红铜的硬度
2019-05-28 09:05:47
红铜即纯铜,又叫紫铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力制作,很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电性ir1u1et能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。 红铜成分很纯,除天然的微量(0.10.2%)杂质外,没有人工参加锡或铅使成合金。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带上海废铜收回、气垫,汇流排端子。电磁开关、笔筒、屋根板等。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电功能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带、气垫,汇流排端子。电磁开关、笔筒、屋根板等。 红铜的密度8.96g/(cm) 红铜的比重8.89g/(mm) Cu≥99.95% O<003 电导率≥57ms/m 硬度≥85.2HV
电石渣制备碳酸钙工艺研究
2019-03-07 09:03:45
渣是制取聚氯乙烯(PVC)、气体时发生的工业废渣。渣中首要的物质为氢氧化钙,还含有少数的无机杂质,比方MgO、FeO和SiO2等,因为渣内含有少数的C、S、P等杂质使其呈现灰白色,并伴有浓郁的冲鼻滋味。渣中的颗粒十分的细小,粒径大约在10-15μm;渣的pH值大约能够到达12.5左右,呈现比较强的碱性。因而以渣为质料出产高需求量的超细活性碳酸钙,无疑是处理渣最好的途径。
1、渣的预处理
渣浆的预处理方法直接影响到CaCO3产品质量的好坏和渣的运用率。一般渣的预处理方法包含两种,105℃下枯燥和530℃下锻烧。挑选105℃下枯燥一方面能够除掉渣内的水分,另一方面能够使渣内的有机物和挥发性杂质分化,然后能够减小碳酸钙制品中杂质的含量。530℃下锻烧一方面是使渣内的氢氧化钙分化成氧化钙,另一方面使渣内的金属化合物转换成难溶物质。
试验标明,渣经105℃枯燥的作用最好。在这种预处理方法下所得Ca(OH)2回收率和碳酸钙白度最高。
2、渣的浸出
许多金属氢氧化物是不溶性阳离子物质,只需操控必定的碱性条件,可使系统中的金属阳离子有挑选性的沉积。依据溶度积原理,在浸取的进程中,pH操控在必定规模以内,就能够使Mg2+、Fe3+、Mn2+等杂质离子先构成氢氧化物沉积,而Ca2+达不到Ca(OH)2的溶度积仍留在溶液中,过滤掉沉积即可得到不含镁、铁、锰杂质的精制Ca2+溶液。
(1)浸出
高传相等选用对渣进行杂质处理后得到球形超细CaCO3,所得碳酸钙纯度大于98%,白度大于97,均匀晶粒尺度为45nm,电镜均匀粒径约为80nm,比表面积约为32m2/g。乔叶刚等选用必定浓度的溶解渣,过滤除掉不溶性杂质,使CaCl2溶液得到净化。
(2)氯化铵浸出
卢忠远等将渣参加质量分数为J%、过量30%的NH4Cl的溶液中反响,CaCO3的回收率最高达99%,所组成的碳酸钙为针状文石型碳酸钙。
(3)甘酸浸出
袁可等选用甘酸水溶液将渣中的有用钙转变为可溶性的甘酸钙,经过碳化,组成出球形碳酸钙。其工艺与氯化钱工艺十分类似,但在氯化铵系统中,所制备的碳酸钙描摹为立方形,而在甘酸系统中,碳酸钙的描摹则为球形。两者描摹彻底不同,这或许是因为甘酸对碳酸钙的描摹有抑制作用。
3、碳酸钙的制备
(1)CO2碳化
吴琦文等以渣为质料,CO2为碳源,制备纳米碳酸钙。在其制备进程中,研讨质料的浓度、CO2气体的浓度、CO2气体的流速、反响温度、拌和速率以及添加剂的用量对碳酸钙产品粒径和晶型的影响,结果标明:质料的浓度、CO2浓度和流速对碳酸钙均匀粒径有稍微的影响,在必定的条件下可制备颗粒粒径为50nm、均匀晶粒尺度约30nm的方解石型纳米碳酸钙颗粒。
Jun-HwanBang等运用CO2微气泡发生器组成得到小尺度、高比表面积的碳酸钙,并研讨了Ca(OH)2浓度、电解质的量、CO2流量和注入方法对碳酸钙的尺度、比表面积的影响。结果标明:CO2流量的添加会减小碳酸钙粒子的尺度,或许的原因是CO2流量的添加使得剪切速率变大而且添加了CO2的涣散;运用MBG(微气泡发生器)注入CO2要比惯例的泡沫发生器制得的碳酸钙粒子更小。
(2)碳酸钠碳化
YuDong等运用微乳液作为组成途径,以碳酸钠为碳源,可控的得到不同描摹的碳酸钙。经过操控这些参数:表面活性剂的品种、陈化时刻以及W0(水与表面活性剂的摩尔比)得到了许多新颖的描摹,纳米棒、六角圆片以及类镜头像结构。碳酸钠和氯化钙量的添加会使得碳酸钙粒子形状不规则,到达必定量后不会构成微乳液。
Fang-zhiHuang等以碳酸钠为碳源,经过参加可溶性添加物的正向微乳液得到不同描摹的碳酸钙粒子。当在甘酸润饰的正向微乳液下,碳酸钙生成中空的微球粒子,然而在Mg2+润饰的正向微乳液下,得到了许多新颖的分层霞石碳酸钙晶体,比方轴型霞石碳酸钙、圆片霞石碳酸钙等等。这些不同晶相的特殊描摹碳酸钙或许是因为碳酸钙的前体(球形的或许片状的纳米粒子)在两层的模版下,自发拼装构成的,意味着咱们能够在两层模版下,经过仿生组成手法,组成得到具有特殊描摹和结构的无机或许有机一无机杂化材料。
(3)碳酸铵碳化
张宏等选用以下试验工艺条件:浸取液Ca2+浓度为0.85mol/L,(NH4)2CO3:CaCl2=0.95:1(物质的量比),反响温度位15℃,组成得到碳酸钙的晶形为立方体,均匀粒径为50nm。试验进程发现,Ca2+浓度在1mol/L以下,跟着浓度的添加粒径线性下降,1mol/L以上则改变不明显;而且,Ca2+浓度在1mol/L以上,对渣中杂质的去除是十分晦气的。
闻琨等以渣为质料、氯化铵溶液为浸取剂、碳酸铵为碳化剂、柠檬酸为晶行操控剂,选用液相法制备了高纯度的纳米级碳酸钙。调查了钙浓度、柠檬酸的用量、碳化温度三种要素对碳酸钙晶型和粒径的影响,结果标明:钙浓度为0.6mol/L、柠檬酸与碳酸钙质量比为0.03、碳化温度为12℃为最佳工艺,所得碳酸钙粒径为40-60nm,为纯洁的方解石晶型。
4、渣碳酸钙在塑猜中的使用
聚
董卫龙等以渣为质料,或氯化铵为浸取剂提取渣内的Ca2+离子,并别离选用液相法和微乳法制备碳酸钙。选用微乳液法得到的超细活性碳酸钙与浙江菱化活性钙、纳米钙三种碳酸钙填充PP,力学功能结果标明:跟着碳酸钙含量的添加,力学功能都呈现了明显地下降,可是渣制备的碳酸钙填充PP的力学功能一直比浙江菱化活性钙、纳米钙填充PP的要高;流变功能显现渣制备的碳酸钙和浙江菱化活性钙填充PP后的熔体粘度整体比浙江菱化纳米钙填充PP的小。
单晶仲钨酸铵的制备工艺技术
2019-01-30 10:26:27
钨是战略资源,是我国的丰产元素和保护矿种。长期以来,我国出口钨的初级产品,进口高端产品,出口产品的价格仅为进口产品的1%,与我国的经济发展要求极不适应。为加快钨新材料研发进程,实现钨产品由初级向高技术含量、高附加值产品的转变,使我国钨资源优势转化为经济优势,研究高性能钨材料的制备技术具有重要的现实意义和发展前景。
由于遗传关系,仲钨酸铵(APT)的晶体特性,如晶体形貌、平均粒度和粒度分布、松装密度和流动性对后续粉末冶金产品-钨粉、钨丝和钨合金的材料性能影响极大。单晶APT因其具有优良的物理性能,是生产高性能钨材料的理想原料。首先,单晶APT粉体具有良好的流动性,由单晶APT经焙烧-氢还原制取的钨粉,在压制过程中因滑动磨擦阻力小,坯料的空洞缺陷明显降低,加工材料的力学性能大幅度提高。由于抗拉、抗断裂性能好,拉制过程钨丝的成品率为90%,而以多晶APT为原料生产的钨丝其成品率仅为70%。因此,单晶APT成为生产车用高品质钨丝的必选粉体原料。此外,单晶APT粉体具有较高的松装密度,坯料中晶粒间隙小而均匀,力学缺陷少,压实密度高,以其制取的合金材料其抗压、抗剪力、抗冲击性能优良。如以单晶APT制取的顶锤寿命是以多晶APT制取的2~3倍。由于配重作用大,单晶APT是生产装甲弹、高密度合金、微钻、数控刀片等高性能钨材料的优良粉体原料。
因此,单晶APT粉体的制备技术及其制备原理的研究,是一关键课题。国内外现有的对APT性能的研究,较多的是关注工艺条件与仲钨酸铵的粒度、粒度分布、松装密度和流动性等晶体特性的关系。笔者在探明单晶APT结晶原理基础上,研究了结晶装置、搅拌转速、温度等因素对仲钨酸铵团聚的影响。
一、试验部分
(一)试验原料及试剂
(NH4)2WO4溶液:为黑钨矿精矿经碱溶、离子交换法除杂净化转型后所得溶液,其ρ(WO3)=285.66 g/L,pH=9.80,c(Cl-)=2.5mol/L,Mo、Si、P、As杂质微量。
试验过程中,溶液结晶至初始溶液体积的40%。
(二)试验仪器
DF-1集热式恒温磁力搅拌器(江苏金坛市中大仪器厂);5312数显搅拌器(江苏金坛市中大仪器厂);0.1mg电光分析天平(成都科学仪器厂);721型分光光度计(上海精密科学仪器有限公司);SFC-100FL麦克奥迪显微镜;红外线快速干燥器。
(三)试验装置 试验装置如图1所示。图1 制备球形仲钨酸铵的蒸发结晶装置
二、单晶仲钨酸铵的制取机理
晶粒团聚的先决条件是接触。晶粒的接触方式有2种:一是沉积于结晶器底部的堆积接触;二是悬浮于结晶溶液中的碰撞接触。其中,碰撞接触的机会大小与结晶器内流体的流动方式和溶液中固体颗粒的浓度有直接关系。
堆积接触可以通过搅拌使晶体颗粒悬浮而避免,因此,在保证晶粒处于悬浮前提下,降低以至消除晶粒在溶液中运动碰撞的机会是制取仲钨酸铵单粒晶体的前提。
由于搅拌装置和搅拌转速不同,晶粒在运动中碰撞的机会有很大不同。根据研究,在横截面为圆形的结晶器中,流体围绕搅拌轴做圆周同心层流运动时,晶粒碰撞机会最小。
流体运动是层流还是紊流,取决于流速,即搅拌速度。搅拌越慢,流体偏离紊流越远。因此,在保证晶粒不沉积的前提下,搅拌转速越慢越好。
APT晶粒的沉降速度与其粒度有关。粒度越大,越易沉降,维持其保持悬浮状态所需的转速越快。因此,结晶过程根据晶粒长大的情况,对搅拌转速进行由慢到快的控制,确定不同粒径范围,APT晶粒既不沉积也不碰撞的最佳转速是制取单粒晶形APT的技术关键之一。
APT晶粒在结晶过程中的碰撞机会也与单位体积晶液中颗粒多少(即固相浓度)、晶粒大小有关。根据前期研究结果,在起始钨酸铵溶液浓度相同条件下,降低结晶前期溶液温度、搅拌转速是降低成核数量(即降低固相浓度)和晶粒生长速度(即降低晶粒粒径)、减少APT晶粒碰撞、制取单粒晶形APT的技术关键之二。
三、结果和讨论
(一)结晶装置对仲钨酸铵团聚的影响
反应条件:搅拌转速70 r/min,结晶温度95℃。定性考察结晶装置对仲钨酸铵团聚的影响。
结晶装置均为横截面为圆形的结晶器。根据仲钨酸铵结晶动力学理论及流体力学原理,这种结晶装置中,流体围绕搅拌轴作圆周运动,相同半径点的流体速度基本一致,基本实现流体层流。研制的结晶器与普通结晶器流体流动状态显著不同,如图2所示。图2 不同结晶器中流体的流动状态
基于上述原理,对搅拌浆进行改进。装置分为A、B、C 3种。A未进行改进,B、C分别为改进1和改进2装置。试验结果见表1。可见,经过改进的结晶装置,所得APT粉体单晶率明显升高。以下试验均在C装置中进行。
表1 结晶装置对仲钨酸铵团聚的影响结晶装置APT粉体单晶率/%APT粉体粒度/μmAPT粉体松装密度/(g·cm-3)A46462.2B78351.8C85422.1
(二)搅拌转速对仲钨酸铵团聚的影响
结晶温度95℃,试验结果如图3所示。图3 搅拌速度对APT粉体团聚的影响
由图3可知:1、低搅拌速度下所得APT的单晶率较低,转速为30 r/min时,单晶率为62%。这是因为搅拌转速较慢时,APT颗粒在溶液中不能充分悬浮于溶液中,而是以堆积方式沉积于结晶器底部,这必然导致APT团聚现象发生。随着搅拌速度提高,APT团聚现象逐步得到缓解,因而APT单晶率逐步提高,并在70~90 r/min时达到最佳值,此时单晶率在86%左右。
2、随着搅拌转速的进一步提高,APT单晶率逐步下降。这是因为搅拌转速的提高必然导致结晶器内溶液的流动状态从层流变为紊流,紊流状态使悬浮于溶液中的APT颗粒碰撞接触机会加大,从而导致APT团聚现象发生。
3、可以得出结论:搅拌转速70~90r/min是一个分界点。低于70r/min,溶液中的APT颗粒有部分因搅拌力不足而沉积团聚;在此范围内,溶液中的APT颗粒基本悬浮于溶液中;大于90r/min,溶液搅拌加剧,悬浮于溶液中的APT颗粒碰撞加剧而团聚。因而,从结晶的整个过程来看,搅拌转速应控制在70~90r/min范围内。
(三)搅拌转速对不同时期仲钨酸铵团聚的影响
从结晶局部过程来看,搅拌速度70~90r/min并非为最佳值。如前所述,最佳搅拌速度是在保证APT晶粒不沉积前提下越慢越好。但在结晶不同时期,由于晶粒的数量和大小是不同的,因而保证APT晶粒不沉积的最慢转速也不同。因此,有必要进一步探索不同结晶时间时维持层流和阻止晶粒沉积的最佳转速。
结晶从开始到结束,APT颗粒的大小应该呈总体增大趋势,因而搅拌速度在结晶初期可以取较小值,随着结晶过程的进行,搅拌速度应逐步提高。在结晶后期,搅拌转速达到70^90 r/min总体最佳值。
结晶时间取3个点:晶核出现前,晶核出现时和晶核出现后1h。对于时间点1,取转速分别为10,20,30r/min;对于时间点2,取转速分别为30,40,50r/min;对于时间点3,取转速分别为60,70,80r/min;结晶温度为95℃。在此条件下进行正交试验。试验结果见表2。
表2 不同结晶时期搅拌转速对APT团聚的影响试验序号时间点1时间点2时间点3APT单晶率/%120406089230507093340608091420508092530606088640407092720607091830408092940506090
由表2可知:2号试验所得产品单晶率最高,即晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现1h后,搅拌转速为70r/min;结晶后期,搅拌转速控制在70~90r/min范围内。在此条件下,所得产品APT单晶率达93%。
结晶后期指的是溶液中不再形成新的晶核,即溶液的过饱和度达到了最低值。据测算,这个点溶液的密度为1.116~1.125g/cm3。结晶后期到结晶结束,仍有5~6h的结晶时间,但这段时间工艺条件的改变对APT单晶率影响很小,因为这段时间晶体已经长的比较大了,相互的碰撞不再易于团聚。
(四)温度对仲钨酸铵团聚的影响
APT晶粒在结晶过程中的碰撞机会与单位体积溶液中颗粒数量的多少也有关系。如上所述,对APT单晶率影响最大的阶段是结晶前期,即从成核开始至成核结束。因此,着重研究了结晶前期不同温度对APT单晶率的影响。溶液温度仍取95℃,加速加热以缩短周期;成核终了至结晶结束,温度仍控制在95℃。
试验条件:晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现后1h,搅拌转速为70r/min;结晶后期至结晶终了,搅拌转速为80r/min。结晶前期,改变蒸汽温度,试验结果如图4所示。图4 结晶温度对APT粉体单晶率的影响
由图4可知:适当降低结晶前期的温度,APT粉体的单晶率有较大的提升空间,但温度不能降低得太多;温度为80℃时,APT单晶率达到最佳值,为96%;进一步降低温度,晶体成核率过低,晶体长大速度过快,晶粒粗大,反而对APT粉体单晶率有负面影响。
四、验证试验
根据上述试验结果,在最佳工艺条件下进行验证试验。结果表明,APT粉体单晶率大于95%,松装密度1.5~3.0 g/cm3,费氏粒度在30~60μm之间,霍尔流动性30~50s/50g。产品单晶电镜扫描图如图5所示。图5 单晶APT电镜扫描图
五、结论
采用改进的结晶装置,APT粉体单晶率明显提高。这种改进主要体现在搅拌浆上,可以促进结晶器内溶液层流的实现。所研发的单晶APT粉体制备流体层流控制技术及装置,可有效减少晶粒间的碰撞,使制备出的单晶APT粉体单晶率达90%以上。
APT粉体最佳结晶条件为:晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现1h后,搅拌转速为70r/min;结晶后期至结晶结束,搅拌转速为70~90r/min;适当降低结晶前期温度,APT粉体单晶率有较大提升空间,在结晶温度为80℃时达到最佳值,单晶率为96%。
超全面泡沫铝制备工艺汇总
2019-03-12 10:12:51
泡沫铝是一种在金属铝基体中散布有很多气泡的多孔质材料。其特殊的结构决议了它具有许多细密金属所没有的特殊功能,结构特色如: 功能特色包含: 泡沫铝功能的好坏首要取决于其孔隙率、孔径、通孔率、孔类型、比表面积等孔结构参数,而其孔结构参数首要取决于制备工艺。 因而泡沫铝的制备技能已成为新材料范畴的研讨热门。下面就泡沫铝的制备工艺做翔实介绍: 1、固态金属烧结法 用这种办法出产的泡沫铝大都具有通孔结构,这是由于大部分固相法经过烧结使铝颗粒相互联合,铝一直坚持在固态。 1.1、粉末冶金发泡法 工艺原理是将混合铝粉与发泡剂粉,经紧缩得到具有气密结构的预制体,加热预制体使发泡剂分化释放出气体,迫使预制体胀大得到泡沫铝。 特色:一是与其他办法比较可用的合金成分更为广泛,有利于改进泡沫铝的力学功能;二是能够直接制作形状杂乱的部件。缺陷是该办法工艺参数区间较窄,本钱较高,制得的泡沫铝尺度有限。 1.2、散粉烧结法 此办法多用于制备泡沫铜。由于铝粉表面具有的细密氧化膜将阻挠颗粒烧结在一同,因而用散粉烧结法制备泡沫铝相对困难。这时能够经过变形手法损坏氧化膜,使颗粒更易粘结在一同;或参加镁、铜等元素在595~625摄氏度烧结时构成低共熔合金。 特色:长处是工艺简略、本钱低,缺陷是孔隙率不高、材料强度低。假如用纤维替代粉末烧结相同可制得多孔材料。 1.3、粉浆成型法 粉浆成型法是将金属铝粉、发泡剂(、氢氧化铝或)、反响增加剂和有机载体组成悬浮液,将其拌和成含有泡沫的状况,然后置入模具中加热焙烧,接着浆开端变粘,并跟着发作的气体开端胀大,终究得到必定强度的泡沫铝。 假如把粉浆直接灌入高分子泡沫中,经过升温把高分子材料热解,烧结后相同可制得开孔泡沫材料。 特色:所制得的泡沫铝强度不高并有裂纹。 1.4、烧结溶解法 铝粉与盐粉均匀混合,限制成坯,在限制进程中盐粉根本坚持原貌,铝粉发作塑性变形,填充盐粒之间的空地构成接连的网状基体。然后,将坯烧结,使网状铝基结组成一体。终究,将烧结后的坯样置于热水中,滤掉坯内盐粒即可得到均匀的开孔泡沫铝件。 特色:长处是经过挑选盐粉的形状与粒径,能够在必定规模内操控孔洞的描摹和尺度;能够经过混合粉末的体积比准确操控孔隙率;能够制作梯度泡沫材料;能够制作净形产品;设备简略,易于完成大规模出产。局限性是只能取得50%~80%孔隙规模的中密度泡沫铝;制品内易残留氯化钠,然后构成铝基的部分腐蚀;工艺周期较长。 1.5、中空三维骨架法 一种把液态金属压铸到有中空骨架三维网眼结构的陶瓷中,冷却然后去除骨架的制作泡沫金属的办法。 特色:泡沫孔隙率可调,操作繁琐、本钱稍高,制品广度有限,故其推广使用受到限制。 1.6、纤维烧结法 此办法的工艺进程是首要经过机械拉拔或其他办法得到金属铝丝,接着经过粉浆浇注或机械制毡圈的办法将金属铝丝制成毡圈,然后进行烧结使之抵达所需求的强度和孔隙率。 纤维烧结法的长处:是可取得比粉末烧结更高的孔隙率;在最大孔隙度下坚持了材料的结构功能;在相同孔隙度下,此法制得的泡沫铝强度和耐性比粉末冶金法高。可是该办法本钱较高。 1.7、浸浆海绵烧结法 该办法是将海绵状的有机物质制成所需形状的有机前驱体,然后用含有待加工金属铝粉的浆液浸透(悬浮液的载体是水和有机液体)。将浸后的有机前驱体枯燥以除掉溶剂,烧结并冷却后即可得到高孔隙率的三维结构的泡沫铝。 特色:首要受有机前驱体的挑选和预处理、浆料的组成、增加剂的挑选、烧结温度等要素影响。 2、液态金属凝结法 这种办法是经过液态铝发作泡沫结构,能够经过铝液直接发泡,也能够用泡沫材料或严密堆积的造孔剂铸造来得到多孔材料。 2.1、直接吹气发泡法 直接吹气发泡法:是首要向金属熔融液中参加SiC、Al2O3等,并均匀涣散以进步熔体粘度,然后向熔体底部吹入气体(如氮气、慵懒气体等),在金属液中构成很多气孔后冷却凝结。 2.2、发泡剂发泡法 发泡剂发泡法是:在铝熔融体中参加发泡剂拌和均匀,加热使发泡剂分化发作气体,气体胀大而发泡,冷却后得泡沫金属。所用发泡剂一般为TiH2或ZrH2等金属氢化物。 特色:对设备要求简略,本钱低价,可完成产品的接连制备。发泡剂发泡时刻间隔短、发泡温度不易操控、气泡散布不均匀、产品重现性差等缺乏。 2.3、渗流铸造法 渗流铸造是将可移去颗粒(如NaCl)堆积在铸模中,限制成坯,经预热后浇注金属,然后将颗粒去除,制备出孔洞相互连接的通孔泡沫结构。 特色:制备工艺孔径参数可控,通孔率高、比表面积大、本钱低,适宜大规模工业出产。缺陷是由于液态金属的表面张力较高,不能彻底潮湿颗粒,然后不能彻底填充颗粒之间的空地。 2.4、熔模铸造法 熔模铸造法是将成型的高分子泡沫材料浸入到液态耐火材料中,使耐火材料充溢其空地,在耐火材料硬化今后加热使泡沫材料气化分化,构成一个具有原泡沫材料形状的三维骨架,将金属铝液浇注到铸型内,凝结后把耐火材料去除就能够得到具有三维网状通孔的泡沫铝材料。 2.5、固体-气体共晶凝结法 许多金属液体能与气体(如)构成共晶体系,假如在高压气氛中熔化这些金属,就能够得到含有过饱和的均匀熔体。在随后的冷却凝结进程中,这种熔领会发作共晶改变而分化为固相和气相。定向凝结时,由于在固相和液相中溶解度不同较大,过饱和的将从固相中分出构成气泡,然后取得所需求的泡沫铝。 特色:准确操控冷却条件(压力、冷却速度、散热方向)能够取得各种孔隙形状的各向同性和各项异性的高孔隙度泡沫铝。 2.6、增加球料法 增加球料法是在铝合金熔液中参加颗粒或中空球,加以强化拌和,并且在熔体仍处于相对活动时进行铸造,然后得到铝合金与颗粒的复合体,然后溶解去除铝合金团体中的可溶性颗粒,终究得到一种连通孔泡沫铝。 特色:液态金属的表面张力较高,不能彻底潮湿颗粒或中空球,然后不能彻底填充颗粒之间的空地。则所得泡沫铝结构接连性较差。 3、金属堆积法 3.1、电堆积法 原理是以预处理过的泡沫塑料为阴极,工业纯铝板为阳极,在烷基铝溶液中电镀制成泡沫铝。 特色:简单操控孔隙结构、孔径小、孔隙均匀、孔隙率高,且其隔热和阻尼特性优于铸造法出产的泡沫铝。可是该办法工序长、操作繁琐、本钱稍高,制品厚度有限,故其推广使用受到限制。 3.2、气相蒸腾堆积法 该办法即在较高的慵懒气氛(102~104Pa)中缓慢蒸腾金属铝,蒸腾出来的金属原子与慵懒气体分子磕碰、散射,敏捷失掉动能,这一进程在微观上表现为金属蒸汽温度下降。接着蒸腾出来的金属原子在未抵达基衬前便相互结合构成原子团簇,故在蒸腾进程中可看到“金属烟”。这些团簇在慵懒气体的携带下持续降温并堆积在基衬上,由于温度低原子难以搬迁或涣散,所以“金属烟”微粒仅仅疏松的堆砌起来构成多空泡沫结构。 特色:金属泡沫的构成受金属材料、加热功率、慵懒气体气压、蒸腾源加热器类型及其与基衬间隔、基衬材料等多种要素影响。其间加热功率、慵懒气体气压和慵懒气体流量是最重要的操控参数。 3.3、喷溅堆积法 喷溅堆积是选用喷溅技能把加有慵懒气体的粉末均匀地喷射到铝合金金属上,并加热到金属的熔点,使加在金属中的气体胀大并构成一个个均匀散布且细密的小孔,冷却后即得具有细密网状的泡沫铝制品。 特色:经过操控堆积中慵懒气体的分压,能够操控所得产品的孔的体积分数。 3.4、熔融盐电镀法 以泡沫塑料为电极阴极,铝板为阳极,在熔融盐中经过电堆积制得泡沫铝的一种办法。 特色:泡沫铝孔隙率高、孔隙均匀。 4、其它 此类办法首要用于科研或许小批量试制,在工业出产中使用并不多。 二次发泡法 二次发泡法是一种归纳了粉末冶金发泡法及熔体发泡法长处的泡沫铝制备办法,其技能工艺道路是在铝熔体中参加增粘剂(Ca、Al2O3等)拌和均匀,在适宜的温度和粘度条件下参加发泡剂(预处理好的TiH2),涣散均匀,在TiH2未分化前将熔体铸入模具中快速冷却凝结,即得到发泡前驱体。当发泡前驱体受热抵达必定温度时,前驱体中TiH2开端分化并发泡,终究制得泡沫铝。 金属空心球法 该办法是将一个个的金属空心球经过烧结粘结到一同而构成多孔结构。金属空心球能够经过化学组成和电堆积的办法在高分子球的表面镀上一层金属,然后把高分子球去除而得到。 泡沫铝的制备工艺较多,各种办法各有好坏,在实践出产中熔体发泡法、渗流铸造法、粉末冶金发泡法、电化学法等使用较广泛。而其他的工艺首要作为科研或小批量试制等使用。
钨铜合金的制备方法--粉末冶金
2019-05-27 10:11:36
粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为质料,通过成形和烧结,制作金属材料、复合材料以及各种类型制品的技术技能。粉末冶金法与加工陶瓷有类似的当地,因而,一系列粉末冶金新技能也可用于陶瓷材料的制备。因为粉末冶金技能的优势,它已成为处理新材料问题的钥匙,在新材料的发展中起着无足轻重的效果。粉末冶金具有共同的化学组成和机械、物理功用,而这些功用是用传统的熔铸办法无法取得的。运用粉末冶金技能能够直接制成多孔、半细密或全细密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削技术。(1)粉末冶金技能能够最大极限地削减合金成分偏聚,消除粗大、不均匀的铸造安排。在制备高功用稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新式金属材料(如AlLi合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的效果。(2)能够制备非晶、微晶、准晶、纳米晶和超饱满固溶体等一系列高功用非平衡材料,这些材料具有优异的电学、磁学、光学和力学功用。(3)能够容易地完成多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本加工高功用金属基和陶瓷复合材料的技术技能。(4)能够加工普通冶炼法无法加工的具有特殊结构和功用的材料和制品,如新式多孔生物材料,多孔别离膜材料、高功用结构陶瓷磨具和功用陶瓷材料等。(5)能够完成近净形成形和自动化批量加工,然后,能够有用地下降加工的资源和能源消耗。(6)能够充分利用矿物、尾矿、炼钢污泥、轧钢铁鳞、收回废旧金属作质料,是一种可有用进行材料再生和综合利用的新技能。咱们常见的机制作刀具,五金磨具,许多便是粉末冶金技能制作的。
铜钨合金导卫的制备烧结机理
2019-05-27 10:11:36
1 细密化机理 一般,液相烧结差异三分阶段,一是粒子重摆放,即经过溶解一沉积的颗粒长大;二是坚固骨架的构成;三是细密化。要获得充沛细密化有必要具有以下三个条件即 固相在液相中有溶解度、液相对固相潮湿性杰出和对重摆放导致的细密化需求一定量的液体。在组元互不溶解的WCu系压坯进行液相烧结时,烧结细密化取决于 粘性活动和粒子重摆放进程,缺少溶解度和粒子之间构成安稳的桥接或网状骨架阻止液体活动,将导致细密化好不简单,若想获得充沛细密化,就有必要采纳相应办法。 2 熔渗烧结 选用钨骨架浸铜技术时,细密化除了上述机理外首要取决于液体铜充沛进入到钨骨架的孔隙中。液体铜之所以能充沛进入到钨骨架的孔隙中是根据毛细管力的效果, 可用液体在毛细管中上升高度公式H=27cosO/pgr来解说(7为表面张力;P为液体的密度;g为重力加快度;r为毛细管半径;e为接触角),液体铜 对固体钨浸润性即接触角是随温度的上升而改进的。据资料报道液体铜对固体钨的接触角e在中1150℃ 时为28。、1250℃ 时为1O。、大于1350℃时为0。,但过高的渗铜温度会导致冷却时构成较大的铜缩孔,然后影响细密化,因而需求选取恰当的渗铜温度和采纳略有过量等办法 来进步细密度。在混合猜中参加铜粉除了可改进粉末的成形功能、进步压坯强度外,其首要意图是作为“诱导”金属参加的,多孔钨骨架在高温熔渗条件下,骨架中 的“诱导”金属熔化,使骨架内部构成连通孔隙,一起,将熔渗金属“诱”进骨架,加快细密化,因为熔融的液体铜对A1zO。粉不潮湿,所以只能熔渗到多孔钨 骨架内。 3 活化烧结 活化烧结在加工高比重合金中已得到广泛应用,增加Ni、Co元素能够改进Cu对W的潮湿性,进步钨在铜中的溶解度。有关资料指出,增加0.32%的Ni可 使W在Cu中的溶解度从1O^9进步到1O^7,这使得细密化愈加简单、充沛。 4 自润滑机理 线材轧机铜钨合金导卫因为其本身“发汗”材料的特性,在线、棒材轧制进程中,因为温度上升,会在其表面构成一层极菲薄的铜液体层,并因为钨骨架毛细管的作 用,能得到连绵不断的弥补,这就大大降低了线、棒材与导卫之间的摩擦系数,一起,这层汗液也有用避免了粘钢,进步了线、棒材的质量。
鳞状锌铝片制备工艺条件解析
2019-01-14 11:15:51
(1)鳞片锌铝粉的制备 分湿磨和干磨两种工艺方法。湿磨法工艺流程如图1所示,干磨法工艺流程如图2所示。 湿磨法在研磨过程中为了防止锌铝片氧化,加入了助剂、硬脂酸,2008溶剂汽油,使锌铝片与空气隔离防止氧化,但是研磨后,想彻底清除锌铝片的油分成了工艺难题,而过高的油分将严重影响锌铬涂料的质量,所以湿磨法先天有无法克服的缺陷。 而目前世界上较先进的工艺和质量较好的鳞片锌铝粉是采用较先进的气体保护干式球磨法,金属粉体在球磨时注入’惰性气体进行气相保护从而避免锌铝片的氧化,而且金属粉体成形后不含油分,也不需脱脂工序,这样确保了锌铝片的质量。 (2)鳞片锌铝粉研磨时的表面改性 由于金属粉体有较高的活性,易团聚,影响粉体的性能和质量,需要进行分散处理,另外需要改变金属粉体的性能和在表面进行包覆处理,以达到防氧化和防腐蚀的目的,为此采用物理和化学法对金属粉体进行表面处理,有目的地改变其表面物理化学性质。 ①化学法。在金属粉体研磨时加入少量的表面活性剂即助磨剂,就能吸附在物料颗粒的表面,通过物理和化学作用产生力学作用,从而起到润滑作用、表面润湿作用,改善粉体的分散性,提高其表面光泽度和平整性,改善粉体的耐久性。 ②物理法。利用粉碎机械力效应,可促进改性效果。粉碎过程中施加大量的机械能,除消耗于颗粒细化外,还有一部分用于改变颗粒的晶格与表面性质,从而呈现活性。表面化学改性和机械力改性同时也会促进粉碎和研磨作用,对鳞片状锌铝粉的粉碎和片状化都具有重大的意义。 (3)湿磨法的典型工艺参数 ①原料选用200目球状锌粉。 ②磨球与原料锌粉总量占滚筒容积的30%~40%。 ③助磨剂十八酸甘油酯加入量占原料锌粉重量的3%~5%。
喷涂工艺:铝基非晶涂层的制备工艺
2019-03-12 09:00:00
铝基非晶合金材料不只具有高的比强度,还具有出色的耐性、超塑性、耐磨性和耐蚀性等利益,是一种具有广大运用前景的新式结构材料。铝基非晶合金材料可以选用急冷法或机械合金化等方法来获得,但这些方法所获得的材料,通常是带材、丝材或许粉末,将这些材料制备成可利用的块状材料,尚需求一些特别的成型技术。当时制备块体铝基非晶合金的方法有温揉捏法、热揉捏法、动能成型法、粉末轧制法、喷发成型法、超高压固结成型法、电火花烧结法等。以上这些制备成型技术均可获得较为纯真的铝基非晶态合金材料,且具有优秀的功用,但是这些方法存在过于繁琐的缺点,不符合成形制备一体化思想,而且出产周期较长,本钱较高。
与传统制备方法比较,热喷涂技术在制备非晶材料方面具有其一同的优势,该技术不只可快速升温熔化材料,一同具有快速冷却凝结材料的特征,有利于构成非晶相涂层;而且选用热喷涂技术,既可以体现热喷涂优质、高效、低本钱的优势,又可以获得具有优质耐磨、防腐等功用的表面防护涂层。因而,选用热喷涂技术制备铝基非晶涂层是铝基非晶合金材料制备的新拓展,具有广大的工业运用前景。
当时,选用热喷涂技术制备非晶态合金的技术主要有等离子喷涂、超音速火焰喷涂和高速电弧喷涂等制备技术。等离子喷涂和超音速火焰喷涂选用的原材料为预制的非晶粉末,而高速电弧喷涂依据材料制备与成形一体化的思路,喷涂富含非晶涂层构成元素的粉芯丝材,在喷涂过程中可完成构成非晶涂层。尽管高速电弧喷涂技术在制备Fe基非晶纳米晶复合涂层方面已经有不少成功的报道,但选用该技术制备铝基非晶涂层仍是一个簇新的研讨领域。
近来成功运用高速电弧喷涂技术制备出了铝基非晶纳米晶复合涂层。该高速电弧喷涂系统主要是该实验室自行研制的由机器人控制的高速喷和电源系统组成。在喷涂前对基体试样进行喷砂处置。经过优化的最好喷涂技术参数为:喷涂电压为34V,喷涂电流为120A,空气压力为0.7MPa,喷涂距离为200mm。对所获得的涂层查看成果标明,涂层与基体联络出色,涂层组织较为细密,孔隙少;涂层呈现出典型的层状结构,且层与层之间联络非常细密;涂层由非晶相和晶化相一同组成的。Al基非晶涂层的显微硬度值约为HV311,与传统制备方法获得的铝基非晶合金材料的显微硬度值恰当。据评价,此类材料很可能成为将来的防腐换代涂层材料。
作业标明,在高速电弧喷涂过程中,熔化态液滴在基体表面扁平化过程中具有极高的冷却速率,简略获得非晶涂层或许非晶纳米晶复合涂层,而且涂层的堆积率较高,本钱低,在大面积制备铝基非晶涂层方面将有重要的运用前景。
一文看懂金属粉末制备工艺
2019-01-24 17:45:44
依据我国机协粉末冶金分会计算,2016年粉末冶金零件出货量48万吨,供应额达64亿元,其间轿车行业供应额40亿元,占供应总额62%。2017年,粉末冶金商场规划估计达69亿,完成稳定增长。
2016我国粉末冶金零件供应状况轿车发动机与变速箱是粉末冶金零部件运用最为广泛和商场空间最大的两个范畴。国内轿车粉末冶金商场空间高达200亿元。再加之2018年为金属3D打印粉末迸发的元年,金属粉末的商场有望进一步扩展。
金属粉末的制备
商场的巨大潜力也在推进着技能的前进。跟着粉末冶金产品的运用越来越广泛,对金属粉末颗粒的尺度形状和功能要求越来越高,而金属粉末的功能和尺度形状在很大程度上取决于粉末的出产办法及其制取工艺,因而粉末的制备技能也在不断地开展和立异。不同办法出产的金属粉末形状
现在,金属粉末的制备已开展了许多办法,依据出产原理首要分为物理化学法和机械法。在机械法中最首要的是雾化法和机械破坏法。物理化学法中最首要的是复原法、电解法和羟基法。
金属粉末制取办法的特色和适用范围1.机械法
机械法是借助于机械外力将金属破碎成所需粒径粉末的一种加工办法,该办法制备过程中材料的化学成分根本不变。现在遍及运用的办法是雾化法和机械破坏法。其长处是工艺简略、产值大,能够制备一些惯例办法难以得到的高熔点金属和合金的超细粉末。
机械破坏法
机械破坏法既是一种独立的制粉办法,也常作为其他制粉办法必不可少的弥补工序。首要经过压碎、击碎和磨削等效果将固态金属碎化成粉末。破坏设备分两类:首要起压碎效果的粗碎设备:碾碎机、辊轧机、颚式破碎机等粗碎设备;首要起击碎和磨削效果的细碎设备:锤碎机、棒磨机、球磨机、振荡球磨机、搅动球磨机等。高能球磨法制备金属粉末
机械破坏法首要适用于破坏脆性的和易加工硬化的金属和合金,如锡、锰、铬、高碳铁、铁合金等。该法功率低,能耗大,多作为其他制粉法的弥补手法,或用于混合不同性质的粉末。
雾化法
直接击碎液体金属或合金而制得粉末的办法称之为雾化法,是出产规划仅次于复原法的、运用较广泛的金属粉末制取法。雾化粉末具有球形度高、粉末粒度可控、氧含量低、出产本钱低以及习惯多种金属粉末的出产等长处,已成为高功能及特种合金粉末制备技能的首要开展方向,但出产功率低,超细粉末的收得率不高,能耗相对较大等缺陷约束了雾化法的运用。雾化法制备金属粉末
2.物理化学法
物理-化学法是指在粉末制备过程中,经过改动质料的化学成分或集聚状况而取得超细粉末的出产办法。依照化学原理的不同可将其分为复原法、电解法、羰基法和化学置换法。
复原法
复原金属氧化物及金属盐类以出产金属粉末是一种运用最广泛的制粉办法。特别是直接运用矿石以及冶金工业废料如轧钢铁鳞作质料时,复原法最为经济。复原法的长处是操作简略,工艺参数易于操控,出产功率高,本钱较低,合适工业化出产。缺陷是只适用于易与反响、吸氢后变脆易破碎的金属材料。
电解法
电解法是经过电解熔盐或盐的水溶液使得金属粉末在阴极堆积分出的办法。它在粉末出产中占有重要的位置,其出产规划在物理化学法中仅次于复原法,而且可操控制粉粒度,制取的粉末纯度高,单质粉可达99.7%以上。不过电解法耗电较多,本钱比复原粉和雾化粉高。因而,在粉末总产值中,电解粉所占比重比较小。超声波电解制备铁粉
羰基法
因为羰基金属在低温下简单分解为金属及CO气体,因而能够运用组成羰基金属的逆反响来制取羰基金属粉末。运用羰基法不光能够制取微米级粉末,还能够制取纳米级粉末;不光能够制取单一纯金属及合金粉末,还能够制取包覆粉末。羰基粉末自身所具有的高兴旺表面是其他办法所制取的粉末无法比较的,是化学电源极板及催化剂的最好材料。
化学置换法
依据金属的生动性强弱,用生动性强的金属将活性较小的金属从金属盐溶液中将其置换出来,将置换所得到的金属(金属粉粒)用其他办法进一步处理细化成金属粉末的办法称为化学置换法。该法首要运用于Cu、Ag、Au等不生动金属粉末的制备。
总结
跟着技能的前进,金属粉末在冶金、化工、电子、磁性材料、精密陶瓷、传感器等方面显现了杰出的运用远景。但因为传统制备技能的局限性,限制了金属粉末的运用。虽然许多新式的出产工艺和办法现已得到运用,但规划较小和本钱较高的问题仍不能很好的处理。为了促进金属粉末材料的开展,有必要加大立异力度、扬长避短,开发出产值更大、本钱更低的出产工艺。
三种制备锆英砂微粉工艺
2019-01-18 09:30:15
三种制备锆英砂微粉工艺
锆英砂微粉因其乳浊效果好,在陶瓷釉料乳浊剂中用量很大,达10%~20%。但目前我国市场现有的高档锆英砂微粉基本上靠进口,价格较高。国内厂家生产的锆英砂,由于细度及粒度分布范围达不到要求,影响产品在釉料中的乳浊效果。研究人员对国内生产锆英砂微粉的3种生产工艺流程进行了比较、分析,并提出了制备锆英砂微粉的看法。
3种制备锆英砂微粉的球磨时间均为16小时。
1、湿磨工艺,卫生状况最好,但在工厂的实际生产中,特别是工作突然中断(停电、机修)时,由于锆英砂比重太大,极易沉淀,并不易浮起,往往会影响产品质量,甚至使整磨产品不合格,严重影响企业的经济效益。
2、干法球磨的特点是工艺简单,无需蒸发水分并能减少水的污染。粒度范围较好。
3、干湿磨混合工艺,此工艺是将锆英砂和配制的复合助磨剂先干磨一段时间,待较粗的物料颗粒达到一定的细度后,再加入水和助磨剂进行湿磨,在相同的球磨时间里,此法的效果最好,不足之处是在球磨过程中增加了加水的助磨剂的工序。
锆英砂超细粉碎工艺不同,产品质量不同,经济效益也大不相同。
硅酸锆超细粉碎工艺流程的试验研究表明:入磨粒径较大时,干湿混合法粉碎效果较好。干法超细粉碎使用恰当助磨剂时效果最佳,经济效益最好。
硅酸锆超细粉碎试验研究提供以上3种工艺流程,可以根据工厂的实际情况和用户对产品的质量要求选择最佳工艺流程。