您所在的位置: 上海有色 > 有色金属产品库 > 硫代锡酸钠性质 > 硫代锡酸钠性质百科

硫代锡酸钠性质百科

锡酸钠

2017-06-06 17:50:01

锡酸钠是一种投资者想知道,因为了解它可以帮助操作。【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。化学性质无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。熔点  140°C如果你想更多的了解关于锡酸钠的信息,你可以登陆上海 有色 网进行查询和关注。

锡酸钠溶解度

2017-06-06 17:50:01

锡酸钠溶解度是一种投资者想知道,因为了解它可以帮助操作。无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。 如果你想更多的了解关于锡酸钠溶解度的信息,你可以登陆上海 有色 网进行查询和关注。

锡酸钠价格

2017-06-06 17:49:54

锡酸钠价格是锡投资者会感兴趣的一个话题,其关系到锡的投资与操作。产品名称:柠檬酸亚锡酸钠类别: 食品添加剂 / 防腐剂品牌:国产/进口规格型号:25kg/袋价格:65.0 元/千克分子式:MS Song">Na2SnO3·MS Song">3H2O性状:无色六角板状结晶或白色粉末;溶于水,不溶于醇和丙酮;加热至140℃时失去结晶水而成无水物;在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。用途:其最重要的用途是用于电镀工业的碱性镀锡及其合金(例如:锡>-锌、锡>-镉、锡>-铜和锡>-铝合金)。此外,还用于纺织工业用作防火剂、增重剂;染料工业用作媒染剂;也用于玻璃、陶瓷等工业。在电镀工业中,其性能稳定可靠,易于操作并能获得高质量镀层,且对钢无腐蚀。该镀层经过“流动熔化”处理可变得光亮。锡酸钠也用于浸没镀锡,可在汽车铝合金活塞等零件上形成光洁镀层。另外,锡酸钠还用于制造在相当大的温度范围内具有均匀介电常数的陶瓷电容器的基体、颜料和催化剂。包装:塑料袋包装,外用纸板桶密封,或按用户要求包装。每袋净重5Kg,每桶净重25kg。 【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。如果你想更多的了解锡酸钠价格等其他信息,你可以登陆上海有色网进行查询。

硅酸钠的性质

2017-12-29 11:05:01

(1)强度高水玻璃硬化后具有较高的粘结强度、抗拉强度和抗压强度。水玻璃硬化后的强度与水玻璃模数、密度、固化剂用量及细度,以及填料、砂和石的用量及配合比等因素有关,同时还与配制、养护、酸化处理等施工质量有关。(2)耐酸性高硬化后的水玻璃,其主要成分为二氧化硅,所以它的耐酸性能很高。尢其是在强氧化性酸中具有较高的化学稳定性,但水玻璃类材料不耐碱性介质的侵蚀。(3)耐热性好水玻璃硬化形成SiO2空间网状骨架,因此具有良好的耐热性能。若以镁质耐火材料为骨料配制水玻璃混凝土,其使用温度可达1100℃。

锑化物之硫代锑酸锑

2019-01-31 11:06:17

硫代锑酸锑(SbSbS4)是一种功能极端优秀的光滑油脂极压抗磨添加剂及固体光滑剂,20世纪80年代由美国首要研制成功并很快使用于水兵配备。许多文献作了报道并对其功能给予了高度的点评;少数添加于光滑脂中,可显着进步其承载才能和抗磨损才能,其极压抗磨性远优于传统的MoS2、WS2和石墨;与一切的根底脂如锂基脂、粘土脂、硅脂及复合铝基脂等都有较好的相容性;对各种合金包含难以光滑的铬工具钢及不锈钢等,均有很好的光滑效果;热安稳性好;适合于高真空、高负荷、辐射等特殊状况下运用。硫代锑酸锑的各种组成办法、功能及其使用作一概括性的总结。 一、组成办法 组成硫代锑酸锑的根本反响为 Sb3++SbS43-=SbSbS4 SbSb43-一般经过Na2S2氧化Na3SbS3制得,Na3SbS3则为Sb2S3(或辉锑矿)与Na2S的反响产品 Sb2S3+3Na2S=2Na3SbS3             (1) Na3SbS3+Na2S2=Na3SbS4+Na2S       (2) 反响(1)可由固相反响或液相反响完结,其他反响均在溶液中进行。这两步反响也能够一步完结,总反响式表明为 Sb2S3+3Na2S+2S=2Na3SbS4 这步反响要用N2维护,不然不能彻底生满足硫代酸盐(产品色暗)。经过参加少数辅佐试剂,处理了这一问题,不再需求N2维护。 Sb3+可直接由SbCl3供给,也能够由Sb3+的合作物供给。依据供给Sb3+的办法不同,可将硫代锑酸锑的组成办法分红以下几类。 (一)直接由SbCl3与Na3SbS4反响 因为SbCl3在水中激烈水解,尽管能在强酸溶液中配成水溶液,但一遇碱性的Na3SbS4溶液,当即水解,使产品中含SbOCl;一起Na3SbS4遇 强酸性的SbCl3溶液时,也会发作分化,分出单质硫于产品中: SbCl3+H2O=SbOCl十2HCl 2SbS43-+6H+=Sb2S3+2S+3H2S 这两种状况都会形成产品使用时对冲突副表面的腐蚀,尤其是后者。为削减这些副反响的发作,一般将SbCl3配成有机溶剂(乙醇等)的溶液,严格控制SbCl3溶液的滴加速度,而且用很多的有机溶剂(CS2、CCl4等)洗刷终究产品。即便这样,所得硫代锑酸锑的腐蚀性也难过关,产品功能不安稳,何况反响周期长,还有有机溶剂对操作者健康的影响和生产成本的增加等问题。 (二)以Sb2O3的浓碱溶液与Na3SbS4反响 将Sb2O3溶于浓的KOH溶液后,与Na3SbS4溶液混合反响一段时刻,用无机酸(HCl,H3PO4等)中和,可用下式表明: 2Na3SbS4+Sb2O3+2KOH+8HCl=2SbSbS4+2KCl+6NaCl+5H2O 用酸中和时,发生很多的H2S气体,伴随着硫代酸盐的分化,产品中含较多游离硫,也需用很多有机溶剂洗刷。 (三)以配离子[SbCl4]与Na3SbS4反响 此办法是将SbCl3或Sb2O3先溶解在浓度较大的溶液中,再在NaCl饱满的状况下,渐渐稀释溶液,溶液中始终坚持较高的氯离子浓度,使Sb3+以配离子[SbCl4]的方式存在于溶液中: SbCl3+Cl-=[SbCl4]- Sb2O3+6HCl+2C1-=2[SbCl4]-+3H2O 这样所得的Sb3+离子的溶液,其间酸的浓度能够比不必NaCl饱满时小得多,其酸性大为削弱,对处理反响时Na3SbS4的分化问题大有优点。因为该溶液加人Na3SbS4溶液时,其间的氯离子浓度变稀,故SbCl3的水解仍在所难免。不过按此办法制得的硫代锑酸锑产品功能与直接用SbCl3制备时要稳 定得多,腐蚀试验经过率大大进步。 (四)以Sb3+离子的多羟基援酸合作物与Na3SbS4反响 为了彻底处理SbCl3水解及Na3SbS4遇酸分化的问题,以Sb3+离子的较安稳的多羟基羧酸合作物与Na3SbS4反响制备硫代锑酸锑的办法因为该合作物在酸碱介质中有满足的安稳性,可一起处理SbCl4水解及Na3SbS4遇酸分化的问题。将合作物溶液调成弱酸性(意图是使反响结束时溶液呈中性, 进步产率)。直接与Na3SbS4溶液以恣意次序和速度相混合,反响必定时刻,过滤,水洗,即可获得功能优秀的硫代锑酸锑产品。 二、性质 (一)根本性质 SbSbS4为红棕色粉末状固体,易溶于碱溶液,不溶于大多数有机溶剂和无机酸。SbSbS4在N2环境中对热安稳,510℃熔化,525℃坚持36 h后,样品失重9.1%,相当于SbSbS4转化为Sb2S3的失分量,终究产品经X射线衍射证实为Sb2S3晶体。在空气中,SbSbS4的热安稳性稍 差,在193~371℃范围内有约8%的质量分数丢失。 (二)极压抗磨功能 将硫代锑酸锑在成脂过程中加于锂基光滑脂中,用MQ-800型四球机对其极压抗磨性进行鉴定,数据见表l:将其加于锂、钙基光滑脂中也显示出杰出的极压抗磨功能(表2)。 表1 含SbSbS4的锂基脂的四球测试数据极压剂 及含量(质量分数计)PB/NPD/N027415703%MoS264730901%SbSbS474539203%SbSbS474560805%SbSbS48047840 表2 含SbSbS4的锂钙基脂的四球测试数据SbSbS4含量/%(质量 分数计)PB/NPD/N047024501% SbSbS464739202% SbSbS469649004% SbSbS49217840 还将SbSbS4与石墨、二硫化钼、CaCO3及Sb2O3等复合,组成二元、三元复合添加剂,加于锂基脂中,鉴定了其极压抗磨性。成果表 明,SbSbS4与这些添加剂有杰出的协同效果,特别对进步其PB值具有十分显着的效果,见表3。 表3  复合添加剂对锂基脂极压抗磨性的效果添 加剂组成(质 量分数计)PB/NPD/N2% SbSbS4+1% MoS292149002% SbSbS4+0.5% Sb2O392149002% SbSbS4+0.5% CaCO392149002% SbSbS4+0.5%石墨+0.5% MoS29214900 三、使用 硫代锑酸锑具有优秀的极压抗磨功能,用于光滑脂中,可明显进步负荷承载才能和抗磨损才能,与多种脂有好的相容性,对根底脂的理化目标无不良影响,可在高真空、高负荷及辐射条件下起效果,并对一般光滑剂难以光滑的原料,有较好的光滑效果,其使用远景十分宽广。可作成多种极压、长寿命光滑脂,用于普通机械或特殊机械部位的光滑,还能够作成固体光滑剂使用。使用硫代锑酸锑制成极压锂、极压锂钙及多功能军用通用光滑脂产品在戎行的轿车、坦克、舰船及当地车辆等配备上使用,获得杰出的经济效益和军事、社会效益。

硫代硫酸盐提金

2019-02-22 09:16:34

硫代硫酸盐一般为硫代硫酸的钠盐和铵盐,它们报价便宜,浸金速度快,无毒,对杂质不灵敏,浸金指标高。 巴格达萨良等人对硫代硫酸钠溶液溶金动力学研讨标明,温度在45~85℃范围内,金的溶解速度与温度呈直线联系,但为了防止硫代硫酸盐剧烈分化,浸出温度应控制在65.75℃。罗杰日科夫等人用含和氧化剂的硫代硫酸盐溶液从矿石中浸金的动力学研讨中得出另一种定论,即只要在热压浸出器中较高的温度条件下(130~140℃),才干到达满足的速度和回收率。卡科夫斯基等人还发现,铜离子对硫代硫酸盐溶金有催化作用,可使金的溶解速度进步17~19倍。我国的姜涛、曹昌琳等人对硫代硫酸盐提金的机理进行了较为具体的研讨。 但由于硫代硫酸盐法要求得太高,且硫代硫酸盐化学上不稳定,此法至今未得到推广应用。

硫代硫酸盐法提金

2019-03-05 10:21:23

硫代硫酸盐法与法不同,浸出介质为性溶液,合适处理碱性组分多的金矿,特别适于含有对灵敏的铜、锰、砷等硫化物的金矿。硫代硫酸盐浸金的速度较快、选择性好、试剂无毒、对设备无腐蚀性,因而被认为是较有期望在工业上运用的一种非化提金办法。国内外对此法展开了许多研讨作业,包含硫代硫酸盐浸金的热力学、动力学、影响要素及反响机理、对不同金矿的适应性、从浸出液中收回金和提金的工艺流程等。最近,Aylmore和Muir等对硫代硫酸盐法浸金进行了较全面的总结和评述。 硫代硫酸盐是含有S2O32-基团的化合物,它可看作是硫酸盐中一个氧原子被硫原子替代的产品。最重要的硫代硫酸盐是硫代硫酸钠Na2S2O3(或Na2S2O3·H2O)和硫代硫酸铵(NH4)2S2O3,两者一般均为无色或白色粒状晶体。 硫代硫酸盐浸金是一个杂乱的化学进程,首要根据一价金能与硫代硫酸根构成合作物。在有氧存在时,金在硫代硫酸盐溶液中的总反响式可表示为: 4Au+8S2O32-+O2+2H2O→4Au(S2O3)23-+4OH- 在酸性介质中,S2O32-会发作如下的分化反响: S2O32-+2H+→H2O+2SO2+S所以,浸金进程需要在碱性条件下进行。 为使金能够有效地溶解于硫代硫酸盐溶液中,一般要在溶液中坚持有恰当浓度的NH3、Na2SO3和Cu(NH3)42+,这与动力学要素有关。 二价铜合作离子在金的溶解进程中可能有如下的催化反响: Au+5S2O32-+Cu(NH3)42+→Au(S2O3)23-+4NH3+Cu(S2O3)35- Au+2S2O32-+Cu(NH3)42+→Au(S2O3)23-+2NH3+Cu(S2O3)3+ 硫代硫酸盐在碱性溶液中比较安稳,由于硫代硫酸盐的氧化产品连四硫酸盐在碱性条件下约有60%又转变成硫代硫酸盐: 2S4O62-+3OH-→5/2S2O32-+S3O62-+3/2H2O 但溶液的pH值又不宜太高,由于S4O62-又会发作如下的歧化反响: 3S2O32-+6OH-→4SO32-+2S2-+3H2O歧化反响产出的S2-,则会导致重金属,特别是银生成硫化物沉积。但是,歧化反响产品SO32-,却能够按捺金属硫化物沉积,又有利于S2O32-的安稳存在。实质上S2O32-的歧化反响是可逆的,在溶液中处于动态平衡状况。为坚持适合的价质pH值,选用性溶液作为硫代硫酸盐安稳存在的介质是最合适的。性硫代硫酸盐溶液的pH值可缓冲在10左右,电位安稳在200mV左右。的存在能下降S2O32-的氧化速度,但过量的又会导致OH-离子增多,对金浸出晦气。二价铜离子的影响是与S2O32-浓度有关,Cu2+与S2O32-的最佳摩尔浓度比为1∶6,适合的S2O32-浓度为0.5mol/L。参加钠(Na2SO3∶Na2S2O3=1∶1)能够避免硫或硫化物的沉积,并削减硫代硫酸盐的用量。在用硫代硫酸盐法浸出金时,主张各组分的质量比经Na2S2O3∶Na2SO3∶CuSO4=1∶1∶0.7为宜,浸出温度40~60℃。 参加盐虽能下降硫代硫酸盐的耗费,但盐自身也耗费了,实际上是用盐丢失来替代硫代硫酸盐丢失,并没有处理试剂耗费高的问题。因而,提出在硫代硫酸盐浸金进程顶用硫酸盐替代硫代硫酸盐的办法,由于硫酸盐很安稳,在浸出进程中不耗费,能够削减试剂的总用量。为进一步下降试剂耗费,还必须操控浸出进程的氧化条件(如通入氧量及参加Cu2+浓度),并要留意浸出渣对试剂的夹藏丢失,可在保证金浸出率的前提下尽可能运用较低浓度的硫代酸盐溶液浸出金。 从浸出液中收回金,也是硫代硫酸盐法浸金工艺的关键问题之一。已研讨过的办法,有金属置换法(锌粉、铁粉、铝粉和铜粉等),活性炭吸附法,树脂在浆附法等,但都尚不行非常抱负,还有待进一步开发与完善。由于,这直接涉及到浸出液的循环和再生运用、下降试剂耗费以及进步金收回的问题。 下面扼要介绍硫代硫酸盐法浸金工艺的几个较典型的研讨结果。 一、硫代硫酸盐浸出含锰金矿 美国亚利桑那州的Oro Blanco矿区的含锰金矿,矿石含Au3g/t、Ag113g/t、MnO27%,矿石中的金呈细粒状浸染,银大部分与MnO2共生。矿石磨至80%-200目,在温度50℃和液固比1.5∶1条件下,用(NH4)2S2O31.48mol/L、NH34.1mol/L和Cu2+0.09mol/L的溶液,拌和浸出1~3h,金的浸出率为90%,但银的浸出率只要70%。 二、硫代硫酸盐浸出含金的硫化铅锌浮选尾矿 美国新墨西哥州Pecos矿山的硫化铅锌浮选尾矿,含Au1.75g/t、Ag22.5g/t、Pb0.5%、Zn0.07%、Fe11.1%、Cu0.4%和S9.8%,用(NH4)2S2O30.5mol/L溶液,在温度50℃下充入空气(流速2dm3/min),并进行机械拌和,经两段逆流浸出1.5h,金的浸出率为95%,但银的浸出率只要27%,含金浸出液用活性炭吸附收回金。 三、硫代硫酸盐浸出含金原生矿 针对我国西北地区黄铁矿-蚀变岩型含金原生矿的特色,曾进行了性硫代硫酸盐溶液浸出金实验,该矿石含Au3.57g/t,金的粒度细微,首要嵌布于黄铁矿、褐矿、石英和长石中。矿石磨至-200目达65%,选用(NH4)2S2O30.51mol/L、Na2SO30.2mol/L、NH33.3mol/L和CuSO41.7mol/L的溶液系统,在温度50℃、pH>8、液固3∶1的条件下拌和浸出3h,金浸出率为92.4%,而该矿用全泥化法浸出的金浸出率为79.96%。 四、硫代硫酸盐浸出含铜金精矿 我国广东河台硫化物含铜浮选金精矿,金首要赋存于黄铜矿、黄铁矿及斑铜矿中,含Au50g/t、Ag25g/t、Cu3.19%、S20.59%。矿石磨至100%-200目,在温度40℃、液固比3∶1的条件下,选用(NH4)2S2O30.8~1.0mol/L、NH4OH1.8~2.2mol/L和CuSO40.015mol/L的溶液系统充氧拌和浸出1.5h,金的浸出率达95%。 五、硫代硫酸盐浸出含碳质金矿 美国内华达州的碳质金矿,矿石含金均匀档次为12.2g/t,含有机碳2.5%、总碳4.8%,归于难处理金矿,用化法浸出24h的金浸出率仅为10%左右。选用(NH4)2S2O3溶液在高压釜内通氧气浸出,在(NH4)2S2O30.71mol/L、(NH4)2SO30.10~0.22mol/L、CuSO40.15mol/L的溶液系统中,于35℃、pH=10.5、po2=103kPa的条件下,拌和浸出1~4h,金的浸出率达93%。美国Newmont公司针对含硫化物高的难处理碳质金矿,提出了先用细菌预处理氧化部分硫化物后,再用硫代硫酸盐法浸出金,是运用(NH4)2S2O3或Na2S2O30.1~0.2mol/L、NH4OH0.1mol/L,增加适量的Cu2+作催化剂,金的浸出率为70%,而用惯例化法浸出的金浸出率仅为20%左右。一起,美国Barrick公司则提出先用加压碱性氧化预处理脱硫后,再用硫代硫酸盐法浸出碳质金矿,运用(NH4)2S2O30.0.025~0.1mol/L,增加盐0.01~0.05mol/L和满足量的及适量的Cu2+, 坚持NH3∶Cu=4∶1,在45~55℃、pH=7.0~8.7条件下浸出1~3h,金的浸出率达70%~75%。 尽管硫代硫酸盐法已获得较大发展,国内外都曾进行必定规划的扩展实验或半工业实验,但首要问题仍是试剂耗费量高、进程的影响要素多、操控条件严厉等,还有待作更进一步的作业,以获得新的打破。

硫代硫酸盐法提金概述

2019-02-14 10:39:39

硫代硫酸盐法具有浸金速度快、无毒、对杂质不灵敏和浸金目标较高、报价低、对设备无腐蚀性等长处。该办法中钠盐和胺盐是最常用的两种试剂,浸出温度一般为50~60℃,在加热条件下进行,对温度影响灵敏,浸出温度区间狭隘,工艺不容易操控。为避免S2O32-的分化常参加SO2或盐作稳定剂,浸出进程以坚持其碱性环境,Cu (NH3)42+是常见的浸出催化剂,硫代硫酸盐提金法与硫脉法不同,提金溶液介质为性溶液,合适处理碱性组分多的金矿,特别适于含有对化灵敏的金属铜、锰、砷的金矿或金精矿和含铜金矿石,由于这类矿石在浸取进程中会本身发生催化剂Cu(II)化合物。该法试剂用量比较大,必须加强试剂的再生使用。因而,研讨适合的硫代硫酸盐提金工艺,对促进硫代硫酸盐法在工业上的应用是很重要的。    美国研讨过用硫代硫酸盐法从含铜、锑、砷、抗、蹄和锰等重金属矿石中提取金、银的技能工艺,并在墨西哥州建了一个硫代硫酸盐提金工厂,但工作不行正常。我国的沈阳矿冶院、东北工学院、北京有色冶金规划研讨总院和中南大学都先后在乳山金矿进行了硫代硫酸盐提金的工业实验。

硫代硫酸盐提金应用实例

2019-02-13 10:12:44

选用溶液处理含铜、锰或含铜和锰的金矿时,由于铜、锰的存在,严重地下降了贵金属的回收率,并使耗费添加,使提金在经济技术指标上遇到了费事。从含有碳和有机化合物的矿中提取金,化厂也相同遇到了一些问题,即金矿中碳质物的存在,形成金很难从碳基体中释放出来,这是由于一价的金络合物被碳抢先吸附,随后丢掉到尾矿中。本节将介绍用硫代硫酸盐法处理上述矿石及处理尾矿与低品矿的实例。    1)从含铜金精矿中浸出金    国内某金精矿,含金矿藏为黄铜矿、黄铁矿和斑铜矿。首要化学组成:Au 50g/t,Cu3.19%,Fe203 28.9%,MnO 0. 048%,Co 0. 042%,Pb<0.03%,Zn 0.10%,S 20.59%,Si02 37.75%,A1203 5.75%,,精矿粒度100%~100目,在矿浆液固比3:1和40℃温度下,用浓度为0.8~1.0 mol/L的Na2S203、1.8~2.2 mol/L的NH4OH、0.015 mol/L的Cu2+和0.1 mol/L的Na2S03混合溶液充氧拌和浸取1.5 h,金浸出率约95%,浸渣残留金贮存在铁矿藏中。    浸出液用锌粉置换沉积金,置换后溶液循环用作金的浸出剂,通过7次循环,金浸出率有所添加,达96.8%,,循环浸出过程中,硫代硫酸盐基本不丢失。锌粉置换时S2O32-有所添加,而静置过程中S2O32-有所丢失,S2O32-的丢失与溶液组成和容器密闭条件有关。通过精心操控可将硫代硫酸盐的氧化分化丢失降到最低极限。    2)从含锰金矿中浸出金    美国亚利桑那州圣克鲁斯的OroBlanco矿区,矿石含Au 3 g/t, Ag 113 g/t, Mn02 7 g/t。矿石中的金呈细粒状浸染在流纹岩和安山岩的角砾岩基质中,银大部分与Mn02共生。矿石磨至-200目占80%,在液固比1.5:1和50℃温度条件下,用浓度为1.48 mol/L的(NH4)2 S2 03、4.1 mol/L的NH3和0.09 mol/L的Cu2+溶液拌和浸出1h,金浸出率90%;拌和浸出3h,银浸出率70%。    影响金、银浸出的首要因素有温度、硫代硫酸盐浓度、铜离子浓度和浓度。浸出温度对金浸出的影响大于银浸出,如图1所示,而铜浓度和浓度对银浸出的影响则大于金浸出,如图2,3所示。银的浸出对铜离子浓度改动比较灵敏,银浸出率随Cu2+浓度增大先升高然后下降。金的浸出受二价铜离子的影响很小,但没有Cu2+参与,金很难浸出,金浸出率仅14%,,金、银浸出随S2O32-浓度增大而添加,没有S2O32-时,金、银很少浸出,如图4所示。在溶液中铜离子将硫代硫酸根离子氧化成连四硫酸根离子,然后耗费硫代硫酸盐。在室温文pH为9.5~10的规模内,浸出28 h,硫代硫酸盐耗费量约为原浓度的一半。        [next]          3)从低档次含金原生矿中浸出金    我国西北有色地质研讨所对天然金-黄铁矿-蚀变岩型含金原生矿进行性硫代硫酸盐浸出金试验。矿石中金以天然金为主,金在硫化物矿藏和脉石矿藏中多呈包裹金、裂隙金和晶隙金的状况存在。天然金的粒度细微,首要散布在黄铁矿、褐铁矿、石英和长石等矿藏中。    矿石中首要金属矿藏有黄铁矿、天然金;非金属矿藏首要有钾长石、石英,其次有斜长石、云母、粘土等。此外,还有少数的赤铁矿、磁铁矿、方铅矿、黄铜矿、重晶石、闪锌矿等。原矿元素分析成果见表1。 表1          含金原生矿组成(Au:4.57g/t)元素STFeCuPbZnNiCoTeCs组成/%1.184.350.020.160.030.0020.0011.560.0017元素InTiCaOMnONa2OMgOK2OSiO2Al2O3组成/%0.00030.00031.560.30.89727.9759.4912.38     试样含金4.57g/t,磨矿细度-200目占65%,拌和浸出温度50℃,浸出时刻3h,浸出液固比3:1.浸出剂( NH4 )2S203 0.51 mol/L, Na2S03 0.2 mol/L, NH3 3.3 mol/L, CuSO4 1.7g/L。金的浸出率为92.40%。[next]    在浸出剂用量与浸出条件的挑选过程中调查到:①作为强氧化剂的Na2S03跟着浓度的增高,金的浸出率改动不大,只要在大于0.1 mol/L的情况下就可以起到增强浸出体系安稳性的效果;②金的浸出率跟着(NH4)2S203浓度的增大有较大起伏的进步,浸出液中( NH4) 2S203浓度至少要保持在0.5 mol/L;③浸出液中NH3浓度的添加,有利于金浸出率的进步,以3. 3 mol/L为好;④CuS04的浓度在1.7 g/L左右即可。    该试验曾在原矿档次、磨细度、浸出液固比共同的情况下,用不同的浸出办法进行试验,试验成果见表2。 表2      性硫代硫酸盐法与惯例化法对低档次原生矿金的浸出成果浸出办法浸出条件浸出时刻/h金的浸出率/%原矿性硫代硫酸盐法(NH4)2S2O30.5mol/L,Na2SO30.2mol/L,NH33.3mol/L,CuSO41.7g/L,拌和浸出温度50℃,液固比=3:1,pH>8,磨矿细度-200目占65%,原矿含金4.57g/t392.40原矿藏全泥化法NaCN开端浓度0.02%,NaCN添加量2kg/t,加CsO操控pH9.5~10.5,液固比=3:1,磨矿细度-200目占65%,原矿含金4.57g/t779.96原矿焙烧-化法焙烧温度800℃,焙烧时刻1h,NaCN开端浓度0.02%,NaCN添加量2kg/t,加CaO操控pH9.5~10.5,液固比-3:1,磨矿细度-200目点65%,原矿含金4.57g/t794.42     由表2不难看出,用性硫代硫酸盐法浸出低档次含金原生矿,具有浸出时刻短、浸出温度低、并有较高金的浸出率等特色,是无浸出金替代有浸出金工艺较有期望的办法之一。    4)从碳质金矿中浸出金    用化法处理美国内华达Freeport-McMoran Jerrit Canyon金矿的碳质金矿(粉红色矿)遇到费事。本文介绍选用硫代硫酸铵溶液在高压釜中进行试验的成果。    为了进行高压釜浸出试验,首先把矿石破碎到小于152.4 mm(6英寸),然后破坏到-100目,对矿样的矿藏组成、金档次以及碳含量进行分析。此矿由暗黑色的碎片和带有少数细粒黄铁矿的不纯石英岩和部分白色的方解石矿脉组成。分析成果为:该矿含有机碳2.5%,总碳为4.9%。矿石金的均匀档次是12.2g/t。    ①高压釜浸出。试验在一个500cm3的不锈钢高压釜中进行。它由一个3.18 cm直径叶轮的拌和器、冷却蛇形管和热电偶组成。拌和器、冷却蛇形管以及热电偶都用螺栓固定在盖子上。高压釜被加热时,它的温度由一个电加热套操控。高压釜预热到挨近所需温度,把配好的浸出剂和已称好的矿参加釜中,压紧釜盖,开端拌和;高压釜通氮排出空气,然后压入氧气。操作温度规模是25℃到85℃,一起氧分压一般保持在103 kPa,并在浸出前后测定溶液的pH。    浸出完毕后,把溶液过滤出来。滤液中的硫代硫酸盐浓度用电化学检测活动注射法(FIA)分析。固体渣枯燥后,用火法试金与原子吸收法相合作分析渣中的金含量。所用的初始硫代硫酸盐样品的纯度也用FIA法测定。试验得到的硫代硫酸盐耗费量和金的浸出率的成果见表3和表4。 表3     硫代硫酸盐耗费量[S2O3]i2-/(mol·L-1)[S2O3]f2-/(mol·L-1)耗费的[S2O3] 2-/(mol·L-1)耗费的[S2O3] 2-/%1~1.9 1.19 0.712~2 0.712 0.712~3 0.7121.006 1.022 0.635 0.633 0.589 0.5740.184 0.168 0.077 0.049 0.123 0.13815.5 14.1 10.8 6.9 17.3 19.4             注:i为初始[S2O3]2-浓度;f为终究溶液[S2O3]2-浓度[next] 表4      金的浸出率[Au]i/(g·t-1)[Au]f/(g·t-1)金浸出率/%1~12.45 12.45 2~11.99 11.65 3~13.76 12.085.90 6.35 3.94 3.43 3.43 3.43 3.4952.6 49.0 67.1 70.6 73.1 71.1             注:i为初始金档次;f为浸出渣金档次     ②最佳浸出条件的挑选。pH的影响:为调查pH的影响,将NH3浓度从0.03 mol/L变为4.5mol/L,相当于pH规模由8.5到10.5。由于形成了缓冲溶液,所以最大pH被约束在大约10.5。在这个pH规模内,硫代硫酸盐的耗费简直不变,均匀大约15%;而金的浸出率跟着pH的添加而添加。最佳pH值为10.5。    温度的影响:在25℃到85℃之间所做的试验成果如图5所示。浸出曲线在35℃和75℃有极大值,在65℃有一极小值,最佳温度35℃左右。从25℃到55℃硫代硫酸盐耗费一般是添加的,55℃到65℃是下降的,然后从65℃到85℃又添加,这是一个触及硫代硫酸盐的杂乱的平衡联系随同温度改动的成果。归纳考虑到金的浸出率、硫代硫酸盐耗费以及投人能量,最佳温度是35℃。 图5[next]     硫代硫酸铵浓度的影响:试验是在35℃,pH=10.5,硫代硫酸盐浓度从0.09 mol/L变到0.88 mol/L下进行的。金的浸出率跟着硫代硫酸盐浓度的添加仅稍有添加,这是由于硫代硫酸盐的实践耗费添加了。硫代硫酸盐耗费量在其浓度为0.09 mol/L时是5.3 × 10 -2 mol/L(58.9%),在其浓度为0.88 mol/L时是9×10-2mol/L(10.2%)。考虑到金浸出率及所用的硫代硫酸盐总量这两点,挑选的最佳硫代硫酸盐浓度为0.71 mol/Lo    盐浓度的影响:把铵加到浸出液中,以安稳硫代硫酸盐,并避免硫化物沉定(6H++4S032-+2S2←→3S2032-+3H20)。在35℃,0.71 mol/L S2032-,pH=10.5,0.15 mol/L CuSO4条件下,盐浓度从0变到0.6mol/L,浸出2 h。明显盐对金浸出率简直没影响。但是,硫代硫酸盐耗费却跟着盐浓度的添加逐步下降。考虑到盐用量,以为盐浓度在0.1 mol/L和0.22 mol/L之间是适宜的。    铜浓度的影响:在35`C , 0.71 mol/L S2032- 、0.22 mol/L S2032-和pH =10.5条件下,硫酸铜浓度从0.05 mol/L变到0.2 mol/L时,金浸出率和硫代硫酸盐耗费没有明显影响。关于这样的成果,有两个或许:榜首,是由于铜在浸出过程中充当了氧化还原催化剂,所以在某一浓度值以上时,它的浓度改动对反响就没有什么影响。第二,也许是更重要的原因,即矿中存在铜,它的量足以起催化剂的效果。    时刻的影响:在温度35℃、物质的量浓度为0.71 mol/L(S2032-)、0.22 mol/L(SO32)、0.15 mol/L(CuSO4)和pH为10.5,浸出时刻在0.5~4h之间改动的条件下,调查了时刻对金浸出率和硫代硫酸盐耗费上的影响。在0.5 h时金浸出率是69%,4h后金浸出率是71%。在这些条件下,金的浸出是很快的。硫代硫酸盐的耗费跟着时刻的延伸有一适量的添加,0.5 h时硫代硫酸盐耗费10%,4h后耗费添加到20%。反响时刻0.5 h到1h是满足的。    氧压的影响:改动氧压从常压到206 kPa(表压)。氧压的改动无论是对金浸出率,仍是对硫代硫酸盐耗费都没有什么大的影响。硫代硫酸盐的耗费在氧压加大到206 kPa(表压)时稍有下降,从常压的12%到206 kPa时下降到8%。因而,假如浸出液可循环运用的话,较高的氧压或许是有利的。    其他类型矿石的浸出:除了研讨上述的碳质矿外,还研讨了用硫代硫酸盐溶液从有代表性的氧化矿和硫化物矿中浸出金。对这些矿进行研讨时,并未能找出最佳条件,而是除一组条件稍稍改动外,均选用了碳质矿的最佳条件。正如表5和表6成果所指出的,硫代硫酸盐浸出氧化矿好像难处理的碳质矿那样给出好的或更好的金浸出率。关于硫化物矿金浸出率是差的。硫代硫酸盐法与化法比较,从碳质矿中浸出金选用硫代硫酸盐法优于化法:但从氧化矿浸出金,硫代硫酸盐法不如化法。表5     用硫代硫酸盐法从不同类型矿中浸出金矿石品种pH金浸出率/%S2O32-耗费/%碳质矿 氧化矿1 氧化矿2 硫化物矿1 矿化物矿210.6 10.5 10.5 10.5 10.568.9 60.6 56.8 18.1 77.230.0 34.4 27.2 29.2 32.8     注:p(O2)为103kPa(表压);时刻为1h;温度为35℃;拌和速度为0.333m/s; pH为10.5时,[NH3]为3.0mol/L;[S2O32-]为0.18mol/L;[Cu2+]为0.10mol/L;[SO32-]为0.01mol/L。 表6         用硫化硫酸盐浸出碳质矿和氧化矿之比较矿石品种pH金浸出率/%碳质矿 氧化矿1 氧化矿210.5 10.5 10.570.9 81.0 81.4         注:p(O2)为103kPa(表压);时刻为2h;温度为35℃;拌和速度为0.333m/s; pH为10.5时,[NH3]为3.0mol/L;[S2O32-]为0.712mol/L;[Cu2+]为0.15mol/L;[SO32-]为0.22mol/L。

硫代硫酸盐浸金工艺问题

2019-02-13 10:12:44

蒂欧泰克(Thiotech)有限公司以硫代硫酸铵和硫代硫酸钠作为从矿石提取金、银的首要浸出剂。在美国,硫代硫酸铵法也曾用于含金硫化铜精矿的处理,其浸出率大于90%。    波特指出,含金、银的矿石和残渣在常压下可用硫代硫酸铵浸出,随溶液加热至50℃或更高温度,某种氧化剂如二价铜离子可加快反响,当硫代硫酸铵浓度高至20%时仍可选用,不过为了药剂的收回,需分外留意洗刷。为削减丢失,选用闭路系统是很必要的。现在,进一步的作业是要清晰硫代硫酸铵法可否替代化法。    选用硫代硫酸盐法浸出金、银在以下方面较化法优胜:①硫代硫酸盐毒性小,铵盐可作化肥;②硫代硫酸盐法浸出速度较快,一般为3h,对某种矿藏金浸出率可望比化法高;③适用于化法难以处理的含Cu, Fe203、Mn的矿石;④该法药剂耗费很低,这一点在经济上尤为重要。此外,该法在环保上具有吸引力。    可是,和传统的化法比较,硫代硫酸盐法存在的问题有:①硫代硫酸盐耗量高,有人提出经过操控供应浸出系统的氧可削减S2032-的氧化;②硫代硫酸盐的循环运用问题,有人以为用铁粉替代锌粉或铜粉来置换收回金有利于浸液的循环运用。该法浸出条件严苛,如需有铜离子存在,还需参加稳定剂等;用于处理低档次金矿,浸出率要低得多,故至今没有得到推广应用。

锑的硫化物和硫代酸盐

2019-02-11 14:05:30

一、硫化物    Sb2S3为橙红色沉积,显,既溶于酸又溶于碱。                           Sb2S3+6OH-SbO33-+SbS33-+3H2O                          Sb2S3+6H++12Cl-2[SbCl6]3-+3H2S↑    Sb2S3还能溶于碱性硫化物如Na2S或(NH4)2S中:                                  Sb2S3+3S2-2AsS33-    Sb2S5可溶于浓HCl中,并发作氧化复原反响:                          Sb2S5+12HCl(热,浓)2H3[SbCl6]+3H2S↑+2S↓    Sb2S5的酸性比Sb2S3的更强,因而,Sb2S5比Sb2S3更易溶于碱性硫化物溶液中。                                Sb2S5+3Na2S2Na3SbS4    Sb2S3具有复原性,与多硫化物反响生成硫代酸盐:                                   Sb2S3+3S2-2SbS43-+S    二、硫代酸盐    与砷相同,硫代亚锑酸钠(Na3SbS3)和硫代锑酸钠(Na3SbS4)遇酸当即反响生成相应的硫化物和H2S。                             2SbS43-+6H+Sb2S5↓+3H2S↑                             2SbS33-+6H+Sb2S3↓+3H2S↑

硫代硫酸盐法提金工艺技术

2019-03-05 10:21:23

硫代硫酸金络合物是И.А.卡可夫斯基(Какояский)1957年研讨乙基黄原酸金时从中制取出来的: AuC2H5OCSS+2S2O32- Au(S2O3)23-+C2H5OCSS- 后来,福沃德(Forward)等人在选用高压浸硫化镍钴铜矿时,发现矿石中所含的硫能氧化生成S2O32-。因而想象:选用浸法处理含金硫化矿,使矿石中的硫在浸进程中氧化为S2O32-来浸出金是或许的。为此,许多研讨者对此进行了实验研讨。 一、硫代硫酸盐浸出金的研讨 1972年,梅津良之等宣布了硫代硫酸铵从产品纯金板浸出金的实验报告。实验进程中对溶液温度、氧分化压、拌和强度、试剂浓度和铜离子增加量对金溶解速度的影响进行了多因子比照系统研讨。他以为,金的溶解是按下式进行的: 2Au+4S2O32-+H2O+ O2 2Au(S2O3)23-+2OH- 即在碱性溶液中,金银能与硫代硫酸盐反响,生成安稳的络阴离子〔Au(S2O3)23-和   Ag(S2O3)23-〕,并可削减杂质(尤其是铁的硫化物)的溶出率。且反响进程中Cu(NH3)42+具有催化作用,若短少它上式的反响则不能进行。 在Cu(NH3)4+存在的室温180℃条件下,金的溶解速度在约65和140℃时呈现两个顶峰,约100℃时呈现一个低谷。即温度18~65℃之间,金的溶解速度随温度的上升而加速;65~100℃时,因为金板表面生成黑色硫化铜薄膜沉积而逐步发作钝化,金的溶解速度随温度上升而下降;温度100~140℃之间,溶液中的可使硫化铜薄膜沉积分化而生成硫代硫酸铵,金的溶解速度又随温度的上升而加速;当液温升至140~180℃,因为S2O32-逐步被氧化耗费而使浓度下降,金的溶解速度又逐步下降。 经过多要素条件比照实验标明,在温度65℃时金溶解的最佳条件是:氧压101.32kPa(1atm)、拌和速度200r/min、NH30.5mol、Na2S2O30.44mol、CuSO40.04mol。 1979年,G.S.贝雷佐夫斯基等选用含(%)Cu 25.3、Fe 28.7、Zn 3.26、S 33.2、Au 5.83g∕t、Ag 142g∕t的铜精矿经氧化浸出96%~98%铜的浸出渣,运用上述硫代硫酸铵的条件,在40~60℃浸出2~4h,金的浸出率达92%~94%,银的浸出率也达83%~87%。将此浸出渣进行化浸出比照,金的浸出率虽达97%,银的浸出率只要33%。用此工艺处理另一种铜精矿的浸出脱铜渣也获得成功。 上述实验证明,选用硫代硫酸铵加压浸出,金银的溶解速度快。铜离子的存在不光无害(相对化法),还有杰出的催化作用。选用硫代硫酸铵法浸出金,虽药剂的耗费量过高,但浸液中(NH4)2S2O3约有90~95%能够回来运用。 小约翰·克利对含Au0.43g∕t、Ag376.3g/t的含锰难处理矿石进行浸出标明,金银的浸出率别离达86.7%和93.2%。他还对(NH4)2S2O3浸出液进行了屡次循环运用实验,标明浸出液能够重复运用,而很多下降药剂耗费。据他的实验证明,浸出液的屡次循环运用,吨矿石的实践药剂耗费可降至(NH4)2S2O33.63kg∕t、(NH4)SO3 1.36kg/t、CuSO40.45kg∕t。 鉴于文献报导的硫代硫酸铵溶解金银在实践运用中遇到的困难,К.А.巴格达萨良(Багдарилц)等人改甩硫代硫酸钠,运用旋转圆盘法对金银溶解的动力学进行了研讨。 实验别离运用φ20mm的金盘和银盘,在容积1L的反响器中,别离选用Na2S2O3 0.09~0.19mol∕L,温度65℃,鼓入空气,拌和15~30min并浸渍6h。成果圆盘表面都掩盖一层黑色沉积,而金银未溶解进入溶液。经X线衍射物相分析,金盘上的黑色沉积是元素硫,而银盘上的沉积是元素硫和硫化银。后又参加催化剂CuSO4,并将圆盘别离浸渍于Na2S2O3 0.09~0.19mol/L,CuSO4 0.016mol/L的溶液中15~20min,圆盘上仍掩盖一层黑色沉积,经物相分析,金盘上的沉积是元素硫和硫化铜,银盘上是元素硫、硫化铜和硫化银。这都是S2O32-分化生成S2-的晦气反响所造成的。 考虑到60~85℃时,S2O32-分化的S2-能与Na2SO3结合还原成Na2S2O3,又向溶液中参加助剂Na2SO3。并在溶液别离含Na2S2O30.06~0.22mol∕L(1.0%~3.5%)、Na2SO30.2mol/L(2.5%)、CuSO4 0.01 6mol∕L(0.25%)温度65~70℃、圆盘表面积3.14cm2、圆盘转速约   4r∕min( r∕s),拌和时刻6h条件下实验。成果在Na2S2O3浓度0.06~0.13mol∕L时,金、银的溶解速度呈直线上升(见图1),跟着Na2S2O3浓度的增大,溶解速度反而减慢或中止。图1  Na2S2O3浓度与金银溶解速度的联系 经过以上Na2S2O3溶解金银圆盘的实验和理论核算,其结论是: (一)在温度45~85℃范围内,金银的溶解速度随温度的上升呈直线上升,一起Na2S2O3的分化也随温度的上升急剧增大。为防止Na2S2O3的剧烈分化,溶解进程的温度宜控制在65~75℃。 (二)经过核算,求出的金银在Na2S2O3液中溶解的活化能为:金17.55kJ∕mol,银21.14kJ∕mol。它标明金银的溶解是以分散方法进行的。 (三)金银在Na2S2O3液中溶解的分散特征,是Na2S2O3浓度在0.13mol∕L曾经,此刻金银的溶解速度处于正常状况;当浓度超越这一边界后,溶解进程的反响动力学就变得复杂起来,以使金银的溶解减缓乃至中止。 (四)在圆盘转速4~16r∕min之间,金银的溶解速度大致与圆盘转数的0.5次方成正比。证明转盘的流体动力学理论适用于金银在Na2S2O3液中的溶解,但在金银圆盘的表面会逐步生成元素硫和硫化物沉积,它会影响溶剂抵达圆盘表面的速度。故从动力学上讲,溶剂的分散作用有必要穿过硫和硫化物层才干抵达金属表面,这是溶解进程的晦气要素。 (五)为下降溶液中因为Na2S2O3分化生成的S2-浓度,削减S2-在金属表面生成元素硫和硫化物沉积,应向溶液中增加Na2SO3,其参加量与Na2S2O3之比为1∶1。 (六)铜离子具有催化作崩,实验中增加量为0.016mol∕LCuSO4。 二、硫代硫酸钠从矿石中浸出金的工业实验 新疆伊宁提金实验站于1987年开端进行硫代硫酸钠从矿石中提金的工艺研讨,并在扩展实验和半工业实验的基础上建立起一座50t∕d的实验工厂,用于处理经混、浮选产出的含硫金精矿。它是已知的第一个运用硫代硫酸钠提金的工厂。该厂投产以来,首要技能经济指标都到达了规划要求,金的浸出率到达92%。因为硫代硫酸钠可就地直销,且报价低廉,金的出产费用(包含环保)与化法附近,金的回收率也与化法相同。

硫代硫酸盐法浸金基本原理(三)

2019-02-14 10:39:39

据以为,在性硫代硫酸盐提金进程中,浓度对金浸出的影响最大。二价铜离子的影响则与S2032-浓度有关,Cu2+与S2O32-的最佳摩尔浓度比为1:6。硫代硫酸盐供给金溶解所需的络合剂,含Au浸出率随S2032-浓度增大而升高,但过量将会损坏铜络离子的安稳性,生成Cu( S203)35-,适合的S2032-浓度为0.5mol/L。    硫代硫酸盐用作金、银的浸出剂,在实践使用中遇到了动力学上的困难。温度对金银浸出的影响比较复杂,如图6所示。图6     金溶解量在65℃和140℃时最大,在100℃时最小。高于65℃,金溶解量下降,这是由于Cu2+催化剂浓度下降,S2032-氧化,并生成CuS沉积掩盖金粒表面构成的。温度高于100℃,粘附在金粒表面的硫化铜在性含氧溶液中溶解。硫化铜薄膜消除,金粒表面从头露出,S2032-和Cu(NH3)42+得到再生,使金溶解速率敏捷增加。但温度超越140℃,S2032-快速氧化,成果浓度显着下降,金溶解量大大削减。[next]    巴格达萨良等人,用旋转圆盘法对金、银在硫代硫酸钠溶液中的溶解动力学进行了研讨。指出在45~85℃温度范围内,金、银溶解速度与温度呈直线联系。为防止硫代硫酸盐剧烈分化,浸出温度应控制在65~75℃。金、银在该溶液中溶解,实践活化能分别为17.55 kJ/mol和21.4 kJ/mol。这标明浸出进程是受分散控制的,而且以为Na2S203浓度超越0.13 mol/L时,对反响动力学晦气。    试验研讨标明,当金、银圆盘表面逐步生成硫和硫化物沉积时,溶剂到达金属表面的速度下降,就给溶剂分散经过硫化层的溶解进程构成阻止。若向溶液中参加钠[m (Na2S03):m (Na2S203)=1:1]可防止金属表面硫和硫化物的沉积,这是由于热的钠溶液能溶解细碎状的硫,生成硫代硫酸钠:                                   Na2S03+S ==== Na2S203      别的,钠廉价、且无毒,还可进步溶液的碱度,它本身也是一种金的溶剂。    卡考夫斯基等人还发现,铜离子对硫代硫酸盐溶金有催化作用,可使金的溶解速度进步17~19倍。但与此同时,它会在金表面构成硫化铜隔离层,使浸出反响处于分散控制。巴格达萨良却以为硫酸铜在增加钠时的反响是:            2CuS04+4Na2S203+Na2S03+H20 ==== 2Na3[Cu(S203)2]+2Na2S04+H2SO4    而不加钠时,则为:                 2CuS04+2Na2S203+3H20+3/202 ==== Cu2S+3H2S04+2Na2S04    可见钠能促进反响生成安稳的铜硫代硫酸盐络合物(K不=6×10-13);不加钠则生成的硫代硫酸铜会水解成Cu2S和H2S04。因而,增加钠可削减硫代硫酸钠用量,并使生成的硫酸及硫酸钠量大大削减。为此,主张在用硫代硫酸盐浸出金时,浸出剂各组分的质量比应取m(Na2S203):m (Na2S03):m(CuS04)=1:1 : 0.7。

钨酸钠

2017-06-06 17:50:12

什么是钨酸钠?钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水呈微碱性(PH8.5-9),不溶于乙醇, 微溶于氨。在空中风化。加热到100℃失去结晶水而成无水物。与强酸(氢氟酸除外)反应生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反应生成磷钨杂多酸络合物, 与酒石酸、柠檬酸、草酸等有机酸反应生成相应有机酸络合物。英文名称: Sodium tungstate dihydrate中文名称: 钨酸钠MF: H4Na2O6WMW: 329.85CAS: 10213-10-2【英文名】Sodium Tungstate【分子式】有二水物和无水物二种,二水物分子式为Na2WO4·2H2O ,无水物分子式为Na2WO4【分子量】二水物为329.86 ,无水物为293.86钨酸钠的化学性质,质量标准及用途化学性质白色晶体,易溶于水,不溶于醇,在干燥空气中风化。熔点         698 °C(lit.)密度         4.18 溶解度     H2O: 1 M at 20 °C, clear, colorless水溶解性  730 g/L (20 oC)Merck     14,8698质量标准 AR /  CP / 4N / SP化学成分 化学纯 一级品 二级品Na2WO4.2H2O 99 98 97Mo 0.001 0.02 --AS 0.001 0.001 0.001Cu 0.0005 0.001 0.001Fe 0.001 0.001 0.005Si 0.004 0.04 0.04水不溶物 0.005 0.05 0.05PH 8.5-9 8.5-9 8.5-9用途1 生产钨材料的中间产品,也可用于媒染剂、催化剂颜料和分析试剂,纺织工用作织物加重剂、水处理药剂,制造防火、防水材料, 以及磷钨酸盐、硼钨酸盐。2 用于制造 金属 钨、钨酸、钨酸盐、染料、油墨、催化剂等3 用于 金属 钨、钨酸及钨酸盐类的制造。用做媒染剂、颜料和催化剂。还可做织物防火剂以及分析化学试剂。4 本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于织物加重,皮革鞣制,电镀镀层防腐。本品作助溶剂引入瓷釉色料能起降低烧成温度和补色作用。更多有关钨酸钠请详见于上海 有色 网

锑酸钠

2017-06-06 17:50:12

锑酸钠  英文名称:sodiumantimonate;sodiummetantimonate详细说明:   NaSbO3又称偏锑酸钠。有粒状结晶与等轴结晶的白色粉末。耐高温,在1000℃仍不分解。溶于酒石酸、硫化钠溶液、浓硫酸,微溶于醇、铵盐,不溶于乙酸、稀碱和稀无机酸。冷水中不溶,热水中发生水解形成胶体。有毒。用作显像管、光学玻璃和各种高级玻璃的澄清剂,纺织品、塑料制品的阻燃剂,搪瓷乳白剂,制造铸件用漆的不透明填料及铁皮、钢板抗酸漆的成分;化学分析中用于鉴定纳离子。由锑块粉碎后与硝酸钠混合加热,通空气进行反应,再经硝酸浸取而得。也可由粗三氧化二锑与盐酸混合,再经氯气氯化、水解、用过量碱中和而得。   锑酸钠用途:   1.用作不透明填料、搪瓷的乳白剂及铁皮、钢板的抗酸漆;   2.用作显像管、光学玻璃等高档玻璃澄清剂、裉色剂。能抗暴晒,灯工性能极好;   3.用于塑料、橡胶等工业阻燃剂:   4.用于工程塑料待业着色力低,节约颜料;   用于搪次和耐酸陶瓷、高档陶瓷。

硫代硫酸盐法浸金基本原理(二)

2019-02-14 10:39:39

3)浸金的动力学原理    硫代硫酸盐用作金、银的浸出剂,当pH太高时,S2032-发作歧化反响产出S2-,导致重金属,特别是银发生硫化物沉积。可是,歧化反响产品根可与溶液中任何硫化物起反响,又有利于S2032-的安稳存在,按捺金属硫化物沉积。实质上,S2032-的歧化反响是可逆的,在溶液中处于动态平衡状况。为坚持介质pH适中,选用性溶液作为硫代硫酸盐安稳存在的介质是最合适的。性硫代硫酸盐溶液pH可在10左右,电位安稳在200 mV左右,溶液pH与硫代硫酸盐浓度无关。对硫代硫酸根的阳极氧化影响很大,能明显下降S2032-的氧化速度。浓度愈高,S2032-氧化速度下降愈快。当浓度为1.0mol/L时,氧化速度仅为无存在时的四分之一。金的浸出速率也随浓度增高和S2032-氧化速率的下降而加速。可是,过量将导致氢氧根离子增多,对金浸出晦气。    用性硫代硫酸盐溶液浸出金矿时,浓度和硫代硫酸根浓度对金、银、铜的络合物发生影响。在浸出条件(pH=10, E=200 mV)下(图1至图5图中暗影部分),用含浓度为1.0mol/L的S2032-和1~3 mol/L的NH3/ NH4+的溶液浸出金、银,进入溶液的安稳金、银络合离子分别为Au ( NH3)2+和Ag (S203)23-,如图1,图2所示。当溶液中存在Cu2+时,因为铜络合离子的构成,溶液中离子浓度削减,金由Au (NH3)2+转为Au(S203)23-安稳存在。铜的安稳络合离子方式则随S2032-浓度(0.1~1.0 mol/L)、浓度(1.0~3.0 mol/L)和Cu2+浓度(0.0063~0.05 mol/L)的不同而改变。在低浓度S2032-(0.1 mol/L )和低浓度NH3/NH4+(1.0mol/L )溶液中,不管Cu2+浓度高或低,铜都呈Cu(NH3)42+安稳存在,如图3所示。在高浓度S2O32-(1.0mol/L)和低浓度NH3/NH4+(1.0 mol/L)溶液中,高浓度Cu2+(0.05 mol/L) 呈 Cu(S203)34-安稳存在,而低浓度Cu2+(0.0063 mol/L) 呈Cu (NH3)42+安稳存在,如图4所示。在高浓度S2032-(1.0 mol/L )和高浓度NH3/NH4+(3.0mol/L)溶液中,高浓度Cu2+(0.05 mol/L)呈Cu(NH3)42+安稳存在,如图5所示。可见,在浸出条件下,四合铜络合物安稳性比硫代硫酸亚铜差。 图1[next] 图2 图3[next] 图4 图5

硫代硫酸盐法浸金基本原理(一)

2019-02-14 10:39:39

金能与硫代硫酸根离子生成安稳的络合物[Au(S203)2]3-,如:                   Au++2S2032- ==== [Au(S203)2]3-   △Gө298 = -1022 kJ/mol    金与硫代硫酸盐络合的趋势相当大,其络离子的不安稳常数K不 = 1×10-28,标明在酸性介质中既不氧化也不分化。    金溶解于硫代硫酸盐溶液的反响为:                                    1                   2Au+4S2O32-+H2O+ —— O2(气) ==== 2Au(S2O3)23-+2OH-                                    2    此反响的△Gө298 =-24.2kJ/mol。试验证明欲使金顺畅溶解,溶液应坚持NH3、Na2S203和Cu(NH3)42+恰当的浓度。    1)硫代硫酸盐的化学性质    硫代硫酸盐是含有S2032-基团的化合物,它可看作是硫酸盐中一个氧原子被硫原子替代的产品。    硫代硫酸盐与酸效果时构成的硫代硫酸当即分化为硫和,后者又当即分化为二氧化硫和水,反响式为:                               S2O32-+2H+ ==== H2O+S02+S    因而浸出进程需求在碱性条件下进行。    S2O32-中两个S原子的氧化价平均为+2,它具有温文的还原性:                        S2O32-+4Cl2+5H20 ==== 2SO42-+8Cl-+lOH+                               2S2O32-+I2 ==== S4O62-+2I-    因而,浸出进程中恰当地操控氧化条件是有必要的。[next]    硫代硫酸盐另一重要性质是它能与许多金属(金、银、铜、铁、铂、把、、镍、锅)离子构成络合物,如:                           Au++2S2O32- ==== Au(S203)23-                           Ag++2S2O32- ==== Au(S203)23-    这是硫代硫酸盐法浸出金、银的基础理论之一。    最重要的硫代硫酸盐是硫代硫酸钠Na2S203(Na2S203·5H20)和硫代硫酸铰(NH4)2S203,两者一般均为无色或白色粒状晶体。    在有氧存在时,金在硫代硫酸盐溶液中或许发作如下的反响:                     4Au+8S2032-+O2 +2H20 ==== 4Au(S203)23-+40H-    二价铜络离子在金溶解进程中或许有如下的效果进程:              Au +5S2O32-+ Cu(NH3)42+ ==== Au(S203)23-+4NH3 + Cu(S203 )35-              Au +2S2O32-+ Cu(NH3)42+ ==== Au(S203)23-+4NH3 + Cu(NH3)2+    金与硫代硫酸根构成安稳的络合物。硫代硫酸盐在碱性介质中比较安稳,因为硫代硫酸盐的氧化产品连四硫酸盐,在碱性条件下约有60%又转变成硫代硫酸盐:                                      5               3                    2S4O62-+3OH- ==== ——S2O32-+S3O62-+ ——H2O                                      2               2    可是,介质溶液的pH不宜太高,pH太高促进S2O32-发作歧化反响产出S2-:                    3S2O32-+6OH- ==== 4S2O32-+S3O62-+ 3H2O    2)硫代硫酸盐浸金的热力学原理    表1列出了与金银性硫代硫酸盐浸出有关物质的标准生成自由能,其数据来自Latimer和Pourbaix的数据。依据这些数据核算标明,以上反响中的标准自由能改变均为负值,标明硫代硫酸盐法浸出金在热力学上是可行的。[next]表1      有关物质的标准生成自由能化学式状况△GӨ化学式状况△GӨAus0Ags0Au2O3s163.02Ag2Os-10.81Au(OH)3s-289.67AgOs10.87AuO2s200.64Ag2O3s86.94H3AuO3aq-258.32Ag+aq77.04H2AuO3-aq-191.44Ag2+aq267.94HAuO32-aq-112.86AgO+aq225.3AuO32-aq-24.24Ag(S2O3)-aq-507.03Au+aq163.02Ag(S2O3)23-aq-1062.56Au3+aq433.05Ag(S2O3)35-aq-1599.27Au(S2O3)33-aq-1048.76Ag(NH3)2+aq-17.39Au(NH3)2+aq-40.96AgOHaq-93.22Au(NH3)23+ aq-8.36Ag(OH)2- aq-250.8Cus0H2O -236.96Cu2Os-146.32OH-aq-157.17CuOs-127.07H+aq0Cu2Ss-86.11Ss0CuSs-48.91S2-aq923.78CuSO4s-661.28S22-aq91.12CuSO4·3H2Os-1878.07S32-aq88.2Cu(OH)2s-356.55S42-aq81.09Cu2+aq-64.91SO32- aq-485.3CuO22-aq-181.83SO42-aq-490.48HCuO2-aq-256.73S2O32-aq aq-518.32Cu(NH3)+aq-11.7S2O42-aq-599.41Cu(NH3)2+ aq-65.21S2O52-aq-790.02Cu(NH3)2+aq-15.47S2O63-aq-932.14Cu(NH3)42+aq-170.54S3O62- aq-957.22Cu(S2O3)35-aq-1623.51S4O32-aq-1021.17   NH3aq-26.58[next]     表2为有关意极反响的标准电位,表3为系统中或许存在的络离子的安稳常数。因为S2O32-与金离子构成安稳的络离子,使其标准电极电位明显下降。需求指出的是,文献中Au/Au(S2O3)23-电对的标准电极电位及Au(S2O3)23-的安稳常数很不共同。表2    有关电极反响的标准电极电位电极反响电极电位/VAu++e-====Au1.69Au(S2O3)23-+e-====Au+2S2O32-0.15 -0.126(核算) -0.007 -0.276Ag(S2O3)23-+e-=====Ag+2S2O32-0.01Ag(NH3)2++e-=====Ag+2NH30.373Cu(NH3)2++e-=====Cu(NH3)2++2NH30.00Cu(NH3)42++e-=====Cu+4NH3-0.06Cu(NH3)22++e-=====Cu+4NH3-0.12O2+2H2O+e-=====4OH-0.4012SO32-+3H2O+4e-=====S2O32-+6OH--0.582SO42-+5H2O+8e-=====S2O32-+10OH--0.76SO42-+H2O+2e-=====SO32-+2OH--0.93S4O32-+2e-=====2S2O32--0.09 材料来自姜涛、许时、陈枣、吴振祥,黄金,N2,P31(1992)。表3    有关络离子的安稳常数化学式β化学式βAu(S2O3)23-1.0×1026Ag(NH3)+2.3×103 5.0×1028Ag(NH3)2-1.6×109 5.4×1030(核算)Cu(S2O3)-1.9×1010Au(NH3)2+1.0×1026Cu(S2O3)23-1.7×1012 1.0×1027Cu(S2O3)35-6.9×1013 3.4×1027(核算)Cu(S2O3)22-2.0×1012Ag(S2O3)-6.6×103Cu(NH3)2+7.2×1010Ag(S2O3)23-2.2×1013Cu(NH3)42+4.8×1012Ag(S2O3)35-1.4×1014  [next] 姜涛等对Au/Au(S2O3)23-的电极电位核算如下:    用相同办法核算得到的Au(NH3)2+的安稳常数为3.4×1027。    金能与硫代硫酸根离子生成安稳的络合物〔Au (S203)2〕3-,其络合的趋势相当大,不安稳常数K不论是10×10-26或5.4×10-30,都标明在酸性介质中既不氧化也不分化。    卖验证明,欲使金顺畅地溶解于硫代硫酸盐溶液中,有必要坚持溶液中NH3、Na2S203和Cu (NH3)42+的恰当浓度,这与动力学要素有关。    矿石中Ag常以Ag2S或AgCl方式存在,它们也可在硫代硫酸盐的效果下溶解:                                 Cu(NH3)42+              Ag2S+4S2032-+4H2O ———————→2Ag(S203)23-+SO42-+8H+                       AgCl+2S3032- ==== Ag(S203)23- + C1-        由上可见,不管金、银在原矿中呈何形状,用硫代硫酸盐浸出后均以络阴离子转人溶液。

代铜材料

2017-06-06 17:50:08

     “代铜材料”的特点和主要技术指标:1、铸态下抗拉强度(340—450MPa)、硬度(HBS90—143)、耐磨性能均超过了国际标准黄铜CuZn40Pb和国家标准5—5—5青铜,可代替有上述要求的铜合金,节约铜58%以上,产品成本下降50%以上;2、熔点和浇注温度低,是青铜、黄铜的1/2,节能50%,压铸摸寿命提高30倍;3、与铜合金比较,流动性好(95CM),线收缩小(1.29%),比重小(4.9),熔炼简单,劳动条件改善,环境污染减少,烧损少,成品率高,适合各种铸造方法,4、加工性好,易于切削、抛光和装饰性表面处理。 “代铜材料”是航空航天、国防、交通、农业、纺织、化工、矿山、医疗等各种机械受力、耐磨铜铸件的理想代替材料。用于纺织机械上可降低2—5分贝噪音,无火花特性,可安全用于油田、油井、油船、煤矿及天然气、煤气等危险场合,用压铸等成形可大大节省铸铁件的精加工费。以锌代铜,解决昂贵紧缺的铜,这已成为世界 金属 材料生产应用的新格局。凡各种机械受力、耐磨铜铸件(如轴套、导套、轴瓦及一般的我蜗轮、齿轮、螺母、滑块、滑板、垫块等)及部分球铁、铸铁件均可用此材料替代,成本下降20-50%,能耗节约50%,熔炼简单,适合各种铸造方法。劳动条件大为改善,环境污染少,有明显的经济和社会效益。     这种代铜高强度锌合金熔炼工艺简单、造价低廉,具有良好的铸造性能,能锻可镀,是一种代替某些铜合金的新型材料。

高硫铝土矿除硫技术

2019-02-21 11:21:37

我国铝土矿资源丰富,已探明的铝土矿储量达23亿t。其间含硫高的一水硬铝石型铝土矿储量达1.5亿t,占总储量的11.0%左右。这类矿石以中高铝、中低硅、高硫、中高铝硅比矿石为主,且此类矿石高档次所占份额大,需加工脱硫才干运用,因而研讨经济合理的脱硫办法,具有巨大的潜在工业含义。       在氧化铝出产流程中,铝土矿中的硫不只构成Na2O的丢失,并且溶液中S2-进步后会使钢材遭到腐蚀,蒸腾和分化工序的钢制设备因腐蚀而损坏,添加溶液中铁含量。在拜耳法出产氧化铝过程中假如铝土矿中硫的含量超越0.3%,就能导致氧化铝档次因铁的污染而超支,别的还能使氧化铝的溶出率下降。跟着氧化铝工业的不断发展,科学研讨者对脱硫办法进行了许多的研讨工作,但效果及运用均不尽人意。因而有必要对高硫铝土矿进行进一步脱硫研讨,到达拜耳法氧化铝厂对铝土矿含硫的要求。       铝土矿中硫首要以黄铁矿(FeS2)办法存在,因为黄铁矿简略用黄药等捕收剂浮选,而含铝矿藏以氧化物和氢氧化物办法存在,亲水,不易被黄药捕收,因而,浮选用黄药理论上简略完成黄铁矿和含铝矿藏的别离。用浮选的办法下降铝土矿中硫的含量,最早被原苏联人员选用。在我国,浮选脱除铝土矿中的含硫矿藏还未见文献报导。因而,针对我国铝土矿的特色,用选矿脱除铝土矿中含硫矿藏的研讨具有重要含义。       针对河南某地出产的铝土矿的特色,选用黄药等作捕收剂,对反浮选除掉铝土矿中的硫化物进行了实验研讨。       一、实验部分       (一)实验质料       河南高硫矿,碳酸钠(分析纯,上海虹光化工厂),六偏磷酸钠(分析纯,天津市科密欧科技有限公司),(分析纯,天津市科密欧化学试剂开发中心),硫酸铜(化学试剂,天津市博迪化工有限公司),丁基黄药(株洲选矿药剂厂),戊基黄药(长沙矿冶研讨院选矿所),松醇油(株洲选矿药剂厂),单质碘和碘化钾(分析纯,汕头市西陇化工厂)。对河南高硫矿进行了化学分析。首要化学成分列于表1。   表1  试样的首要化学组成(质量分数)/%Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST61.6212.654.603.003.001.810.080.420.96       (二)实验设备及仪器       实验一切设备及仪器包含浮选机,拌和机,pH计,过滤设备,电炉,烘箱,管状炉,石英管,滴定管等。       (三)实验办法       各添加剂预先装备成必定的浓度备用。药剂添加次序为:六偏磷酸钠→→硫酸铜→丁基黄药→戊基黄药→松醇油,实验中各药剂的用量及添加药剂后的拌和时刻见表2。实验所用脱硫浮选办法为简略的一段浮选。浮选产品别离过滤、洗刷、烘干后分析。   表2  药剂用量及拌和时刻药剂称号药剂用量/(g·L-1)拌和时刻/min碳酸钠 六偏磷酸钠硫酸铜 丁基黄药 戊基黄药 松醇油2.5 7.65×10-3 4.00×10-4 1.88×10-2 3.13×10-2 3.13×10-2 0.125  1 1 2 1 2 1       二、条件实验       选用六偏磷酸钠作为按捺剂,和硫酸铜作为活化剂,丁基黄药和戊基黄药作为捕收剂,对高硫铝土矿进行一段浮选脱硫条件实验,研讨各添加剂用量对浮选成果的影响。       (一)碳酸钠用量的影响       在pH>11的高碱环境下,黄铁矿表面会有亲水的氢氧化物生成,进而浮选遭到按捺。碱性增强对黄铁矿的按捺不断增强。低pH值系统中难以浮选,乃至浮选没有泡沫,这与铝土矿结构以及实验条件有关。碳酸钠另一效果是对黄铁矿具有活化效果。在CO32-与HCO3-离子效果下,铁的氢氧化物又可转变成铁的碳酸盐,使黄铁矿表面掩盖的氢氧化物和硫酸盐脱落暴露出新鲜的表面。因而碳酸钠添加量对浮选的效果有较大的影响。按表2所示条件,进行了碳酸钠用量对脱硫效果的影响的研讨,成果见表3。   表3  碳酸钠用量条件实验成果碳酸钠用量/(g·L-1)pH值产品称号产率/%S档次/%S收回率/%0.59.70低硫铝土矿 高硫尾矿82.44 17.560.41 3.5435.25 64.751.010.10低硫铝土矿 高硫尾矿89.91 10.090.420 5.7739.35 60.652.510.43低硫铝土矿 高硫尾矿96 40.44 13.4444 563.510.78低硫铝土矿 高硫尾矿93.4 26.580.48 7.7846.67 53.33       由表3可知,跟着碳酸钠用量的添加和矿浆pH值升高,高硫尾矿中硫的档次越来越高,硫的收回率在逐步下降,低硫铝土矿的产率较大起伏的升高,到碳酸钠用量为2.5g/L,pH值为10.43时,硫的档次达最大值,随后又开端下降,硫的收回率持续下降,低硫铝土矿的产率也到达最大值后又下降。由此可见碳酸钠对浮选具有较大影响。归纳考虑以上要素,高硫矿浮选碳酸钠用量应为2.5g/L,pH值为10.43左右。       (二)按捺剂用量的影响       六偏碳酸钠在含量高时对一水硬铝石具有按捺效果,但在pH>10时,其按捺效果较弱,只要在较高用量的条件下才具有较强的按捺效果。六偏磷酸钠的按捺效果为在浮选过程中损坏和削弱一水硬铝石与捕收剂之间相互效果,增强一水硬铝石表面的亲水性。它的效果办法有3种:消除活化离子;在矿藏表面构成亲水薄膜;消除矿藏表面的活化薄膜。六偏磷酸钠一起可对矿浆起涣散效果。按表2所示条件,进行六偏磷酸钠用量对脱硫效果的影响,成果见表4。   表4  六偏碳酸钠用量条件实验成果六偏碳酸钠用量/(×10-3g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿93 70.54 6.5852.02 47.987.65低硫铝土矿 高硫尾矿96 40.44 13.4444 5615.30低硫铝土矿 高硫尾矿95.34 4.660.48 10.7947.68 52.32       由表4可知,跟着六偏碳酸钠用量的添加,高硫尾矿中硫的档次先进步然后下降,硫的收回率也是先进步后下降,低硫铝土矿的产率在小起伏规模内改变。六偏碳酸钠用量以7.65×10-3g/L为宜。       (三)活化剂用量的影响       活化剂的效果是在矿藏表面生成促进捕收剂效果的薄膜。浮选电化学以为,某些硫化矿藏具有半导体性质和必定的电子传导才能,表面的静电位是HS-离子能否在其表面氧化生成元素S0的要害,当表面静电位Ems高于HS-氧化成S0的平衡电位时,则这种氧化在热力学上能够完成。黄铁矿表面静电位Ems高于HS-氧化成S0的平衡电位,因而HS-可能在黄铁矿表面氧化成元素(S0)。王淀佐等人测定了黄铁矿的表面静电位,在pH>8今后一直高于EHS-/S0,所以HS-能够在其表面氧化。Na2S参加矿浆中后,矿浆中存在许多的HS-离子,黄铁矿因为表面静电位较高,对HS-离子有较强的电催化效果,HS-在其表面有如下反响:   HS(aq)-→HS(ad)-     HS(aq)-→H++S(ad)0+2e-       S0吸附于黄铁矿表面使其变得疏水,因而黄铁矿具有杰出的诱导可浮性。       当黄铁矿表面氧化较深时,可被Cu2+活化。其机理为Cu2+可替代黄铁矿品质中的Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。铜离子比较简略进入黄铁矿的晶格,铜和硫的亲和性比铁和硫的亲和性更大,使黄铁矿表面构成铜膜,铜离子不影响矿藏晶格深处,在黄铁矿表面上掩盖铜相当于分散处理黄铁矿表面,即影响到黄铁矿表面的导电类型。黄铁矿为电子型半导体,晶格表面层上富集电子的表面,因而不能安稳的吸附黄药。一些二价Cu2+从其表面取得电子,Cu2+浓度下降为Cu2+,使黄铁矿表面层电子浓度下降。黄铁矿表面导电性的转化,这时能安稳地吸附黄药。       综上所述,首要对黄铁矿起到诱导浮选效果,但因为黄铁矿镶嵌于结构杂乱的铝土矿中,且黄铁矿的含量小,尤其是当黄铁矿表面氧化较深时,对黄铁矿就起不了诱导浮选效果,而Cu2+能够进入黄铁矿晶格中替代Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。因而和硫酸铜均可起到活化效果,其用量多少对硫档次影响很大。按表2所示条件,别离进行了和硫酸铜用量对脱硫效果的影响研讨,成果别离见表5和表6。   表5  用量条件实验成果用量/(×10-4g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿95.25 4.750.50 10.1649.73 50.272低硫铝土矿 高硫尾矿94.12 5.880.48 8.5747.51 52.494低硫铝土矿 高硫尾矿96 40.44 13.4444 5610低硫铝土矿 高硫尾矿96.62 3.380.61 1161.27 38.73   表6  硫酸铜用量条件实验成果硫酸铜用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿92.89 7.110.48 7.2348.59 51.411.88低硫铝土矿 高硫尾矿96 40.44 13.4444 563.75低硫铝土矿 高硫尾矿93.20 6.800.55 6.5553.6 46.4       由表5可知,跟着用量的添加,高硫尾矿中硫的档次先下降后升高,随后又下降,硫的收回首先升高后下降,低硫铝土矿的产率改变不大。用量以4×10-4g/L为宜。       由表6可知,跟着硫酸铜用量的添加,高硫尾矿中硫的档次先升高后下降,改变的起伏比较大,硫的收回首先逐步升高然后较大起伏的下降,低硫铝土矿的产率改变不大。硫酸铜用量以1.88×10-2g/L为宜。       (四)捕收剂用量及其品种的影响       在浮选中运用捕收剂,能够进步有用矿藏表面的疏水性。黄铁矿捕收剂首要是黄药类等捕收剂。在许多情况下,已成功地运用单一种捕收剂。但混合运用多种硫代捕收剂可大大进步硫化矿浮选目标。按表2所示条件,丁基黄药及戊基黄药用量对脱硫效果的影响成果别离见表7和表8。   表7  丁基黄药用量条件实验成果丁基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿94.29 5.710.55 7.8253.49 46.511.56低硫铝土矿 高硫尾矿95.10 4.900.57 8.5456.41 43.593.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿97.06 3.740.50 12.9251.68 48.32   表8  戊基黄药用量条件实验成果戊基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿96.62 3.380.56 12.4556.17 43.831.56低硫铝土矿 高硫尾矿95.69 4.310.45 12.344.78 55.223.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿96.5 3.50.57 11.5957.74 42.26       由表7可知,跟着丁基黄药用量的添加,高硫尾矿中硫的档次和收回率都随之添加,然后下降,低硫铝土矿的产率在小规模内增大。丁基黄药对浮选效果具有较大影响。丁基黄药用量以3.13×10-2g/L为宜。       由表8可知,跟着戊基黄药用量的添加,高硫尾矿中硫的档次在小起伏内先升高后下降,硫的收回率在较大起伏内先升高后下降,低硫铝土矿的产率改变不大。戊基黄药对硫的收回率影响较大。戊基黄药用量以3.13×10-2g/L为宜。       三、优化条件的浮选成果       通过以上各条件实验的影响,得出高硫铝土矿一段浮选除硫的最佳条件实验为:碳酸钠用量2.5g/L,六偏磷酸钠用量为7.65×10-3g/L,拌和1min,用量为4.0×10-4g/L,拌和1min,硫酸铜用量为1.88×10-2g/L,拌和2min,丁基黄药用量为3.13×10-2g/L,拌和1min,戊基黄药用量为3.13×10-2g/L,拌和2min,松醇油用量为0.125g/L,拌和1min,实验成果见表9。   表9  原矿一段浮选实验成果产品称号产率/%S档次/%S收回率/%低硫铝土矿 高硫尾矿 原矿96 4 1000.44 13.44 0.9644 56 100       由表9可知,在优化的浮选条件下,原矿通过一段浮选即可取得硫档次高达的13.44%,收回率56%,而产率仅为4%的高硫尾矿;一起取得产率为96%,硫档次为0.44%的低硫铝土矿。这一成果比前苏联研讨人员浮选高硫铝土矿一段浮选尾矿含硫达9%的工艺目标还好。       对浮选所得低硫铝土矿和高硫尾矿进行化学分析,分析成果见表10。为了便于对照,将原矿相应数据也列于表10中。   表10  浮选产品化学分析成果(质量分数)/%产品称号Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST1)低硫铝土矿 高硫尾矿 原矿62.10 51.96 61.6212.83 8.18 12.654.17 14.94 4.602.95 4.71 3.003.07 1.43 3.001.85 0.95 1.810.08 0.11 0.080.42 0.40 0.420.44 13.44 0.96        1) 此为化学分析成果,不是荧光分析成果       由表10可知,一段浮选高硫尾矿的A/S比为6.35,与A/S比为4.87的原矿比较,高硫尾矿的A/S比高,这是因为铝比硅更简略浮选,成果导致高硫尾矿中A/S比稍高。因为被浮选的高硫尾矿产率不大,因而对低硫铝土矿的A/S比的影响不大。高硫尾矿中硫和铁含量比原矿明显进步,铁略有进步,其它元素含量都偏低。而低硫铝土矿与原矿比较,除了铝,硅以及钾比原矿略低高外,其它元素都有所下降。       四、结语       (一)选用浮选的办法,以碳酸钠为pH调整剂,六偏磷酸钠为按捺剂,和硫酸铜为活化剂,丁基黄药和戊基黄药为捕收剂,松醇油为起泡剂,进行高硫铝土矿的一段反浮选,取得硫含量高达13.44%,收回率56%,氧化铝含量为51.96%,而产率仅为4%的高硫尾矿,一起取得产率为96%,氧化铝含量为62.10%,硫档次为0.44%的低硫铝土矿。因为铝比硅更简略浮选,高硫尾矿的A/S比升高,但因为高硫尾矿的产率低,仅为4%,因而对低硫铝土矿的A/S比影响不大。       (二)对原矿进行一段浮选的最佳条件是:碳酸钠用量为2.50g/L,六偏磷酸钠用量为7.65×10-3g/L,用量为4.00×10-4g/L,硫酸铜用量为1.88×10-2g/L,丁基黄药用量为3.13×10-2g/L,戊基黄药用量为3.13×10-2g/L,松醇油用量为1.25×10-1g/L。矿浆最佳浮选pH值规模是10.4~10.5左右。       (三)本研讨测验一起运用2种活化剂,即和硫酸铜,活化的效果大于单一活化剂的效果,进步硫的浮选收回率。丁基黄药与戊基黄药2种捕收剂按份额混合运用可进步硫的档次及收回率。

戊基黄原酸钠(钾)

2019-02-27 08:59:29

品名:戊基黄原酸钠(钾) 英文名称: SODIUM (POTASSIUM) AMYL XANTHATE(SAX,PAX) 牌 号:B1-06分子式:C5H11OCSSNa(K) 性状:淡黄色或灰白色有刺激性气味的粉末(或颗粒),能溶于水。首要用途:戊基黄原酸钠(钾)是一种强捕收剂,首要应用于需求捕收力强而不需求选择性的有色金属矿藏的浮选。例如,它是浮选氧化了的硫化矿或氧化铜矿和氧化铅矿(通过或进行硫化)的杰出捕收剂。该品对铜-镍硫化矿及含金黄铁矿等的浮选也能获得较好的选别作用。规格: 项 目 指 标 粒 状 粉 状 戊基黄原酸钠(钾) % ≥ 90.0 90.0 游离碱 % ≤ 0.2 0.2 水及挥发物 % ≤ 4.0 4.0直径(mm) 3~6 - 长度(mm) 5~15 - 有效期(月) 12 12 包 装 120公斤/铁桶 900公斤/多层板箱,50公斤/塑编袋等120公斤/铁桶 60公斤/塑编袋

硫的知识

2019-03-12 11:03:26

元素称号:硫俗称:元素符号:S元素原子量:32.066晶体结构:晶胞为正交晶胞。 莫氏硬度:2.0 元素类型:非金属发现进程:古代人类已认识了天然硫。硫散布较广。单质物理性质:一般为淡黄色晶体,它的元素名来历于拉丁文,本意是鲜黄色。单质硫有几种同素异形体,菱形硫(斜方硫)和单斜硫是现在已知最重要的晶状硫。它们都是由S8环状分子组成。 密度 熔点 沸点 存在条件 菱形硫(S8) 2.07克/厘米3 112.8℃444.674℃ 200℃以下 单斜硫(S8) 1.96克/厘米3 119.0℃444.6℃ 200℃以上 硫单质导热性和导电性都差。性松脆,不溶于水,易溶于(弹性硫只能部分溶解)。无定形硫主要有弹性硫,是由熔态硫敏捷倾倒在冰水中所得。不安稳,可转变为晶状硫(正交硫),正交硫是室温下仅有安稳的硫的存在方式。化学性质: 化合价为-2、+2、+4和+6。榜首电离能10.360电子伏特。化学性质比较生动,能与氧、金属、、卤素(除碘外)及已知的大多数元素化合。还可以与强氧化性的酸、盐、氧化物,浓的强碱溶液反响。它存在正氧化态,也存在负氧化态,可构成离子化合物、共价化合成物和配位共价化合物。元素来历:重要的硫化物是黄铁矿,其次是有色金属元素(Cu、Pb、Zn等)的硫化物矿。天然的硫酸盐中以石膏CaSO4·2H2O和芒硝Na2SO4·10H2O为最丰厚。可从它的天然矿石或化合物中制取。火山口处存在许多。元素用处:大部分用于制作硫酸。橡胶制品工业、火柴、焰火、硫酸盐、盐、硫化物等产品中也需求许多。部分用于制作药物、虫剂以及漂染剂等。元素辅佐材料:硫在自然界中存在有单质状况,每一次火山爆发都会把许多地下的硫带到地上。硫还和多种金属构成硫化物和各种硫酸盐,广泛存在于自然界中。单质硫具有明显的橙黄色,焚烧时构成激烈有刺激性的气味。金属硫化物在焚烧时发生的气味可以断语,硫在远古时代就被人们发现并使用了。在西方,古代人们以为硫焚烧时所构成的浓烟和激烈的气味能驱除魔鬼。在古罗马博物学家普林尼的作品中写到:硫用来打扫住屋,由于许多人以为,硫焚烧所构成的气味可以消除全部妖魔和全部凶恶的实力,大约4000年前,埃及人现已用硫焚烧所构成的二氧化硫漂白布疋。在古罗马闻名诗人荷马的作品里也讲到硫焚烧有消毒和漂白效果。中西方炼金术士都很注重硫,他们把硫看作是可燃性的化身,以为它是组成全部物体的要素之一。我国炼丹家们用硫、硝石的混合物制成黑色。不管在西方仍是我国,古医药学家都把硫用于医药中,我国闻名医师李时珍编著的《本草纲目》中,将到硫在医药中的运用:治腰久冷,除凉风顽痹寒热,生用治疥廯。的广泛应用促进了的提取和精粹,跟着工业的开展,硫在制取硫酸中起着关键效果,而硫酸就是工业之母,无处不需求它。1894年出生在德国的美国工业化学家弗拉施发明用过热水的办法,将硫从地下深处直接提取出来。世界上每年耗费许多的硫,其间一部分用于制作硫酸,另一部分用于橡胶制品、纸张、硫酸盐、硫化物等的出产,还有一部分硫用于农业和漂染、医药等。1789年法国化学家拉瓦锡宣布近代榜首张元素表,把硫列入表中,断定硫的不可分割性。18世纪后半页,德国化学家米切里希和法国化学家波美等人发现硫具有不同的晶形,提出硫的同素异形体。硫在地壳中的含量为0.048%

丁基黄原酸钠(钾

2019-01-16 17:42:23

产品名称: 丁基黄原酸钠(钾) 产品类别: 医药与生物化工 产品规格: 项 目 指 标 - 干 燥 品 丁钠合成品 - 粒 状 粉 状 粉状 丁基黄原酸钠(钾)% ≥ 90.0 90.0 84.5 游离碱 % ≤ 0.2 0.2 0.5 水及挥发物 % ≤ 4.0 4.0 - 直径(mm) 3~6 - -长度(mm) 5~15 - - 有效期(月) 12 12 6 包 装 110公斤/铁桶 800公斤/多层板箱 50公斤/塑编袋等 110公斤/铁桶50公斤/塑编袋等 120公斤/铁桶 50公斤/塑编袋等

钨酸钠价格

2017-06-06 17:50:12

钨酸钠 价格 :09月25日全国主要地区钨酸钠 价格行情 产品                价格 (万元/吨)                  地区                                 9.1                        姜堰 钨酸钠96%                       9.3-9.6                  江苏                                9.6-9.7                   河北                                9.4-9.5                    江西  钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水呈微碱性(PH8.5-9),不溶于乙醇, 微溶于氨。在空中风化。加热到100℃失去结晶水而成无水物。与强酸(氢氟酸除外)反应生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反应生成磷钨杂多酸络合物, 与酒石酸、柠檬酸、草酸等有机酸反应生成相应有机酸络合物。用途1 生产钨材料的中间产品,也可用于媒染剂、催化剂颜料和分析试剂,纺织工用作织物加重剂、水处理药剂,制造防火、防水材料, 以及磷钨酸盐、硼钨酸盐。2 用于制造 金属 钨、钨酸、钨酸盐、染料、油墨、催化剂等。3 用于 金属 钨、钨酸及钨酸盐类的制造。用做媒染剂、颜料和催化剂。还可做织物防火剂以及分析化学试剂。4 本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于织物加重,皮革鞣制,电镀镀层防腐。本品作助溶剂引入瓷釉色料能起降低烧成温度和补色作用。更多有关钨酸钠 价格 请详见于上海 有色 网 

烷基硫酸钠浮选锡石

2019-02-27 08:59:29

烷基硫酸钠浮选锡石 一般说来,烷基硫酸钠 与其它捕收剂比较只能得到中等的浮选目标,例如 ,关于以石英、电气石、赤铁矿为脉石的锡石,十六烷基硫酸钠用量为135g/t,在增加钠的条 件下,得到SnO236.5%的粗精矿及含SnO246%的终究 精矿,回收率为86%。

高锰酸钠价格

2017-06-06 17:49:53

高锰酸钠价格,根据报告数据,来源于国家统计局、国家海关总署、国务院发展研究中心、国内外相关刊物杂志的基础信息以及高锰酸钠科研单位等。报告对我国高锰酸钠行业发展现状与前景、国际高锰酸钠行业发展现状与前景、高锰酸钠行业数据、高锰酸钠行业标杆企业、高锰酸钠行业上下游、高锰酸钠价格和销售渠道价格管理、高锰酸钠行业投资策略、营销策略、经营管理和竞争战略等进行深入研究,并重点分析了高锰酸钠行业的前景与风险。该报告揭示了高锰酸钠市场潜在需求与潜在机会,为战略投资者选择恰当的投资时机和公司领导层做战略规划提供准确的市场情报信息及科学的决策依据,同时对银行信贷部门也具有极大的参考价值。一、健康危害   侵入途径:吸入、食入、经皮吸收。   健康危害:本品有强烈刺激性。高浓度接触严重损害粘膜、上呼吸道、眼睛和皮肤。接触后引烧灼感、咳嗽、喘息、气短、喉炎、头痛、恶心和呕吐等。   二、毒理学资料及环境行为   危险特性:强氧化剂。遇硫酸、铵盐或过氧化氢能发生爆炸。遇甘油、乙醇能引起自燃。与还原剂、有机物、易燃物如硫、磷等接触或混合时有引起燃烧爆炸的危险。   燃烧(分解)产物:氧化锰。   3.现场应急监测方法:   4.实验室监测方法:   原子吸收法(EPA方法 7770、7460)   等离子体光谱法(EPA方法 200.7)   5.环境标准:   中国(TJ36-79)车间空气中有害物质的最高容许浓度 0.2mg/m3[MnO2]一、泄漏应急处理  隔离泄漏污染区,限制出入。建议应急处理人员戴自给式呼吸器,穿防毒服。不要直接接触泄漏物。勿使泄漏物与有机物、还原剂、易燃物接触。小量泄漏:用砂土、干燥石灰或苏打灰混合。收集于密闭容器中作好标记,等待处理。大量泄漏:用塑料布、帆布覆盖,减少飞散。然后收集回收或运至废物处理场所处置。二、防护措施  呼吸系统防护:可能接触其粉尘时,建议佩戴头罩型电动送风过滤式防尘呼吸器。   眼睛防护:呼吸系统防护中已作防护。   身体防护:穿胶布防毒衣。   手防护:戴氯丁橡胶手套。   其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。三、急救措施  皮肤接触:立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。就医。   眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。   吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。   食入:误服者用水漱口,给饮牛奶或蛋清。就医。   灭火方法:灭火剂:雾状水、砂土。小编还了解到,高锰酸钠的健康危害,和环境污染,小编也给你搜寻了关于处理高锰酸钾的危害有关内容。

锡的性质

2017-06-06 17:49:50

锡的性质是锡的一种表现形式,其分为物理性质和化学性质。锡的主要物理性质密度(20℃) 7.3 g/cm3熔点 231.9 ℃沸点 2625 ℃平均比热(0~20℃ ) 226 J/(kg·K)熔化热 7.08 kJ/mol汽化热 296.4 kJ/mol热导率(0~100℃) 73.2 W/(m·K)电阻率(20℃) 12.6 μΩ·cm锡相对较软,具有良好的展性,但延性很差。锡有三个同素异形体:灰锡(α-Sn)、白锡(β-Sn)和脆锡(γ -Sn)。人们平常见到的是白锡,白锡在13.2~161℃之间稳定。低于13.2 开始转变为灰锡,但转变速度很慢,当过冷至—30℃左右时,转变速度达到最大值。灰锡先是成分散的小斑点出现在白锡表面,随着温度降低,斑点逐渐布满整个表面,随之整块锡碎成粉末,这就是所谓的“锡疫”现象。白锡为四方晶系,密度7.28克/厘米 硬度2,延展性好;灰锡为金刚石形立方晶系,密度5.75克/厘米脆锡为正交晶系,密度6.54克/厘米常温是白锡 低温是灰锡 高温是脆锡在空气中锡的表面生成二氧化锡保护膜而稳定,加热下氧化反应加快;锡与卤素加热下反应生成四卤化锡;也能与硫反应;锡对水稳定,能缓慢溶于稀酸,较快溶于浓酸中;锡能溶于强碱性溶液;在氯化铁、氯化锌等盐类的酸性溶液中会被腐蚀。 锡和不具有强氧化性的常见无机酸能发生置换反应,放出氢气。锡与无机酸的作用很缓漫,与有机酸几乎不发生作用。但是水中和蔬菜中的有机酸与锡能发生化学反应,生成一种毒性极大的锡甲烷,可损害中枢神经。锡的化学性质是十分稳定的。它与水不会发生化学反应,即使让它长期与潮湿空气接触,也只会在它的表面逐渐形成一层密密的氧化物薄膜,这层薄膜能防止锡的继续氧化。锡在加热下与氧发生反应,生成二氧化锡。在高温下,锡与氯作用,生成四氯化锡(气体),与硫作用,生成硫化锡。锡不与水作用,与盐酸、硫酸、稀硝酸反应,生成氯化亚锡、硫化亚锡和硝酸亚锡,与浓硝酸作用,生成二氧化锡,与浓氢氧化钠溶液反应,生成亚锡酸钠。想知道更多关于锡的性质的知识,你可以登陆上海有色网进行查看,其锡专区知识很全面。

硫渣的处理

2019-01-08 09:52:48

硫渣为黑灰色粉末,其中铜的形态主要呈硫化物,少部分呈金属铜;锡主要呈金属形态,部分呈硫化物。此外,还有一些其他的硫化物,如FeS, As2S3等。从硫渣中回收锡和铜,有直接焙烧-酸浸提铜与浮选分离出锡精矿后再氧化焙烧-酸浸提铜的两种方法。

钨酸钠溶液沉淀净化法

2019-03-04 16:12:50

用沉积(含结晶)法除掉钨酸钠溶液中杂质的钨溶液净化办法。一般可分为杂质元素别离及制取纯钨酸铵溶液两个阶段。 杂质元素别离 从粗钨酸钠溶液中别离杂质元素的办法有沉积杂质元素法及结晶钨酸钠法两类。 沉积杂质元素法 在工业上使用的首要有水解沉积法、镁(铝)盐沉积法及硫化钼沉积法。 (1)水解沉积法。用无机酸中和水解的办法除掉粗钨酸钠溶液中硅和锡的进程。硅和锡别离以Na2SiO3和Na2SnO2或Na2SnO3方式存在于粗钨酸钠溶液中。为确保除锡作用,一般先用次或将两价锡氧化成四价,结尾pH一般操控在9.5。而中和水免除硅的结尾pH则操控在8~9为宜。硅和锡的水解沉积反响别离为: Na2SiO3+2HCl=H2SiO3↓+2NaClNaSnO3+2HCl=H2SnO3↓+2NaCl 为防止部分过酸而构成杂钨酸,无机酸有必要缓慢地参加到拌和的粗钨酸钠溶液中。部分过酸构成的杂钨酸不但会影响除杂质的作用,还会下降后续作业的钨收回率。选用替代无机酸进行均相中和,可解决部分过酸问题。为防止水解发作胶体沉积,除硅、锡作业须在煮沸的粗钨钠溶液中进行。中和水解生成的H2SiO3和H2SnO3通过滤除掉。 (2)镁(铝)盐沉积法。往粗钨酸钠溶液中增加氯化镁或硫酸镁使磷、砷及部分硅生成难溶的镁盐沉积除掉的进程。如有氟离子存在,则大部分氟离子生成氟化镁共沉积除掉。如往粗钨酸钠溶液中增加硫酸铝则可使硅生成难溶的铝硅酸复盐沉积除掉。镁(铝)盐沉积法又可分为磷(砷)酸镁盐法、磷(砷)酸铵镁盐法及铝硅酸复盐法。 a.磷(砷)酸镁盐法。用无机酸将钨酸钠溶液中和至含游离碱达1g/L±0.2g/L时,煮沸约0.5h后,缓缓参加密度1160~1180kg/m3的MgCl2溶液,此刻发作生成Mg3(PO4)2和Mg3(AsO4)2沉积的反响: 2Na2HPO4+3MgCl2=Mg3(PO4)2↓+4NaCl+2HCl 2Na2HAs4+3MgCl2=Mg3(AsO4)2↓+4NaCl+2HCl 因为Mg3(AsO4)2的溶度积(298K时为2.04×10-20)大于Mg3(PO4)2的溶度积(298K时为1.02×10-25),故MgCl2的参加量一般视溶液中砷含量而定。为使除砷符合要求,一般先用次或将AsO3-3氧化成AsO3-4。溶液中的硅酸根一起生成硅酸及硅酸镁沉积而被除掉: Na2SiO3+2HCl=H2SiO3↓+2NaCI Na2SiO3+MgCI2=MgSiO3↓+2NaCl 因而,在粗钨酸钠溶液中的含硅量不太高的情况下,能够免除独自的除硅作业。由上述反响式可见,跟着MgCl2的参加,粗钨酸钠溶液的pH逐步下降,即酸度逐步升高,因而操控粗钨酸钠溶液的开始及结尾pH便成为影响磷(砷)酸镁盐法净化作用的最重要因素。pH过高,氯化镁很多水解成氢氧化镁沉积,一方面使渣量增大,钨丢失随之增加;另一方面因为Mg。’离子削减而使净化作用变差。pH过低,磷(砷)酸镁溶解度增加,除杂质作用下降。加完MgCl2后,再煮沸0.5h,弄清通过滤除掉渣后,滤液一般含SiO2≤0.02g/L,As≤0.015g/L。产出的磷、砷渣经NaOH煮洗收回WO3后,其成分(%,干基)大致为:WO34~5,As1~1.2,MgO40~45,SiO24~10。 b.磷(砷)酸铵镁盐法。当粗钨酸钠溶液含有一定量的NH+4时,参加MgCl2并将pH操控在8~9,此刻磷(砷)便生成磷(砷)酸铵镁盐沉积而被除掉: Na2HPo+MgCl2+NH4OH=MgNH4PO4↓+2NaCl+H2O Na2HAsO4+MgCl2+NH4OH=MgNH4AsO4↓+2NaCI+H2O 此法的特点是将除硅与除磷、砷别离在不同的两个阶段中完结,中和水免除硅后期改用NH4Cl调整溶液pH,以防止部分过酸。过滤除硅渣后,加将溶液回调至pH10~11,再按计量参加MgCl2溶液,拌和0.5~1h,沉清过滤。与磷(砷)酸镁盐法相同,操控溶液的开始及停止pH同样是影响磷(砷)酸铵镁盐法净化作用及钨丢失的最重要因素。 c.铝硅酸复盐法。往热的钨酸钠溶液中参加硫酸铝溶液使硅生成铝硅酸复盐沉积,国际上一些工厂用此法除掉钨酸钠溶液中的硅。 (3)硫化沉积法。首要用于从钨酸钠溶液中沉积除钼。往含有钼的粗钨酸钠溶液中参加沉积剂Na2S或NaHS时,便发作生成:Na2MoS4的反响: Na2MoO4+4NaHS=Na2MoS4+4NaOH 随后用将粗钨酸钠溶液酸化到pH2.5~3,使Na2MoS4分化发作MoS3沉积: Na2MoS4+2HCl=MoS3↓+2NaCl+H2S 因为发作生成Na2MoS4的反响趋势大于发作生成Na2WS4的反响,因而不会生成很多WS3沉积,净化进程中的钨丢失一般小于0.5%。硫化沉积法可将钨酸钠溶液中钼含量降至0.01~0.05g/L因为氟离子可与钼生成安稳的[MoO3F]-和(MoO2F4]2-,故需增加沉积剂用量才能将钼除至所需程度,这又会导致钨丢失的增加。 结晶钨酸钠法      使用钨与磷、砷、硅等元素的钠盐的溶解度不同,操控恰当结晶率,使大部分杂质留在苛性钠碱母液中,而分出较纯Na2WO4晶体的进程。含杂质的苛性碱母液回来黑钨精矿苛性钠液分化作业,在精矿分化进程中杂质与增加的铝、镁盐等构成复盐沉积而进入浸出残渣。 制取纯钨酸铵溶液 首要通过人工白钨、钨酸制取和钨酸溶等过程。 人工白钨 往加热至沸的含游离碱0.3~0.7g/L的净化除杂后的钨酸钠溶液中,注入密度为1200~1250kg/m。的氯化钙溶液,便分出钨酸钙沉积。称这种钨酸钙为人工白钨。沉积后母液含WO30.03~0.1g/L。钨酸钠溶液中残留的磷、砷、硅、钼杂质可与钨共沉积。如注入氯化钙之前加Na2S将钼酸根转变成硫代钼酸根,则可使绝大部分钼留存于母液中而与人工白钨别离。因而,在粗钨酸钠溶液含钼量不太高的情况下,结合沉积人工白钨一起除钼,便可免除独自的除钼作业。 钨酸制取 将人工白钨料浆或钨酸钠晶体注入343~353K温度、浓度在30%以上的浓中即可得到黄色的钨酸。前者的分化产品颗粒较粗,较易洗刷。磷、砷及部分钼杂质留在酸母液中,为进步除钼率,可增加钨粉使H2MoO4转变成MoOCl3 H2MoO4+W+3HCl=WO2+MoOCl3+H2O+3/2H2 所生成的MoOCl3易溶于溶液而与钨酸别离。得到的钨酸经充沛洗刷完全除掉钨离子或钠离子,酸母液含WO30.3~0.5g/L,可用石灰沉积成CaWO4而收回。 钨酸溶将加热至353~358K温度的钨酸浆液注入浓度为25%~28%的中即得到纯钨酸铵溶液,而硅、铁、锰等杂质及酸溶时未分化的钨、磷、砷的钙盐则留在不溶渣中,但钨酸中的钼酸、磷酸、均构成相应之铵盐进入溶液,为进步净化作用,在溶时增加氧化镁,就可使磷砷沉积成铵镁盐而除掉。

钨酸钠基本信息 用途

2019-02-26 16:24:38

性状无色结晶或白色结晶性粉末。在枯燥空气中风化,100℃时失掉结晶水。溶于水,不溶于乙醇。相对密度 3.23~ 3.25。熔点 698℃(无水品)贮存:密封阴凉枯燥保存。 理化性质:钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水,不溶于乙醇,微溶于。在空中风化。加热到100℃失掉结晶水而成无水物。与强酸(在外)反响生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反响生成磷钨杂多酸络合物,与酒石酸、柠檬酸、草酸等有机酸反响生成相应有机酸络合物。制备原理  三氧化钨与反响,或选用钨精矿与压煮,,生成钨酸钠溶液,经精制、过滤、离子交换等工艺,别离杂质成分,再经蒸腾结晶得钨酸钠产品。用处1、用于媒染剂、分析试剂、催化剂、水处理药剂,制作防火、防水材料,以及磷钨酸盐、硼钨酸盐等。2 、用于制作金属钨、钨酸、钨酸盐等。3、用于媒染剂、颜料、染料、油墨。4、纺织工用作织物加剧剂,本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于皮革鞣制。5、用于电镀镀层防腐。6、用作助溶剂引进瓷釉色料能起降低烧成温度和补色效果。7、用于石油工业及航空、航天材料的制作。

铋的性质

2019-03-07 10:03:00

银白色或微赤色,有金属光泽,性脆,导电和导热性都较差。铋在凝结时体积增大,膨胀率为 3.3%。铋的硒化物和碲化物具有半导体性质。室温下,铋不与氧气或水反响,在空气中安稳,加热到熔点以上时能焚烧,宣布淡蓝色的火焰,生成三氧化二铋,铋在红热时也可与硫、卤素化合。铋粉在内着火。铋不溶于水,不溶于非氧化性的酸(如),使浓硫酸和浓,也仅仅在共热时才稍有反响,但能溶于和浓硝酸。           因为铋的熔点低,因此用炭等能够将它从它的天然矿石中复原出来。所以铋早被古代人们获得,但因为铋性脆而硬,缺少延展性,因此古代人们得到它后,没有找到它的使用,仅仅把它留在合金中。