您所在的位置: 上海有色 > 有色金属产品库 > 氯化镉溶液

氯化镉溶液

抱歉!您想要的信息未找到。

氯化镉溶液专区

更多
抱歉!您想要的信息未找到。

氯化镉溶液百科

更多

氯化锌溶液

2017-06-06 17:49:59

氯化锌溶液的浓度因生产活性炭的品种而异,氯化锌溶液的配制是指配制成规定浓度的氯化锌溶液,它是保证锌屑比的一个重要因素。氯化锌溶液因活性炭用途不同,使用时,要求也不同,简述如下:药用活性炭的配方要求是:氯化锌溶液的波美浓度与温度有一定的关系,当百分浓度一定时,随着温度的升高,波美浓度降低。所以对于氯化锌溶液的波美浓度,必须注明溶液的温度。例如,要配制60摄氏度下的45—46波美浓度的氯化锌溶液,若在30摄氏度下,就应配成46—47波美浓度。在制作氯化锌溶液的时候要注意要加入少量的单质锌,配制FeCl2溶液时须加入少量单质铁和盐酸,因为氯化亚铁易被氧化且易水解。加入少量单质铁是防止氯化亚铁被氧化,加入少量盐酸是防止氯化亚铁水解。随着科技的发展,氯化锌溶液的应用范围也越来越广,而氯化锌溶液的价格也因此水涨船高了

铋的氯化溶液电解

2019-03-04 11:11:26

铋的电解精粹是以经过开端火法精粹的铋铸成阳极,将电解分出铋铸成阴极,在和三氯化铋的电解液中电解,凭借直流电的效果,使阳极铋溶解,铋在阴极上分出。 铋的氯化溶液电解的工艺流程如图1所示。图1  铋的氯化溶液电解工艺流程 粗铋中杂质在电解时分为三类:一类在阴极分出;一类溶入电解液;一类不溶解而进入阳极泥。 一、铋电解的电极反响 铋电解示意图如图2。图2  铋电解示意图 在由和三氯化铋组成的电解液中的电离反响:在直流电效果下,阳极发作铋的溶解:阴极发作铋的堆积分出:跟着电解进程的进行,阳极铋逐步溶解,阴极上逐步分出铋而增厚。 二、杂质在电解中的行为 粗铋阳极板中含有多种杂质,这些杂质可分为三类: (一)较铋更负电性的金属:如铁、碲、铅、锡等,因为它们的标准电位比铋更负,所以先于铋进入电解液,生成氯化物盐类,其间氯化铅在溶液中溶解度小而沉积,其他氯化物进入电解液后,下降BiCl3浓度,使耗费添加,电耗添加,还会使阳极泥中海绵铋量添加,电流效率下降,使分出铋质量下降。 (二)较铋更正电性的杂质:如金、银等不溶解,进入阳极泥。少数银进入阴极铋是因为电解液循环机械夹藏所形成的。 (三)与铋电位挨近的杂质:如砷、锑、铜等,当这些杂质在溶液中浓度较大时,可能与铋一道在阴极分出。 所以要求电解运用的阳极质量好,主成分含量高,杂质含量低,特别是应严格控制砷、锑、铜的含量,以削减其在阴极分出的可能性。 三、铋电解造液法 因为铋离子在溶液中导电性差,因此铋阳极溶解的速度慢,而在阴极分出的速度快,从而使电解液中铋离子浓度不断下降,这种现象叫阳极钝化。所以在铋电解进程中,有必要制作部分含铋高的电解液弥补到已贫化的电解液中去。造液有两种办法:坩埚造液法与碱性造液法。 1、坩埚造液法。粗铋为阳极,铅条为阴极,铅条外用素烧的陶瓷坩埚作阴极隔阂。当新造液时,原液选用和食盐的混合液:而旧造液时,用电解后的溶液造液回来运用。在直流电效果下,氯离子移向阳极,使阳极铋溶解生成三氯化铋溶液,因为铋离子体积较大,不能透过阴极坩埚隔阂,而被留在电解液中,只要氢离子体积小,能经过隔阂在阴极放电。在不断对阴极弥补的情况下,电解液含铋量不断添加,其反响为:造液后的高铋溶液,经过电解液的循环,接连地弥补到电解出产中去,而含铋低的电解液,也经过循环不断回来造液。 坩埚造液法能够在不改变电解液量的情况下,进步电解液中铋离子浓度。 2、碱性造液法。阴极与阳极均用粗铋,不需阴极隔阂,造液运用食盐溶液,在直流电效果下,阳极铋溶解生成BiCl3,而在阴极表面分出并发生NaOH,其反响为:生成的氯化铋被水解为氯氧化铋,仅少数在阴极分出:阳极不断溶解,直至将溶液中氯离子耗费完毕。电解完毕后将碱液抽去,用将BiOCl浸出:因为浸出BiOCl的溶解度约束在100~120克/升铋左右,所以碱性造液法只能添加所需的电解液量,而不能进步电解液含铋量。 四、铋电解的技能条件 (一)电解液组成。电解液由与三氯化铋组成。在开槽制备电解液时,需配入一定量的食盐,其浓度为100千克食盐/1米3,以添加溶液中氯离子浓度。电解液中游离酸控制在80~100克/升,铋控制在120~150克/升。电解液密度1.2克/厘米3左右。电解液中酸量超越含铋量时,在阴极分出海绵铋,酸量过低则阳板溶解欠好,有片状物掉落,阳极泥含铋高,下降电流效率。当电解液中铋量过低时,阴极也分出海绵铋,而含铋过高时则需很多造液,使电耗添加。 2、阳极。阳极档次宜高,一般在90%~95%,最好大于95%,含硫要求不超越0.5%,含铅不超越3%。阳极中杂质含量对电解作业影响很大。某厂曾对表1所列阳极进行电解,技能条件控制为:电解液组成:Bi 90~115克/升,HCl 100~120克∕升,NaCl 80~100克/升,电流密度100安/米2。 表1  粗铋组成与电解作业联系由表1可见,粗铋含硫高时,阴极分出物呈混状,有一半的分出铋掉入阳极泥中,电流效率下降至50%左右,这是因为不溶的硫化铋薄膜阻止阳极铋溶解形成的。 粗铋中锑的含量直接影响阳极泥的附着情况,含锑高时,阳极泥不掉落,但含锑过高将引起槽压上升;当阳极含锑低时,阳极泥易掉落,添加了槽底阳极泥量,且电解液易污染。 粗铋含银与阴极分出铋含银间联系如图3所示。图3  粗铋含银与分出的铋含银间的联系 当粗铋含银低于1.5%时,电铋含银低于0.05%。 参加适量硫酸以除掉电解液中Pb2+。但参加硫酸也有利于银在阴极分出,所以当粗铋含银大于1%时,不宜加硫酸避免银分出。 阳极板的厚度与电解周期有关,当阳极厚5毫米,电流密度100安∕米2时,可饱尝24小时电解,残极率35%。 (三)电流密度。电流密度是每米2阴极表面上经过的电流安培数,单位为安/米2。电流密度直接影响电解的出产率、电耗和出产本钱,是至关重要的技能参数。选定电流密度时要考虑经济和技能条件。不引起阳极钝化又能确保阴极分出物质量的最大电流密度称答应电流密度,在答应电流密度范围内,经济上最合理的电流密度叫经济电流密度,也就是本钱最低的电流密度,能够确保较高的阴极质量、较高的电流效率和较低的电耗的高电流密度。铋电解的电流密度一般控制在100~150安/米2,造液的电流密度为200~300安/米2。 (四)电耗、槽电压及电流效率。电耗是电解出产的首要技能经济指标,是每出产一吨铋在电解时所耗费的直流电数量,以千瓦小时/吨铋或千瓦小时/吨分出铋表明,电耗(W)首要由槽电压(V)和电流效率(η)所断定,其核算式: 从上式可见,电耗与槽电压成正比,与电流效率成反比,而以槽电压影响最大。 槽电压可用下式核算:式中,Ea-由阳极浓差极化引起的阳极电位(伏);       Ek-由阴极浓差极化引起的阴极电位(伏);       I-经过电解槽的电流强度(安)即电流密度乘以一个电解槽内阴极总面积(米2);       R1-电解液电阻(欧);       R2-阴极、阳极与导电铜板和导电杆等的电阻(欧)。 槽电压随电流密度的进步及电解时刻的延伸而进步。开端电解时槽压为0.25伏左右,跟着电解的进行,阳极泥层加厚,浓差极化加重,至电解后期达0.5伏以上。造液则开端为3.5伏左右,后期升至5.5伏左右。 铋电解的电流效率在90%以上,一般在95%左右。核算电流效率的公式为:式中G-分出铋分量(克);     q-铋的电化当量,为2.6克/安·小时;     I-电流强度(安);     t-通电时刻(小时);     n-电解槽数目。 综上所述,列出铋电解技能条件如下: 电解液组成:游离80~100克/升;铋离子120~150克/升;NaCl 100~120克/升; 阳极档次:Bi高于90%;S低于0.5%; 电流密度:100~150安/米2;造液200~300安/米2; 槽电压:0.25~0.5伏:造液3.5~5.5伏; 电解液温度:25~30℃;造液时低于50℃; 电解液循环量:下进上出,5升/分; 极距:100~110毫米; 电解周期:2~3天;造液3~4天; 阳极泥率:10%左右;阳极泥含铋50%~70%; 残极率:35%~50%。 五、铋电解设备 某厂年产500吨电铋之电解设备为: 电解槽:2500×1050×1000毫米共30只,水泥槽体,内村沥青; 地下贮槽:2500×2000×1000毫米共2只,材料为混凝土槽体内衬沥青; 洗残极槽2个; 离心过滤机:φ600毫米(内衬胶)一台; 电动单樑桥式超重机(2吨)一台; 酸泵:φ'2"(内衬胶)2台。 六、分出铋的火法精粹 粗铋经电解精粹在阴极分出的电铋,含铋在99%左右,还含有铅、铜、砷、锑、碲、银等杂质,有必要再经火法精粹提纯。 将粉与分出铋分层装锅,每层分出铋厚度约300~400毫米,加硫份额为Bi∶S=200∶1。装锅后缓慢升温至600℃,拌和捞除铜浮渣,然后参加固体碱,拌和除硫。再进行加锌除银与氯化除锌、铅,其原理与操作办法如前述。

水氯化法提金—氯化铁溶液浸出工艺

2019-02-14 10:39:39

桂林冶金地质学院分析了FeC13溶液浸出金的热力学。浸出金是氧化复原反响进程。因为反响:                                    Fe3+ + e-====Fe2+的标准复原电极电位E1ө =0.771 V。而                                   Au3+ + 3e- ==== Au的E2ө=1.420 V。因而,用Fe3+不能将Au氧化为Au3+。假如溶液中存在C1-,C1-可与Au3+络合生成AuC14-:                                 AuCl4-+3e- ==== Au+4C1-E3ө=0.994 V,因而在氯离子存在的条件下,Fe3+将Au氧化为AuC14-就较简单了。经过操控系统中参与反响有关物质的浓度,就能使浸出金得以完结,浸出反响为:                              Au+3Fe3++40- ==== AuC14-+3Fe2+    该反响对应的原电池电动势为:                                              RT         α(AuC14-)·  α3(Fe3+)         E = Eө(Fe3+/Fe2+)-Eө(AuC14-/Au)- ——In ———————————                                                                                3F            α4(Cl-)·α3(Fe3+)要使该反响从左向右自发进行,E有必要大于零。若取a (AuC14-)=10-2, a (Cl-)=10,不难算出,当a(Fe 3+)/a(Fe2+)>101.80时,E大于零。    在实际操作进程中这些条件是不难满意的,比方,在298 K下,当参加FeCl3使[Fe3+]=3 mol/L,调理[Cl-]=10 mol/L(FeC13电离C1-,浓度缺乏部分参加HCl或NaCl )。溶液中AuC14-浓度可达10-2.28mol/L。在整个反响进程中[Fe3+ ]/「Fe2+]>102.80。这样的成果关于工业生产是有价值的。热力学分析标明,只需操控必定的热力学条件,坚持满足的Fe3+和C1-浓度,在常温(25℃)下,pH为1.0时,即可用FeCl3溶液来浸出金。    相同,某些金属(Fe, Sn, Pb, Cu, Ag)硫化物、砷化物均可与反响,耗费FeC13,一起生成的S附在矿粒表面,构成一层硫膜,阻止浸出反响。再者,有机物质和粘土的存在对浸出也是晦气的。    近年来,美国呈现了200t/d规划的堆浸场,其工艺办法十分简洁,只需在地上挖一些平行的槽坑,堆一层矿石,喷一层浸出溶液,再堆一层矿石,喷一层浸出溶液,如此循环往复,直至堆淋作业完结,最终从槽中取出富液并从中收回金。这种办法适于处理低档次的金矿,但因为矿粉空隙小,渗透性差,因而金的浸出率不高。    别的,湖南有色金属研究所对龙山砷锑金矿渣焙砂选用FeCl3浸出,金浸出率达98%-99%。电堆积率为98% -99%,金总的收回率达96.54%。与化法比较,浸出率高出4%-6%,总收回率高出5.34%,浸渣中的含金量也从3-5g/t降至0.75-1.5g/t。

氯化物溶液中铜溶剂萃取

2019-03-06 09:01:40

一、羧酸酯 英国帝国化学(ICI)部属的阿科伽( Acorga )公司注册了一系列替代酯的专利,其间AcorgaDS5443(今称CLX50)是一种羧酸[1]。在氯化物溶液中,它对Cu2+具有很好的选择性。萃取铜的进程可写为:萃取剂直接配坐落Cu2+。萃取进程与溶液的酸度无关,负荷有机相用水反萃。萃取-反萃平衡取决于溶液中的C1-的浓度。DS5443萃取Cu+,Cu2+及其他一些离子的分配曲线如下图所示。26%的DS5443以0/A =4.25/1,经二级萃取,质料液中的铜能够从40g/L下降至0.4g/L。反萃液为含HC15.5g/L,Cu14.45g/L的电解贫液,以0/A=1.61/1二级反萃,所得的电解富液含铜40g/L。这种萃取剂具有很好的动力学特性,萃取一反萃及分相速度均快于AcorgaP5100。二、羟肟和替代8-羟基 氯离子对羟肟和8-羟基喹琳类鳌合萃取剂(Ox)别离Cu ( II),Fe(II)的影响很小。在氯化物溶液中LIX64 N萃取铜时的曲线与在硫酸盐中十分类似。pHo.5与水相开始铜浓度无关,但与萃取剂浓度有关,2%和25% LIX64N萃取铜的pHo.5分别为1.4和0.7。研讨标明,铜的萃合物为CuOx2,没有氯离子配合于被萃的Cu2+上,而被萃入有机相。萃入有机相的铜易为酸反萃。 三、β-二酮 霍齐斯特(Hoechst)化学公司首要开发了一种替代β-二酮的萃取剂牌号为Hostarex DK16。汉高公司也推出牌号为LIX54的β-二酮萃取剂,适合于在溶液中萃取铜。尔后又出产了一种结构类似,但端甲基改为三氟甲基的产品XI51。    氯化物溶液中电积铜只能生成铜粉,而不能生成板状阴极,这是其丧命缺点。为了防止在氯化物中电解,有时将铜从氯化物溶液转人硫酸盐溶液。一种简略方法是用胺类萃取,水反萃成为氯化物溶液,再用阳离子交流萃取剂萃取,然后以硫酸反萃生成硫酸盐溶液,这明显比较繁琐。 用混合萃取剂LIX54和三辛胺从氯化物介质中萃取铜能够经过洗刷和反萃转型。三辛胺首要起到萃取剂的效果,然后用洗刷有机相,将C1-转入水相。在与NH3溶液触摸的条件下,有机相中的LIX54能够与Cu2+构成萃合物,而将其保留在有机相,最后用H2SO4反萃,得到无氯离子的CuS04及H2SO4溶液,叔胺则转变为R3N·H2SO4。为了防止H2SO4进入萃余液,应将有机相与溶液触摸,以将其转化为胺的盐。

处理铜镉渣生产镉

2019-02-11 14:05:38

一、电积法出产金属镉 以铜镉渣为质料出产金属镉的电积法工艺流程如图1所示。图1  从铜镉渣出产金属镉电积法的工艺流程 铜镉渣的成分一般动摇规模为:2.5%~12%Cd,35%~60%Zn,4%~17%Cu,0.05%~2.0%Fe铜镉渣中还含有少数As,Sb,SiO2,Co,Ni,T1,In等杂质。 为了加快浸出进程,有的工厂在浸出前将铜镉渣堆积在空气中氧化。这样也增加了铜溶解的丢失,只要在处理含铜较低的铜镉渣时才适用这种处理。浸出进程得到的铜渣成分为:30%~50%Cu,10%~15%Zn,0.3%~1.0%Cd。 在浸出中,除了锌和铜的溶解外,还有一些Ni,Co,In,T1进入溶液,得到的浸出液成分为:120~130g/LZn,8~16g/LCd,0.3~0.8g/LCu,3~9g/LFe,0.05~0.1g/LCo,0.05~0.1g/LNi。浸出液经加锌粉净化除掉铜后,送去加锌粉置换沉积镉。置换沉积镉一般分两段操作。在榜首段坚持温度为333K,使溶液中的镉降到1g/L中止。过滤别离铜镉渣后的溶液再进行第二段操作,可进一步使镉的含量降到10~15mg/L。第二段得到的海绵镉(Ⅱ)含镉低,反回铜镉渣的浸出进程。第二段置换后的溶液中含有Co,T1,In等,用黄药除钴后去进一步收回T1与In。 榜首段置换沉积镉得到的海绵(Ⅰ)用镉电解液浸出。溶液中硫酸的浓度为200~250g/L,浸出温度353~363K,参加MnO2或KMnO4以加快镉海绵的溶解,浸出终了的pH值为4.8~5.2,铜水解进入渣中。 别离铜渣后的镉绵浸出液,加SrCO3除铅,加锌粉置换除铜,加KMnO4氧化T1与Fe,再水解沉积。 镉溶液的电积一般选用电解液不循环操作准则,其作业条件及技能指标: 参加电解液成分/(g·L-1)      160~220Cd,20~30Zn,12~15H2SO4 电积后废液成分/(g·L-1)      15~20Cd,150~180H2SO4 电解液温度/K                  303~308 电流效率/%                    70~92 槽电压/V                   2.5~2.6 电积周期/h                 24 电能耗费/(kW·h·t-1)     1400~1700 选用电解液循环的出产方式,能够得到较高的电流效率。 前苏联许多湿法炼锌厂选用电积法工艺流程。我国湿法炼锌厂选用电解液循环准则的电积法。例如株洲冶炼厂处理这种Cu-Cd渣的电积法流程见图2。Cu-Cd渣的化学分为: 5.64%Cu,14.31%Cd,40.26%Zn,1.27%Pb,0.076%Ni,0.0212%Co,0.0075%In,0.0024%Ge,0.0029%Ga,0.0329%T1,4.07%Fe。图2  株洲冶炼厂从Cu-Cd渣出产镉的工艺流程 株洲冶炼厂用铜镉渣出产镉的首要冶炼进程技能条件如下: (一)Cu-Cd渣的浸出 用50m3的机械拌和浸出槽进行浸出。将硫酸缓慢地参加盛有Cu-Cd渣的浸出槽中,坚持浸出的最高酸度为10~15g/L,温度为353~363K。当酸度降至5~4g/L时,参加软锰矿,在pH值为4.8~5.0时,加石灰乳(现改用ZnO粉)中和至pH=5.2~5.4时便中止拌和。整个浸出进程连续6~8h。 经28m2的胶质压滤机压滤,所得压滤渣成分:20%~30%Cu,<1%Cd,送铜冶炼处理收回铜。滤液成分:8~15g/LCd,80~140g/LZn,0.050g/LCu。 (二)置换 置换在50m3的机械拌和槽中进行。置换前加H2SO4将浸出的滤液酸化至pH=3~4,缓慢地参加锌粉进行置换反响,待分析溶液含镉小于100mg/L时即送压滤。 置换得到的海绵镉含60%~80%Cd,再堆积7~10天天然氧化后送去造液。置换后的贫液含有15~30g(T1)/m3时,可加锌粉置换出后再送湿法炼锌体系。 (三)造液 在9m3的机械拌和槽中造液。将海绵镉与浓硫酸参加槽中,坚持溶解85~90℃,经2~3h待溶液酸度降至0.5~1g/L,便参加KMnO4氧化除铁,然后参加镉绵使pH值降至3.8~4.0,再用石灰乳中和至pH=5.4,便送去过滤。 (四)净化 在17m3机械拌和槽中净化。在50℃条件下,参加新鲜镉绵置换除铜后,再加KMnO4氧化除铁。净化后溶液的成分:200~250g/LCd,20~30g/LZn,低于0.05g/LFe,低于0.0005g/LCu,低于0.001g/L(As+Sb)。 (五)电积 在钢筋混凝土内衬铅皮的电解槽中进行电解液循环。槽的尺度为2800×850×1250mm,每槽可装阳极26片,阴极25片。用一台2000A与0~36V的硒整流器供电。 电积进程的技能条件如下: 同名极距                    10mm 电解液循环量                0.103m3/min 电解液温度                  298~305K 电流密度                    45~75A/m2 槽电压                      2.4~2.5V 电解周期                    24h 电解液成分分/(g·L-1)        60~70Cd,                             120~145H2SO4 (六)精粹熔铸 在容量1t的铸铁锅中进行精粹。 熔铸温度为723~823K,表面掩盖一层NaOH,铸成7.5kg的镉锭,其成分:镉99.99%以上,铅低于0.004%,锌低于0.002%,铜低于0.001%,铁低于0.002%。镉的一级品率,均到达100%。 二、置换法出产金属镉 因为电积法出产镉的电耗大,许多工厂将电积法改为置换法。 美国熔炼与精粹公司的电锌厂,原选用电积法处理来自锌出产第二段净化的镉渣出产镉,现改为置换法,其工艺流程见图3。图3  美国熔炼与精粹公司从镉渣出产镉的工艺流程 芬兰科科拉电锌厂使用第二段净化产出的镉渣出产镉,也是选用置换法出产流程连续作业。科科拉电锌厂处理镉渣成分如下:1号15%~25%Cd,约1%Cu,0.05%Co,0.005%~0.05%Ni,60%Zn;2号22.4%Cd,0.7%Cu,54.5%Zn。 前苏联乌斯基-卡敏诺哥尔斯克铅锌联合厂商的电锌厂是在离心反响器中以置换沉积法处理Cu-Cd渣,其出产流程见图4。图4  钨斯基-卡敏诺哥尔斯克电锌厂处理铜镉渣出产工艺流程 离心反响别离器外形为圆柱体,中心装有空心轴,轴上装有特殊结构的别离盘,空心轴的转速到达3000r/min。 在离心反响器中置换沉积的速度超越一般置换沉积槽的沉积速度300倍,每升容积的出产率到达200L/h。在第二段离心反响器中所得的低镉绵用锌废电解液溶解,加热到343K,反响终了的pH=4.5~5.5,然后用KMnO4净化除,再送往离心反响器中置换沉镉。

氯化物溶液中铜的溶剂萃取

2019-02-13 10:12:44

羧酸酯    英国帝国化学(ICI)部属的阿科伽( Acorga )公司注册了一系列替代酯的专利,其间AcorgaDS5443(今称CLX50)是一种羧酸[1]。在氯化物溶液中,它对Cu2+具有很好的选择性。萃取铜的进程可写为:                                  —                               ————                                                                    2L + Cu2+ + 2Cl- ====L2CuCl2    萃取剂直接配坐落Cu2+。萃取进程与溶液的酸度无关,负荷有机相用水反萃。萃取-反萃平衡取决于溶液中的C1-的浓度。DS5443萃取Cu+,Cu2+及其他一些离子的分配曲线如下图所示。26%的DS5443以0/A =4.25/1,经二级萃取,质料液中的铜能够从40g/L下降至0.4g/L。反萃液为含HC15.5g/L,Cu14.45g/L的电解贫液,以0/A=1.61/1二级反萃,所得的电解富液含铜40g/L。这种萃取剂具有很好的动力学特性,萃取一反萃及分相速度均快于AcorgaP5100。    羟肟和替代8-羟基    氯离子对羟肟和8-羟基喹琳类鳌合萃取剂(Ox)别离Cu ( II),Fe(II)的影响很小。在氯化物溶液中LIX64 N萃取铜时的曲线与在硫酸盐中十分类似。pHo.5与水相开始铜浓度无关,但与萃取剂浓度有关,2%和25% LIX64N萃取铜的pHo.5分别为1.4和0.7。研讨标明,铜的萃合物为CuOx2,没有氯离子配合于被萃的Cu2+上,而被萃入有机相。萃入有机相的铜易为酸反萃。    β-二酮    霍齐斯特(Hoechst)化学公司首要开发了一种替代β-二酮的萃取剂牌号为Hostarex DK16。汉高公司也推出牌号为LIX54的β-二酮萃取剂,适合于在溶液中萃取铜。尔后又出产了一种结构类似,但端甲基改为三氟甲基的产品XI51。    氯化物溶液中电积铜只能生成铜粉,而不能生成板状阴极,这是其丧命缺点。为了防止在氯化物中电解,有时将铜从氯化物溶液转人硫酸盐溶液。一种简略方法是用胺类萃取,水反萃成为氯化物溶液,再用阳离子交流萃取剂萃取,然后以硫酸反萃生成硫酸盐溶液,这明显比较繁琐。    用混合萃取剂LIX54和三辛胺从氯化物介质中萃取铜能够经过洗刷和反萃转型。三辛胺首要起到萃取剂的效果,然后用洗刷有机相,将C1-转入水相。在与NH3溶液触摸的条件下,有机相中的LIX54能够与Cu2+构成萃合物,而将其保留在有机相,最后用H2SO4反萃,得到无氯离子的CuS04及H2SO4溶液,叔胺则转变为R3N·H2SO4。为了防止H2SO4进入萃余液,应将有机相与溶液触摸,以将其转化为胺的盐。

镉知识

2019-03-08 09:05:26

镉是银白色有光泽的金属,密度8.64,熔点320.9℃,沸点765℃,有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉。也可与硫直接化合,生成。镉溶于酸,但不溶于碱。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻。 镉的首要矿藏有硫镉矿、菱镉矿及方镉矿等,但均不构成独自矿床。镉赋存于锌矿、铅锌矿和铜铅锌矿石中,尤其是在淡色的闪锌矿中含量较高,一般为0.1-0.5%,高达5%,镉在浮选时大部分进入锌精矿,在焙烧过程中富集于烟尘中。在湿法炼锌厂的硫酸锌溶液净化过程中产出的铜镉渣(含镉4~20%),火法炼锌厂的粗锌精馏过程中产出的镉灰(含镉10~30%)和某些铜、铅冶炼厂的富镉尘均可提取镉。因为镉污染环境,铅锌冶炼厂有必要从排放物中收回镉。镍镉和铁镉蓄电池的极板等各种工业废料也是提取镉的二次质料。 镉的提取办法分为从铜镉渣中提隔的湿法和从富镉尘中提镉的联合法。湿法提镉为我国大都工厂所选用,首要包含:铜镉渣浸出、置换堆积海绵镉、海绵镉溶解、镉液净化、电解堆积和熔化铸锭等工序。 铜镉渣首要含有锌、镉、铜等金属及其氧化物,还含有少数的砷、锑、铁、钴、镍、等。用15克/升的硫酸溶液在80~90℃浸出,当酸含量降至4~5克/升时加MnO2,使镉、铁氧化,加石灰水[Ca(OH)2]中和除铁、砷和锑。此刻,浸出液成分为Cd>10克/升、Fe 因为浸出和置换过程中能发生剧毒的(AsH3),其他过程中也发生含镉的有害气体,所以应有杰出的通风排气等安全措施。 联合法提镉是我国火法炼锌厂和铜铅冶炼厂选用的办法。镉尘先经焙烧脱去砷、锑等杂质,得到浸出功能杰出的焙砂,再用稀硫酸浸出。浸出液经氧化水解脱去铁、砷,有时还加碳酸(SrCO3)脱铅。净化后的含镉溶液用锌粉置换得到海绵镉,加压成团,在铸铁锅中于熔融烧碱维护下,铸成粗镉锭。将粗镉参加精馏塔内精馏提纯,杂质从塔的下部渣锅中排出;精镉由塔顶镉蒸气冷凝产出,纯度在99.99%以上。镉的收回率可达99.7%。 被镉污染的空气比被镉污染的食物对人体的损害更严峻。冶金车间工作环境空气中含金属镉和可溶性镉尘的极限值规定为200微克/米3,氧化镉烟雾的极限值为100微克/米3。含镉大于0.5ppm的废水不许排放。 镉用于制作轴承合金、特殊易熔合金、耐磨合金、焊锡,镉对盐水和碱液有杰出的抗蚀功能,能够用作钢构件的电镀防腐层,但近年来因镉有毒性,此项用处有减缩的趋势。镍-镉和银-镉电池具有体积小,容量大的长处。镉是制作钎焊合金和低熔点合金的首要成分之一。镉具有较大热中子抓获截面,因而含银80%、铟15%和镉5%的合金可用作原子反响堆的控制棒。

镉矿

2019-02-11 14:05:38

镉是银白色有光泽的金属,熔点320.9℃,沸点765℃,相对密度8.642。有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉[1]。也可与硫直接化合,生成。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻,日本因镉中毒曾呈现“痛痛病”。  可用多种办法从含镉的烟尘或镉渣(如煤或炭复原或硫酸浸出法和锌粉置换)中取得金属镉。进一步提纯可用电解精粹和真空蒸馏。镉首要用于钢、铁、铜、黄铜和其他金属的电镀,对碱性物质的防腐蚀能力强。镉可用于制作体积小和电容量大的电池。镉的化合物还很多用于出产颜料和荧光粉。、、用于制作光电池。

镉的用途

2019-03-08 12:00:43

用处:镉作为合金 组土元能配成许多合金,如含镉0.5%~1.0%的硬铜合金 ,有较高的抗拉强度和耐磨性。镉(98.65%)镍(1.35%)合金是飞机发动机 的轴承材料。许多低熔点合金 中含有镉,闻名的伍德易熔合金 中含有镉达12.5%。镍-镉和银-镉电池具有体积小、容量大等长处。镉具有较大的热中子抓获 截面,因而含(80%)铟(15%)镉(5%)的合金可作原子反应堆的控制棒。镉的化合物曾广泛用于制作颜料、塑料稳定剂 、荧光粉等。镉还用于钢件镀层防腐,但因其毒性大,这项用处有减缩趋势。        用于电底、制作合金等;并可做成原子反应堆中的中子吸收 棒。镉氧化电位高,故可用作铁、钢、铜之保护膜,广用于电镀上,并用于充电电池、电视映像管、黄色颜料及作为塑料之安靖剂。镉化合物可用于虫剂、菌剂、颜料、油漆 等之制作业。

镉镍电池

2017-06-06 17:50:00

镉镍电池 (nickel-cadmium battery) 是指采用金属镉作负极活性物质,氢氧化镍作正极活性物质的碱镍镉电池性蓄电池。正、负极材料分别填充在穿孔的附镍钢带(或镍带)中,经拉浆、滚压、烧结、化成或涂膏、烘干、压片等方法制成极板;用聚酰胺非织布等材料作隔离层;用氢氧化钾水溶液作电解质溶液;电极经卷绕或叠合组装在塑料或镀镍钢壳内。   镉镍电池标称电压为1.2V,有圆柱密封式(KR)、扣式(KB)、方形密封式(KC)等多种类型。具有使用温度范围宽、循环和贮存寿命长、能以较大电流放电等特点,但存在“记忆”效应,常因规律性的不正确使用造成电性能下降。   镉镍电池的电池表达式为:(-)Cd︱KOH(NaOH)︱NiOOH(+)   电池反应为:   放电时:Cd+NiOOH+H2O→Ni(OH)2+Cd(OH)2   充电时:Ni(OH)2+Cd(OH)2→Cd+NiOOH+H2O   大型袋式和开口式镉镍电池主要用于铁路机车、矿山、装甲车辆、飞机发动机等作起动或应急电源。圆柱密封式镉镍电池主要用于电动工具、剃须器等便携式电器。小型扣式镉镍电池主要用于小电流、低倍率放电的无绳电话、电动玩具等。由于废弃镉镍电池对环境的污染,该系列的电池将逐渐被性能更好的金属氢化物镍电池所取代。