工艺流程 株洲冶炼厂用铜镉渣出产镉的首要冶炼进程技能条件如下: (一)Cu-Cd渣的浸出 用50m3的机械拌和浸出槽进行浸出。将硫酸缓慢地参加盛有Cu-Cd渣的浸出槽中,坚持浸出的最高酸度为10~15g/L,温度为353~363K。当酸度降至5~4g/L时,参加软锰矿,在pH值为4.8~5.0时,加石灰乳(现改用ZnO粉)中和至pH=5.2~5.4时便中止拌和。整个浸出进程连续6~8h。 经28m2的胶质压滤机压滤,所得压滤渣成分:20%~30%Cu,<1%Cd,送铜冶炼处理收回铜。滤液成分:8~15g/LCd,80~140g/LZn,0.050g/LCu。 (二)置换 置换在50m3的机械拌和槽中进行。置换前加H2SO4将浸出的滤液酸化至pH=3~4,缓慢地参加锌粉进行置换反响,待分析溶液含镉小于100mg/L时即送压滤。 置换得到的海绵镉含60%~80%Cd,再堆积7~10天天然氧化后送去造液。置换后的贫液含有15~30g(T1)/m3时,可加锌粉置换出后再送湿法炼锌体系。 (三)造液 在9m3的机械拌和槽中造液。将海绵镉与浓硫酸参加槽中,坚持溶解85~90℃,经2~3h待溶液酸度降至0.5~1g/L,便参加KMnO4氧化除铁,然后参加镉绵使pH值降至3.8~4.0,再用石灰乳中和至pH=5.4,便送去过滤。 (四)净化 在17m3机械拌和槽中净化。在50℃条件下,参加新鲜镉绵置换除铜后,再加KMnO4氧化除铁。净化后溶液的成分:200~250g/LCd,20~30g/LZn,低于0.05g/LFe,低于0.0005g/LCu,低于0.001g/L(As+Sb)。 (五)电积 在钢筋混凝土内衬铅皮的电解槽中进行电解液循环。槽的尺度为2800×850×1250mm,每槽可装阳极26片,阴极25片。用一台2000A与0~36V的硒整流器供电。 电积进程的技能条件如下: 同名极距                    10mm 电解液循环量                0.103m3/min 电解液温度                  298~305K 电流密度                    45~75A/m2 槽电压                      2.4~2.5V 电解周期                    24h 电解液成分分/(g·L-1)        60~70Cd,                             120~145H2SO4 (六)精粹熔铸 在容量1t的铸铁锅中进行精粹。 熔铸温度为723~823K,表面掩盖一层NaOH,铸成7.5kg的镉锭,其成分:镉99.99%以上,铅低于0.004%,锌低于0.002%,铜低于0.001%,铁低于0.002%。镉的一级品率,均到达100%。 二、置换法出产金属镉 因为电积法出产镉的电耗大,许多工厂将电积法改为置换法。 美国熔炼与精粹公司的电锌厂,原选用电积法处理来自锌出产第二段净化的镉渣出产镉,现改为置换法,其工艺流程见图3。图3  美国熔炼与精粹公司从镉渣出产镉的工艺流程 芬兰科科拉电锌厂使用第二段净化产出的镉渣出产镉,也是选用置换法出产流程连续作业。科科拉电锌厂处理镉渣成分如下:1号15%~25%Cd,约1%Cu,0.05%Co,0.005%~0.05%Ni,60%Zn;2号22.4%Cd,0.7%Cu,54.5%Zn。 前苏联乌斯基-卡敏诺哥尔斯克铅锌联合厂商的电锌厂是在离心反响器中以置换沉积法处理Cu-Cd渣,其出产流程见图4。图4  钨斯基-卡敏诺哥尔斯克电锌厂处理铜镉渣出产工艺流程 离心反响别离器外形为圆柱体,中心装有空心轴,轴上装有特殊结构的别离盘,空心轴的转速到达3000r/min。 在离心反响器中置换沉积的速度超越一般置换沉积槽的沉积速度300倍,每升容积的出产率到达200L/h。在第二段离心反响器中所得的低镉绵用锌废电解液溶解,加热到343K,反响终了的pH=4.5~5.5,然后用KMnO4净化除,再送往离心反响器中置换沉镉。

钨矿物原料的分解—碳酸钠高压浸取法

2019-02-13 10:12:38

A  基本原理    a 首要反响及其热力学条件    白钨矿白钨矿碳酸钠浸出的反响为:                       CaW04(s)+Na2C03(aq) ==== Na2W04(aq)+CaC03(s)            (1)    依据测定,反响式(1)的浓度平衡常数Kc和活度平衡常数Ka见表1,从表可知,反响的Kc值随苏打用量的增加而减小。黑钨矿黑钨矿碳酸钠浸取的反响为: 表1        反响式(1)的浓度平衡常数和活度平衡常数温度/℃90175200225250275300碳酸钠用量(理论量的倍数)1.01.01.01.52.02.50.751.01.52.01.01.52.01.01.0Kc(п.M.佩尔洛夫)(1958)0.461.211.451.190.960.671.561.521.490.991.851.610.97  T.щ.阿格诺夫(1986)  0.97    1.46  1.521.370.991.631.57Ka(阿格诺夫)   1.151.341.511.66              (Fe,Mn)W04(s)+Na2C03(aq)Na2W04(aq)+FeC03(s)(或MnC03(s))                      或FeW04(s)+Na2C03(aq)Na2W04(aq)+FeC03(s)                        MnW04(s)+Na2C03(aq)Na2W04(aq)+MnC03(s)                         FeC03(s)+2H20 Fe(OH)2(s)+H2 C03(aq)                            He(OH)2(s)Fe3 04(s)+2H20+H2                        MnC03(s)+2H20 Mn(OH)2(s)+H2C03(aq)    T. III.阿格诺夫测定了人工合成的FeW04、MnW04与Na2C03的反响,发现在200~275℃下,反响生成的FeC03简直悉数水解,渣中含很多Fe304,而生成的MnC03只要3%~11%水解成Mn(OH)2。一起测定了FeW04及MnW04与Na2C03反响的浓度平衡常数Kc(见表2)。 表2     FeWO4、MnWO4、(Fe,Mn)WO4与Na2CO3反响的Kc值(T.щ.阿格诺夫)物料碳酸钠用量:理论量1倍碳酸钠用量为理论量2倍200℃225℃250℃275℃225℃FeWO41.101.512.253.000.80MnWO41.391.511.561.530.94人工合成(Fe,Mn)WO4,Fe:Mn=1:1(摩尔比) 约1.3   天然黑钨矿 1.1   [next]     b  进程的动力学及影响浸取率的要素    反响的机理许多作者都倾向于以为在155℃以上且拌和速度足够快时,进程为化学反响操控,因此升高温度可大大加速反响速度,缩短反响时刻。T.班.阿格诺夫指出天然钨锰矿的浸出速度显着低于天然钨铁矿,对钨铁矿(含16.14% FeO和6.49% MnO)而言,其开始浸出速度与温度的联系在225~250℃范围内契合反响操控的规则,表观活化能为100kJ/mol,温度高于250℃则契合扩散操控规则,表观活化能为25 kJ/mol。对钨锰矿(含13.75%MnO、4. 89 % FeO)而言,在225~ 300℃范围内均为反响操控,表观活化能为100kJ/mol。对上述两种矿而言,在必定温度下跟着反响的进行,因为生成物膜增厚,逐渐过渡到扩散操控。    影响浸取率的要素:    (1)温度II. M.佩尔洛夫在处理含25.1% W03的白钨精矿时,当温度为280℃,即便碳酸钠用量仅为理论量的2.25倍,则15 min内渣含W03亦可降至0.048%。因此佩尔洛夫等以为进步温度以下降碳酸钠用量、进步浸出率是当时碳酸钠高压浸出尽力方向之一。但与此一起,杂质的浸出率亦进步。P. B.奎缪亦得出相似成果。    (2)碳酸钠用量及碳酸钠开始浓度当开始浓度必守时,碳酸钠用量增加浸出率增加;当碳酸钠用量必守时,开始浓度下降浸出率增加。因此一般以为Na2C03开始浓度以70~200g/L为宜。残渣的显微镜调查和化学分析标明,当Na2C03浓度超越230g/L时,残渣中还存在成分近似为Na2C03·CaC03的复盐和微量Na2C03·2CaC03。    碳酸钠高压浸取进程的强化:    (I)机械活化A. H.泽里克曼等进行了很多研讨,标明钨矿预先进行机械活化后,浸取率显着进步。例如,含7.4% W03的白钨精矿,在相同的条件下,当预先在离心式磨机中活化,则浸取率达96.9%,而不予活化则浸取率仅84.9%。    实验也标明,机械活化使白钨矿与Na2C03反响的表观活化能由54.78kJ/mol降为12.71 kJ/mol,浸出钨锰矿时表观活化能由46kJ/mol降为20kJ/mol。    (2)热活化将矿在高温下锻烧,并进行淬火,在急冷急热的情况下,矿藏中存在热应力或坚持其高温相,因此处于较高的能位状况,一起淬火进程中因为热应力而在矿藏中发作裂纹,这些都有利于进步浸出速度。T. ILK.阿格诺夫将含33.32% W03、2.3% Mo、30.35% Ca0、3.75% Si02、0.5%有机物的白钨矿进行热活化处理,然后在225℃、碳酸钠用量为理论量2.5倍的条件下进行浸出,则W03浸出率可进步1~2个百分点。    (3)超声波活化H. H.哈伏斯基(XaBCKHri )等在容量为210L的设备中的实验标明,在5-lOkHz的超声波效果下,当碳酸钠用量为理论量的3倍,工作压力为0.7MPa,固/液比为1/4的条件下,白钨矿的浸出率较无超声波效果高3%~7%,A. A.别尔欣茨基等亦指出,在有超声波效果下,即便碳酸钠用量仅理论量的1.6~1.8倍,在2.5 h内,浸出率达86%~88%,比没有超声波效果时成倍增加。    c 碳酸钠高压浸取进程中杂质的行为及杂质的按捺    碳酸钠高压浸取进程华夏猜中的磷灰石、砷黄铁矿、臭葱石、萤石、磷灰石、硅酸盐、铝酸钙矿等都能部分与碳酸钠反响生成磷酸氢钠、氢钠、等进入溶液,但除钼酸钙矿的浸取率达80%~90%以外,其他杂质的浸出率都很低,一般磷、砷、硅的浸取率都为5%以下,在没有氧化剂存在的条件下,硫化矿如辉钼矿、辉锑矿等基本上都不发作浸取反响。    实验证明碳酸钠高压浸取进程中增加A12 03或镁化合物都有利于按捺Si02及部分磷、砷的浸取,例如含12.75%W03、13.7% Si02、0.407% P、O. 019% As的白钨中矿的浸取进程中,当不增加A12 03,则终究浸出液中含Si,P及As别离为0.86g/L、O.013g/L及0.O11g/L,参加A1203时,终究浸出液中含Si、P和As别离降为0. 0092g/L、O.006g/L和0.0065g/L,对含31.7% WO3、1.08% SiO2的白钨中矿进行高压浸出时,参加矿量5.2%的镁盐,则浸出液中Si02含量降至(1~5)、10-4 g/L。    B  工业实践    a  设备    高压釜有立式及卧式两种。立式釜容积一般为3~5m3。卧式釜的釜体由低合金钢焊成,直径约1.5~1.8m,长10~15m,壁厚25~30mm,一般转速为2~3 r/min,釜内装球,在旋转进程中能铲除釜壁上的结垢,蒸汽及料浆别离经过蒸汽管及料浆管通人釜内。    b  工艺进程    工艺进程分接连作业和接连作业两种。澳大利亚金岛白钨公司化学处理厂用立式釜接连高压浸出的设备流程见下图。接连作业便于机械化和自动化,一起蒸汽用量均匀,能耗低,设备生产能力高。前苏联某厂将接连作业改成直接蒸汽加热接连操作后,生产能力进步1倍。[next]    c  技能条件及技能经济目标    某些工厂的技能条件及技能经济目标见表3。 碳酸钠高压浸取法处理钨质料的技能条件及目标质料工艺条件浸出成果补白Na2CO3用量(理论量的倍数)液/固温度/℃时刻/h浸出率/%渣含WO3/%低档次白钨中矿,含10%~25%WO3约5 190~2001.5~2980.2~0.6由中矿至APT的收回率为95%低档次白钨矿中含8%~15%WO34~5,另加理论量0.5倍的NaOH矿浆密度1.7g/cm380497.5~98.7约0.1浸出母液成分/(g·L-1):45WO3,2F,1Si钨中矿含45%~50%WO3,5%~6%Mo3.5~4,当用两段浸出时刻为2.5~3~3  99 浸出母液成分/(g·L-1):100~130WO3,5~8Mo,80~90Na2CO3,1.5~2SiO2,3~4F钨细泥含12.6%WO3其间白钨与黑钨各占50%左右:0.019%As,0.14%Mo,0.49%P,13.7%SiO23.85,另加矿量3%的NaOH1.3~1.52102~398.060.3两段错流浸出3.85,另加矿量5%的Al2O3   97.610.35两段错流浸出钨细泥含:28.86%WO3,其间黑钨占总钨的39.2%4.5,另加矿重5%的NaOH2.8210~2202~396~980.6~0.8浸出液成分/(g·L-1):86WO3;0.135SiO2;0.1P;0.05As是非钨混合钨精矿2.2,另加理论量0.2倍NaOH 230299  钨细泥含16.5%WO3,21%SiO23.0,另加2%NaOH,3%Al2O3 185~195298~990.15~0.2浸出液成分/(g·L-1):0~80WO3,0.005As,0.01P,0.02Si,1~2F     d  碳酸钠收回    因为压煮中碳酸钠用量达理论量2.5~5倍,故母液中残留很多Na2CO3,其间Na2CO3/WO3达0.8~1.6(质量比)。从母液中收回碳酸钠的办法繁复,但都未见其工业化的报导,具体见参考文献[1]的72~77页。    参考文献:    1.李洪桂主编.有色金属提取冶金手册:稀有高熔点金属卷(上).北京:冶金工业出版社,1999

镉知识

2019-03-08 09:05:26

镉是银白色有光泽的金属,密度8.64,熔点320.9℃,沸点765℃,有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉。也可与硫直接化合,生成。镉溶于酸,但不溶于碱。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻。 镉的首要矿藏有硫镉矿、菱镉矿及方镉矿等,但均不构成独自矿床。镉赋存于锌矿、铅锌矿和铜铅锌矿石中,尤其是在淡色的闪锌矿中含量较高,一般为0.1-0.5%,高达5%,镉在浮选时大部分进入锌精矿,在焙烧过程中富集于烟尘中。在湿法炼锌厂的硫酸锌溶液净化过程中产出的铜镉渣(含镉4~20%),火法炼锌厂的粗锌精馏过程中产出的镉灰(含镉10~30%)和某些铜、铅冶炼厂的富镉尘均可提取镉。因为镉污染环境,铅锌冶炼厂有必要从排放物中收回镉。镍镉和铁镉蓄电池的极板等各种工业废料也是提取镉的二次质料。 镉的提取办法分为从铜镉渣中提隔的湿法和从富镉尘中提镉的联合法。湿法提镉为我国大都工厂所选用,首要包含:铜镉渣浸出、置换堆积海绵镉、海绵镉溶解、镉液净化、电解堆积和熔化铸锭等工序。 铜镉渣首要含有锌、镉、铜等金属及其氧化物,还含有少数的砷、锑、铁、钴、镍、等。用15克/升的硫酸溶液在80~90℃浸出,当酸含量降至4~5克/升时加MnO2,使镉、铁氧化,加石灰水[Ca(OH)2]中和除铁、砷和锑。此刻,浸出液成分为Cd>10克/升、Fe 因为浸出和置换过程中能发生剧毒的(AsH3),其他过程中也发生含镉的有害气体,所以应有杰出的通风排气等安全措施。 联合法提镉是我国火法炼锌厂和铜铅冶炼厂选用的办法。镉尘先经焙烧脱去砷、锑等杂质,得到浸出功能杰出的焙砂,再用稀硫酸浸出。浸出液经氧化水解脱去铁、砷,有时还加碳酸(SrCO3)脱铅。净化后的含镉溶液用锌粉置换得到海绵镉,加压成团,在铸铁锅中于熔融烧碱维护下,铸成粗镉锭。将粗镉参加精馏塔内精馏提纯,杂质从塔的下部渣锅中排出;精镉由塔顶镉蒸气冷凝产出,纯度在99.99%以上。镉的收回率可达99.7%。 被镉污染的空气比被镉污染的食物对人体的损害更严峻。冶金车间工作环境空气中含金属镉和可溶性镉尘的极限值规定为200微克/米3,氧化镉烟雾的极限值为100微克/米3。含镉大于0.5ppm的废水不许排放。 镉用于制作轴承合金、特殊易熔合金、耐磨合金、焊锡,镉对盐水和碱液有杰出的抗蚀功能,能够用作钢构件的电镀防腐层,但近年来因镉有毒性,此项用处有减缩的趋势。镍-镉和银-镉电池具有体积小,容量大的长处。镉是制作钎焊合金和低熔点合金的首要成分之一。镉具有较大热中子抓获截面,因而含银80%、铟15%和镉5%的合金可用作原子反响堆的控制棒。

镉矿

2019-02-11 14:05:38

镉是银白色有光泽的金属,熔点320.9℃,沸点765℃,相对密度8.642。有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉[1]。也可与硫直接化合,生成。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻,日本因镉中毒曾呈现“痛痛病”。  可用多种办法从含镉的烟尘或镉渣(如煤或炭复原或硫酸浸出法和锌粉置换)中取得金属镉。进一步提纯可用电解精粹和真空蒸馏。镉首要用于钢、铁、铜、黄铜和其他金属的电镀,对碱性物质的防腐蚀能力强。镉可用于制作体积小和电容量大的电池。镉的化合物还很多用于出产颜料和荧光粉。、、用于制作光电池。

镉的用途

2019-03-08 12:00:43

用处:镉作为合金 组土元能配成许多合金,如含镉0.5%~1.0%的硬铜合金 ,有较高的抗拉强度和耐磨性。镉(98.65%)镍(1.35%)合金是飞机发动机 的轴承材料。许多低熔点合金 中含有镉,闻名的伍德易熔合金 中含有镉达12.5%。镍-镉和银-镉电池具有体积小、容量大等长处。镉具有较大的热中子抓获 截面,因而含(80%)铟(15%)镉(5%)的合金可作原子反应堆的控制棒。镉的化合物曾广泛用于制作颜料、塑料稳定剂 、荧光粉等。镉还用于钢件镀层防腐,但因其毒性大,这项用处有减缩趋势。        用于电底、制作合金等;并可做成原子反应堆中的中子吸收 棒。镉氧化电位高,故可用作铁、钢、铜之保护膜,广用于电镀上,并用于充电电池、电视映像管、黄色颜料及作为塑料之安靖剂。镉化合物可用于虫剂、菌剂、颜料、油漆 等之制作业。

镉镍电池

2017-06-06 17:50:00

镉镍电池 (nickel-cadmium battery) 是指采用金属镉作负极活性物质,氢氧化镍作正极活性物质的碱镍镉电池性蓄电池。正、负极材料分别填充在穿孔的附镍钢带(或镍带)中,经拉浆、滚压、烧结、化成或涂膏、烘干、压片等方法制成极板;用聚酰胺非织布等材料作隔离层;用氢氧化钾水溶液作电解质溶液;电极经卷绕或叠合组装在塑料或镀镍钢壳内。   镉镍电池标称电压为1.2V,有圆柱密封式(KR)、扣式(KB)、方形密封式(KC)等多种类型。具有使用温度范围宽、循环和贮存寿命长、能以较大电流放电等特点,但存在“记忆”效应,常因规律性的不正确使用造成电性能下降。   镉镍电池的电池表达式为:(-)Cd︱KOH(NaOH)︱NiOOH(+)   电池反应为:   放电时:Cd+NiOOH+H2O→Ni(OH)2+Cd(OH)2   充电时:Ni(OH)2+Cd(OH)2→Cd+NiOOH+H2O   大型袋式和开口式镉镍电池主要用于铁路机车、矿山、装甲车辆、飞机发动机等作起动或应急电源。圆柱密封式镉镍电池主要用于电动工具、剃须器等便携式电器。小型扣式镉镍电池主要用于小电流、低倍率放电的无绳电话、电动玩具等。由于废弃镉镍电池对环境的污染,该系列的电池将逐渐被性能更好的金属氢化物镍电池所取代。

镉常识

2019-03-14 09:02:01

镉是银白色有光泽的金属,密度8.64,熔点320.9℃,沸点765℃,有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉。也可与硫直接化合,生成。镉溶于酸,但不溶于碱。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻。  镉的首要矿藏有硫镉矿、菱镉矿及方镉矿等,但均不构成独自矿床。镉赋存于锌矿、铅锌矿和铜铅锌矿石中,尤其是在淡色的闪锌矿中含量较高,一般为0.1-0.5%,高达5%,镉在浮选时大部分进入锌精矿,在焙烧过程中富集于烟尘中。在湿法炼锌厂的硫酸锌溶液净化过程中产出的铜镉渣(含镉4~20%),火法炼锌厂的粗锌精馏过程中产出的镉灰(含镉10~30%)和某些铜、铅冶炼厂的富镉尘均可提取镉。因为镉污染环境,铅锌冶炼厂有必要从排放物中收回镉。镍镉和铁镉蓄电池的极板等各种工业废料也是提取镉的二次质料。  镉的提取办法分为从铜镉渣中提隔的湿法和从富镉尘中提镉的联合法。湿法提镉为我国大都工厂所选用,首要包含:铜镉渣浸出、置换堆积海绵镉、海绵镉溶解、镉液净化、电解堆积和熔化铸锭等工序。  铜镉渣首要含有锌、镉、铜等金属及其氧化物,还含有少数的砷、锑、铁、钴、镍、等。用15克/升的硫酸溶液在 80~90℃浸出,当酸含量降至4~5克/升时加MnO2,使镉、铁氧化,加石灰水[Ca(OH)2]中和除铁、砷和锑。此刻,浸出液成分为Cd>10克/升、Fe<1克/升、Cu 0.05克/升,pH=5.2~5.4。浸出液调整pH为3~4后,参加锌粉(为理论量的1.2~1.3倍)置换,得到海绵镉。硫酸锌滤液(含Cd<50毫克/升=回来锌体系。海绵镉经天然氧化后,用含40~70克/升H2SO4的溶液浸出。用KMnO4氧化并加石灰水中和水解,以进一步除铁。过滤后的滤液用新鲜海绵镉置换除铜。电解滤液得到电积镉。镉电积的操作与锌电积类似,但因为镉易长成树枝状结晶,所以用低电流密度(65~100安/米2)电解。电流效率80~90%,槽压2.4~2.5伏。电解液成分(克/升):Cd 60~150、Zn 30~40、H2SO4 100~160,温度25~30℃,为了改进镉在阴极分出状况,可增加动物胶。电镉在熔融烧碱覆盖下熔化并脱锌,制成镉锭、镉棒和镉粒等形状。含杂质较多的树枝状镉,可用真空蒸馏法独自处理。    因为浸出和置换过程中能发生剧毒的(AsH3),其他过程中也发生含镉的有害气体,所以应有杰出的通风排气等安全措施。    联合法提镉是我国火法炼锌厂和铜铅冶炼厂选用的办法。镉尘先经焙烧脱去砷、锑等杂质,得到浸出功能杰出的焙砂,再用稀硫酸浸出。浸出液经氧化水解脱去铁、砷,有时还加碳酸(SrCO3)脱铅。净化后的含镉溶液用锌粉置换得到海绵镉,加压成团,在铸铁锅中于熔融烧碱维护下,铸成粗镉锭。将粗镉参加精馏塔内精馏提纯,杂质从塔的下部渣锅中排出;精镉由塔顶镉蒸气冷凝产出,纯度在99.99%以上。镉的收回率可达99.7%。  被镉污染的空气比被镉污染的食物对人体的损害更严峻。冶金车间工作环境空气中含金属镉和可溶性镉尘的极限值规定为200微克/米3,氧化镉烟雾的极限值为100微克/米3。含镉大于0.5ppm的废水不许排放。  镉用于制作轴承合金、特殊易熔合金、耐磨合金、焊锡,镉对盐水和碱液有杰出的抗蚀功能,能够用作钢构件的电镀防腐层,但近年来因镉有毒性,此项用处有减缩的趋势。镍-镉和银-镉电池具有体积小,容量大的长处。镉是制作钎焊合金和低熔点合金的首要成分之一。镉具有较大热中子抓获截面,因而含银80%、铟15%和镉5%的合金可用作原子反响堆的控制棒。

从含镉烟尘中提取镉

2019-03-04 16:12:50

在湿法炼锌工艺中,硫化锌精矿欢腾焙烧时镉富集在烟尘中,成为提镉的质料。当烟尘中镉可溶率低于90%时,可在500-550℃下进行硫酸化焙烧,将可溶镉提高到95%以上。烟尘提镉的根本进程是:烟尘浸出→置换沉镉→压团熔铸→粗镉精馏。    (一)浸出    榜首段在始酸较低(<20g/L)和结尾较高pH(75.2)条件下进行中性浸出,以除掉浸出液中的铁砷等杂质。第二段在高始酸(>30g/L)和结尾低pH下进行酸性浸出。浸出温度90℃,时刻16h,液固比(3-6):1。两段浸出Cd浸出率可达95%,渣含Cd<2.0%。    (二)置换    浸出液用Zn置换Cd,反响分两次进行,一次投人反响所需锌粉量的95%,置换操控溶液含Cd lg/L,得到较纯的海绵镉;第2次参加超越理论用量较多的锌粉,得出含锌高的海绵镉,其含量为0.3%-0.5%,作为提取的质料。两次置换的技能条件为:     置换次数      温度/℃    时刻/min    溶液含Cd(置换前/后)      一次          50-60      30-35       15-19/1-2.4      二次          45-50        50        1-2.4/0.03-0.1    (三)压团熔铸    置换产出海绵镉经压团,并在烧碱覆盖下熔铸成锭。压团压力>12kPa,镉团含水约7%。熔铸温度400-500℃,时刻2-3h,烧碱单耗120-150kg/t。粗镉含Cd 98.5%-99.2%。    (四)粗镉精馏    粗镉先在镉内熔化,然后守时定量加人精馏塔内,熔融状况镉在塔内流经层层相叠的塔盘时,替换进行加热蒸腾和冷凝回流。纯镉蒸气上升至冷凝器冷成液态,守时放出铸成精镉锭。高沸点杂质铜、铁等向下流进渣镉,守时排出。产出精镉纯度可达99.995%,契合国标精一级品要求。

铜镉渣提取镉绵工艺研究

2019-02-21 11:21:37

镉没有独自矿床,常与铅锌矿共生,含镉0.01%~0.07%,选矿时大部分进入锌精矿。约95%的镉是从锌冶炼进程中收回的,冶炼出产质料首要有湿法净液工序的铜镉渣、锌蒸馏的富镉兰粉、铜铅锌冶炼的烟尘、锌白工厂的浸出渣等,其间镉的含量动摇较大。现在我国锌冶炼进程中镉归纳收回率在80%左右,锌精矿中含镉平均在0.1%~0.2%左右,镉档次低,富集提取难度大。某公司锌精矿中镉档次只要0.15%左右,在选用传统湿法炼锌焙烧-浸出-净化-电积工艺中,总有适当部分镉被涣散,导致收回率下降,污染环境。现在,该公司以海绵镉作为产品出售,且产出的海绵镉含镉仅50%~60%,不能满意真空精粹对镉绵的要求,所以本文针对该公司现有镉出产现状对铜镉渣提取镉绵工艺进行了优化研讨。 一、试验质料及试剂 试验质料为驰宏公司中浸液净化所得铜镉渣,铜镉渣经80℃真空烘干36h,至分量安稳,测水份为19.82%,烘干样送分析Zn、Cu、Cd等首要元素,成果为(%):Zn 23.16、Cu 7.76、Cd 17.95、Co 0.02、Fe 0.19、Sb 0.074。质料能谱分析标明,98%的铜以金属单质的形状存在,周围集合有硫酸锌,未见高富集的金属锌独自存在,镉绝大部分以金属镉的方式存在,伴有少数。 置换锌粉为吹制锌粉,无结块、无杂物、总锌>98%、活性锌成分>92%,锌粉粒度-0.251~+0.147mm;其它试剂有98%浓硫酸,分析纯氧化锌、二氧化锰及石灰;首要器件:500mL烧怀、LabTech EH35A plus主动控温加热仪、IKARW20digital数显拌和器、温度计、分析天平、真空泵、真空干燥箱、三角漏斗、兰格BT100-1J恒流泵,PHS-3D型pH计和6503型高温复合电极。 二、试验准则流程 试验准则流程见图1。该流程将产出的镉绵经过火法工艺经粗炼和真空精粹出产高纯精镉。经过火法和湿法相结合的工艺,用精馏提镉替代电解精粹镉,并改造现有工艺流程,制备高档次镉绵,镉档次由现在的50%~60%进步到80%以上,经压团熔炼后可直接进行接连精馏,撤销接连熔炼工序和电积,完结精镉出产的接连化作业,优化工人操作环境,进步主动化水平,削减镉环境污染,完结镉提取闭路循环,到达零排放。图1  准则工艺流程 三、成果与评论 (一)铜镉渣一段浸出 1、结尾pH的影响 浸出试验条件∶液固比6∶1,时刻6h,温度80~85℃,始酸浓度10~15g/L,进程操控溶液pH=1.5~1.8,在5.5h后,调整矿浆结尾pH,过滤,浸出渣用pH=4.5~5.0的酸洗刷。成果见表1。 表1  结尾pH的影响表1标明,pH=5.22时,镉浸出率98.31%,溶液含Cd 25.25 g/L;当结尾pH=5.74时,渣含锌进步至7.64%,当浸出渣含锌较高时,将不使用于后续铜渣火法处理,一起pH升高,锌的水解趋势加大,所以浸出结尾pH不该超越5.4。 2、浸出时刻的影响 浸出试验条件∶液固比6∶1,温度80~85℃,始酸浓度10~15g/L,进程操控溶液pH=1.5~1.8,在每次完毕浸出之前0.5h,调整溶液pH至2.0~2.5,拌和0.5h,浸出渣用pH=4.5~5.0的酸洗刷。试验成果见表2。 表2  浸出时刻的影响成果标明,随时刻的延伸,渣含锌逐步下降,但几组试验成果改变不大,镉浸出率均大于99%,渣含镉小于0.65%,渣含铜可达33.5%以上,当试验时刻为2h,试验成果已到达浸出的要求,原因是用500 mL的烧怀进行试验,试验温度安稳、拌和充沛。但出产中应该操控时刻4~6h,以使反响充沛完结。表2所列4组试验数据渣含锌均比较低,这是因为结尾pH偏低的原因,结尾pH为4.0~4.5,但铜含量略微偏高,溶液成分见表3。 表3  不同浸出时刻的滤液(二)浸出渣二段逆流浸出 为尽可能操控镉的涣散,进步锌的收回及铜渣的档次,对一段浸出渣(一段扩大试验渣,含Zn6.22%,Cu 24.27%,Cd 0.49%,水51.4%)进行了二段逆流浸出。二段浸出试验条件:液固比5∶1,温度75~80℃,操控pH=2.0~2.5,时刻3h。 完结成果:二段浸出渣含Cu 29.86%,Cd 0.26%,滤液含Zn 3.9g/L。滤液返铜镉渣一段浸出工序,滤渣送铜冶炼厂火法提铜。 (三)海绵镉选择性富集 使用扩大试验滤液进行一次锌粉置换出产海绵镉。置换前溶液含Cd 24.50g/L,考虑置换前液总体积较少,试验在500mL烧怀中进行,试验溶液体积300mL,温度50~55℃,反响时刻45~60min,锌粉用量为溶液中镉理论用量的80%,锌粉参加时刻10min。海绵镉过滤洗刷,真空烘干。试验数据见表4。 表4  一次锌粉置换试验成果表4标明,当置换前液锌含量在30~40g/L时,一次置换海绵镉产品含镉可达85%以上,海绵镉含锌小于2.5%,但置换前液锌含量在80~130g/L时,一次置换海绵镉产品含镉即下降至78.42%,含锌进步至3.25%。 一次置换后溶液还有3~5g/L的镉,用锌粉置换剩余镉,镉渣回来一段铜镉渣浸出,滤液除钴后,回来锌冶炼中性浸出。 (四)海绵镉造液浸出 因为一次置换前液含锌高但含镉低,锌镉比为(4~5)∶1,故一次置换所得到的海绵镉不只含锌高,镉档次较低,且还有部分其它杂质,不能满意粗镉精粹工艺的要求(镉档次大于80%、Zn小于4%),而且不易压团,所以将一次海绵镉需进行造液浸出,除杂。 因试验室所制取的海绵镉数量少,海绵镉造液浸出试验所用质料由驰宏公司供给。海绵镉成分为(%)∶Cd 53.53、Zn 10.46、Cu 0.14、Fe 0.091。 海绵镉造液浸出试验条件及操作:将露天天然氧化后的海绵镉用高酸浸出,硫酸开始浓度400~500g/L,液固比1∶1,温度90~95℃,试验选用机械拌和,并通入适量空气,反响3h以上,依据残酸量及Cu量,参加新鲜海绵镉降酸除铜,然后稀释至液固比3∶1(与质料之比),并用石灰浆液调整酸度至4.0左右,参加除铁,无铁后参加石灰乳调整酸度至5.0~5.2,过滤,滤渣回来铜镉渣浸出,滤液用于下一工序锌粉二次置换。分析测定滤渣含Cd 2.94%,Zn 2.48%,溶液含Zn 25g/L,Cd 176g/L。 (五)粗镉提取研讨 造液浸出液用锌粉进行二次置换出产镉绵,试验条件为:置换前溶液含Cd 176g/L,Zn 25g/L,考虑置换前液的总体积较少,试验在500mL烧怀中进行,溶液体积300mL,温度50~55℃,反响时刻0.5~1.0h,锌粉用量为溶液中镉理论用量的1.1%~1.2%,锌粉缓慢参加,参加时刻10min。镉绵天然过滤,真空烘干,产品含镉95.12%,Zn 2.17%。 二次置换镉绵纯度较高,镉绵含镉大于80%,锌含量小于4%,可满意下一步镉绵粗炼和真空精粹的要求。 四、定论 断定了铜镉渣选择性浸出,海绵镉选择性富集和镉绵提取工艺优化条件。经工艺优化后镉绵含镉达80%以上,含锌小于4%,可满意后续镉绵真空精粹对质料的要求。

镉为何物?

2018-12-06 09:54:59

镉(cadmium)   一种化学元素,化学符号Cd,原子序数48,原子量112.411,属周期系ⅡB族。1817年德国F.施特罗迈尔从碳酸锌中发现镉,K.S.L.赫尔曼和J.C.H.罗洛夫也在氧化锌中发现镉,其英文名称来源于拉丁文cadmia,含义是菱锌矿。镉在地壳中的含量为2&times;10-5%,在自然界中都以化合物的形式存在,主要矿物为硫镉矿(CdS),与锌矿、铅锌矿、铜铅锌矿共生,浮选时大部分进入锌精矿,在焙烧过程中富集在烟尘中。在湿法炼锌时,镉存在于铜镉渣中。   镉是银白色有光泽的金属,熔点320.9℃,沸点765℃,相对密度8.642。有韧性和延展性。镉在潮湿空气中缓慢氧化并失去金属光泽,加热时表面形成棕色的氧化物层。高温下镉与卤素反应激烈,形成卤化镉。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可形成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体危害严重,日本因镉中毒曾出现&ldquo;痛痛病&rdquo;。   可用多种方法从含镉的烟尘或镉渣(如煤或炭还原或硫酸浸出法和锌粉置换)中获得金属镉。进一步提纯可用电解精炼和真空蒸馏。镉主要用于钢、铁、铜、黄铜和其他金属的电镀,对碱性物质的防腐蚀能力强。镉可用于制造体积小和电容量大的电池。镉的化合物还大量用于生产颜料和荧光粉。

镉镍碱性电池

2017-06-06 17:50:02

镉镍碱性电池,镉镍碱性蓄电池,(nickel-cadmium battery) 是指采用 金属 镉作负极活性物质,氢氧化镍作正极活性物质的碱镍镉电池性蓄电池。正、负极材料分别填充在穿孔的附镍钢带(或镍带)中,经拉浆、滚压、烧结、化成或涂膏、烘干、压片等方法制成极板;用聚酰胺非织布等材料作隔离层;用氢氧化钾水溶液作电解质溶液;电极经卷绕或叠合组装在塑料或镀镍钢壳内。   镉镍电池标称电压为1.2V,有圆柱密封式(KR)、扣式(KB)、方形密封式(KC)等多种类型。具有使用温度范围宽、循环和贮存寿命长、能以较大电流放电等特点,但存在&ldquo;记忆&rdquo;效应,常因规律性的不正确使用造成电性能下降。   镉镍电池的电池表达式为:(-)Cd︱KOH(NaOH)︱NiOOH(+)   电池反应为: 放电时:Cd+NiOOH+H2O&rarr;Ni(OH)2+Cd(OH)2   充电时:Ni(OH)2+Cd(OH)2&rarr;Cd+NiOOH+H2O   大型袋式和开口式镉镍电池主要用于铁路机车、矿山、装甲车辆、飞机发动机等作起动或应急电源。圆柱密封式镉镍电池主要用于电动工具、剃须器等便携式电器。小型扣式镉镍电池主要用于小电流、低倍率放电的无绳电话、电动玩具等。由于废弃镉镍电池对环境的污染,该系列的电池将逐渐被性能更好的 金属 氢化物镍电池所取代。镉镍碱性电池的&ldquo;记忆效应&rdquo;,某些类型的电池在使用过程中,由于长期得不到完全的放电,导致电池的实际容量小于真实容量的现象。由于和人的记忆模式相似,故称为记忆效应。事实上,该现象是由于电池中的某些元素的特性引起的。镍镉电池存在很严重记忆效应。虽然普遍地认为镍氢电池不存记忆效应,但从实验的结果来看,镍氢电池的记忆效应仍然存在,只是没有镍镉电池那么严重。 消除记忆效应的方法:对电池进行几次完全的充放电,容量可以得到部分恢复。&nbsp;

镍镉电池

2018-05-11 19:19:53

镍镉电池镍镉电池的应用广泛程度仅次于铅酸蓄电池,其比能量可达55W&bull;h/kg,比功率超过190W/kg。可快速充电,循环使用寿命较长,是铅酸蓄电池的两倍多,可达到2000多次,但价格为铅酸蓄电池的4~5倍。它的初期购置成本虽高,但由于其在能量和使用寿命方面的优势,因此其长期的实际使用成本并不高。缺点是有&ldquo;记忆效应&rdquo;,容易因为充放电不良而导致电池可用容量减小。须在使用十次左右后,作一次完全充放电,如果已经有了&ldquo;记忆效应&rdquo;,应连续作3~5次完全充放电,以释放记忆。另外镉有毒,使用中要注意做好回收工作,以免镉造成环境污染。

钨矿物原料的分解—盐酸分解法

2019-02-13 10:12:38

酸分化法为现在工业上处理标准白钨精矿(要求含黑钨及磷、砷等杂质低,例如我国的一级B类白钨精矿)的首要办法,将流程作恰当修改后,亦可用于处理质量稍差的白钨精矿(含40% ~70%W03,一起含少数CaC03等易溶于酸的化合物),具有流程短、本钱低一级特色。    A  准则流程    准则流程如下图所示。    B  墓本原理    a  首要反响及其热力学条件    白钨矿:      CaW04(s)+2HC1(aq)====H2W04(s)+CaCl2(aq)               (1)     黑钨矿:      FeW04(s)+2HC1(aq)====H2W04(s)+FeCl2(aq)            (2)                   MnW04(s)+2HC1(aq)====H2WO4(s)+MnC12(aq)            (3)    上述反响在25℃的平衡常数及浓度平衡常数Kc(Kc=〔CaCl2)/〔HCl〕2)见表1。 表1          某些反响的平衡常数反响序号Ka(25℃核算值)Kc=[CaCl2][HCl]2(测定值)(1)107104(2)6.3×104700(3)2.5×108 [next]     b  反响机理及影响分化率的要素    反响机理  郑昌琼等研讨标明,当拌和速度满意快时,经过固态H2W04膜的分散为分化进程的操控性进程,跟着浓度的不同,进程中反响的级数以及生成的H2W04膜的性质也不彻底相同,在浓度为1~4mo1/L时,膜对分散进程的阻止效果最大,而在8mo1/L左右则阻止小些。对人工白钨而言,其分化分数(x)与时刻(t)的联系遵守以下方程式:                                  2                             1 - ——x - (1 - x)2/3 = kt                                  3    反响的表观活化能(40-98℃)为37.93 kJ/mol ,属固相膜(即H2W04膜)操控。对白钨精矿而言,测出表观活化能为43.61 kJ/mol。    影响分化率的要素进步分化温度、添加用量和延长时刻都有利于进步分化率。在酸用量必定的情况下,改变酸浓度的一起就改变了固液比,浓度进步则一方面反响剂浓度大,有利于反响;另一方面固液比变大,不利于液相内的传质,总的说来,人们普遍认为选用高浓度有利于进步分化率。因为进程属经过H2W04膜的分散操控,因而减小矿的粒度,相应地将减小H2W04膜的厚度,有利于进步分化率,例如在用量为理论量的2.5倍,浓度29.75%,100℃,拌和1.5h的条件下,当粒度分别为58~74μm和小于58μm,则分化率分别为87.3%和95.1%。    因为经过H2W04膜的分散为速率操控进程,故在球磨的一起进行分化有利于进步分化率。此外,因为黑钨矿难与HCl反响,故原猜中含铁(黑钨矿)高,则分化率下降。    杂质行为  用分化时的杂质行为见表2。表2            白钨矿分化进程中的杂质行为杂质及其矿藏分化进程中的行为铁及重金属硫化物与反响生成相应的氯盐并放出H2S。为防止H2S将钨酸还原成贱价化合物,分化时往往参加精矿重0.1%~0.15%的硝石砷:As2S5,As2S3在中性气氛下不与HCl反响,在有氧化剂NaNO3存在时,生成H3AsO4进入溶液: 3AsS3+28NaNO3+10HCl+4H2O====6H3AsO4+9Na2SO4+10NaCl+28NO↑FeAsO4部分反响,生成H3AsO4进入溶液,并进一步构成杂多酸钼:辉钼矿中性气氛下不与HCl反响,有氧化剂存在时: 3MoS2+18NaNO3+6HCl====3H2MoO4+6Na2SO4+6NaCl+18NO钼:钼酸钙矿CaMoO4+2HCl====H2MoO4+CaCl2;H2MoO4在中溶解度远大于H2WO4(见表3);故在高酸度下部分进入溶液与钨别离,工业条件下除钼率达50%~70%磷:磷灰石2Ca5(PO4)3F+18HCl→6H3PO4+9CaCl2+CaF2(或HF),H3PO4和H3AsO4相同与钨构成杂多酸,P的存在使钨的丢失量进步。HF加快对设备(如珐琅等)的损坏金属氧化矿大部分金属氧化矿与HCl反响生成相应的氯直盐[next]  表3             H2WO4和H2MoO4在中的溶解度浓度20℃50℃70℃H2MoO4H2WO4H2MoO4H2WO4H2MoO4H2WO44004407.02551.39.45535.66.48270192.64.32270.04.86265.05.25200101.51.7124.52.50135.02.1613029.20.6518.60.692.60.678010.90.256.480.2813.00.25403.80.132.460.094.60.01     C  工业实践    a 酸分化进程    设备    (1)拌和浸出槽  槽内壁及拌和器均衬以耐腐蚀的橡胶,或槽壁在内衬玻璃钢的情况下,再砌一层石墨砖,以确保设备有满意的运用寿命,酸分化时一般用蒸汽直接加热。设备无特殊密封办法。    (2)密闭酸分化槽  其主体设备结构与拌和浸出槽相同,但密封杰出,滚动轴采纳机械密封,并选用耐磨、耐酸的密封元件;改进了传动系统以削减轴滚动进程的摇摆,然后确保在操作进程不漏气,槽内可在50kPa的正压下操作,温度达110℃,HC1蒸发量及消耗量少,因而有很好的经济效益及环保效益。    (3)热球磨反响器结构见下图。对其内衬材料及球的原料要求在工作温度下耐、耐磨,现在没有找到能一起满意上述要求的材料。前苏联科学工作者主张用熔铸辉绿岩。我国科学工作者对研磨介质的材料进行了比较,发现在酸分化的详细条件下,钦球、卵石每小时的损耗量分别在0.36%和0.1%以下,一个直径20mm的铝球可运用5000h。    首要技能经济指标  某些工厂的工艺特色及首要技能经济指标见表4,一般白钨矿酸分化时操控终究母液含HCl约100~150g/L。[next] 表4             白钨精矿分化的首要技能经济指标工艺特色技能参数分化率/%酸用量/理论量固:液温度/℃时刻/h白钨精矿热球磨分化1.3~1.51:155~60499白钨精矿拌和分化3.5~4.01:2~100 约99.540%~75%WO3的白钨矿酸分化后再碱浸    98白钨精矿密闭酸分化2.9~3.0--110199.7     b  溶进程    先将粗钨酸用热水调浆,按1kg钨酸加1.2~1.5kg水,操控矿浆密度为1.6~1.65g/cm3(亦有操控为1.35 g/cm3左右的),将热矿浆参加剧烈拌和、浓度为25%~28%的中,1kgW03约需28%浓度的1~1.5L,操控温度约60℃左右,2h左右即可彻底溶解,终究操控溶液含游离35g/L左右,过滤所得的溶液含W03350g/L左右。    溶时,H2W04、H2Mo04分别成(NH4)2 WO4、(NH4)2 Mo04形状进入溶液,磷、砷亦成相应的铁盐进入溶液,为除磷、砷可参加MgCl2,使之成铵镁盐沉积,终究钨酸铵溶液中As/W03、P/W03可降至0.01%以下。    酸分化后溶渣的产出率约相当于精矿量的10%~15%,其间含W03达5% -30%,应进一步处理收回WO3。    参考文献:    1.郑昌琼.分化白钨精矿动力学开始研讨.稀有金属,1980(6):11~15

处理高镉锌(锌隔合金)生产镉

2019-01-30 10:26:21

火法炼锌厂都是采用精馏精炼制得精镉。在精锌精馏过程中从镉塔产出一种含镉在15%~30%或5.6%~20.8%的高镉锌。从这种高镉锌中提取镉一般采用精馏塔分离高沸点的杂质制得粗镉,然后加NaOH和NaNO3进行碱性精炼除去残余的锌,进入纯镉的生产过程。

从含镉烟尘中提取镉与铊

2019-02-20 11:03:19

一、概述     选用湿 法和火灶台组成的联合法从含镉烟尘中提取镉与,是我国葫芦岛锌厂自行开发的技能。它包含焙烧、浸出、净化、置换、压团熔炼和精馏工序,其间焙烧工序,可依据含镉质料性质决议取舍。       联合法提镉工艺流程的首要特色如下:       (一)产品质量高       精镉纯度可安稳在99.995%以上,超越电镉(99.96%)质量。       (二)收回率高       粗镉冶炼收回率大于85%,精馏收回率达99.7%以上。       (三)操作简洁,人员少,劳动条件较好。       (四)操作条件较简略,耗电少。       (五)精馏设备结构较杂乱,须用报价较贵重的SiC盘。       图1为联合法提取镉和的工艺流程图。    图1  联合法提镉和的工艺流程       二、质料       竖罐炼锌的提镉质料为焙烧蒸腾富集的烟尘,其间流态化焙烧烟尘是在氧化性气氛下蒸腾的,镉的可溶解较高;反转窑焙烧烟尘是在微复原气氛下蒸腾的,含硫高,镉的可溶率低,有时需求再焙烧。       含镉烟尘粒度较细,密度较小,最好选用真空吸送运送,吸送路度不超越150m,吸送高度不超越15m较为有用。     表1为含镉烟尘化学成分实例。   表1  含镉烟尘化学成分实例烟尘称号成分,%镉可 溶率%堆积密度t/m3CdZnPbAsInTtBiFeS流态化焙烧、 电收尘烟尘5~725~3015~200.1~0.50.0040.020.11.5~2.08~1085~950.4~0.5一次焙烧旋风 收尘器烟尘10~1220~2320~250.05~0.100.0040.020.1072~510~1640~450.9~1.1二次焙烧电 收尘烟尘15~2418~2225~300.1~0.60.0040.0260.2120.2~0.512~2040~451.3~1.5       三、技能操作条件       (一)硫酸化焙烧       当含镉的可溶率低于90%时,需进行焙烧。一般流态化焙烧的含镉烟尘镉的可溶率在90%以上,流态化焙烧烟尘二次焙烧的含镉烟尘,镉的可溶率40%~50%,故后者需进行硫酸化焙烧。焙烧进程中除有价金属转化为硫酸盐外,还可蒸腾除掉许多砷、锑等杂质。硫酸化焙烧在用直接加热的反转窑内进,可下降硫酸耗费,削减废气量,便于吸收处理。       葫芦岛锌厂硫酸化焙烧选用φ1000×12000mm、内衬115mm耐火砖的反转窑,用煤气直火加热。硫酸参加量约为理论量的150%左右,焙烧带的温度操控为500~550℃。温度过高不只镉易蒸腾丢失,并且构成炉结。硫酸化焙烧设备腐蚀严峻,硫酸耗费大,劳动条件欠好。如果在二次焙烧进程中,添加脱硫办法,进步镉尘的镉可溶率,则可撤销硫酸化焙烧。       硫酸化焙烧窑操作条件实例如下:       窑头温度           350~400℃       焙烧带温度         500~550℃       窑尾温度           300~350℃       料酸质量比         1∶0.8~0.9       加料量             600~700kg/h       焙烧后镉可溶率     >95%       (二)浸出       硫酸化焙烧后,在设有经过设备的机械拌和槽内进行中性与酸性浸出,规划较小时,两次浸出可在同一槽内替换进行。       中性浸出       操控较低的始酸和较高结尾pH值,以便于Fe3+水解沉积,一起除掉大部分As得到较纯的含镉溶液。       酸性浸出       坚持较高的始酸和终酸,在90℃以上的温度下浸出,使残存的难溶金属进一步溶解,以取得较高的金属收回率。但酸浸液中,除和硫酸锌等首要成分外,还含有较多的杂质金属离子及硫酸铟,经萃取提铟后,回来作下一次中浸运用,其间杂质离子,重复水解沉积。       浸出加料       含镉烟尘粒度较细,简单飞扬。规划时宜用湿式球磨浆化,砂泵运送加料,以改进操作环境和减轻劳动强度。     表2为浸出技能操作条件实例。   表2  浸出技能操作条件实例浸出阶段温度,℃始酸,g/L终酸固液比浸出时刻,h弄清时刻,h操作周期,h中浸80~9010~20pH5.0~5.21∶5~62~43~516酸浸>9030~4020~30g/L1∶32~32~316       表3为浸出工序目标实例。   表3  浸出工序目标实例一浸出阶段浸出液成分,g/L渣率%CdZnInFeAs酸度中浸15~2050~70 3~80.2~1pH5~5.240~50酸浸20~3060~800.1~0.27~81~220~3530~40   表3  浸出工序目标实例二浸出阶段浸出率,%浸出渣成分,%CdZnInCdZnInPb中浸70~8075~85 5~88~10 30~40酸浸10~1510~1580~901.5~2.03~40.01~0.0240~50       (三)水洗进程       酸浸渣经两次水洗后,用真空吸滤,滤渣含铅达45%~55%,送铅冶炼,洗液反回中性浸出。       表4为两次水洗技能操作条件实例。   表4  水洗技能操作条件实例洗次温度℃拌和时刻h弄清时刻h固液比洗液含酸g/L一次50~700.5~11~21∶2 二次50~700.5~1 1∶2<15       圆盘过滤机操作条件:       温度   常温;真空度    53~73kPa;       过滤才能100~120kg/(m2·h);渣含水40%~45%。       (四)净化       中浸后的含镉溶液,仍含有部分铁和砷等杂质。置换进程中易发生气体、黑沫外溢、海绵镉松懈等现象,劳动条件恶化,影响海绵镉的质量,因而需净化除铁、砷。作业进程是向溶液内鼓入空气,使Fe2+氧化成Fe3+,并操控较高pH值,使铁、砷水解沉积除掉。依据实践经历,溶液中的铁、砷比需求大于10,砷才或许除尽。净化的首要技能条件如下:        1、操控溶液的pH值。铁的氧化反响速度随pH值的升高而增大,当pH<3时,氧化反响很难进行。净化中一般坚持pH=5.0~5.2。因为Fe2(SO4)3水解生成Fe(OH)3时游离部分硫酸,使pH值逐渐下降至4~4.5,因而需求参加氧化锌中和游离酸,以坚持pH=5.0~5.2。        2、鼓风量操控在60~90m3/(m2·h)。        3、操作温度约80~90℃。        4、溶液中金属离子浓度一般不超越130g/L。        5、参加CuSO40.1~0.2kg/m3,能够加快铁的氧化反响。净化后溶液含铁0.01~0.05g/L。       表5为净化技能操作条件实例。   表5  净化技能操作条件实例项目单位条件溶液中金属离子浓度g/L80~140温度℃80~90pH值 5.0~5.2单位时刻鼓风量m3/(m3·h)60~90硫酸铜用量kg/m30.1~0.2净化时刻H1~2净化后溶液含铁g/L0.01~0.1弄清时刻h3~4       表6为净化工序目标实例。   表6  净化工序目标实例序号净化前液,g/L净化后液,g/L净化渣,%CdZnFeAsCdZnFeAsSbCdZnFeAs例123685.80.2523650.130.03 1.5149.55.1例221706.00.3920.5690.12  1.618114.6       (五)置换       锌粉置换分两段进行,榜首段置换镉,第二段富集。       置换进程中须参加适量的硫酸,以溶解锌粉外表的ZnO膜,添加锌粉活性,加快置换反响。置换温度不宜过高,以防海绵镉在高温下复溶。净化后液尚含有微量砷,故置换进程中仍有微量的发生,因而,置换作业必须在设有排风设备的密闭机械拌和槽内进行,以防中毒。       一次置换       参加理论锌粉量的95%左右,参加的锌粉能够彻底反响,置换后液含镉尚坚持1g/L左右。这样不只能下降海绵镉含锌,并且简直悉数保存于溶液中。       表7为一次置换技能操作条件实例。   表7  一次置换技能操作条件序号置换前液,g/L技能操作条件一次置换后液体分,g/LCdZnT1H2SO4②温度,℃时刻,min锌粉参加量ZnCdT1114.75680.0401550~603090①77.52.420.04219720.0502050~603595①85.21.080.05 ①为理论量的百分数; ②因为锌粉质量低(ZnO,CdO含量高,锌档次低),致使耗酸量大。       二次置换       一次置换后液中参加稍过量的锌粉,得高锌海绵镉,其含量为0.3%~0.5%,是提取的质料。其流程可参见图1。二次置换后液,含Zn70~100g/L,用于收回锌。       表8为二次置换技能操作条件实例。   表8  二次置换技能操作条件序号置换前溶液,g/L技能操作条件一次置换后液体分,g/LCdZnT1H2SO4温度,℃时刻,min锌粉参加量ZnCdT1pH12.4277.50.043.045~5050120①680.1110.0194.021.0885.20.052.545~5050120①880.030.0024.8 ①为理论量的百分数。       (六)压团熔炼       一次置换产出的海绵镉是表面积较大的粒状海绵体安排,简单氧化,需用油压机限制成团。镉团在熔融的烧碱覆盖下熔铸成镉锭。镉团参加熔体烧碱中,简单引起溅液,须设密封加料设备。镉的熔铸进程实际上也是碱法精粹进程,海绵镉中的杂质金属大部分都能溶解于烧碱中。表9为压团熔炼技能操作条件。表10为熔炼进程中杂质脱除实例。   表9  压团熔炼技能操作条件项目单位实例项目单位实例成团压力MPa12~15熔炼温度℃400~500镉团含水%7~8熔炼时刻h2~3镉团密度kg/cm34.5~5烧碱单耗kg/kg120~150   表10  镉团熔炼进程中杂质脱除状况,%序号海绵镉团成分粗镉成分杂质脱除率ZnPbFeCuAsZnPbFeCuAsZnPbFeCuAs12.730.640.0690.1040.1930.00880.4560.00410.0960.006499.528.530.58.095.422.251.230.09350.0990.1360.00570.4710.01040.0670.004999.8628922.096.432.251.460.0670.1490.1150.00390.7250.00490.080.00299.8519345.598.3       (七)粗镉精馏       粗镉精馏工艺是葫芦岛锌厂于1957年首要创建的。其原理根本沿袭锌的精馏,但工艺设备独具特色。       粗镉中杂质含量较多,改变也较大,葫芦岛锌厂的粗镉化学成分及其物理性能列于表11。   表11  葫芦岛锌厂粗镉化学成分及杂质金属的物理性质金属含量%熔点℃沸点℃固态密度kg/cm3Cd98.5~99.23207678.65Zn0.005~0.014199067.13Pb0.2~0.8327152511.34As0.004~0.01814615(提高)5.72T10.001~0.005303145711.82Fe0.005~0.01133527407.80Cu0.07~0.2108323608.90       由表11可知,粗镉中的杂质,除砷在615℃提高外,其它金属杂质的沸点,都远高于镉的沸点,而砷与锌虽可与镉一起蒸馏,但与烧碱的熔炼进程中,砷与锌均可熔于烧碱中,再经过粗馏而降到0.002%以下,到达精镉标准。铜与铁的沸点很高,在镉的沸点温度下,其蒸气压很小,故在镉粗馏进程中,微量铜、铁进入精镉可视为机械搀杂。据此,粗镉精馏进程,实质上是镉铅的分馏,然后可在一台精馏塔内完成镉的精馏。这是与锌精馏的差异。       粗镉精馏进程大致如下:       粗镉在熔化锅内熔化后,守时定量参加加料器,而接连流入塔内的液体在塔内经加热蒸腾和冷凝回流替换进行,纯镉蒸气上升至榜首和第二冷凝器别离冷凝成液状,冷却到必定温度,流入精镉锅,定时铸成镉锭,高沸点金属经回流富集逐渐下贱,进入渣锅,定时排出。       镉精馏炉可用烟煤、煤气或其它气体燃料加热,炉温安稳,易于操控,因而其加热设备右因燃料而异。表12为葫芦岛锌厂粗镉精馏顶用发生炉煤气加热的操作温度实例。   表12  粗镉精馏操作温度近制实例操控部位温度,℃燃烧室中部①1070~1080燃烧室底部①1040~1050燃烧室上部①620~640冷凝器680~700冷却器570~590粗镉熔化锅380~420加料器400~450粗镉锅400~450渣锅500~550(排渣提温)800~850 ①此外温度可依据产品质量、产值作恰当变化,但温度变化每次不大于±5℃。   表13为粗镉、精镉及镉渣成分实例。   表13  粗镉、精镉及镉渣成分实例,%序 号粗镉精镉镉渣ZnPbFeCuAsZnPbFeCuAsCdPbZnCuFeAsT110.00880.4560.00410.00960.00640.00020.000670.000490.0001<0.00270~7213~150.02~0.083.1~4.62.1~3.13.5~4.90.1~0.220.00570.4710.01040.0670.00490.00020.000720.000490.00010.00230.00390.7250.00490.080.0020.00020.000740.00050.00010.002       四、技能经济目标       (一)粗镉部分        1、镉收回率85%以上。        2、锌收回率90%以上。        3、物料单耗(以每吨镉计):  硫酸9~10t氧化锌0.5~0.6t硫酸铜10~20kg烧碱150~160kg锌粉700~750kg生活水~200t汽(78.4~98.1kPa)~40t电240~250kW·h       (二)精镉部分        1、镉总收回率99.7%以上。        2、镉直接产出率98%以上。        3、物料单耗(以每吨镉计):烧碱12~14kg,煤650~700kg,水1.5~2t。       五、首要设备挑选       (一)浸出、净化、置换槽       浸出槽可选用钢板衬花岗岩(60~80mm),耐腐耐磨。葫芦岛锌厂已用六年仍无缺。净化槽也可用此原料。置换槽可选用钢衬木板槽,运用作用尚好。       所需槽数N按下式核算:   N=V(t/24V有)       式中V-日处理矿浆或溶量,m3;            V有-所选槽的有用容积,m3,为槽几许容积的0.85~0.9;            t-操作周期,h,浸出取8,净化取4~6,一次置交换30~40min,二次置交换40~50min。       (二)精镉炉       精镉炉由塔本体、燃烧室、换热室组成,并与熔镉锅、加料器、镉蒸气冷凝器及冷却器、精镉锅、渣锅等设备相连,构成一个密封体系。图2为镉精馏炉示意图。    图2  镉精馏炉标意图   1―加料器;2―塔盘;3―塔盘底座;4―渣锅;5―冷凝器       塔体是精镉炉的主体,塔盘尺度、组合和每块盘的设置,可参照锌的精馏理论核算挑选断定,也可依据实践依照精镉炉的特色经过核算断定。        1、塔体的挑选核算       (1)塔日处理量   Mcd=G/365n       式中Mcd-精镉塔日处理量,kg/d;            G-年处理粗镉量,kg/a;            n-塔的工作率。       (2)塔内物料分配率:可按冶金核算和实践数据设定塔内物料分配比(见表14)。   表14  精镉炉塔内物料分配率项目代表符号选用分配系数图例及关系式参加粗镉P11  关系式: P1=P3+P5 P3=P1+P2-P4 P5=P4-P2回流量P20.1产出镉渣P30.005蒸腾量P41.095产出精镉P50.995       (3)塔内镉液加热蒸腾所需热量Q需   Q需=Q加+Q气kJ/h       式中Q需-塔内镉液加热至沸点所需热量,kJ/h,   Q加=P1c(t沸-t液)            P1-参加塔内粗镉量,kg/h;            c-镉液加热到沸点时的比热容,kJ/(kg·℃)            t沸-镉液沸点温度,℃,取767;            t液-入塔镉液温度,℃,550~600;            Q气-塔内镉液气化所需热量,kJ/h;   Q气=P1P4c气            P4-塔内镉液气化分配值;            c气-镉的气化潜热,kJ/kg。       经过SiC塔壁单位面积传入的热量核算:   Q壁单=(t外-t内)/[(S1/λ1)+(S2/λ2)]       式中Q壁单-塔壁单位面积传热量,kJ/(m2·h);            S1-塔盘壁厚,m;           λ1-塔盘壁导热率,9.30~10.47W/(m2·℃);            S2-塔盘表面釉和涂料厚度,m;           λ2-塔盘釉质和涂料导热率,或外加SiC套和SiC填料的导热率,W/(m2·C)(精镉塔因为热容量小,盘内温度动摇大,常在塔外加SiC套,在套与塔之间填入SiC灰捣固,约30mm厚,SiC套壁厚亦为30mm。大容积塔体可不加套);        t内、t外-别离为塔盘内、外壁温度,℃,可取   t内=780℃,t外=1040℃。       (4)塔壁单位面积出产强度       塔壁单位面积出产强度一般可取45~50kg/(m2·h),或1080~1200kg/(m2·d)       (5)需求塔盘数       塔体首要由蒸腾盘和回流盘组成,别离核算如下:       蒸腾盘       一般用W形盘,热效率较高。每块蒸腾盘的传热量按下式核算:   Q盘=Q壁单F盘       式中Q盘-每块蒸腾盘传热量,kJ/h;           Q壁单-塔壁单位面积传热量,kJ/(m2·h);            F盘-每块盘受热表面积,m2,可自选尺度,也可依据国内沿袭塔盘尺度,精镉炉用盘为360×250×85mm,壁厚为40mm,按壁厚中心线计,一个盘受热表面积为0.091m2。       蒸腾盘数按下试核算:   n蒸=Q气/Q盘       式中n蒸-塔中蒸腾盘数,块;            Q气-镉液气化所需热量,kJ/h;            Q盘-盘块蒸腾盘传热量,kJ/h。       此外,金属在塔中预热盘数(n预)的求法根本同蒸腾盘,但塔外壁温度应取低些,一般外壁温度可取1020℃,塔内壁温度取760℃。所得盘数仍为蒸腾盘,相加为所需蒸腾盘总数。       回流盘数       一般用平底槽形盘,其数量亦可仿工厂锌精馏规划铅塔的经历公式选定,即   n回=E(n蒸+n预)       式中n回-回流盘数,块;            n蒸-蒸腾盘数,块;            n预-蒸腾段预热用蒸腾盘数,块;            E-蒸腾段蒸腾盘总数与回流段塔盘的份额系数,镉精馏塔可取0.6~0.7。        2、塔盘选型与塔体组合       组成精镉炉的有加料盘、底盘、导流盘、蒸腾盘、回流盘等,首要是蒸腾盘和回流盘。其结构方式和特性与锌的精馏塔盘根本相同,唯塔盘尺度变小许多,长宽份额也有别。       葫芦岛锌厂镉精馏炉运用的塔盘一种为276×176×85mm,厚度38mm,另一种为360×250×85mm,厚度40mm。       蒸腾盘为W形,周边的沟槽可存金属液体,以加大塔盘的蒸腾才能,其结构尺度可参看图3。对其要求是,两盘间的空间高度应习惯塔内最大蒸气流速小于5m/S,塔盘上气孔面积也应习惯气流速度的要求。此外盘内液面应坚持必定高度。  图3  蒸腾盘       回流盘为平底长方形,盘内有多道浅格,以使盘内金属熔体成S形活动,以利金属气液两相热交换和杂质金属分凝。       对回流盘结构要求首要是,上气孔面积不小于盘面积的40%,盘内液面应有恰当高度(见图4。)    图4  回流盘       塔盘组合       塔本体首要由底盘、蒸腾盘、加料、回流盘、导流盘等组成。葫芦岛锌厂的镉精馏炉的塔体是由14块蒸腾盘、1块缓冲盘、8块回流盘、1块加料盘和底盘、导流盘堆叠而成。底盘和悉数蒸腾盘置于燃烧室中间,蒸腾盘内的金属镉经加热蒸腾导入回流盘分凝后进入冷凝器。底盘中心有孔,座落在底座上,蒸腾盘余下的铅铁锌液经底座流入渣锅内,定时排出。蒸腾盘上为加料盘和回流盘,一般高出燃烧室上盖,因为镉精馏塔内气压较低,需由外部供热保温,部分回流盘仍在低温保温状况中。最上面为倒扣盘,镉蒸气即由此导入冷凝器。       镉塔组合的原则是相邻两盘应互转成180°装置,使沿盘短边安置的溢流孔交织装备,迫使金属蒸气与金属液体沿着弯曲的途径经过整个塔盘,并不断完成蒸馏与分凝进程,然后到达金属的提纯与别离的意图。塔盘组合实例见图5。  图5  塔盘组合实例图       表15为葫芦岛锌厂镉精馏炉塔体及首要附属设备规格。   表15  葫芦岛锌厂镉精粹炉塔体及其附属设备规格,mm称号原料件数长宽高塔   件反扣盘SiC1360250100导流顶盖SiC136025050回流盘SiC836025085加料盘SiC1545250100加料压盖SiC114525030蒸腾盘SiC1536025085缓冲盘SiC1360 ,,25085底盘SiC136025085底座SiC1610485210底座盖SiC126034060上外套SiC1420310600中外套SiC1420310920下外套SiC1420310920冷凝器本体SiC1515350630压盖SiC156031535冷却器本体SiC1405375185压盖SiC116037530加料器 1Cr18Ni9Ti1   精镉产出锅 1Cr18Ni9Ti1   粗镉熔化锅 1Cr18Ni9Ti1   渣锅 1Cr18Ni9Ti1          六、装备参阅图       图6为粗镉车间装备参阅图实例。  图6  粗镉车间装备参阅   1―排风机;2―烟囱;3―排风管道;4―浸出槽;5―除铁槽; 6―置换槽;8―溜槽;9―泵;10―料斗;11―立式泵;12―铸锭; 13―熔化炉;14―油压机;15―精镉炉;16―过滤机;17―高位槽; 18―精镉模;19―真空泵;20―贮酸罐;21―扬液器

镉的性质、用途及提取镉的原料

2019-02-11 14:05:38

镉是元素周期表第五周期第ⅡB族元素,为重有色金属。元素符号Cd,原子序数48,相对原子质量112.41,银白带蓝色光泽的金属。1817年德国人司脱马耶从碳酸锌中发现一种新元素,与此同时海尔曼和罗洛夫也自氧化锌中发现了这种新元素。依据拉丁文“Cadima”(菱锌矿)命名为Cadmium。     最早报导出产镉的国家是德国,1852年约出产100kg镉,1918年产值已超越100t。今后,美国成为镉的首要出产国,1930年产值多于1000t,1940年挨近3000t,占其时国际镉产值的70%。1977年国际镉产值达最高值1.9793万t,1989年商场经济国家精镉产值为1.617万t,消费量超越出产值约2300t。     镉是一种具有延性的金属。晶体结构为六角晶系,硬度比锌软,其首要物理性质列于表1。镉有8种天然的安稳要素,还有11种不安稳的人工放射性同位素。 表1  镉的重要物理性质性质数值性质数值熔点T/K593.9热导率λ/(W·m-1·K-1)96.8(300K)沸点T/K1038电阻率ρ/(Ω·m)6.86×10-8(273K)熔华热Q/(kJ·mol-1)6.11磁化率x/(m3·kg-1)-2.21×10-9(S)气化热Q/(kJ·mol-1)100.0摩尔体积Vm/cm313.00密度ρ/(kg·m-3)8650(293K)线胀系数α/k-129.8×10-67996(熔点液体)电子亲和势(Me-Me)A/(kJ·mol-1)-26       镉的化学性质与锌相似,在常温下不与枯燥空气效果,在湿空气中缓慢氧化并失去光泽,加热时生成棕色的氧化层。镉蒸气焚烧发生棕色的烟雾。镉不溶于碱液,而溶于大多数酸中,如硫酸、和硝酸,并生成相应的镉盐,但溶解速度比锌慢。镉极易溶于浓硝酸铵溶液,可利用这种溶液从铜和铁的镀镉件大将镉剥下。氧化镉和氢氧化镉与相应的锌化合物不同,不溶于过量的,在酸性硫酸盐溶液中镉离子可被金属锌置换。镉在所有安稳化合物中都呈二价状况,其离子无色。镉可构成配位离子如Cd(NH3)42+、Cd(CN)42-、和CdI42-。     镉是一种有毒物质,被镉污染的空气比被污染的食物对人体的损害更为严重。它进入人体后首要损害人的脏,也会引起泡性肺气肿。要严格控制含镉废气、废水的排放。空气中含镉尘的极限值为200μg/m3,氧化镉烟雾的极限值为100μg/m3。含镉大于0.5×10-4%的废水不许排放。     1919年镉开端用作铁和钢防锈的电镀层。到1941年此项使用已成为它的首要用处。但由于本钱高和发生的毒性废物需经特殊处理,镉在电镀中的用量在逐步下降,镉的各种用处和商场消费量见表2。镉的首要用处是出产镍镉电池,日本用于镍镉电池的消费量约占镉消费量的80%。 表2  镉的首要用处和消费量用处消费量1977~19801989~1990质量分数w/%m/t质量分数w/%m/t电池2334505510175颜料274050203700电镀345100101850安稳剂121800101850其他46005925合计1500018500       镉是一种较稀有的元素,它的地壳丰度在和银之间,为1.6×10-6%,海水含镉1×10-8%,估量国际镉储量约54万t。镉在自然界中以矿藏存在,没有独自矿床,常与铅矿共生,在选矿进程中大部分被选入锌精矿。有些锌精矿含镉达1%~2%,一般在0.06%~0.5%之间。绝大多数的金属镉来自锌冶炼进程的中间产品。在湿法炼锌厂的硫酸锌溶液净化进程中产出的铜镉渣(含镉4%~20%),火法炼锌厂的粗锌精馏进程中产出的镉灰(含镉10%~30%)和某些铜、铅冶炼厂产出的富镉尘等都是提镉的首要质料。镍镉和铁镉蓄电池的极板等工业废料常作为提镉的二次质料。

处理镍镉电池厂的废料生产镉

2019-01-30 10:26:21

目前镉大量消费在Ni-Cd电池生产中,这种电池厂产生大量的含镉废料,从这种废料中回收镉的生产流程如图1所示。图1  从Ni-Cd电池生产废料中回收镉 瑞典某厂处理这种废料的生产数据如下: 处理废料量               365t/a 回收镉量                 17t/a 回收镍量                 44t/a 回收钴量                 1t/a 产出浸出渣量             40t/a 产出铁渣量               55kg/a 渣中的总镉量             41kg/a 渣中可溶镉量             2.1kg/a 镉的回收率               99.76%

锌、镉金属冶炼方法

2019-02-27 12:01:46

湿法冶炼是将锌精矿焙烧为ZnO,用硫酸溶液(锌电解尾掖)浸出,将所得ZnSO,溶液经过电解提取金属锌的办法。该锌的纯度高达99.997%以上,且此法比火法冶炼简单采纳环保办法,针对一向成为向题的浸出残渣的处理,也发明晰新办法。现在国际出产锌锭的80%,日本锌锭的60%选用湿法冶炼。锌精矿的焙烧运用多膛焙烧炉,现在运用欢腾焙烧炉。在1170-1270K焙烧,则可得到含硫约为1.0%(硫化物形状的硫低于0.5%)的培烧矿。当锌精矿中有铁时,则生成难溶于稀硫酸溶液的铁酸锌(ZnO.Fe3 O3),下降锌的收回率。关于收回这种形状的锌将在今后介绍。炉气含8-10SO2,为制作硫酸的质料。因为焙烧矿也有粗粒,所以在破坏后用电解尾液浸出。浸出办法是用单式的酸性或复式的中性一酸性的接连浸出法。浸出液中的Fe2+经MnO2或空气等氧化,沉积出Fe(OH)3,此刻砷、锑、锗等有害杂质也因共沉而除去。过滤洗刷后,调整泌液为中性送往净液工序。此滤液中除锌外还含有铜、钻、镍、镉,因而,有必要除去这些杂质。开始加锌粉和As203或Sb203,置换沉积铜、钻、镍后除去,用压滤机过滤,滤饼送往炼铜厂。滤液中再加锌粉,置换沉积镉,过滤后的沉积作为镉的质料。滤液送往电解工序。钴和α-亚硝墓β-酚反响生成溶解度小的有机化合物而除去,为削减试剂的用量,在用锌粉彻底除去铜、镉后参加溶液中除钻。净化后原液的标准组成的一例为Zn100-160kg/m3,Mn3kg/ m3 ,Cu3, Cd<0.2g/m3,Co<0.5g/m3,Ni<0.05g/m3,As, Sb,Ge<0.03g/m3, C1<50g/m3,F<10g/m3因冶炼厂各异而多少不同。电解提取是使用锌的氢超电压大,所以净化工序在湿式冶炼中最为重要。该净化后的原液和锌电解液(Zn50-60kg/m3,H2S04150-200kg/m3)混合,为使阴极表面平坦加胶、为避免酸雾加豆饼渣,阳极用Pb-Ag合金(0.7-1.0%Ag),阴极用铝极,用250-600A/m2的阴极电流密度电解24-48小时,剥掉在铝极上分出的锌,用低频电炉熔融.铸为锌锭。

碲化镉

2017-06-02 16:18:18

金属 碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质  棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。   密度:6.20   熔点:1041℃   碲化镉的用途   光谱分析。也用于制作太阳能 电池 ,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海 有色网www.smm.cn 。我们会为您提供最为详细的相关资讯。&nbsp;本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

镉的行业发展

2019-10-29 11:45:23

镉于1817年被德国人发现,在此后的100年间,德国一向是唯一且重要的镉出产国。现在,亚洲是镉的主要生产区。镉一般是作为锌精矿的伴生品进行出产的。废镍镉电池也是回收镉的一个重要来源。镉的主要消费范畴是可充电的镍镉电池的出产,其他的终端使用包括:颜料、涂层、电镀,以及塑料生产。但是镉的毒性问题是其开展使用的最大绊脚石,尤其是在欧盟的法律中,镉在许多使用范畴都遭到极大的约束:一方面是镉需求遭到各国法律规定的约束,增长缓慢;另一方面却是镉一向以锌的伴生品产值不断增加,这就导致了镉产能过剩。近年来,随着太阳能蓄电池产业的快速开展,镉使用范畴又找到了一个新的增长点,太阳能电池有高光吸收率、转换效率高、电池功能安稳等许多优势,使用前景广阔,对于镉的需求也相当可观。

镉的用途简介

2018-09-27 10:10:23

镉作为合金组土元能配成很多合金,如含镉0.5%~1.0%的硬铜合金,有较高的抗拉强度和耐磨性。镉(98.65%)镍(1.35%)合金是飞机发动机的轴承材料。很多低熔点合金中含有镉,着名的伍德易熔合金 中含有镉达12.5%。镍-镉和银-镉电池具有体积小、容量大等优点。镉具有较大的热中子俘获截面,因此含银(80%)铟(15%)镉(5%)的合金可作原子反应堆的控制棒。镉的化合物曾广泛用于制造颜料、塑料稳定剂 、荧光粉等。镉还用于钢件镀层防腐,但因其毒性大,这项用途有减缩趋势。用于电底、制造合金等;并可做成原子反应堆中的中子吸收棒。镉氧化电位高,故可用作铁、钢、铜之保护膜,广用于电镀上,并用于充电电池、电视映像管、黄色颜料及作为塑料之安定剂。镉化合物可用于杀虫剂、杀菌剂、颜料、油漆等之制造业。

钽铌精矿分解

2019-03-05 12:01:05

钽铌矿藏很难将其分化。一般依据精矿中的矿藏结构及其化学成分和需求取得什知类型的中间化合物和纯度要求来挑选分化办法。工业上钽铌精矿分化办法首要有三种:碱分化法、酸分化法和氯化分化法。此外还有氟化分化、电解分化法;分析化学中还选用KHSO4、K2S2O7、KHF2分化样品。其间,碱熔分化法是最最选用的工业办法,后续首要接分步结晶法别离钽和铌,也可进行酸转化接溶剂萃取法;氯化分化法一般后续精馏法别离钽和铌;酸分化法首要接溶剂萃取法或离子交换法别离钽和铌。       一、碱分化法       碱法分化钽铌精矿首要选用NaOH和KOH试剂,为了下降熔融物的熔点和黏度,常选用NOH+Na2CO3或KOH+K2CO3混合试剂。碱分化按设备和工艺分有坩埚碱熔分化和高压釜碱液分化两种办法。图1为碱熔融处理钽(铌)铁精矿的准则流程图。从中可看出NaOH和KOH熔融的不同之处。   图1  碱分化流程简图       (一)钽铌碱金属化合物的一般性质       和本家中的磷相似,钽、铌和碱金属氧化物能生成偏钽(铌)酸盐(MTaO3、MnbO3)(M为钾钠等碱金属,下同)、焦钽(铌)酸盐(M4Ta2O7、M4Nb2O7)和原钽(铌)酸盐(M2TaO4、M3NbO4)等多种盐类,一般将它们表明为:M2O·nTa2O5、M2O·nNb2O5,式中n值改变很大,常在10以上。实际上它们归于一种多聚体,其原子比一般为M∶Ta(Nb)=16∶14;14∶12;12∶10;16∶12∶;10∶8;7∶5;8∶6;6∶4,化合物中的结晶水分子数改变也很大,从1到40或更多。       钽铌碱金属化合物有如下性质:       1、当用碱金属的氧化物或碳酸盐与钽(铌)氧化物熔融时,因组分不同能够得到不同成分的钽铌酸盐,当M2O∶(Ta,Nb)2O5=1∶1时生成偏钽(铌)酸盐;当碱过量时生成原钽(铌)酸盐见图2、图3、图4。     2、钾和钠的偏钽(铌)酸盐少溶于水,不发作水解,也不为所分化。并且偏钽(铌)酸盐较易被氢复原成贱价氧化物:   2MnbO3+H2=M2O+2NbO2+H2O       复原温度>400℃   2MtaO3+H2=M2O+2TaO2+H2O       复原温度600~700℃     图2  K2O(K2CO3)-Nb2O5系熔度图    图3  K2O(K2CO3)-Ta2O5    图4  Na2O(Na2CO3)-Nb2O5系熔度图       3、各种温度下偏钽(铌)酸盐在水中的溶解度见表1,溶度积见表2,一些热力学数据见表3。   表1  碱金属偏钽(铌)酸盐在水中的溶解度    (mol/L)化合物0℃25℃50℃75℃100℃NaNbO34.3×10-45.9×10-41.6×10-33.7×10-37.4×10-3KnbO37.4×10-48.7×10-44.4×10-39.5×10-31.3×10-2NaTaO34.69×10-55.46×10-51.10×10-43.19×10-42.39×10-4KtaO34.34×10-54.87×10-51.22×10-42.88×10-44.89×10-4   表2  25℃下碱金属偏钽(铌)酸盐的溶度积化合物溶度积化合物溶度积NaNbO33.23×10-7NaTaO32.99×10-9KnbO37.48×10-7KTaO32.37×10-9       表3  偏钽(铌)酸盐的一些热力学数据,温度20℃化合物溶解度/ (mol·L-1)自由能△F/ (kJ·mol-1)溶解热/ (J·mol-1)晶格能/ (J·mol-1)NaNbO34.803×10-436.819260.2496886.59KNbO36.726×10-435.145678.6952785.76NaTaO34.679×10-548.534444.7688960.65KTaO33.959×10-549.371259.8312843.49       4、与偏钽铌酸盐不同,原钽铌酸盐简单水解并构成一系列的多钽(铌)酸盐,如M8(Ta,Nb)5O16·nH2O,M7(Ta,Nb)5O16·nH2O,M14(Ta,Nb)12O37·NH2O等,又如水解反响:   6Na3TaO4+21H2O=Na8Ta6O19·16H2O+10NaOH       铌也有相似反响。并且两者的高碱酸盐(K5NbO5)都存在这样的水解次序:      5、当Na+离子过量时,多钽(铌)酸钠很少溶解,如90℃时Na7Nb12O37·23H2O在水和1%NaOH溶解中的溶解度分别为26g/L和1.1g/L。可是多钽(铌)酸钾则有很高的溶解度,乃至钾离子很多过剩时也溶解度很大。例如中,25℃时六铌酸钾K8Nb6O19·16H2O在水中的溶解度到达111.8g/L,生成的六钽(铌)酸钾盐可溶于水而不分化,并且可用真空蒸腾浓缩使以晶体方式分出。       (二)碱熔融分化钽(铌)铁矿精矿       1、碱熔分化工艺进程       国内外碱溶分化钽铌精矿的工业施行办法根本相似。一般将精矿与放内钢质坩埚中,在煤气敞式炉或竖式电炉中进行熔炼。大致的碱:精矿(分量比)=3∶1(碱耗约为反响理论需求量的6~8倍)。为了下降熔融体的温度和黏度,往往选用90%的NaOH加10%的Na2CO3混合试剂。       操作时先将混合试剂在400~500℃下熔融,然后边拌和边参加磨至0.1mm的精矿(精矿过细会形成较高的漂尘丢失,参加量过大或过快会引起剧烈反响,导致熔体喷溅)。随精矿持续批量参加,将温度升至800℃,保温20~30min,然后将熔体倒入水中(水淬),或薄层倒入铁盘中。熔炼工艺也选用相似的办法。       2、熔炼反响       首要的熔炼反响如下:       Fe[(Ta,Nb)O3]2+6MOH=2M3(Ta,Nb)O4+FeO+3H2O       Mn[(Ta,Nb)O3]2+6MOH=2M3(Ta,Nb)O4+MnO+3H2O       FeWO4+2MOH=M2WO4+FeO+H2O      MnWO4+2MOH=M2WO4+MnO+H2O       FeTiO3+2MOH=M2TiO3+FeO+H2O       Al2O3+2MOH=2MAlO2+H2O       SiO2+2MOH=M2SiO2+H2O       SnO2+2MOH=M2SnO2+H2O       熔融时参加氧或硝石等氧化剂,使铁锰氧化。       NaOH和KOH分化的不同在于:NaOH分化时多钽酸钠和多铌酸钠与氧化铁、氧化锰均转入沉积中,而大部分硅、锡、钨、铝则以硅酸盐等方式转入溶液中。然后加热用处理沉积物浸洗掉铁和锰,最终获工业纯钽铌混合氧化物。而用KOH分化时,用水浸熔体可使大部分钽和铌以可溶性多钽(铌)酸钾的方式进入溶液,氧化铁、氧化锰和钛酸钾则留在水浸渣中。水浸液中再参加氯化钠,使钽铌以难溶的多钽(铌)酸钠方式悉数沉积出来。再用处理沉积物即可获钽和铌的混合氧化物。       KOH分化所得钽铌混合氧化物的纯度较NaOH分化混合氧化物高,缺陷是钽铌的直收率偏低(仅80%)。       (三)碱溶液高压釜分化       碱熔分化的缺陷在于碱耗过高(每1kg精矿耗碱3kg)。选用碱溶液高压釜分化可使碱耗降至0.5kg(为碱熔法的1/6)。分化时选用30%~40%NaOH和KOH,温度在150~200℃,时刻约2~3h,分化时先生成多钽(铌)酸,然后转化成偏钽(铌)酸,反响为:   3Fe[(Ta,Nb)O3]2+8NaOH+(n-1)H2O→Na8(Ta,Nb)6O19·nH2O+3Fe(OH)2   Na8(Ta,Nb)6O19·nH2O→6Na(Ta,Nb)O3+2NaOH+(n-1)H2O       分化后弄清或过滤,滤液初充碱后返回心压釜再用。沉积物则用15%HCl浸洗(固∶液=1∶1,80~90℃,30min)。过滤所得偏钽铌酸盐在20℃下即可为15%~20%HF所溶解。       用KOH分化时(33%~37%KOH,200℃),为进步生成多钽(铌)酸的速度,还向高压釜参加氧化剂(氧压0.4~0.5MPa),所生成的K8(Ta,Nb)6O19·Nh2O虽难溶于KOH溶液,但易溶于水,为此在高压釜分化后沉积物先水浸[固液比1∶(4~5)],将钽铌转入溶液,将溶液蒸腾浓缩后再加KOH使从头沉积出六钽(铌)酸盐,经分化即可得到适当纯的钽铌混合氧化物。       二、酸分化       钽铌的高度耐蚀性的长处,关于冶金更成了缺陷:很难用廉价的工业无机酸作为他们的冶金根底。除了腐蚀性最强的HF酸外,钽铌很难为其他无机酸所溶解,并且溶解度很小。从溶解度表4可看出,能用于分化精矿的只能是HF酸,其次是硫酸。因此有分化和硫酸分化两种办法,其间法用于高档次精矿,硫酸法用于低档次质料。   表4  钽铌在无机酸中的溶解度(20℃)酸名酸浓度/ (g·L-1)Na2O5溶解度/ (g·L-1)酸浓度/ (g·L-1)Ta2O5溶解度/ (g·L-1)HCl660.072360.2314514.8362923.48H2SO4680.047490.2059007.67841.8HF4187753021282       (一)分化法       和其他分化办法不同,分化一起也是浸出进程。分化一般在内衬铅、钼镍合金或镶砌石墨板的反响器中进行,拌和哭喊用蒙耐尔合金(含铜27%~29%铜镍合金)制造。       浸出液中钽铌以络合酸的方式存在,其组分与HF酸的浓度有关。对铌而言随HF酸浓度的添加,会呈现由氟氧铌酸络合物型向氟铌酸络合物型的过滤:H2NbOF5→H2NbF7→HNbF6,对金属性较铌强的钽则由:H2TaF7→HTaF6。浸出反响为:       Nb2O5+10HF=2H2NbOF5+3H2O(低酸度HF<20%)       Nb2O5+14HF=2H2NbF7+5H2O(高酸度 HF浓度为20%~40%)       Nb2O5+12HF=2HNbF6+5H2O(高酸度 HF浓度为20%~40%)       Ta2O5+14HF=2H2TaF7+5H2O(高酸度 HF浓度为20%~40%)       Ta2O5+12HF=2HTaF6+5H2O(高酸度 HF浓度为20%~40%)       即便在高酸度下,除了占主导地位的一种络合物外,实际上是多种络合酸并存。图5和图6分别为NbF5-HF-H2O和TaF5-HF-H2O在20℃时的等温溶解度图。  图5  NbF-HF-H2O系溶解度图(20℃)    图6  TaF5-HF-H2O系溶解度(温度20℃)       关于精矿,因为存在多种杂质,反响要杂乱得多,例如铁锰等也会以络合物方式如HFeF3,HMnF3等存在浸出液中。以钽(铌)铁矿为例,分化浸出反响还有:   Fe(Ta,Nb)2O6+17HF=2H2(Ta,Nb)F7+HFeF3+6H2O   Mn(Ta,Nb)2O6+17HF=2H2(Ta,Nb)F7+HMnF3+6H2O       除了钽、铌、铁、锰之外,在伴生矿藏中所含的其他元素如锡、钛、硅、钨也以络合酸H2SnF6、H2SiF6、H2WF8的方式进入溶液。而稀土、铀、钍、钙等则以沉积物方式REF3、UF4、ThF4、CaF2残留在浸出渣中。     为了加速反响速度和进步钽铌的分化率,分化时还参加硫酸。硫酸的参加还有利于后认取工序进步杂质的别离效果。一般选用60%~70%浓度的,分化温度为90~100℃,耗酸量按化学反响计量的理论用,并超越5%~10%。分化时,将磨至粒度<0.074mm的精矿边拌和边参加反响器中,操控温度小于50℃,因分化为放热反响,加料过快,反响过于剧烈,易形成HF酸蒸发丢失。矿粉加完后,通蒸气或用石墨电阻发热体持续加热至90~100℃,拌和保温4h,冷却后过滤或直接送萃取工序。一般钽铌分化率达98%以上。分化残渣中的钽铌含量低于1%。       (二)硫酸分化法       钽铌能和硫酸效果生成多种硫酸盐,并且在硫酸介质中钽和铌表现出较大的不同。例如铌更易被复原成贱价和更易发作水解,在硫酸介质中铌很简单被锌齐、金属镁和碱金属复原到+3价。钽很难复原,并且只能到达+4价。钽铌硫酸化合物都易和碱金属和铵生成复盐,并且这些复盐都简单水解。随硫酸浓度添加,反响如下:   Nb2O5+H2SO4=Nb2O4SO4+H2O   Nb2O5+2H2SO4=Nb2O3(SO4)2+2H2O   Nb2O5+3H2SO4=Nb2O2(SO4)3+3H2O(中)   Nb2O5+4H2SO4=Nb2O2(SO4)4+4H2O(中)       钽的金属性较强,除上述反响外,还有反响:   Ta2O5+5H2SO4=Ta2(SO4)5+5H2O       图7为Nb2O5-SO3-H2O的等温溶解度图。硫酸分化后一般再用水浸熔料使钽铌水解沉积,一起别离掉大部分铁、锰等可溶性硫酸盐杂质。但也有从硫酸溶液中直接萃取别离钽和铌。    图7  20℃下Nb2O5-SO3-H2O系溶解度图

稀土精矿碱法分解

2019-02-26 10:02:49

首要有烧碱分化法和纯碱焙烧法。前者首要用于分化独居石和磷钇矿精矿,后者首要用于分化氟碳铈矿和独居石的混合精矿。 烧碱分化法 有液碱(烧碱的水溶液)法和固碱法两种办法。液碱法又分常压法、压煮法和热球磨法。工业上大多选用液碱常压分化法。 独居石精矿液碱分化 1952年印度稀土有限公司(Indian Rare EaithLtd.)在特兰旺科一科琴(Travancore-Cochin)的阿尔沃耶(Alwaye)建成了世界上第一座液碱分化独居石精矿的工厂。直至90年代初期,美国、巴西、法国、马来西亚、朝鲜等国也相继建成了液碱处理独居石精矿的工厂。我国第一条液碱分化独居石精矿的出产线于1964年在上海跃龙化工厂投产。 液碱分化独居石精矿出产氯化稀土首要由液碱分化、归纳收回、优先溶解、除镭等作业组成。 在液碱分化中,独居石精矿中的稀土和钍与碱液效果生成氢氧化物沉积: REPO4+3NaOH=RE(OH)3↓+Na3PO4 (1) Th3(PO4)4+12NaOH=3Th(OH)4↓+4Na3PO4 (2) 而磷则生成可溶性的Na3PO4转入分化液中。因为分化进程在精矿颗粒表面生成的氢氧化物阻止了液碱与矿粒内部稀土持续反响,故分化前须先将精矿湿磨细至0.043mm粒级,然后再与含。NaOH50%的溶液在413K温度下反响约5h。实践用碱量约为精矿质量的1.5倍。分化进程在外加热的钢制反响器中进行。 碱液分化完成后,分化液中含过量NaOH和新生成的Na3PO4 有必要归纳收回。收回的办法是用热水稀释并洗刷分化产品,过滤后从滤液中收回Na3PO4和剩下的烧碱。独居石精矿含P2O5约25%,仅低于稀土,故Na3PO4 是烧碱分化独居石精矿的一种重要副产品。 滤饼的首要成分为稀土、钍、铁等的氢氧化物,运用稀土和其他元素的碱性差异,用稀优先溶解稀土: RE(OH)3+3HCl=RECl3+3H2O (3) 优先溶解结束时,溶液pH约4.5,在此pH下钍、铀、铁等仍残留在滤饼中。优先溶解产品经过滤所得的滤渣是提取铀、钍的质料(见铀钍与稀土元素别离)。 过滤所得滤液尚含有微量钍、铀的放射性蜕变产品226Ra和228Ra,有必要经过除镭处理。镭和同属ⅡA族元素,其硫酸盐溶度积均很小(298K时BaSO4为1.1×10-10,RaSO4为4.2×10-11)。往滤液中参加BaSO4就可使镭被BaSO4载带子沉积中: Ba2+(Ra2+)+2SO42-=BaSO4(RaSO4)↓ (4) 除镭后的清液为纯洁的RECl3溶液,可直接浓缩、结晶分出混合稀土氯化物产品,也可先经过P204溶剂萃取分组(见稀土元素革取分组别离)得到混合轻稀土氯化物和中重稀土富集物两种产品。 法国罗纳一普朗克公司(Rhone-Poulene)在拉罗歇尔(LaRochelle)的工厂选用在压煮器内用液碱分化独居石精矿的办法。因为压煮器的温度较常压容器的高,能加快独居石精矿的分化反响,然后可缩短分化时刻、下降碱耗。 与浓硫酸法分化独居石精矿(见稀土精矿硫酸法分化)比较,液碱分化法有两大长处:(1)分化反响不发作酸气,全流程产出的三废量少;(2)经济合理,占独居石精矿分量90%以上的稀土、磷、铀、钍均得到收回,分化剂中的钠成为副产品Na3PO4•12H2O的组成部分而得到运用。但也存在需运用磨细的高质量精矿等问题,因为精矿含杂质多会添加碱的耗费量。 白云鄂博混合型稀土矿精矿烧碱分化白云鄂博混合型稀土矿精矿含钙较高(折组成CaO5%~10%),钙首要以萤石(CaF2)形状存在。钙含量过高不只会导致混合稀土氯化物产品质量下降乃至不合格,还会使稀土收率下降。我国已研讨出除掉精矿中钙的办法。 白云鄂博混合型稀土矿精矿含有氟碳铈矿和独居石两种稀土矿藏,在碱分化时,除发作独居石和烧碱式(1)的反响外,还发作氟碳铈矿和烧碱的反响: RECO3+3NaOH=RE(OH)3+Na2CO3+NaF (5) 影响稀土矿藏分化的首要因素是分化温度和烧碱浓度,较高的分化温度和较高的烧碱浓度都可加快分化反响。烧碱液的沸点随烧碱浓度的添加而升高,因此添加烧碱浓度亦可进步常压烧碱液分化的温度。但烧碱浓度过高又会引起分化产品过于粘稠,影响反响进行。 1982年我国选用固碱电场分化白云鄂博混合型稀土矿精矿。其作法是将除钙的精矿(含水分12%~14%)和固体碱混兼并拌和10min,然后装入分化设备,通电分化15~20min。其间最终7~8min的物料温度达453K。因精矿含有水分,碱易吸潮,故这种反响实践上是浓烧碱液与矿藏的反响,但分化设备中究竟还存在着固碱,所以存在分化反响不易进行的死角。电场分化时刻很短,能耗和碱耗都低。 1985年我国又选用在电加热的反响器平分化除钙后的白云鄂博混合型稀土矿精矿办法。该法运用含烧碱60%~70%的溶液,在433~453K温度下分化40min。这种分化工艺操作简略,耗碱量低。因为烧碱报价比硫酸高得多,故处理规划远不如浓硫酸法分化。 白云鄂博混合型稀土矿精矿烧碱法分化出产氯化稀土的工艺进程与独居石精矿液碱分化出产氯化稀土的类似,分化产品经水洗、过滤、优先溶解稀土、浓缩、结晶等处理,最终得到混合稀土氯化物产品。或在优先溶解稀土后,经溶剂萃取分组,得到混合轻稀土氯化物和中重稀土富集物产品。没有发现白云鄂博混合型稀土矿精矿中有镭的同位素,故全流程无需设除镭工序。 纯碱焙烧(或烧结)法纯碱即为碳酸钠(Na2CO3),1958年苏联用纯碱焙烧(烧结)分化独居石精矿。1963年我国开端研讨用纯碱焙烧白云鄂博混合型稀土矿精矿,1970年前后曾用于工业出产。前苏联也曾进行过用纯碱烧结分化稀土氟碳酸盐和磷酸盐混合精矿的研讨。 按白云鄂博混合型稀土矿精矿质量的10%~30%参加纯碱,混合后于873~973K温度下焙烧,稀土矿藏即可分化生成RECO3,且精矿中的Ce抖被氧化成ce”,为后续作业的铈与其他稀土别离发明了条件。焙烧矿经磨细后,再用水、稀酸洗去非稀土杂质,然后用含硫酸0.25mol/L溶液浸出稀土。浸出液中Ce4+与F-构成合作物。如浸出液的F一浓度过低,则会使稀土浸出率和铈氧化率明显下降。浸出后过滤,滤液用1mol/LP204-0.2mol/LTBP-火油组成的有机相萃取Ce4+,得到纯度超越99.9%的CeO2。因浸出液中含F-及铁、硅等杂质,萃取进程中易发作乳化。参加可抑制因F-而发作的乳化。 前苏联所用的稀土混合精矿由钇氟碳铈矿(Y,Ca)FCO3•CaCO3、磷钇矿、独居石和钇萤石组成。精矿档次低(均匀含RE2O3约6%),还含很多萤石、铁矿藏、云母及锆石,且各矿藏含量改变大。以精矿质量30%的Na2CO3+Na2SO4为分化剂,在1173K温度下焙烧可使稀土矿藏分化成可溶性的碳酸盐或硫酸盐。萤石有助于稀土矿藏分化。当精矿中含萤石高于15%时,不加分化剂在1273K温度下焙烧稀土矿藏即自行分化。 展望从环境保护、资源归纳运用、经济效益等方面衡量,独居石精矿的液碱分化都不失为一种较好的办法,因此为全世界大多数处理独居石的工厂所选用。但一般选用含烧碱50%的碱液在常压下分化,不只碱耗和能耗高,并且分化时刻长,因此极待改善。改善方向是从工艺和设备下手,环绕强化分化条件(如恰当进步分化温度)来进行,这是削减耗费、进步功率、下降成本的有效途径。烧碱分化白云鄂博混合型稀土矿精矿的研讨成果与工业实践都可以在这些方面供给学习。 将白云鄂博混合型稀土矿精矿的氟碳铈矿与独居石分隔,即把混合精矿分红两种精矿(见白云鄂博混合型稀土矿),运用这两种矿藏的不同特色别离处理:独居石精矿用烧碱法分化,制取混合稀土化合物,磷亦得到归纳收回;氟碳铈矿精矿选用氧化焙烧分化,Ce3+一起氧化成Ce4+,然后进行单一稀土别离(见稀土元素别离提纯)。这是白云鄂博混合型稀土矿精矿的最佳处理计划。

钼矿物原料的分解

2019-02-15 14:21:24

其首要使命是使辉钼矿转变为契合钢铁及化工部分使用要求的氧化物或钼酸盐。钢铁部分的要求首要是含硫、磷、砷低,化工部分则首要要求其在中可溶性好,即含MoS2、MoO2、CaMoO4等难溶于NH4OH中的化合物少。    辉钼矿的分化办法有氧化焙烧法和各种湿法分化法(拜见下图)。前者首要适用于处理标准精矿,后者既可处理精矿,亦可处理非标准精矿和中矿以及杂乱矿。    上述分化办法得到的Mo03粉,可直接制成三氧钼块用于炼钢。因为Mo02的密度比Mo03大,在高温下蒸发丢失小,近年来越来越多地选用MoO2块炼钢,处理辉钼矿时,有时直接制成moO2产品。

稀土精矿分解方法

2019-03-07 09:03:45

含稀土的原矿岩通过选矿后所到的高稀土档次的产品称为稀土精矿。表1中列出的是我国出产的稀土精矿的化学成分。精矿中的稀土与原矿岩中的稀土的赋存形状根本相同,仍然是难溶于水和一般条件下的无机酸的化合物。为使其易溶于水和无机酸,以便于从中收回稀土,工业上依据精矿中稀土存在的形状而选用相应的办法,将稀土矿藏转化为易于提取稀土的化合物。这样一个将稀土矿藏转化为易于提取稀土的化合物的进程称为精矿分化,稀土化合物中REO与稀土精矿的REO之比的质量百分数成为精矿分化率。 精矿分化的办法许多,归纳起来能够分为酸分化法、碱分化法、氧化焙烧法和氯化法四大类。 一、酸分化法包含硫酸、和氟氢酸分化等。 二、碱分化法首要包含分化和碳酸钠焙烧法等,它合适对稀土磷酸盐矿藏和氟碳酸盐矿藏的处理。 三、氧化焙烧办法首要用于氢碳铈矿的分化。 碳酸钠焙烧法、氧化钙焙烧法以及在焙烧进程中具有使三价铈化物被进一步氧化成四价的氧化物特色的分化办法都具有优先别离铈长处。 四、氯化法分化稀土精矿能够直接制得无水氯化稀土,其产品可用于熔盐电解制取混合稀土金属。 稀土精矿的分化办法许多,工业出产中一般依据下列准则挑选适合的工艺流程: (一)依据精矿中稀土矿藏的化学性质、稀土档次、其他非稀土化学成分等特色,先择分化办法,以求得高的分化率。 (二)由产品计划、原材料的直销和报价以及耗费状况,优化工艺进程以求得高的经济效益。 (三)便于收回有价元素和综合利用,有利于劳动卫生与环境保护。

碳酸钙和氧化钙烧结分解锆英砂制取二氧化锆

2019-03-05 10:21:23

一、工艺流程     碳酸钙、氧化钙烧结分化锆英砂的工艺流程见图1。图1  碳酸钙、氧化钙烧结分化锆英砂工艺流程     二、烧结反响     碳酸钙烧结反响: ZrSiO4+2CaCO3=CaZrO3+CaSiO3+2CO2 ZrSiO4+4CaCO3=CaZrO3+Ca3ZrSi2O9+4CO2 ZrSiO4+Ca3ZrSi2O9=3CaSiO3+2ZrO2     氧化钙烧结反响: ZrSiO4+CaO=CaSiO3+ZrO2 ZrSiO4+2CaO=CaZrO3+CaSiO3 2ZrSiO4+4CaO=CaZrO3+Ca3ZrSi2O9     三、烧结块浸出和沉积 CaO(g)+CaCl2(g)+2HCl=2CaCl2(l)+H2O Ca2SiO4(s)+4HCl=2CaCl2(l)+SiO2+2H2O CaSiO3(s)+2HCl=CaCl2(l)+SiO2+H2O     热浸出反响: CaZrO3+4HCl=ZrOCl2+CaCl2+2H2O     沉积反响: ZrOCl2+2NH4OH+nH2O=ZrO(OH)2·nH2O+2NH4Cl     四、首要工艺条件     碳酸钙、氧化钙分化锆英砂工艺条件见表1。 表1  碳酸钙、氧化钙分化锆英砂工艺条件工艺过程条    件分化率烧结 ZrSiO4∶CaO=1∶3.3~3.6(摩尔比);  CaCl2∶ZrSiO4=1∶5;1100~1200℃;4~5h97%~98% ZrSiO4∶CaO=1∶3.9~4.5(摩尔比);  CaCl2∶CaO=1∶5;1000~1100℃;8~10h90%~94%冷浸出 HCl=5%~10%烧结HCl=25%~30%;70~80℃HCl=20%~30%;80~90℃

氯化法分解锆英砂

2019-03-05 10:21:23

当温度在900℃以上,碳为还原剂时,锆英砂可与反响生成ZrCl4和SiCl4,从而将二氧化硅别离,主反响为: ZrSiO4+4Cl2+2C=ZrCl4(g)+SiCl4(g)+2CO2 ZrSiO4+4Cl2+4C=ZrCl4(g)+SiCl4(g)+4CO     取得的经水溶可制取二氧化锆或其他锆化学制品,工艺流程参见图1。图1  锆英砂分化和制备锆化合物的准则流程

稀土精矿分解工艺

2019-02-21 08:58:48

含稀土的原矿岩通过选矿后所到的高稀土档次的产品称为稀土精矿。表1中列出的是我国出产的稀土精矿的化学成分。 精矿中的稀土与原矿岩中的稀土的赋存形状根本相同,仍然是难溶于水和一般条件下的无机酸的化合物。为使其易溶于水和无机酸,以便于从中收回稀土,工业上依据精矿中稀土存在的形状而选用相应的办法,将稀土矿藏转化为易于提取稀土的化合物。这样一个将稀土矿藏转化为易于提取稀土的化合物的进程称为精矿分化,稀土化合物中REO与稀土精矿的REO之比的质量百分数成为精矿分化率。 稀土精矿的首要化学成分表精矿称号产地REOTFe(Fe2O3)P(P2O5)CaOBaOSiO2ThO2U3O8其他元素氟碳铈矿四川冕宁60.12(0.61)0.4611.450.230含F6.57混合型矿内蒙包头50.403.703.505.557.580.560.219含F5.90独居石中南某地60.30(1.80)(31.50)1.464.700.22磷钇矿南边某地550.5(26~30)1.031~2含钨 磷钇矿南边某地10~2010~20(5~8)13~100.5~1含WO3  15~25褐钇铌矿广西24.272.105.2010.502.47含(NbTa)2O5 20.05褐钇铌矿湖南20.821.964.435.602.24含(NbTa)2O3 26.99褐铌铌矿广东30.661.332.565.002.19含(NbTa)2O3 26.99 精矿分化的办法许多,归纳起来能够分为酸分化法、碱分化法、氧化焙烧法和氯化法四大类。 一、酸分化法包含硫酸、和氟氢酸分化等。硫酸分化法适用于处理磷酸盐矿藏(如独居石、磷钇矿)和氢碳酸盐矿藏(氟碳铈矿)。分化法使用有限,只适于处理硅酸盐矿藏(如褐帘石、硅铍钇矿)。分化法适于分化铌钽酸盐矿藏(如褐钇铌矿、铌钇矿)。酸分化法的特色是分化矿藏能力强,对精矿档次、粒度要求不严,适用而广,但挑选性差,腐蚀严峻,操作条件差,三废较多。 二、碱分化法首要包含分化和碳酸钠焙烧法等,它合适对稀土磷酸盐矿藏和氟碳酸盐矿藏的处理。关于单个难分化的稀土矿藏亦有选用熔合法的。碱法分化的特色是工艺办法老练,设备简略,归纳使用程度较高。但对精矿档次与粒度要求较高,污水排放量大。 三、氧化焙烧办法首要用于氢碳铈矿的分化。焙烧进程中氢碳铈矿被分化成稀土氧化物、氟氧化物、二氧化碳及氟的气态化合物,其间三价的铈氧化物一起被空气中的氧进一步氧化成四价的氧化物。该办法的缺陷是氟以气态化合物随焙烧尾气进入大气中,对环境有必定的污染。长处是焙烧进程中无须参加其他的焙烧尾气进入大气中,对环境有必定的污染。长处是焙烧进程中无须参加其他的焙烧助剂,而且使用四价铈三价稀土元素的化学性质上的不同。能够选用硫酸复盐沉积或优先溶解三价稀土元素的办法,优先将占稀土配分约50%的铈提取出来。这使得进一步的稀土萃取别离工艺进程简化,出产成本下降。 碳酸钠焙烧法、氧化钙焙烧法以及在焙烧进程中具有使三价铈化物被进一步氧化成四价的氧化物特色的分化办法都具有优先别离铈长处。 四、氯化法分化稀土精矿能够直接制得无水氯化稀土,其产品可用于熔盐电解制取混合稀土金属。氯化是指将碳与稀土精矿混合,制团,在竖式氯化炉的高温下直接通入的进程。依据生成不同氯化物的沸点差异,可一起得到三种产品:稀土、钙及等金属的氯化物,呈熔体状况流入氯化物溶盐接收器;低沸点的氯化物(钍、铀、铌、钽、钛、铁、硅等)为气态产品,从熔盐中蒸发后,被搜集在冷凝器内,再归纳收回;未分化的精矿与碳渣等高沸点成分则为残渣。氯化法现在因为设备的需氯腐蚀材料较难处理,放射性元素钍散布在三种产品中,所得熔盐成分杂乱,劳动条件较差等问题的存在而在我国尚为被工业选用。 稀土精矿的分化办法许多,工业出产中一般依据下列准则挑选适合的工艺流程: (一)依据精矿中稀土矿藏的化学性质、稀土档次、其他非稀土化学成分等特色,先择分化办法,以求得高的分化率。 (二)由产品计划、原材料的直销和报价以及耗费状况,优化工艺进程以求得高的经济效益。 (三)便于收回有价元素和归纳使用,有利于劳动卫生与环境保护。

电解沉积法提取镉

2019-03-04 16:12:50

镉是化学元素周期表中第五周期ⅡB族元素,原子序数48,元素化学符号Cd,原子量112.4,原子的外电子层构型4d105s2。镉的熔点321℃,沸点778℃,密度8.65g/cm3。镉的硬度大于镉而次于锌,镉与锌的化学性质十分相似,在常温干空气中不被氧化,遇湿润空气缓慢发作反响而失去光泽。镉是一种有毒物质。镉的化合物主要有CdO和CdS及CdSO4。地壳中镉的丰度为1×10-5%,我国铋的储量为50万吨。镉在地壳中没有独自矿床,常与铅锌矿共生,选矿时进人锌精矿。在湿法炼锌溶液净化进程产出的铜镉渣和火法炼锌厂的精馏进程产出的镉灰都是提取金属镉的主要原料。提取镉的冶金办法主要有电解堆积法、置换法和联合法。    在湿法炼锌工艺中,锌焙砂浸出液净化加锌粉除铜镉时产出铜镉渣,该渣含镉5%-10%,含铜约4%,50%左右是未反响的锌,是制取金属镉的主要原料。电解堆积镉的典型流程是:铜镉渣硫酸溶液浸出→锌粉堆积镉绵→海绵镉溶解造液与净化→镉电解堆积。    (一)铜镉渣浸出    此作业在以空气或机械拌和的浸出槽中进行。用镉电解废液作浸出剂,液固比(5-7):1,温度85-90℃,时刻4-6h,浸出完毕参加石灰乳或氧化锌粉中和,操控pH5.4堆积除铜。得到浸出清液含Cd 3-10g/L,浸出渣含Cd 0.8%-0.9%、铜16%-19%、锌7%-10%。    (二)浸出液沉镉和海绵镉溶解    含镉浸出液在60℃、pH3-4条件下,加人粒度0.13-0.15mm的锌粉置换出镉,得到海绵镉成分为(%):Cd 60-80,Cu 0.5-5.0,Zn 9-10。新滤出的海绵镉需堆积7-15天,使其天然氧化,然后在拌和槽中85-90℃温度下浸出3h。待溶液酸度降到1g/L时,加KMnO4氧化除Fe,再加石灰乳调pH至5.4除杂质。然后加人海绵镉将溶液pH降到4.0除铜,除铜后过滤所得滤液送去电积镉。    (三)镉电解堆积    在有防腐面料的电解槽中进行,用铝板作阳极,含Ag 1%的Pb-Ag合金作阴极。电极反响是:    电积作业在28-32℃温度下进行,电流密度65-100A/m2,槽电压2.5V,电积周期24h。阴极上堆积镉片剥下洗净送去铸锭。    镉铸锭先在熔镉内参加NaOH,升温至450℃,加进电积镉片,掩盖NaOH 10-20mm。待镉液表面亮光时开端浇铸,产出镉锭纯度可达99.99%。

金属冶炼中镉回收

2019-02-27 12:01:46

在湿法炼锌的净化过程中,经过锌粉的置换沉积而将镉分离出来,以此为质料收回镉。火法冶炼中的大部分搞在焙烧时蒸发进入尘埃中,此亦为收回镉的质料。置换沉积的镉含20-40%Zn, 10-30%Cd,1-20%Cu,首先用锌电解尾液溶解,然后用锌粉里换沉积铜,过滤后用锌粉沉积镉。这种镉为海绵镉,用镉电解尾液溶解,用KMnO4、Ca(OH)2、锌粉净化后,用含镐50-80kg/m’,锌30-70kg/m3,游离硫酸110-140kg/m3的电解液进行电解提取。 最近,因为净化技能的前进.能够得到高纯度的镐的沉积物,沉积物用锌电解尾液溶解后,用KMnO4。中和沉积除掉铅、而后向滤液中浸入锌板,置换分出镉。该海绵福纯度高,脱水、成型,加NaOH溶镉,除锌后铸锭市售。此法比电解提取法工序简洁,特别可得纯度达99.99%的镉。烧结时尘埃中的镉用H2SO4浸出,用锌板从浸出液中置换出镉,所得海绵镉经脱水,成型后熔做,用蒸馏精粹法制得纯镉.