分散性氧化铝的作用
2018-12-11 14:35:52
分散性氧化铝在煎熬注料中发挥两大作用:
1、使浇注料充分分散而降低加水量,达到最佳流动性。
2、根据特定施工要求和气候条件调节施工和凝固时间。化学成分[%] 典型值 典型值 典型值 典型值 典型值 Al2O3 80 76 80 91 96 Na2O 0.10 0.10 0.10 1.40 0.10 B2O3 0.80 2.80 .0.3 1.30 0.55 CaO 1.80 1.80 0.02 0.02 0.02 1050℃灼减量 18.0 20.0 18.0 7.0 2.7
钛白粉在溶剂型涂料中分散性的研究
2019-02-15 14:21:24
1 前语 钛是一种质量优秀的白色粉末颜料,具有杰出的光散射才能,因而白度好、上色力高、隐瞒力强,一起具有较高的化学安稳性和较好的耐候性、无毒无味、对人体无刺激效果,广泛运用于涂料、塑料、造纸及油墨等工业范畴。在溶剂型涂猜中,钛作为白色的上色颜料,是涂料非有必要成膜物质,它不只赋予被涂物体表面亮光皎白的颜色,并且对涂料的耐候性、抗粉化才能以及流变性起到必定的效果。钛的油涣散性在溶剂性涂料和塑料方面都十分重视,它的好坏会大大影响出产工艺、出产设备和产质量量。以下从钛表面性质动身,结合溶剂型涂料的组成,评论钛在溶剂型涂猜中的涣散机理,并分析其影口向要素,提出改进办法。这为改进钛在溶剂型涂猜中的涣散性供给理论依据,有必定的参阅含义。 2 钛表面性质 钛是一种既不溶于水,又不溶于油的无机化合物,但在水或油的介质中可以进行涣散。钛粒径很小,有很高的比表面能,因而在单一的固相中呈现出极强的凝集特性,来下降表面能,构成比较安稳的亚态集合粒子。研讨标明,二氧化钛表面吸附空气中的水,会与水生成碱性的“端”氢氧基和酸性的“桥”氢氧基,从检测出Zeta电位来分析,其表面电负性很强(锐钛型钛Zeta电位大约是-50mv),构成同一电荷的吸附层,有很强的吸附效果,钛在两相中又表现出很强的高涣散性和激烈的表面吸附效果。 3 钛在溶剂型涂猜中的涣散机理 3.1 溶剂型涂料的根本组成 溶剂型涂料首要包含成膜基料油或许树脂,涣散介质挥发性有机溶剂和颜料。其间成膜基料是涂料的首要成膜物质,而颜料是赋予物体上色和隐瞒的效果,归于非有必要成膜物质。涣散介质就是使成膜基料和颜料很好地涣散,构成粘稠的液体。因而,钛在溶剂型涂猜中的涣散机理,就是评论钛在成膜基料和涣散介质(挥发性有机溶剂)混合漆猜中的潮湿和涣散进程. 3.2 钛、树脂和溶剂油之间的彼此效果 溶剂油可以将树脂彻底溶解,构成混合漆料,钛激烈的表面吸附效果,可以将树脂和溶剂油所吸附。钛在涂料涣散进程中,要求树脂尽可能多地、牢固地吸附在钛的表面,而溶剂油尽可能不吸附上去,这样有利于溶剂油对树脂的溶解才能,进步树脂的溶解度,一起和钛构成的涂料安稳化程度高。因而,钛、树脂和溶剂油之间彼此影响,彼此限制,任何一种组分的反常都会影响整个体系的功能。 3.3 溶剂型涂猜中钛的涣散机理 在溶剂型涂猜中,溶剂油一般对错极性溶剂或许极性很弱的溶剂,电性很弱小,在钛表面构成的双电层很单薄,缺乏以对整个体系构成激烈的双电层效应,来下降表面能,到达安稳状况。在这种体系中,钛将聚合物树脂所吸附,而聚合物又被溶剂油所溶剂化,因而,吸附的树脂均带有溶剂化长链,这些溶剂化长链在钛颗粒表面规整摆放,构成必定区域的屏蔽层。当两个被溶剂化长链包裹的钛颗粒接近时,溶剂化长链彼此交叉,交叉的进程中,交叉区域的聚合物树脂浓度升高,和附近区域构成渗压差,因为渗压差的效果,迫使溶剂油向压差低的区域流出,迫使颗粒分隔,到达钛在树脂和溶剂油的混合漆猜中涣散的意图。 因而,钛在溶剂型涂猜中的涣散机理可依据表面吸附屏蔽效应来解说 .[next] 4 影响钛涣散的要素 在溶剂型涂猜中,当树脂和溶剂油断定后,钛在混合漆猜中的涣散及涣散安稳化程度决定于其自身的运用功能和表面特性。 4.1 钛均匀粒径和粒度散布 钛均匀粒径和粒度散布是反映钛颜料功能和运用功能的综合性目标。经过很多的试验标明,当钛粒径小于200nm的质量百分数在30%左右时,检测Zeta电位大约在-70mv;若质量百分数小于20%时,Zeta电位大约在-40mv,这说明钛的粒径状况严重影响其表面电性,然后影响表面吸附功能。但粒径不能太小,否则会影响其它颜料功能,因而有必要操控适宜的粒度规模,一般地操控粒度在(0.15~0.3)μm。 见表1钛均匀粒径和粒度散布对油涣散性的影响。 表l 均匀粒径和粒度散布对油涣散性的影响 钛产地 均匀粒径nm 散布宽度 油涣散性/μm 攀枝花 273.5 0.102 35 河南 467.7 0.323 75 云南 378.2 &n 表1对不同粒度散布的钛进行了油涣散性的试验,发现均匀粒径和粒度散布的宽度(质量百分数正态散布图)对钛油涣散性影响很大。依据很多的试验数据计算,可以得出以下的定论;当钛粒度散布宽度在0.1以下时,用刮板细度计进行检测,细度在(40~30)p.m,当峰宽在0.2时,细度大约在60gm,若散布宽度大于0.3,根本上该产品在溶剂型涂猜中无法运用,有必要采纳处理办法。因而粒度散布要求尽可能地均匀,增大产品的研磨强度,减小散布宽度,进步油涣散性。 4.2 钛中可溶性物质 在钛中可溶性物质含量的凹凸,也严重影响钛的运用功能。钛在混合漆料涣散体系中,可溶性盐一般都是极性很强的无机离子,会使钛表面的电荷抵消一部分,但又不能构成强壮的双电层,反而削弱了钛表面的吸附效果,迫使树脂不可以牢固地吸附在钛颗粒表面,下降了涣散安稳化程度,导致钛在溶剂型涂猜中返粗。别的,在一些绝缘性油漆涂猜中,可溶性物质的偏高,减小了体系的电阻率,下降被涂物体表面的绝缘功能,一起涂料的电化学特性显着,下降了耐化学性和耐腐蚀性。见表2钛可溶性物质对油涣散性的影响。 表2 钛可溶性物质对油涣散性的影响 样品 净化水 水溶眭物质/% 散布宽度 油涣散性/μm 试样1 去离子水 0.45 0.122 40 试样2 出产水 0.82 0.150 60 试样3 去离子水 0.35 0.102 30 从表2的数据可以知道,水溶性物质对产品的油涣散性的确有必定的影响。依据钛产质量量确保要求,有必要操控可溶性物质的含量小于0.5%,因而,在钛净化工艺中有必要选用去离子水,进行杂质离子的铲除. [next] 4.3 钛的吸油量 试验标明,钛若有高的吸油量,则钛在溶剂油中必定涣散性差或许涣散不安稳,易于凝集。高吸油量的钛在溶剂型涂猜中,依照原有的配方进行配比、研磨涣散,一部分溶剂油被钛吸收,使溶解树脂的油缺乏,树脂溶剂化程度下降,影响钛对树脂的吸附,导致涣散性和涣散安稳性下降。 5 进步钛在溶剂型涂猜中涣散性的途径 5.1 严格操控其粒径及粒度散布 钛粒径和粒度散布影响要素较为杂乱,首要对水解工艺和技能进行改进,确保生成的原级粒子均匀。其次是加强煅烧要害温度点的操控,使二氧化钛粒子均匀生长。最终进行产品的粉粹,现在钛厂商的破坏工艺,大都选用雷蒙体系,也可运用效率高、分级效果好的气流破坏机,进一步对钛粒度进行操控,安稳表面特性. 5.2 吸油量和水溶物的操控 钛吸油量首要与煅烧进程中煅烧空气或煅烧高温点温度有关,若操控不妥,会形成钛颗粒晶格缺点和粒子形状不规矩,因而,须操控适宜的煅烧温度,调理进料量和窑体转速的合理匹配,削减颗粒的晶格缺点和粒子规矩的几许外形。 5.3 表面处理 对钛表面进行处理或许增加必定的涣散剂,这种涣散剂可以牢牢地吸附在钛表面,一起可以供给树脂溶剂化的长链,这样更有利于钛和树脂的吸附,增大涣散安稳化程度。一般具有这种特性的涣散剂组成比较杂乱,大大都是多羧酸烷基铵盐。 现在,国内大都供应商出产的是低层次的锐钛型产品,在溶剂型涂猜中涣散性一般都很差,因而在涂料职业中运用逐步被金红石产品所代替。关于锐钛型钛可经过表面处理来改动其表面特性,可以在某种程度上与金红石产品的油涣散性相媲美,且报价低与金红石产品有必定的市场竞争力。国内比较受喜爱的表面处理剂有:有机硅、偶联氮试剂或许一些盐等等,其间有机硅处理运用较多,并且已经在工业上取得成功。 6 结语 从钛表面特性动身,评论了钛在溶剂型涂猜中的效果和涣散机理,一起分析了影响钛在溶剂型涂猜中涣散性的要素,并提出寻求一种改进钛在溶剂型涂猜中涣散性的新途径。
纳米氧化锌
2017-06-06 17:49:59
纳米氧化锌(ZnO)粒径介于1-100 nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。纳米氧化锌还可用来制造远红外线反射纤维的材料,俗称远红外陶瓷粉。而这种远红外线反射功能纤维是通过吸收人体发射出的热量,并且再向人体辐射一定波长范围的远红外线,除了可使人体皮下组织中血液流量增加,促进血液循环外,还可遮蔽红外线,减少热量损失,故此纤维较一般纤维蓄热保温。纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。
径厚比对高岭土在丁苯橡胶复合材料中分散性能的影响
2019-03-07 10:03:00
高岭土是一种典型的层状硅酸盐矿藏,在扫描电镜下出现板状、片状描摹,片的厚度在30~500nm、直径在0.5~5μm,是一种天然的纳米材料,被广泛应用于橡胶、塑料树脂等聚合物复合材料。
自然界的高岭土因成因、构成时代、构成条件各异,而构成不同产地的高岭土自身存在着径厚比大小差异。本文以山东枣庄(ZZ)、广西北海(BH)、内蒙古蒙西(MX)、福建龙岩(LY)、山西金洋(Y)、淮北雪纳(XN)、河北张家口(ZJK)共7个不同产地的高岭土经过乳液共混法,制备丁橡胶(SBR)复合材料,结合扫描电镜、DMA等手法,研讨径厚比对高岭土在复合材料基体平涣散功能的影响。1试验部分
(1)高岭土前处理
将高岭土原矿与水依照20%浓度制浆,涣散剂聚酸钠用量为高岭土质量的1%,调理pH=9,高速涣散2h后静置1h,虹吸得高岭土悬浮液,置于鼓风枯燥箱中枯燥得到纯化高岭土。将纯化高岭土、1mm锆球、去离子水依照质量比2:2:3份额混合,改性剂Si69用量为高岭土质量的2%,调pH=10,运用试验多用涣散机于2000r/mm转速磨剥2h,得改性高岭土浆液。
(2)复合材料制备
将高岭土改性悬浮液与丁胶乳依照50填充份数共混,低速拌和30min混合均匀,缓慢参加质量分数为2%的CaCl2溶液,直至胶乳悉数絮凝结束,用去离子水将絮凝胶团清洗3次,置于鼓风枯燥箱中于60°C枯燥至质量不再改变。将胶团在开炼机上薄通10次进行塑化,顺次参加NS、ZnO、硬脂酸、双二五、等药剂,混炼均匀后,打3次三角包,薄通3次后出片,放置24h后依照163°C×T90×10MPa硫化成2mm薄片,并裁剪成标准试样。
(3)测验分析
运用冷场发射扫描电子显微镜(S4800)测验复合材料断面描摹,成像电压30kV。运用动态热机械分析仪(DMA242型)测验复合材料动态力学功能,拉伸方法,测验频率10HZ,静态应变起伏为5%,动态应变起伏为0.25%,升温规模为-60~60℃,升温速率3℃/min。
2结果与评论
(1)微观描摹图1为不同产地的改性高岭土及其填充的SBR复合材料的断面描摹,其间图1(a)和图1(c)别离为ZZ及BH粉体描摹,图1(b)和图1(c)别离为ZZ及BH所填充SBR复合材料断面描摹。由图1(b)和图1(c)可知,ZZ的径厚比明显大于BH。
在开炼机剪切混炼过程中,由于前后辊线速度不同而发作剪切力,将混炼胶揉捏拉扯然后混炼均匀。在混炼过程中,宽度较小的高岭土在橡胶基体中具有更小的空间位阻,因而更简单涣散,互相孤立不相触摸[(图1(b)]。而宽度较大的高岭土具有较大的空间位阻,高岭土颗粒简单互相磕碰,倾向于互相构成边-面相连、边-边相连的结构,将本来为一个全体的橡胶基体进行空间切割,使橡胶基体被切割成相对独立的单元[(图1(d)]。
(2)动态热机械分析图2为填充不同产地高岭土的SBR复合材料的储能模量,与纯丁橡胶(SBR-P)比较,填充高岭土之后复合材料的力学功能均有大起伏提高。
依据径厚比大小,能够将高岭土大致分为两组:蒙西、枣庄、金洋、雪纳,其径厚比均在5左右,以及北海、龙岩、张家口,其径厚比均在10左右。
由图可知,在低温规模(-60~60℃)内,除雪纳高岭土之外,小径厚比高岭土(蒙西、枣庄、金洋)填充的SBR复合材料具有较小的储能模量。在高温规模(0〜40℃)内,由暗影区域扩大图可知,除张家口之外,小径厚比高岭土(蒙西、枣庄、金洋、雪纳)填充SBR时具有较小的储能模量。可知,无论是在高温或低温区域,高岭土/SBR复合材料的储能模量,均倾向于跟着高岭土径厚比的增大而增大。图3为填充不同产地高岭土的SBR复合材料的损耗模量。由图可知,在低温规模(-60~60℃)内,除雪纳高岭土之外,小径厚比高岭土(蒙西、枣庄、金洋)填充的SBR复合材料具有较小的损耗模量。在高温规模(20~40℃)内,由暗影区域扩大图可知,除枣庄之外,大径厚比高岭土(北海、龙岩、张家口)填充的SBR具有较高的储能模量。可知,无论是在高温或低温区域,高岭土/SBR复合材料的损耗模量,均倾向于跟着高岭土径厚比的增大而增大。
(3)高岭土在橡胶中的涣散形状
由图1分析可知,当径厚比较小时(以枣庄为例),基体中高岭土互相较少触摸,出现“孤岛式”涣散形状[见图4(a)]。而大径厚比的高岭土(以北海为例)填充时,因其片层颗粒更易互相触摸,构成“接连式”的填料网络结构[见图4(b)]。两种不同的填料网络结构会导致不同的填料-橡胶分子作用方法。孤岛状散布时,高岭土颗粒相距较远,橡胶分子链与高岭土的作用只存在两种方法:
➀单个橡胶分子链与高岭土片层多点衔接;
➁别离衔接两个片层颗粒的两段分子链之间发作环绕。
在“接连式”散布中,除上述两种衔接方法外,由于高岭土颗粒间隔较近,还存在别的两种作用;
➂一段分子链一起衔接两个乃至更多相邻的高岭土颗粒;
➃接连触摸的高岭土板状颗粒,构成“卡房式”结构,将部分橡胶分子链切割围住,此部分橡胶分子链的运动被约束在一小区域中。
值得着重的是,➀、➁、➂3种作用方法只能构成结合胶,而只要d的橡胶-填料作用方法能够一起构成结合胶和吸留胶。因而,“接连式”的高岭土网络结构比“孤岛式”的填料涣散形状具有更佳的补强作用。
橡胶的损耗模量首要来源于内部组分的冲突,其间包含橡胶-橡胶冲突,橡胶-填料冲突,填料-填料冲突。在SBR-P中,只存在橡胶-橡胶分子链冲突。
小径厚比高岭土填充时,因其“孤岛式”的填料涣散形状,填料互相不触摸,复合材料存在着橡胶-橡胶、橡胶-填料冲突。
当大径厚比高岭土填充时,因填料之间互相触摸构成“接连式”填料网络,复合材料中存在着以上悉数3种冲突生热。因而,高岭土/SBR复合材料的损耗模量,均倾向于跟着高岭土径厚比的增大而增大。
雪纳高岭土的均匀直径较小(0.4μm),但其填充的SBR复合材料依然具有较高的储能模量和损耗模量。这是由于雪纳高岭土的厚度是7个不同产地高岭土中的最低值,仅为0.07μm。平等填充份数下,雪纳高岭土的颗粒数较多。复合材料的单位体积中跟着单位体积内填料颗粒数量增大,即小径厚比的高岭土依然能够构成杰出的“接连式”填料网络,导致复合材料的储能模量和损耗模量增大。
3定论
(1)径厚比较大的高岭土倾向于在复合材料中构成“接连式”的涣散网络,径厚比较小的高岭土则倾向于“孤岛式”涣散。
(2)高岭土出现“接连式”涣散网络时,橡胶分子链的运动得到了更好的约束,因而SBR复合材料具有更佳的储能模量。
(3)大径厚比高岭土的“接连式”网络中的填料-填料冲突方法,导致了复合材料具有更高的损耗模量。
处理铜镉渣生产镉
2019-02-11 14:05:38
一、电积法出产金属镉
以铜镉渣为质料出产金属镉的电积法工艺流程如图1所示。图1 从铜镉渣出产金属镉电积法的工艺流程
铜镉渣的成分一般动摇规模为:2.5%~12%Cd,35%~60%Zn,4%~17%Cu,0.05%~2.0%Fe铜镉渣中还含有少数As,Sb,SiO2,Co,Ni,T1,In等杂质。
为了加快浸出进程,有的工厂在浸出前将铜镉渣堆积在空气中氧化。这样也增加了铜溶解的丢失,只要在处理含铜较低的铜镉渣时才适用这种处理。浸出进程得到的铜渣成分为:30%~50%Cu,10%~15%Zn,0.3%~1.0%Cd。
在浸出中,除了锌和铜的溶解外,还有一些Ni,Co,In,T1进入溶液,得到的浸出液成分为:120~130g/LZn,8~16g/LCd,0.3~0.8g/LCu,3~9g/LFe,0.05~0.1g/LCo,0.05~0.1g/LNi。浸出液经加锌粉净化除掉铜后,送去加锌粉置换沉积镉。置换沉积镉一般分两段操作。在榜首段坚持温度为333K,使溶液中的镉降到1g/L中止。过滤别离铜镉渣后的溶液再进行第二段操作,可进一步使镉的含量降到10~15mg/L。第二段得到的海绵镉(Ⅱ)含镉低,反回铜镉渣的浸出进程。第二段置换后的溶液中含有Co,T1,In等,用黄药除钴后去进一步收回T1与In。
榜首段置换沉积镉得到的海绵(Ⅰ)用镉电解液浸出。溶液中硫酸的浓度为200~250g/L,浸出温度353~363K,参加MnO2或KMnO4以加快镉海绵的溶解,浸出终了的pH值为4.8~5.2,铜水解进入渣中。
别离铜渣后的镉绵浸出液,加SrCO3除铅,加锌粉置换除铜,加KMnO4氧化T1与Fe,再水解沉积。
镉溶液的电积一般选用电解液不循环操作准则,其作业条件及技能指标:
参加电解液成分/(g·L-1) 160~220Cd,20~30Zn,12~15H2SO4
电积后废液成分/(g·L-1) 15~20Cd,150~180H2SO4
电解液温度/K 303~308
电流效率/% 70~92
槽电压/V 2.5~2.6
电积周期/h 24
电能耗费/(kW·h·t-1) 1400~1700
选用电解液循环的出产方式,能够得到较高的电流效率。
前苏联许多湿法炼锌厂选用电积法工艺流程。我国湿法炼锌厂选用电解液循环准则的电积法。例如株洲冶炼厂处理这种Cu-Cd渣的电积法流程见图2。Cu-Cd渣的化学分为:
5.64%Cu,14.31%Cd,40.26%Zn,1.27%Pb,0.076%Ni,0.0212%Co,0.0075%In,0.0024%Ge,0.0029%Ga,0.0329%T1,4.07%Fe。图2 株洲冶炼厂从Cu-Cd渣出产镉的工艺流程
株洲冶炼厂用铜镉渣出产镉的首要冶炼进程技能条件如下:
(一)Cu-Cd渣的浸出
用50m3的机械拌和浸出槽进行浸出。将硫酸缓慢地参加盛有Cu-Cd渣的浸出槽中,坚持浸出的最高酸度为10~15g/L,温度为353~363K。当酸度降至5~4g/L时,参加软锰矿,在pH值为4.8~5.0时,加石灰乳(现改用ZnO粉)中和至pH=5.2~5.4时便中止拌和。整个浸出进程连续6~8h。
经28m2的胶质压滤机压滤,所得压滤渣成分:20%~30%Cu,<1%Cd,送铜冶炼处理收回铜。滤液成分:8~15g/LCd,80~140g/LZn,0.050g/LCu。
(二)置换
置换在50m3的机械拌和槽中进行。置换前加H2SO4将浸出的滤液酸化至pH=3~4,缓慢地参加锌粉进行置换反响,待分析溶液含镉小于100mg/L时即送压滤。
置换得到的海绵镉含60%~80%Cd,再堆积7~10天天然氧化后送去造液。置换后的贫液含有15~30g(T1)/m3时,可加锌粉置换出后再送湿法炼锌体系。
(三)造液
在9m3的机械拌和槽中造液。将海绵镉与浓硫酸参加槽中,坚持溶解85~90℃,经2~3h待溶液酸度降至0.5~1g/L,便参加KMnO4氧化除铁,然后参加镉绵使pH值降至3.8~4.0,再用石灰乳中和至pH=5.4,便送去过滤。
(四)净化
在17m3机械拌和槽中净化。在50℃条件下,参加新鲜镉绵置换除铜后,再加KMnO4氧化除铁。净化后溶液的成分:200~250g/LCd,20~30g/LZn,低于0.05g/LFe,低于0.0005g/LCu,低于0.001g/L(As+Sb)。
(五)电积
在钢筋混凝土内衬铅皮的电解槽中进行电解液循环。槽的尺度为2800×850×1250mm,每槽可装阳极26片,阴极25片。用一台2000A与0~36V的硒整流器供电。
电积进程的技能条件如下:
同名极距 10mm
电解液循环量 0.103m3/min
电解液温度 298~305K
电流密度 45~75A/m2
槽电压 2.4~2.5V
电解周期 24h
电解液成分分/(g·L-1) 60~70Cd,
120~145H2SO4
(六)精粹熔铸
在容量1t的铸铁锅中进行精粹。
熔铸温度为723~823K,表面掩盖一层NaOH,铸成7.5kg的镉锭,其成分:镉99.99%以上,铅低于0.004%,锌低于0.002%,铜低于0.001%,铁低于0.002%。镉的一级品率,均到达100%。
二、置换法出产金属镉
因为电积法出产镉的电耗大,许多工厂将电积法改为置换法。
美国熔炼与精粹公司的电锌厂,原选用电积法处理来自锌出产第二段净化的镉渣出产镉,现改为置换法,其工艺流程见图3。图3 美国熔炼与精粹公司从镉渣出产镉的工艺流程
芬兰科科拉电锌厂使用第二段净化产出的镉渣出产镉,也是选用置换法出产流程连续作业。科科拉电锌厂处理镉渣成分如下:1号15%~25%Cd,约1%Cu,0.05%Co,0.005%~0.05%Ni,60%Zn;2号22.4%Cd,0.7%Cu,54.5%Zn。
前苏联乌斯基-卡敏诺哥尔斯克铅锌联合厂商的电锌厂是在离心反响器中以置换沉积法处理Cu-Cd渣,其出产流程见图4。图4 钨斯基-卡敏诺哥尔斯克电锌厂处理铜镉渣出产工艺流程
离心反响别离器外形为圆柱体,中心装有空心轴,轴上装有特殊结构的别离盘,空心轴的转速到达3000r/min。
在离心反响器中置换沉积的速度超越一般置换沉积槽的沉积速度300倍,每升容积的出产率到达200L/h。在第二段离心反响器中所得的低镉绵用锌废电解液溶解,加热到343K,反响终了的pH=4.5~5.5,然后用KMnO4净化除,再送往离心反响器中置换沉镉。
纳米氧化铝
2017-06-06 17:50:12
纳米氧化铝透明液体XZ-LY101体颜色无色透明色固含量的20%-25%。该纳米氧化铝透明分散液中使用的是5-10纳米的氧化铝,该5-10纳米的氧化铝是经过原来粒径稍大的纳米氧化铝经过层层深加工筛选出来的氧化铝,具有明显纳米蓝相,添加到各种丙烯酸树脂,聚氨酯树脂,环氧树脂,三聚氰胺树脂,硅丙乳液等树脂的水性液体中,添加量为5%到10%,可以明显提高树脂的硬度,硬度可达6-8H甚至更高。完全透明,该纳米氧化铝液体可以是水性的或者油性的任何溶剂,由于其纳米粒径相当细小,固无论是何种溶剂皆是透明的,同时可以做各种玻璃涂层材料,宝石,精密仪器材料等。 纳米氧化铝显白色蓬松粉末状态,晶型是γ-Al2O3。粒径是20nm;比表面积≥230m2/g。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。极好分散,在溶剂水里面;溶剂乙醇、丙醇、丙二醇、异丙醇、乙二醇单丁醚、丙酮、丁酮、苯、二甲苯内,不需加分散剂,搅拌搅拌即可以充分的分散均匀。在环氧树脂,塑料等中,极好添加使用。 纳米氧化铝的制备方法,包括如下步骤:(1)将烃类组分和VB值小于1的表面活性剂混合均匀;(2)纳米氢氧化铝凝胶由以下方法之一制得:方法一:熔融的无机铝盐缓慢加入到步骤(1)所得的混合物中,混合至形成均匀胶体;然后加入沉淀剂,在50~120℃温度下进行中和成胶,然后老化0~30小时,得到纳米氢氧化铝凝胶;方法二:将熔融的无机铝盐缓慢加入步骤(1)所得的混合物中,混合至形成均匀胶体;在密闭条件下,在氨临界温度以下通入沉淀剂液氨,在30~200℃温度下进行中和成胶,然后老化0~30小时,得到纳米氢氧化铝凝胶;方法三:使用沉淀剂与无机铝盐混合均匀后加热熔融,缓慢加入到步骤(1)所得的混合物中,混合至形成均匀胶体;在密闭的条件下,将所得到的混合物于70~200℃温度下进行均匀沉淀中和成胶,成胶时间4~8小时,然后老化0~30小时,得到纳米氢氧化铝凝胶;(3)将步骤(2)所得的纳米氢氧化铝凝胶进行焙烧后,得到纳米氧化铝;其中水在步骤(1)和/或步骤(2)中以结晶水和/或游离水形式加入;以步骤(2)所得到的混合物的重量为基准,无机铝盐(干基)、沉淀剂和水用量为60wt%~95wt%,水与铝原子的摩尔比为3~15∶1,铝原子和沉淀剂的摩尔比为1∶0.9~5;表面活性剂的用量为0.1wt%~8wt%;烃类组分的用量为3wt%~32wt%。 纳米氧化铝油性树脂用液体XZ-LY102体颜色白色半透明,固含量的20%-50%。该氧化铝油性树脂用液体XZ-LY102中使用的是20纳米的氧化铝,该20纳米的氧化铝是经过原来粒径稍大的纳米氧化铝经过层层深加工筛选出来的氧化铝,具有明显纳米蓝相,添加到各种油性丙烯酸树脂,聚氨酯树脂,环氧树脂,三聚氰胺树脂,硅丙乳液等树脂的液体中,添加量为2%到5%,可以明显提高树脂的硬度,硬度可达6-8H甚至更高。该氧化铝油性树脂用液体XZ-LY102是油性的溶剂,溶剂是醇类,醚类,脂类,由于其纳米粒径相当细小,固无论是何种溶剂白色透明的,同时可以做各种玻璃涂层材料,宝石,精密仪器材料等。明显提高硬度,强度,提高耐刮擦力。 了解更多有关纳米氧化铝的信息,请关注上海
有色
网。
纳米氧化铝
2017-06-06 17:50:09
简介 中文名:纳米氧化铝 英文名:Aluminium oxide,nanometer 别名:纳米三氧化二铝 CAS RN.:1344-28-1 分子式:Al2O3 分子量:101.96编辑本段化学性质 氧化铝是白色晶状粉末,已经证实氧化铝有α、β、γ、δ、η、θ、κ和χ等十一种晶体。不同的制备方法及工艺条件可获得不同结构的纳米氧化铝:χ、β、η和γ型氧化铝,其特点是多孔性,高分散、高活性,属活性氧化铝;κ、δ、θ型氧化铝;α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;β-Al2O3、γ-Al2O3的比表面较大,孔隙率高、耐热性强,成型性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。该纳米氧化铝显白色蓬松粉末状态,晶型是γ-Al2O3。粒径是20nm;比表面积≥230m2/g。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。极好分散,在溶剂水里面;溶剂乙醇、丙醇、丙二醇、异丙醇、乙二醇单丁醚、丙酮、丁酮、苯、二甲苯内,不需加分散剂,搅拌搅拌即可以充分的分散均匀。在环氧树脂,塑料等中,极好添加使用。应用范围 透明陶瓷:高压钠灯灯管、EP-ROM窗口。 化妆品填料。 单晶、红宝石、蓝宝石、白宝石、钇铝石榴石。 高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管。 精密抛光材料、玻璃制品、
金属
制品、半导体材料、塑料、磁带、打磨带。 涂料、橡胶、塑料耐磨增强材料、高级耐水材料。 气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料。 催化剂、催化载体、分析试剂。 宇航飞机机翼前缘。 纳米氧化铝用量: 推荐用量为1~5%,使用者应根据不同体系经过试验决定最佳添加量。 制作:高温高压研磨法。
纳米氧化铜
2017-06-06 17:50:00
纳米氧化铜英文名:Nanometer Cupric Oxide分子式:CuO分子量:80密度:6.3-6.49g/cm3熔点:1326℃纳米氧化铜是一种黑色粉末,不溶水,在醇、氨溶液中溶解缓慢,溶于稀酸、NH4Cl、(NH4)2CO3溶液。高温遇氢或一氧化碳,可还原金属铜。纳米氧化铜的粒径小,粒度均匀,与普通氧化铜相比,具有表面效应、量子尺寸效应、体积效应以及宏观量子隧道效应等优越性能,在磁性、光吸收、化学活性、热阻、催化剂和熔点等方面表现出奇特的物理和化学性能,因此纳米氧化铜受到了人们的普遍关注,并成为用途更广泛的无机材料之一。性能指标:外观 黑色粉体型号 VK-Cu01 纯度(%)≥ 99.5 粒度(nm) 40 比表面积m2/g 70-80 水分(%)≤ 0.05 盐酸不溶物(%)≤ 0.10用途: (1)在催化、超导、陶瓷等领域中作为一种重要的无机材料有广泛的应用。 (2)用作催化剂和催化剂载体以及电极活性材料。 (3)用作玻璃、瓷器的着色剂,光学玻璃磨光剂,有机合成的催化剂、油类的脱硫剂、氢化剂。 (4)制造人造宝石及其它铜氧化物。 (5)用于人造丝的制造,以及气体分析和测定有机化合物等。 (6)还可作为火箭推进剂的燃速催化剂。纳米氧化铜粉体具有比大尺寸氧化铜粉体更优越的催化活性和选择性及其他应用性能。纳米氧化铜的别名:C.I.颜料黑15;氧化铜;丝状氧化铜;线状氧化铜;纳米氧化铜;电镀级氧化铜;氧化铜(II)纳米氧化铜的结构式:Cu=O
纳米氧化镍
2017-06-06 17:49:58
纳米氧化镍是过渡金属氧化物中不多见的p型半导体之一,具有稳定而较宽的带隙,作为一种新型功能材料受到人们关注.介绍了纳米氧化镍的化学沉淀法、电化学和溶胶-凝胶综合法、喷雾热解法、高分子网络法、醇溶剂法、聚乙烯吡咯烷酮(PVP)前驱体法、水热法及低热固相法等多种合成方法,简要分析了各方法的影响因素及优缺点.综述了纳米氧化镍在催化材料、光电材料、气敏传感材料及电池材料等方面的应用情况,展望了其今后在生物、催化、能源、医药等领域的发展应用前景。主要用途:1、催化剂:纳米NiO是一种催化作用较好的氧化催化剂,Ni2+具有3D轨道,对多电子氧具有择优吸附的倾向,对其它还原气体也有活化作用,并对还原气体的O2起催化作用,在有机物的分解合成,转化过程中,如汽油氢化裂化,是石化处理中烃类转化,重油氢化过程中,NiO是良好的催化剂。在天然气的催化燃烧中,为了避免反应温度过高使空气中的N2氧化生成NOx,并有未燃烧完全的CO产生,使用NiO/CuO—Zr02复合催化剂提高了其高温稳定性。在制备纳米碳管的过程中,用到了NiO/Si02复合催化剂,并且Ni含量较高时,合成的碳纳米管收得率高,管径分布窄,而NiO的含量及形状直接影响着碳纳米管的产量及性状。在废水处理中,NiO是除去其中CH4,氰化物,N2,促使NOx分解的催化剂。NiO作为光催化降解酸性红的催化剂,在处理有机染料废水中,效果非常显著。 2、陶瓷添加剂与玻璃染色剂:陶瓷制品中用NiO来提高其冲击力,当加入NiO(O.02(wt)%),还可以提高材料的各项电性能,如压电性能和介电性能。在玻璃中加NiO主要是控制玻璃的颜色,在能吸收紫外线的着色稳定的棕色透明玻璃中就含少量的NiO.透明玻璃镜和装饰用玻璃中,均添加了适量的NiO作着色剂。 3、电池电极:随着通信,信息技术的不断发展,电容器也得到了前所未有的发展。现在的超级电容器由于具有比静电电容器高得多的能量密度和比传统化学电源高得多的功率密度而成为一个研究热点。据研究表明,氧化钌是目前研究最多,性能最好的电化学电容器电极材料,但由于它的价格非常昂贵阻碍了它的大规模应用。而且活性炭内阻较大的特点使得人们把目光投向了过渡金属氧化物。过渡金属氧化物因为其本身的准电容现象成为超级电容器的电极材料。目前,利用Ni,Mn,Co等氧化物的内阻较小,价廉且比容量大等特点,制作而成的电池电极材料备受关注。碳酸盐熔盐燃料电池中用NiO作阴极,用煤气或天然气作燃料,是一种发电效率高于传统火力发电的清洁能源。而且纳米NiO电池与普通NiO电池相比有明显的放电优势,放电容量明显增大,电极电化学性能得到改善。 4、传感器:NiO是近几年来越来越受到重视的气体传感器材料。目前已有用纳米NiO制作成的甲醛传感器,CO传感器,H2传感器等应用于实际生产。纳米氧化镍 20nm 99.5%50m2/g 球形绿黑色 价格一般为:1100元/公斤
镉知识
2019-03-08 09:05:26
镉是银白色有光泽的金属,密度8.64,熔点320.9℃,沸点765℃,有耐性和延展性。镉在湿润空气中缓慢氧化并失掉金属光泽,加热时表面构成棕色的氧化物层。高温下镉与卤素反响剧烈,构成卤化镉。也可与硫直接化合,生成。镉溶于酸,但不溶于碱。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可构成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。镉的毒性较大,被镉污染的空气和食物对人体损害严峻。
镉的首要矿藏有硫镉矿、菱镉矿及方镉矿等,但均不构成独自矿床。镉赋存于锌矿、铅锌矿和铜铅锌矿石中,尤其是在淡色的闪锌矿中含量较高,一般为0.1-0.5%,高达5%,镉在浮选时大部分进入锌精矿,在焙烧过程中富集于烟尘中。在湿法炼锌厂的硫酸锌溶液净化过程中产出的铜镉渣(含镉4~20%),火法炼锌厂的粗锌精馏过程中产出的镉灰(含镉10~30%)和某些铜、铅冶炼厂的富镉尘均可提取镉。因为镉污染环境,铅锌冶炼厂有必要从排放物中收回镉。镍镉和铁镉蓄电池的极板等各种工业废料也是提取镉的二次质料。
镉的提取办法分为从铜镉渣中提隔的湿法和从富镉尘中提镉的联合法。湿法提镉为我国大都工厂所选用,首要包含:铜镉渣浸出、置换堆积海绵镉、海绵镉溶解、镉液净化、电解堆积和熔化铸锭等工序。
铜镉渣首要含有锌、镉、铜等金属及其氧化物,还含有少数的砷、锑、铁、钴、镍、等。用15克/升的硫酸溶液在80~90℃浸出,当酸含量降至4~5克/升时加MnO2,使镉、铁氧化,加石灰水[Ca(OH)2]中和除铁、砷和锑。此刻,浸出液成分为Cd>10克/升、Fe
因为浸出和置换过程中能发生剧毒的(AsH3),其他过程中也发生含镉的有害气体,所以应有杰出的通风排气等安全措施。
联合法提镉是我国火法炼锌厂和铜铅冶炼厂选用的办法。镉尘先经焙烧脱去砷、锑等杂质,得到浸出功能杰出的焙砂,再用稀硫酸浸出。浸出液经氧化水解脱去铁、砷,有时还加碳酸(SrCO3)脱铅。净化后的含镉溶液用锌粉置换得到海绵镉,加压成团,在铸铁锅中于熔融烧碱维护下,铸成粗镉锭。将粗镉参加精馏塔内精馏提纯,杂质从塔的下部渣锅中排出;精镉由塔顶镉蒸气冷凝产出,纯度在99.99%以上。镉的收回率可达99.7%。
被镉污染的空气比被镉污染的食物对人体的损害更严峻。冶金车间工作环境空气中含金属镉和可溶性镉尘的极限值规定为200微克/米3,氧化镉烟雾的极限值为100微克/米3。含镉大于0.5ppm的废水不许排放。
镉用于制作轴承合金、特殊易熔合金、耐磨合金、焊锡,镉对盐水和碱液有杰出的抗蚀功能,能够用作钢构件的电镀防腐层,但近年来因镉有毒性,此项用处有减缩的趋势。镍-镉和银-镉电池具有体积小,容量大的长处。镉是制作钎焊合金和低熔点合金的首要成分之一。镉具有较大热中子抓获截面,因而含银80%、铟15%和镉5%的合金可用作原子反响堆的控制棒。