锡粉
2017-06-06 17:50:01
锡粉是一种投资者想知道,因为了解它可以帮助操作。锡粉 Tin 分子式(Formula): Sn 分子量(Molecular Weight): 118.71 CAS No.: 7440-31-5 质量指标(Specification) 含量(Purity): 99.90% 主要规格: 150μm(-100目)、38μm(-400目)、45μm(-325目)或77μm(-200目),筛上余量≤3% 包装: 白色塑料桶,40kg/桶,或按用户要求包装。 用途(Useage) 主要用于制造电碳制品、摩擦材料、含油轴承及粉末冶金结构材料 锡是目前我国有色金属中开发利用程度较高的矿种之一,广泛应用于冶金、电子、电器、化工、建材、机械以及食品包装等行业。随着无铅化趋势在全球范围内的不断发展,电子产品生产商将会更多地将锡粉材料应用到产品中去。同时,随着环保意识的不断增强,锡粉的无毒环保属性将会使其在未来被不断地应用到医药、化工、轻工、食品、保健、艺术用品等包装领域。锡粉的重要性已经越来越明显地体现出来。如果你想更多的了解关于锡粉的信息,你可以登陆上海有色网进行查询和关注。
锡粉的应用
2017-06-06 17:50:01
锡粉的应用是一种投资者想知道,因为了解它可以帮助操作。主要用于制造电碳制品、摩擦材料、含油轴承及粉末冶金结构材料 金属锡主要用于制造合金。 锡与硫的化合物——硫化锡,它的颜色与金子相似,常用作金色颜料。 锡与氧的化合物——二氧化锡。锡于常温下,在空气中不受氧化,强热之,则变为二氧化锡。二氧化锡是不溶于水的白色粉末,可用于制造搪瓷、白釉与乳白玻璃。1970年以来,人们把它用于防止空气污染——汽车废气中常含有有毒的一氧化碳气体,但在二氧化锡的催化下,在300℃时,可大部转化为二氧化碳。 锡器历史悠久,可以追溯到公无前3700年,古时候,人们常在井底放上锡块,净化水质。在日本宫廷中,精心酿制的御酒都是用锡器作为盛酒的器皿。它具有储茶色不变,盛酒冬暖夏凉,淳厚清冽之传。锡茶壶泡茶特别清香,用锡杯喝酒石酸清冽爽口,锡瓶插花不易枯萎。 锡器的材质是一种合金,其中纯锡含量在97%以上,不含铅的成份,适合日常使用。锡器平和柔滑的特性,高贵典雅的造型,历久常新光泽,历来深受贵族人士的青睐,在欧洲更成为古典文化的一种象征。 锡是排列在白金,黄金及银后面的第四种贵金属,它富有光泽、无毒、不易氧化变色,具有很好的杀菌、净化、保鲜效用。生活中常用于食品保鲜、罐头内层的防腐膜等。 锡是一种质地较软的金属,熔点较低,可塑性强。它可以有各种表面处理工艺,能制成多种款式的产品,有传统典雅的欧式酒具、烛台、高贵大方的茶具,以至令人一见倾心的花瓶和精致夺目的桌上饰品,式式具全媲美熠熠生辉的银器。锡器以其典雅的外观造型和独特的功能效用早已风靡世界各国,成为人们的日常用品和馈赠亲友的佳品。 锡在我国古代常被用来制作青铜。锡和铜的比例为3:7。锡是目前我国有色金属中开发利用程度较高的矿种之一,广泛应用于冶金、电子、电器、化工、建材、机械以及食品包装等行业。随着无铅化趋势在全球范围内的不断发展,电子产品生产商将会更多地将锡粉材料应用到产品中去。同时,随着环保意识的不断增强,锡粉的无毒环保属性将会使其在未来被不断地应用到医药、化工、轻工、食品、保健、艺术用品等包装领域。锡粉的重要性已经越来越明显地体现出来。如果你想更多的了解关于锡粉的应用的信息,你可以登陆上海有色网进行查询和关注。
锡粉的价格
2017-06-06 17:50:01
锡粉的价格是一种投资者想知道,因为了解它可以帮助操作。锡粉的价格:155-160含量 99.9%规格 克产地 上海产品描述...用途:粉末冶金中作添加剂和多孔材料。性状:呈银灰色球状或液滴状粉末。技术标准:(1)化学成份:产品牌号化学成份(%)≯盐酸酌烧残渣(%)SnPbCuFeSbAsBisFSN99.50.20.020.050.050.020.050.010.05(2)粒度规格:(1)-200目≥97%(2)-300目≥95%包装:铝箔袋装,2千克/袋,15袋/塑料桶,塑料桶内衬塑料袋。 锡粉 Tin 分子式(Formula): Sn 分子量(Molecular Weight): 118.71 CAS No.: 7440-31-5 质量指标(Specification) 含量(Purity): 99.90% 主要规格: 150μm(-100目)、38μm(-400目)、45μm(-325目)或77μm(-200目),筛上余量≤3% 包装: 白色塑料桶,40kg/桶,或按用户要求包装。 用途(Useage) 主要用于制造电碳制品、摩擦材料、含油轴承及粉末冶金结构材料 锡是目前我国有色金属中开发利用程度较高的矿种之一,广泛应用于冶金、电子、电器、化工、建材、机械以及食品包装等行业。随着无铅化趋势在全球范围内的不断发展,电子产品生产商将会更多地将锡粉材料应用到产品中去。同时,随着环保意识的不断增强,锡粉的无毒环保属性将会使其在未来被不断地应用到医药、化工、轻工、食品、保健、艺术用品等包装领域。锡粉的重要性已经越来越明显地体现出来。如果你想更多的了解关于锡粉的价格的信息,你可以登陆上海有色网进行查询和关注。
高纯钴的制备技术
2019-01-31 11:06:04
一、前语纯度为 99.9%~99.99%的钴 现已广泛运用于磁性材料、超级合金的制作,99.999%乃至更高纯度的钴则用来做为先进电子元件的靶材。钴靶材中的杂质会影响电子器件的运用功用:碱金属(如 Na,K)、非金属(S,C,P)等杂质能够在半导体之间搬迁,然后影响其功用;Fe会导致电子器件磁功用的不一致;Ti,Cr,Cu元素会影响半导体元件的导电功用;气体杂质(如 O)能够添加半导体元件中的Co和 CoSi2的电阻;Ni会影响半导体的界面功用;放射性元素如U,Th能够辐射出α射线,使半导体失效。因而,研讨高纯钴的制备办法对进步钴靶材的质量有着重要的含义。
在国际上,1956年美国矿业局(Bureau of Mines)初次制备出纯度为 99.99%高纯钴。K.K.Kershner等人通过阳离子交流法和沉淀法除掉四合钴(Ⅲ)盐溶液中的铁、铜、镍等杂质,终究选用阴极电解法制备出高纯钴。跟着离子交流法的开展和高效萃取剂 P507,Cynex272,Cynex301等的呈现,钴溶液提纯技能得到长足开展。美国、加拿大、日本、韩国等国在钴提纯技能上进行了很多研讨工作 ,其间以日本最为杰出。日本 JMc公司于 1997年开端出产高纯钴 ,现有 99.998%高纯钴产品。日矿(Nikko)公司和 日本株式会社化学研讨现已出产出99.999%的高纯钴 ;日本 Furuchi公司出产的高纯钴能够到达 99.999 5%(分析 70种杂质元素),是现在报导中纯度最高的。
在国内,1961年上海有色金属的研讨所以粗钴为质料 ,用次溶液除镍,以离子交流除铝和锌 ,中和水解法除铁,制备高度纯洁的氯化钴溶液进行电解精粹,获得 99.99%高纯钴。金川镍钻研讨设计院的申勇峰等以l#电解钴为质料选用电溶 、离子交流法除掉溶液中的杂质离子电解提纯后的溶液,得到 99.994%的高纯钴。此外北京有色金属研讨总院和北京矿冶研讨总院也正在进行高纯金属的研讨工作。金川有色金属公司是我国镍钴首要出产基地,钴产值居全国之首,并且出产技能也代表了我国最高水平。其选用粗钴阳极隔板膜电解法出产出纯度大于 99.98%的电解钴 ,到达 1#电解钴的标准。
国外首要选用离子交流法除掉溶液中大部分杂质离子,然后通过电解得到金属钴,再选用区域熔炼、电子束熔炼等手法进一步提纯得到高纯钴。国内研讨工作首要会集在离子交流和电解精粹上,现在还没有扩大化出产的报导。
二、高纯钴的制备制备高纯钴的质料是工业电解钴、钴盐等,运用的冶金办法首要有湿法冶金、火法冶金、电化学冶金等。制备进程分为钴盐溶液净化和钴金属精粹 2个阶段:第 1阶段首要选用湿法冶金办法,如溶剂萃取、离子交流、膜别离、电解等,用以除掉粗钴溶液中的大多数金属杂质,首要是镍、铜、锌、铁等杂质,并经电解得到金属钴;第 2阶段首要选用火法冶金办法,如区域熔炼、真空脱气等,用以进一步脱除金属钴中的碱金属、碱土金属、非金属气体杂质,终究得到高纯金属钴。
(一)钴盐溶液的净化
1、溶剂萃取法溶剂萃取法是运用杂质离子在有机相和水相之间的分配比不同到达别离杂质的意图。Ritcey等在20世纪 70年代研讨了运用 D2EHPA进行钴、镍别离的工艺。N.B Devi研讨了硫酸盐系统中选用D2EHPA,PC88A,Cyanex272萃取 Co的行为,并评论了比较、皂化率对萃取因子的影响。M.V.Rane选用 LIX84从废旧的催化剂中萃取钴,然后用沉淀法除铁和铝 ,得到了纯度大于 99.9%的钴 。N.V.Thakur等选用 P204和 P507完成了钴与镍、铜等杂质的别离。
Wang Guangxin等选用溶剂萃取法和离子交流法净化钴溶液,然后经电解得到金属钴,其成果见表 1。能够看出,溶剂萃取法对大多数金属离子有很好的除杂作用,但对铜、锌、钛、铅等金属离子反而起了富集作用。溶剂萃取法适用于大规模提纯钴溶液,但在制备高纯钴方面作用却不显着。
表1 离子交流和溶剂萃取后的杂质含量(×10-4%)注:①溶剂萃取-电积工艺;② 离子交流-电积工艺;③ 溶剂萃取-4次离子交流-电积工艺。
2、离子交流法离子交流法是运用离子交流树脂的功用基团和溶液中杂质离子的交流、解析才能的差异到达别离的意图。K.Mimura等选用阴离子交流法净化钴溶液,再经电解、电弧熔炼、电子束熔炼得到纯度为99.999 7%的高纯钴。Nagao等选用阴离子交流法除掉 Fe,Zn,Sn,Ni,Ca,Mg,Na等,然后选用有机胺萃取别离其它杂质,得到的高纯钴盐溶液经结晶、枯燥后复原得到高纯钴粉,其间的Fe,Zn,Sn,Ni,Ca,Na,Mg含量都低于 0.000 l%。
钴盐溶液中的铜在酸性条件下始终能弱吸附在树脂上,难以与钴别离。为处理铜的共吸附问题,Masahito等将钴溶液 中的 Cu2+复原为 Cu+,再选用阴离子交流树脂除掉Cu+(Co2+不被吸附),净化后的高纯 CoCl2溶液结晶、枯燥后经复原得到纯度为 99.999 7%的金属钴(RRR=207),成果见表2。由表 2可见,铜杂质含量低于 0.000 005%。
表2 阴离子交流法制备的高纯钴中的杂质含量(×10-4% )离子交流法对 Zn,Mo,W,Cu的别离作用并不显着,对铅有显着的富集作用。
3、萃取色层法萃取色层法是运用吸附在大孔树脂上的萃取剂对溶液中离子的挑选性萃取到达别离意图。刘扬中等研讨了添加配位剂基乙酸 ,以替代传统的树脂转型办法进行萃取色层法净化钴溶液。他们调查了淋洗液 pH值、进样量及料液中Co、Ni比等要素对别离的影响,在 pH值为 3.40的条件下用5 g萃淋树脂完成将钴、镍质量比在 1~100范围内溶液中的钴、镍(总量为 1.6 mg)彻底别离,并研讨了基乙酸的配位、缓冲作用对别离进程的影响。
周移等将 P507萃淋树脂转型为 Mg型 ,进步了对 Co2+的萃取才能 ,完成了钴与镍的彻底别离 ,并进步了柱子运用寿数。周春山等选用转型后的 P204萃淋树脂以 pH值为 2.5的一钠为淋洗液,完成了钴与铜、锌、锰、铬等金属离子的彻底别离。刘展良等具体研讨了 HCl系统中 Zn、Ca、Mg、Fe、Co、Ni和稀土离子在 P507萃淋树脂上的淋洗行为,并探讨了 Fe3+在柱床上或许存在的反响 机理。萃取色层法既具有液一液萃取中萃取剂的高度挑选性 ,又具有离子交流色层别离的多级性,在别离性质附近的元素上有着优 良的功用,因而在湿法冶金中遭到越来越多的注重。一起萃取色层也存在一些 本身的缺陷 ,如柱子萃取容量比较低 ,萃取剂简单丢失 ,寿数相对较短等。进步柱子的萃取容量,战胜萃取剂丢失,开发挑选性更好的萃取剂是往后萃取色层法获得重大突破的要害。4、膜别离法膜别离法是运用液膜能够挑选性地透过离子并在水相富集而到达别离的意图。Jerzy等选用支撑液膜和大块液膜做载体 ,D2EHPA做萃取剂别离钴和镍 ,探讨了溶液酸度 、膜离子载体浓度、金属离子浓度对别离成果的影响。
Li Longquan等研讨了乳化液在硫酸系统中别离钴、镍的进程。他们选用 EDTA作为掩蔽剂掩蔽料液中的镍离子,以P204的乳化液膜作为载体从硫酸盐系统中收回钴。通过调查 pH值、别离时刻等要素,断定了最佳的别离条件。
虽然膜别离法具有高的挑选性和传质快等长处,但因膜的稳定性差、本钱较高级原因,现在还处于实验室中试阶段。5、电解法钴电解是在酸性钴盐溶液中进行的。电解液的组成、浓度、酸度、温度、电流密度等条件应该严格控制。因为溶液中的Cu2+,Cu+,Sn2+,Ni2+,Pb2+,As3+等杂质离子的电势比钴高(正)或许和钴挨近,在电解时会与Co2+一起分出;电势比钴更低(负)的金属离子如 Fe,Mn,Zn,Na等杂质离子的存在对钴的质量影响不大,但含量较高也会带来必定的损害。因而要严格控制溶液中的杂质离子含量。
净化后的钴溶液中溶解的少数萃取剂会添加金属钴的杂质含量经活性炭处理得到的电积钴中的 C,O,N,H含量大大下降,见表3所示。
表3 活性炭处理后电积钴的杂质含量(×10-4%)注:① 溶解的有机相用经6 mol/L的HCl处理过的活性炭除掉,经电解、EBM后得到的数据;② 进程相似Example 2经电积得到数据,运用的活性炭未经酸处理;③ 进程相似 Example 2,经电积得到数据,溶液未经活性炭处理。
Isshiki等选用聚乙烯电解槽,用直径为1 mm的高纯钴丝(99.998%)做 阴极,用铂板做阳极,电解高纯 COC12溶液得到直径 5 rain的钴棒。
Shindo等选用离子交流法除掉溶液中的杂质,然后经屡次电解和电子束熔炼得到金属钴 。屡次电解和电子束熔炼后的杂质含量见表4。
由表4能够看出,电解能够别离 Ni,Fe,K,U,Th等杂质,屡次电解精粹能够进一步下降杂质含量;电解精粹后的电子束熔炼能够有用去除Na杂质。
表4 钴电解精粹和电子束熔炼后的杂质含量(二)钻金属精粹为脱除金属钴中剩余的碱金属杂质和部分气 体杂质 ,电解得到的金属钴还需要通过火法精粹。常用的办法有电子束熔炼 、区域熔炼等。区域熔 炼是依据杂质元素在液态和固态平分配系数的差 别,使金属得到提纯。可是 ,对分配系数挨近 1 的元素,如 Fe,Ni,Co,Cr,Mn,A1,Cu,Si很难用区域熔炼法相互提纯。电子束悬浮区熔是制 备高纯金属常用的办法,它能够成长完好的单晶,显着进步金属的 RRR值,如表 5所示。通过区域 熔炼后 ,金属钴的 RRR值分别由236和 116进步到 334和 245。
表5 不同工艺下杂质含量及RRR值的改变(×10-4%)注:A,CoCl2质料;B,氢复原钻;C,电解+6次电子束悬浮区域熔炼;D,氢复原+4次电子束悬浮区域熔炼;E,氢复原+8次电子束悬浮区域熔炼 ;F,氢复原-处理+4次电子束悬浮区域熔炼。
Miller等运用真空脱气烧结法使金属钴中的Zn,Cd,S,O,C等杂质元素含量显着下降,成果如表6所示。
由表6能够看出,真空脱气烧结法能够有用地脱除金属中的 C,O,N等非金属杂质 ,但关于金属杂质作用并不显着。
表6 真空烧结脱气作用(×10-4%)三、结语
单一的提纯办法无法满意制备 5N以上高纯钴的要求。溶剂萃取法对大多数金属离子有很好的作用的,但对 Ni,Cu,Zn等金属离子的别离作用相对较差;膜别离法存在稳定性差 、本钱高的缺陷。离子交流和萃取色层法对别离性质附近的元素上作用杰出 ,但存在容量低一级问题。火法精粹进程中,区域熔炼可去除金属钴中的碱金属、碱土金属和气体杂质,并有利于生成纯度高、值大的完好钴单晶。因而,制备 5N以上的高纯钴合理的工艺流程为:首要选用离子交流或萃取色层法除掉钴盐溶液中的镍、铜、铁、锌等杂质,然后选用电解进一步除掉 Ni,Fe,K,U,Th等杂质得到高纯金属钴,终究选用区域熔炼除掉其间的碱金属和蒸气压较大的杂质,得到晶型完好的高纯钴产品。
制备氧化铜
2017-06-06 17:50:02
氧化铜是初中化学课本中一种普遍的化学药品,氧化铜的性质稳定,用途广泛,在化学试验中利用率高。那当我们在使用氧化铜药品时,除了购买后直接使用之外,有什么办法可以直接制备氧化铜呢?制备氧化铜需要的实验用品:
金属
铜粉、氧气、酒精灯灼热的
金属
铜和氧气反应,就会生成氧化铜。2Cu+O2 =灼热= 2CuO 这个就是实验室制备氧化铜的方法。
钛液的制备
2019-02-13 10:12:38
在硫酸法钛出产中,第一步就是先把固体的钛铁矿经过酸分化制备成可溶性钛的硫酸盐溶液,一起钛铁矿中的铁和大部分金属杂质也变成可溶性的硫酸盐,以便今后将各种杂质别离。因为偏铁酸亚铁(钛铁矿)是一种弱酸弱碱盐,用强酸(H2SO4)与它反响基本上是不可逆的,反响能够进行得比较彻底。
钛铁矿的酸分化(简称酸解)有干法和湿法。干法是把磨细后的钛铁矿与硫酸混合进行加热、焙炒,待分化完结后加水稀释浸取,取得钛的硫酸盐溶液。该法不能进行大规模的工业化出产,现在在实验室中制备钛的硫酸盐溶液有时还用这种办法。
湿法就是现在遍及选用的硫酸法。湿法从开展的前史来看,曾有过5种不同办法:即液相法、固相法、两相法、加压法和接连法。
液相法:反响一直在液相状态下进行。在这里,硫酸(有用酸)浓度与钛总含量之比值非常重要叫做酸比值,一般以F来表明。选用55%~65%的硫酸酸比值较高(F值3~3.2),所以得到的钛液绝大部分以正硫酸钛—Ti(SO4)2的方式存在。该办法因为反响时间太长,耗酸、耗蒸汽多,加上F值太高形成今后水解困难,水解率低,工业出产一般不选用此法。实验证明液相法的硫酸浓度即便只要10%,也能取得硫酸钛溶液,但反响时间更长,因为10%硫酸的沸点只要10℃,在98℃下反响8h,酸解率只要30%。
两相法:两相法选用的硫酸浓度为65%~80%,F值操控在1.8~2.2之间,操作时先把硫酸加热至120℃左右,然后参加矿粉持续拌和加热到150~200℃,主反响3h,反响物为糊状物,接着冷却、加水浸取坚持必定的悬浮液浓度,至酸解率到达85%~90%时停止。两相法虽比液相法耗用硫酸少,但反响时间长,酸解率低仍不经济。
固相法:该法是现在硫酸法钛工厂遍及选用的办法,因为它与前两种办法比较具有反响温度高、反响进程短、耗用硫酸少的长处。用这种办法出产的硫酸浓度一般在85%~95%,反响剧烈、敏捷,因为浓硫酸的沸点高,最高反响温度可高达200~250℃,反响一般在5~15min内即可完结,反响放出很多的热,因而动力较省,耗酸也较少,F值一般操控1.7~2.1,所得产品为多孔的固相物,简单加水浸取,酸解率一般能够到达95%以上。
加压法:选用20%~50%浓度的稀硫酸,在一耐腐蚀的受压设备中进行,一般出产人工金红石或电焊条用的金红石有时选用此种办法。
接连法:该法运用和20%硫酸的混合酸,先制得半流体状的反响物,然后再高温固化。加压法、接连法对反响设备的原料要求很高,操作杂乱,在工业化钛出产中没有采用。
高纯钴的制备
2018-12-10 14:19:22
高纯钴的制备.pdf
铋的加工和制备
2019-02-14 10:39:59
古代用木炭复原辉铋矿Bi2S3制得铋,1737年J.埃洛用火分化铋矿,得到一小块金属铋;1757年法国的C.J.日夫鲁瓦用木炭复原辉铋矿也制得金属铋。其称号来自德文矿藏名,意为白色物质,因铋的化合物可作白色涂料。铋在地壳中的含量为2×10-5%。铋在天然界既有游离状况的,亦有化合物方式的,化合态首要有铋赭石也称泡铋矿Bi2O3和辉铋矿。游离态铋具有显着菱形结构,是亮光的粉红色脆性金属,熔点为271.3℃,沸点为1560 ℃,相对密度为9.8。熔融的金属铋在凝结时胀大约3.3%,铋对磁力线成直角方位时,受磁场激烈排挤。室温下铋在空气中不氧化,强热时焚烧,生成三氧化二铋。铋不与和稀硫酸效果,但能溶于浓度不大的硝酸和热浓硫酸,铋也能与氢、卤素、氧、氮及硫构成化合物。铋的氢化物BiH3很不安稳,室温即分化。三氧化二铋具有碱性,溶于酸生成铋(Ⅲ)盐。将碱效果于铋(Ⅲ)的可溶盐可制得白色沉积氢氧化铋(Ⅲ):
Bi+4HNO3=Bi(NO3)3+NO↑+2H2O
2Bi+6H2SO4=Bi2(SO4)3+3SO2↑+6H2O
Bi(NO3)3+3NaOH=Bi(OH)3↓+3NaNO3
氢氧化铋(Ⅲ)是很弱的碱,所以铋(Ⅲ)盐简单水解,转变成难溶于水的碱式盐。从铋和硝酸相互效果的溶液中结晶出五水,可溶于硝酸酸化的少数水中。用水稀释溶液时发作水解,分出碱式盐,其组成取决于条件,常常生成组成为BiONO3的盐。BiO+称为铋酰,也叫铋氧离子:
Bi(NO3)3+H2O=BiONO3+2HNO3(可逆)
三氯化铋是吸湿性晶体,水解为氯化铋酰(或氯化氧铋)BiOCl。将通入铋盐溶液可得黑褐色沉积三硫化二铋,与砷、锑不同,铋不生成硫代酸盐,所以三硫化二铋不溶于碱金属或铵的硫化物溶液中。铋(Ⅴ)的化合物中最重要是铋酸盐。如铋酸钠。这些化合物是强的氧化物,铋酸钠可将硫酸锰中Mn(Ⅱ)氧化成Mn(Ⅶ)的高锰酸盐。铋也存在于一些有机化合物,尤其为化学医治而制备的有机物(酒石酸盐)中。
铋的首要用途:①为防火设备、金属接点、导热介质用低熔(易熔)合金的组分;②用于制备医治胃病和梅毒的药;③用于电设备(热门合金和永久磁体);④用作催化剂,特别用在腈制备中;⑤制造高温陶瓷和颜料;⑥是有机组成中常用的氟化剂。
金属铋可由硫化物矿煅烧后成三氧化二铋,再与碳共热复本来制得
叶碲铋矿极为稀有,矿藏学材料匮乏。高庄金矿的叶碲铋矿为我国初次发现,它首要产于磁黄铁矿多金属阶段,与磁黄铁矿、黄铁矿、黄铜矿、碲银矿、天然金等共生。经电子探针分析,高庄金矿有多种铋碲化物,有三粒矿藏的成分与标准叶碲铋矿完全一致。对一较大颗粒的叶碲铋矿做了单晶X射线衍射分析。Au与Bi在矿石和围岩中的含量呈共消长联系,Te与Bi可能对Au、Ag的搬迁富集起了重要效果。
金电解液的制备
2019-03-06 09:01:40
制备金电解液的最好办法是电解法,俗称电解造液。别的,还可运用法。
电解造液均运用隔阂电解法。这种办法是在与金电解相同的槽中,选用与金电解根本相同的技能条件进行的。其最大不同点是纯金阴极很小且装于未上釉的耐酸素瓷隔阂坩埚中(图1)。此法广泛应用于工业出产中,当运用25%~30%的液,在面积电流1000~1500A∕m2和槽电压不大于3~4V条件下,可制备出含金380~450g∕L的浓溶液。图1 金的隔阂造液
1-阳极;2-阴极;3-隔阂坩埚
某厂电解造液是在电解槽中参加稀(化学纯或蒸馏),槽中装入粗金阳极板,在素瓷隔阂坩埚中装入105mm×43mm×厚1.5mm的纯金阴极板。素瓷坩埚内径为115mm×55mm×深250mm,壁厚5~10mm。坩埚内的阴极液为1∶1的稀。阴极液面比电解槽阳极液面高5~10mm,以避免阳极液进入阴极区。
电解造液的条件一般选用面积电流2200~2300A∕m2,槽电压2.5~4.5V,分量沟通电为直流电的2.2~2.5倍,沟通电压5~7V,液温40~60℃,同极距100~120mm。当接通电流时,阴极上开端放出,而阳极则开端溶解。造液44~48h,即取得密度1.38~1.42g/m3、含金300~400g∕L(延伸周期最高可达450g∕L)、含250~300g/L的溶液,通过滤除掉阳极泥后,贮存在耐酸瓷缸中备用。作业停止后,取出坩埚,阴极液会集进行置换处理,以收回或许穿透坩埚进入阴极液中的金。
鉴于金价贵重,为进步金的直收率,使金不致积压于出产过程中,某些厂曾运用含金95~120g∕L、120~150g∕L的电解液。
造液,是将复原的金粉加溶解而制得。一份金粉参加一份,经溶解后过滤除掉杂质。为了除掉溶液中的硝酸一般在金粉悉数溶解后,持续加热赶硝以使其分解成氧化氮而被除掉。在苏联曩昔多运用造液,南非和日本如今仍多选用之。此法的长处是速度快,但溶液中的硝酸不或许彻底被扫除,用此溶液进行电解时,因为硝酸根离子的存在,会使电解过程中呈现阴极金反溶解的不利因素。
近代金电解工艺中,还有选用离子交换膜造液的。
从锂云母制备铷和铯
2019-03-05 12:01:05
锂云母是提取和的首要矿藏,用硫酸分化锂云母精矿后,得到锂、和的旅酸盐。将这些硫酸盐分步结晶别离锂盐后,加人使、转化为氯化物,然后加人40%的三级化锑溶液,分出Cs3SbCl9沉积,和钾留在母液中。
江西宜春出产锂的工厂已有30年的前史,该厂用选铌钽矿后的锂云母提取锂盐,在出产氢氧化锂(或碳酸锂)后的废液中提和。碱金属碳酸盐的组成为70% K2CO3,23%Rb2CO3,2%Cs2CO3,l% Li2CO3,3% Na2CO3和1%其他盐,因为、、钾的离子半径极端近似,简单生成混晶或异质同晶的化合物,所以从中除钾,从中除都是十分困难。、的纯化别离大多选用复盐分步结晶和分级沉积法。碱金属生成复盐趋势的凹凸次序为:>>钾>钠>锂。
在氯化物溶液中,碱金属与镁的氯化物构成复盐,如光卤石。和与铁、锑、锡、铅、铂、铱、铋的卤素配阴离子(如Rb2PtCl6, 2CsCl·3SbCl3)以及硅钼酸、硅钨酸、亚硝基钴等生成盐。和阳离子与有机阴离子如、6-硝基二盐、四盐构成溶解度很小的化合物。
复盐沉积能够用于含量高的酸性溶液,而不能用于含量低的碱性溶液。上述这些办法,尽管能够完结首要的纯化进程,但进程杂乱、报价昂贵,对和的别离作用也不甚满足。
镁基复合材料的制备
2019-01-03 09:37:07
镁及镁合金虽具有密度低、比强度大、比刚度高和抗冲击性强等诸多优点。但是也有一些固有缺点,如硬度、刚度、耐磨性、燃点较低、不是一种良好的结构材料,使其应用受到相当大的制约。若向镁基体中添加陶瓷颗粒或碳纤维制成复合材料,则可以在很大程度上改善镁的力学性能,提高耐热和抗蠕变性能,降低热膨胀系数等。可作为复合材料增强相的颗粒有:氧化物、碳化物、氮化物、陶瓷、石墨和碳纤维等。制备镁基复合材料的工艺主要是:铸造法、粉末冶金法、喷射沉积法。
铸造法
铸造法是制备镁合金复合材料的基本工艺,可分为搅拌混合法、压力浸渗法、无压浸渗法和真空渗法等。
搅拌铸造法(Stiring Casting)
此法是利用高速旋转搅拌器浆叶搅动金属熔体,使其剧烈流动,形成以搅拌旋转轴为中心的漩涡,将增强颗粒加入漩涡中,依靠漩涡负压抽吸作用使颗粒进入熔体中,经过一段时间搅拌,颗粒便均匀分布于熔体内。此法简便,成本低,可以制备含有Sic、Al2O3、SiO2、云母或石墨等增强相的镁基复化材料。不过也有一些难以克服的缺点:在搅拌过程中会混入气体与夹杂物,增强相会偏析与固结,组织粗大,基体与增强相之间会发生有害的界面反应,增强相体积分数也受到一定限制,产品性能低,性价比无明显优势。用此法生产镁基复合材料时应采取严密的安全措施。
液态浸渗法(Liquid infiltration process)
用此法制备镁基复合材料时,须先将增强材料与黏接剂混合制成预制坯,用惰性气体或机械设备作用压力媒体将镁熔体压入预制件间隙中,凝固后即成为复合材料,按具体工艺不同又可分为压力浸渗法、无压、浸渗法和真空浸渗法。可用挤压、铸造机进行浸渗,也可以用专用浸渗装备。增强相与镁熔体之间的浸润性对浸渗过程有重要影响,是关键的工艺参数。当浸润角θ
粉末冶金法
该法是将预制的镁粉或镁合金粉与陶瓷粒子均匀地混合为一体,经真空除气、固结成形后再进行压力加工制成所需形状、尺寸和性能的复合材料半成品。粉末固结工艺有热压和冷热、温等静压。此法主要优点:基体合金组织微细,可随意调控增强相的分数,甚至可高达50%左右,陶瓷颗粒尺寸可小于5μm,但不足之处是金属粉末在制备和贮存过程中易表面氧化,对材料塑性及韧性不利;制备大尺寸锭坯及需要大型设备和模具,投资较大;所采用的温度低,不会发生有害界面反应,有利于材料塑性及韧性提高。
粉末锭坯经挤压、锻造大变形加工后,粉末颗粒会结合在一起,材料密度可接近理论值。
喷射沉积法
喷射沉积工艺是制备高性能合金材料的有效方法之一,若在喷射沉积过程中将陶瓷颗粒导入雾化锥中,与雾化颗粒共沉积,可以制得陶瓷颗粒增强的复合材料。喷射共沉积法制备AZ91、QE22合金/Al2O3或SiC颗粒复合材料的弹性模量、耐磨性都大幅度提高,膨胀系数有较大下降。
由于喷射工艺流程短,材料制备比较简单、便利;增强颗粒在基体金属中分布均匀,界面反应很轻微,因而性能优异。QE22/SiCp复合材料锭坯孔隙体积分数高达20%,经挤压后,具有优异的强度和塑性,其伸长率达到12%,而传统铸造QE22合金的伸长率只不过2%。
超细均质铝粉制备方法
2019-01-02 14:54:46
超细均质铝粉的制备方法,包括铝锭熔融、制粉、物料输送、气固分离、收集成品、产品包装、其特征在于由下列步骤组成: a) 先将铝锭熔融,在全封闭容器内的高速盘式雾化器,并在情性气体保护下进行雾化制粉; b) 雾化的铝粉,通过容器底部鼓入的惰性气体和容器上部喷入的油浸润下,同时从容器上部通过惰性气体保护的管道输送至一次旋风分离器和二次带过滤网的喷淋塔进行气固分离; c)一次旋风分离器分离的油浸润铝粉沉入底部即为产品进入包装桶封存,气体和微细铝粉通过管道进入二次喷淋塔,油浸润铝粉沉入底部返回容器内,气体经过滤返回风机循环,循环油也再返回循环; d)容器累积的油浸润铝粉作为产品回收,包装封存。
从光卤石制备铷和铯
2019-03-05 12:01:05
天然光卤石( KCl·MgC12·6H2O)是一种复盐,的含量为0.05%~0.037%,的含量仅为的2%。光卤石参加水分化后,氯化镁进入溶液,而大部分留在沉积中。蒸腾溶液人工光卤石将结晶分出,和富集在人工光卤石中。通过数次重结晶后,可将富集到10%,调整溶液的酸度到pH值为2~3,向此溶液中参加适量的50%的钼磷酸铵粉末,在常温下充沛拌和,即以杂多酸盐RbH2[P(Mo3O10)4·xH2O]的方式沉积出来。用9MNH4NO3的溶液洗刷沉积,又从钼磷酸中转入溶液。将富集有RbNO3的溶液蒸腾至干,于300~500℃灼烧除掉铵盐,可获得纯度为80%的硝酸,还能够进一步收回。从盐卤中提取和的工艺流程如图1所示。用斜发沸石别离提取卤水中钾、、,能得到较好的化合物,可是的别离尚不抱负。
图1 从盐卤中提Rb和Cs的流程
高纯金属制备技术(二)
2019-01-25 13:38:01
式中,V为离子漂移速度;U为离子迁移率;F为作用于离子的外力,它由电场作用力和导电电子散射作用于离子的力组成。这些作用力和离子有效电荷数有关。依母体离子和杂质离子的电荷数不同和扩散、漂移速度不同而达到分离目的。如图4。 电迁移和区域熔炼方法结合使用效果更好(如图5),以镓为例,经过上述方法提纯后,镓的残余电阻率达到R残余=100000。这种方法已广泛用于铍、钨、钇、镧、铈等金属的提纯。
[next]
5.电磁场提纯 在电磁场作用下深度提纯高熔点金属的技术越来越多地被采用。电磁场不限于对熔融金属的搅拌作用,更主要的是电磁场下可使熔融金属在结晶过程中获得结构缺陷的均匀分布,并细化晶粒结构。在半导体材料拉制单晶时,在定向结晶时熔体中存在温度波动,这种温度波动会导致杂质的层状分布,而一个很小的恒定磁场就足以消除这种温度波动。在多相系统结晶时,利用电磁场可使第二相定向析出,生成类似磁性复合材料的各向异性的组织结构。电磁场还用于悬浮熔炼,这时电磁场起能源支撑作用和搅拌作用,利用杂质的蒸发和漂走第二相(氧化物、碳化物等)来纯化金属。由于不存在和容器接触对提纯金属造成的污染问题,被普遍用于几乎所有高熔点金属的提纯,如钨、钼、钽、铌、钒、铼、锇、钌、锆等。 6.提纯方法的综合应用 各个提纯方法都是利用金属的某个物理性质或化学性质和杂质元素间的差异而进行分离达到提纯目的的,如真空蒸馏是利用金属和杂质的饱和蒸气压和挥发速度的差异。区域熔炼是利用杂质在固相和液相间的溶解度差异而进行提纯分离的,因而各个方法都有一定的长处(对某些杂质分离效果好)和短处(对另一些杂质分离效果差)。即使是同一个提纯方法,也因金属性质的不同,提纯效果差别很大,如区域熔炼对高熔点金属的提纯效果好,但对某些稀土金属的提纯效果则不理想。欲获深度提纯金属的效果,一般需要综合应用多种提纯手段。在这方面,各个方法的合理结合应用和先后顺序使用十分重要,通常是将电子束熔炼或蒸馏和区域熔炼或电迁移法相结合,即先进行电子束熔炼或蒸馏提纯,再以区域熔炼或电迁移提纯作为终极提纯手段,以铍为例,为获超高纯铍,最好先多次蒸馏提纯,再真空熔炼,最后进行区域熔炼或电迁移提纯,经这样提纯后所得铍单晶纯度达99.999%,残余电阻率R残>1000。在制取超纯锗时,一般先用化学法除去磷、砷、铝、硅、硼等杂质,再用区熔法提纯得到电子级纯锗;最后多次拉晶和切割才能达到13N的纯度要求。表2为各种方法结合使用提纯金属铼的效果。表2 各种提纯方法提纯金属铼的效果提纯方法剩余电阻率RRR值铼粉末真空熔炼1000铼粉末真空熔炼+区域熔炼6000粉末在H2和O2气中退火+真空熔炼+区域熔炼8000氢还原提纯+真空熔炼15000氢还原提纯+真空熔炼+区域熔炼30000氢还原提纯+真空熔炼+电迁移区熔50000[next]
7.宇宙空间条件下提纯金属 宇宙空间的开发为提纯金属制造了新的机会。宇宙空间的超高真空(约10-10Pa),超低温和基本上的无重力(g=10-5g0),为金属提纯提供了优越条件。在这种条件下,液态金属中将不会有对流的问题,结晶时杂质的分布将只具有纯扩散性质,熔化金属毋需坩埚,超高真空尤其有利于杂质的挥发和脱气。这些对于采用熔炼、蒸发、区域熔炼等方法提纯化学活性大的金属和半导体材料来说更是非常理想的条件。以提纯锗为例,在地球上锗垂熔时杂质镓的分离系数为0.1/0.15,而在宇宙空间时则达0.23/0.17。在无重力条件拉制的晶体的完整性较在重力条件下的完整性好很多。以锑化锢为例,其位错密度比只是在重力条件下的位错密度的1/6。由于宇宙中液态金属表面张力系数值很大,故在宇宙间用无坩埚区域熔炼法必定能制备出极高纯度和完整性的单晶来。此外,超低“宇宙”温度也具有良好的应用前景。
红铜的硬度
2019-05-28 09:05:47
红铜即纯铜,又叫紫铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力制作,很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电性ir1u1et能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。 红铜成分很纯,除天然的微量(0.10.2%)杂质外,没有人工参加锡或铅使成合金。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带上海废铜收回、气垫,汇流排端子。电磁开关、笔筒、屋根板等。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电功能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带、气垫,汇流排端子。电磁开关、笔筒、屋根板等。 红铜的密度8.96g/(cm) 红铜的比重8.89g/(mm) Cu≥99.95% O<003 电导率≥57ms/m 硬度≥85.2HV
高纯金属制备技术(一)
2019-02-15 14:21:16
高纯金属是现代许多高、新技能的归纳产品,尽管20世纪30年代便已呈现“高纯物质”这一称号,但把高纯金属的研讨和出产进步到重要日程,是在二次世界大战后,首先是原子能研讨需求一系列高纯金属,然后跟着半导体技能、宇航、无线电电子学等的开展,对金属纯度要求越来越高,大大促进了高纯金属出产的开展。 纯度对金属有着三方面的意义。榜首,金属的一些性质和纯度关系密切。纯铁质软,含杂质的铸铁才是坚固的。另一方面,杂质又是十分有害的,大多数金属因含杂质而发脆,关于半导体,极微量的杂质就会引起材料功能十分显着的改变。锗、硅中含有微量的m、V族元素、重金属、碱金属等有害杂质,可使半导体器材的电功能遭到严重影响。第二,纯度研讨有助说明金属材料的结构铍理性、杂质对缺点的影响等要素,并由此为开发预先给定材料性质的新材料规划发明条件。第三,跟着金属纯度的不断进步,将进一步提醒出金属的潜在功能,如普通金属铍是一切金属中最脆的金属。而在高纯时铍便呈现低温塑性,超高纯时更具有高温超塑性。超高纯金属的潜在功能的发现,有或许开阔新的应用领域,在材料学方面翻开新的突破口,为高技能的延伸铺平道路。 金属的纯度是相关于杂质而言的,广义上杂质包含化学杂质(元素)和物理杂质(晶体缺点)。可是,只要当金属纯度极高时,物理杂质的概念才是有意义的,因而出产上一般仍以化学杂质的含量作为点评金属纯度的标准,即以主金属减去杂质总含量的百分数标明,常用N(nine的榜首字母)代表。如99.9999 %写为6N,99.99999%写为7N。此外,半导体材料还用载流子浓度(atom/cm3)和低温搬迁率(cm2V-1S-1)标明纯度。金属用剩下电阻率RRR和纯度级R(Rein heitgrad)标明纯度。国际上关于纯度的界说尚无统一标准。一般讲,理论的纯金属应是纯洁彻底不含杂质的,并有稳定的熔点和晶体结构。但技能上任何金属都达不到不含杂质的肯定纯度,故纯金属只要相对意义,它仅仅标明现在技能上能到达的标准。跟着提纯水平的进步,金属的纯度在不断进步。例如,曩昔高纯金属的杂质为10-6级(百万分之几),而超纯半导体材料的杂质达10-9级(十亿分之几),并逐步开展到10-12级(一万亿分之几)。一起各个金属的提纯难度不尽相同,如半导体材料中称9N以上为高纯,而难熔金属钨、钽等达6N已属超高纯。 高纯金属制取一般分两个进程进行,即纯化(开始提纯)和超纯化(终究提纯)。出产办法大致分为化学提纯和物理提纯两类。为获高纯金属,有用除掉难以别离的杂质,往往需求将化学提纯和物理提纯合作运用,即在物理提纯的一起,还进行化学提纯,如硅在无坩埚区熔融时可用氢作维护气,如果在中参加少数水蒸气,则水与硅中的硼起化学反响,可除掉物理提纯不能除掉的硼。又如选用真空烧结法提纯高熔点金属钽、铌等时,为了脱碳,有时需求配入比化学计量稍过量的氧,或为脱氧配入必定数量的碳,这种办法又称为化学物理提纯。[next] 一、化学提纯 化学提纯是制取高纯金属的根底。金属中的杂质首要靠化学办法铲除,除直接用化学办法取得高纯金属外,常常是把被提纯金属先制成中间化合物(氧化物、卤化物等),经过对中间化合物的蒸馏、精馏、吸附、络合、结晶、歧化、氧化、复原等办法将化合物提纯到很高纯度,然后再复原成金属,如锗、硅挑选、三氯氢硅、硅烷(SiH4)作为中间化合物,经提纯后再复原成锗和硅。化学提纯办法许多,常用的列于表1。表1 常用化学提纯办法办法内容沉积包含沉积、共沉积、均一沉积等金属置换包含依照金属活动性次序K、Ca、Na、Mg、Zn、Fe、Ni、Sn、Pb、H、Cu、Hg、Ag、Au,用前面金属把后边的金属从其盐溶液中置换出来萃取包含有机溶剂萃取、络合萃取、萃取精馏等离子交流包含用离子交流树脂、离子交流纤维、离子交流膜以及沸石的交流电化学办法包含电解、操控电位电解、电渗析以及电泳等化合物提纯包含化学搬运反响,先制成化合物并经过提纯,进一步热分化、氢复原、金属热复原、氧化、电解、色谱别离等各种不同办法进行提纯蒸馏包含常压蒸馏、减压蒸馏、蒸汽蒸馏、共沸蒸馏、亚沸蒸馏、精馏、常压进步、真空进步等重结晶包含在水及其他有机溶剂中的重结晶,分步结晶等色谱别离包含气相色谱、液相色谱、薄层色谱、干柱色谱(用活性炭、硅胶、氧化铝、分子筛、硅藻土等作吸附剂的吸附提纯)过滤包含微孔滤膜、超滤膜及其他介质过滤[next]
二、物理提纯 物理提纯首要运用蒸腾、凝结、结晶、分散、电搬迁等物理进程除掉杂质。物理提纯办法首要有真空蒸馏、真空脱气、区域熔炼、单晶法(拜见半导体材料章)、电磁场提纯等,此外还有空间无重力熔炼提纯办法。 物理提纯时,真空条件十分重要。高纯金属精粹提纯一般都要在高真空和超高真空(10-6~10-8Pa)中进行,真空对冶金进程的重要作用首要是:①为有气态生成物的冶金反响发明有利的化学热力学和动力学条件,从而使在常压下难以从主金属中别离出杂质的冶金进程在真空条件下得以完成;②下降气体杂质及易蒸腾性杂质在金属中的溶解度,相应下降其在主金属中的含量;③下降金属或杂质蒸腾所需温度,进步金属与杂质间的别离系数;④减轻或防止金属或其他反响剂与空气的作用,防止气相杂质对金属或合金的污染。因而许多提纯办法,如真空熔炼(真空感应熔炼、真空电弧熔炼、真空电子束熔炼)、真空蒸馏、真空脱气等有必要在真空条件下进行。 1.真空蒸馏 真空蒸馏是在真空条件下,运用主金属和杂质从同一温度下蒸气压和蒸腾速度的不同,操控恰当的温度,使某种物质挑选性地蒸腾和挑选性地冷凝来使金属纯化的办法,这种办法曾经首要用来提纯某些低沸点的金属(或化合物),如锌、钙、镁、镓、硅、锂、硒、碲等,跟着真空和超高真空技能的开展,特别是冶金高温高真空技能的开展,真空蒸馏也用于稀有金属和熔点较高的金属如铍、铬、钇、钒、铁、镍、钴等的提纯。 蒸馏的首要进程是蒸腾和冷凝,在必定温度下,物质都有必定的饱满蒸气压,当气压中物质分压低于它在该温度下的饱满蒸气压的蒸气压时,该物质便不断蒸腾。蒸腾的条件是不断供应被蒸腾物质热量,并排出发生的气体;冷凝是蒸腾的逆进程,气态物质的饱满蒸气压随温度下降而下降,当气态组分的分压大于它在冷凝温度下的饱满蒸气压时,这种物质便冷凝成液相(或固相),为使冷凝进程进行到底,有必要及时排出冷凝放出的热量。影响真空蒸馏提纯作用的首要要素是:①各组分的蒸气分压,分压差越大,别离作用越好;②蒸腾和冷凝的温度和动力学条件,一般温度下降可增大金属与杂质蒸气压的距离,进步别离作用;③待提纯金属的成分,原金属中杂质含量越低,别离作用越好;④金属和蒸腾和冷凝材料间的作用,要求蒸腾冷凝材料自身有最低的饱满蒸气压;⑤金属剩余气体的相互作用;⑥蒸馏设备的结构;⑦真空蒸馏有坩埚式和无坩埚式两种,无柑埚蒸馏一般经过电磁场作用将金属熔体悬浮起来(见图1),有关蒸馏工艺请拜见上述元素的精制进程。[next] 2.真空脱气 真空脱气是指在真空条件下脱除金属中气体杂质的进程。实际上是下降气体杂质在金属中的溶解度。依据西韦茨规律,恒温下双原子气体在金属中的溶解度和气体分压的平方根成正比。因而进步体系的真空度,便相当于下降气体的分压,亦即能下降气体在金属中的溶解度,而超越溶解度的部分气体杂质便会从金属中逸出而脱除。以钽粉真空热处理为例,在高真空(2.5-6μPa)条件下,钽的水分在100一200℃急剧蒸腾,600-700℃氢化物分化逸出,碱金属及其化合物在1100-1600℃温度下蒸腾,大部分铁、镍、铬等以低熔点氧化物形状蒸腾,2300℃时氮蒸腾逸出,比照氢、氮对金属亲和势大的氧,则以加碳脱氧([C]+[O]=CO↑)和以上杂质金属贱价氧化物MeOn,的办法除掉。真空脱气广泛用于高熔点金属钨、钼、钒、铌、钽、铼等的纯化。 3.区域熔炼 区域熔炼是一种深度提纯金属的办法,其实质是经过部分加热细长料锭构成一个狭隘的熔融区,并移动加热器使此狭隘熔融区按必定方向沿料锭缓慢移动,运用杂质在固相与液相间平衡浓度的差异,在重复熔化和凝结的进程中,杂质便偏析到固相或液相中而得以除掉或从头散布,熔区一般选用电阻加热,感应加热或电子束加热,图2为锗区域熔炼示意图。
[next]
图3为熔融区部分相图,当固液平衡共存时,杂质在固相中的浓度Cs和液相中的浓度C1是不相同的,两者之比称为平衡分配系数,即K0=Cs/C1。在图3中,当熔区自左向右缓慢移动时,分配系数K0<1的杂质就会富集在液相,并逐步随熔区向右搬迁并富集;K0>1的杂质则向右搬迁并富集。一般在一次区域熔炼不能到达所要求的纯度时,提纯进程需求重复屡次,或许用一系列加热器,在料锭上发生多个熔区,到达高度提纯的意图。 区域熔炼广泛用于半导体材料和高熔点金属钨、钼、钽、铌的提纯,更用于高纯铝、镓、锑、铜、铁、银等金属的提纯。对含杂质约l×10-3%的锗,在区域提纯6次后,高纯锗部分的杂质浓度可降到1×10-3%。钨单晶经5次区熔后,R298K/R4.2K可由40进步到2000. 4.电搬迁提纯 电搬迁是指金属和杂质离子在电场的作用下往必定方向搬迁或分散速度的差别来到达别离杂质的意图。是新近开展起来的用于深度提纯金属的办法,其特点是别离空隙杂质(特别是氧、氮、碳等)的作用好,但现在仅应用于小量金属的提纯。将其和其他提纯办法结合运用,可获超高纯度的金属。 将棒状样品经过流电,母体金属和杂质离子便向必定方向移动,这时离子的漂移速度为: V=UF
高纯钼精矿的制备
2019-02-12 10:08:06
优质钼精矿与非优质钼精矿的报价不同,1975年7月1日克莱麦克斯公司所供应钼精矿的报价,优质比非优质高出2.5%~17%。
美国克莱麦克斯公司拟定的优质钼精矿标准为MoS2≥95%、Cu<0.15%、Pb
铜-钼选厂产出的浮选钼精矿,一般含铜都超过了0.5%,铅和氧化钙含量也常超支。钼选厂产出的浮选钼精矿含杂,有时也难到达优质品标准。
为出产优质的高纯度钼精矿,常见的出产工艺有以下几种。
1、强化选矿
加拿大恩达科在精选进程取得两种产品:优质钼精矿含钼56.88%与普通钼精矿含钼51%。
北京银河化工厂选用浮选柱对钼精矿进行七段开路浮选,在获取优质钼精矿(含MoS 97%,钼回收率37%)的一起,还产出一部分钼中矿。萨尔瓦多选用九段精选,从惯例钼精矿中别离出优质钼精矿(含MoS2 97%,钼回收率65%),一起还产出一部分普通钼精矿。
笔者选用TL药剂强化浮选,从含钼47%的钼精矿,出产出含钼为57%~58%、钼回收率≥97%的优质钼精矿,一起还产出一少部分钼中矿(Mo≤2%)。
2、浸出
浮选精矿中含CaO、PbS较高时,可运用浸除。
常见含钙矿藏为方解石(CaCO3),其次为萤石(CaF2)。它们自身不易浮,一般进当选钼尾矿中。可是,连生体、受油药污染或机械搀杂等原因,往往少数进入钼精矿,使其CaO含量超支。
方解石可溶于生成可溶CaCl2:
CaCO3+2HC1=CaC12+CO2↑+H2O
加拿大恩达科对CaO含量0.4%的浮选钼精矿,过滤前参加在常温常压下浸出,使钼精矿CaO含量降到0.03%。
方铅矿(PbS)也能与反响,生成PbCl2。PbCl2不溶于水,但在加热时PbCl2与Cl-反响,生成可溶性PbCl3-:
2PbS+6HCl=2PbCl3+3H2S↑
美国亨德逊钼选厂浮选钼精矿档次为:90%MoS2、0.8%FeS2、0.2%Pb、0.5%CaO、0.05%Cu、6%酸不溶物(大部分为硅酸盐)。为下降铅和氧化钙的含量,出产出优质钼精矿,选用5%浓度的HCl溶液,在80℃下浸出16h,PbCl-3进入滤液,冷却结晶出PbCl2。使钼精矿中的铅含量降到0.03%,氧化钙含量更低,取得了优质钼精矿。
杨家杖子钼选厂当氧化钙过高时,在钼精矿过滤前,向精矿溜槽中滴加工业,亦可下降产品中氧化钙的含量。
但对萤石和硅酸盐中的钙(比方栾川钼矿钙铁石榴石中的钙),用是无法浸除的。
3、氯盐浸出
氯化浸出是运用高氧化功能的FeCl3或CuCl2氧化黄铜矿或方铅矿:
CuFeS2+4FeCl3=CuC12+5FeC12+2S
PbS+2FeC13=PbC12+2FeC12+S
Fe3+离子氧化硫化物,分出S的标准电位Eo(V)为:
硫化物FeSZnSCuFeS2FeS2Cu2SCuSE0(V)0.060.2640.2640.420.560.59
[next]
实际上,硫化矿藏浸出难度次序为:磁黄铁矿<辉铜矿<方铅矿<闪锌矿<黄铜矿<黄铁矿。浸液中除或外,往往还须参加碱金属的氯盐(如NaCl)或碱土金属的氯盐(如CaC12),它们既可以进步浸液的沸点,使浸出能以在100~110℃高温下进行;又能为PbCl2、CuCl供给很多C1-离子,使难溶的PbCl2、CuCl生成可溶的络离子进入液相,Cu、Pb浸除得以完成:
PbCl2+Cl- → PbC13-
CuCl+CI- → CuCl2-
浸液还要参加HCI以坚持必定酸度。
钼精矿的氯化浸出早已在布伦达施行,投产。该工艺也常称布伦达法。
布伦达铜钼矿是国际范围铜-钼档次较低的选厂,原矿含铜0.183%、含钼0.049%。矿石中的铜矿藏首要为黄铜矿。
布伦达的浮选钼精矿均匀含钼54.97%、含铜0.32%、含铅0.38%(1974年)。明显铜、铅含量都较高,1974年布伦达选厂选用了诺兰达公司研究中心研究出的氯盐浸出工艺后,钼精矿档次上升到55.89%Mo、0.054%Cu、0.033%Pb。其质量之高在其时是国际罕见的。
浸液配方一般为:CuCl2 1%、FeC13 10%、CaCl2(或NaC1)30%、HCl 10%。浸出在常压加温下进行,浸出温度一般控制在100~110℃。浸出为接连作业,每次2~3h,浸出后,经过滤将CuCl2-与PbCl3-别离出来。滤液中含反响产品CuCl2-、PbC13-、FeC12…,还含有未效果完的药剂。一般抛弃30%滤液,避免Cu、Pb等在浸液中堆集,其他滤液通入,使FeCl2再生为FeCl3后循环运用。
浸出本钱约9~11美分/kg钼,价格进步95美分/kg钼。布伦达年增赢利约300万美元。
智利安迪那、加拿大海蒙特、美国西雅丽塔等选厂也都选用了相似的氯盐浸出工艺,将钼精矿的铜含量降至0.1%以下。
氯盐加温浸出工艺,原则上适用脱除简直一切的硫化杂质。但因药耗高、能耗大,一般只用于浸出、化浸出难于脱除的黄铜矿。当然,当脱除黄铜矿时,天然也浸除了其它硫化杂质。
4、化浸出
能与硫化铜表面的铜离子反响,生成可溶性铜络离子,使硫化铜矿藏溶解。辉钼矿不与反响,不溶于溶液。根据这个原理,可用化浸出来进行铜-钼别离。
铜矿藏不同,在化溶液中溶解度不同,见下表。
表 几种硫化铜在化液中溶解度①
矿藏
溶解率
(%)
温度(℃)辉铜矿
(Cu2S)斑铜矿
(Cu5FeS4)硫砷铜矿
(Cu3AsS4)黝铜矿
(Cu12Sb4S13)黄铜矿
(CuFeS2)23
4590.2
100.070.0
100.065.8
75.121.9
43.75.6
8.2
①0.1%NaCN,24h
[next]
明显,辉铜矿等次生铜矿藏在化液中溶解度很高,在常温、常压下也可很好地浸出,黄钼矿在化液中溶解度很低,很难浸出。化浸出法也只适合浸除钼精矿中的次生钼矿藏。
浸出是在常温、常压下进行。用量为1~1.5kg/t。
智利的几个大型铜-钼矿山正挖掘次生富集铜矿带,当选矿石中,首要铜矿藏为辉铜矿(Cu2S)。经铜-钼别离后,所获钼精矿含铜约在0.5%~1.0%,为将铜含量降至0.3%以下,大多选用了简单易行的化浸出工艺。
智利丘基卡马塔浮选钼精矿含钼52.5%、含铜1.5%(辉铜矿)。当经接连和分批两段化浸出后,终究产品含钼54%、含铜0.1%.榜首段浸出耗0.8kg/t、第二段浸出耗0.4kg/t。
智利萨尔瓦多、夸琼、帕克帕拉等铜-钼矿山也都选用化浸出工艺浸除浮选钼精矿里的辉铜矿,使终究产品含铜低于0.3%。
化浸出药耗低,可在常温、常压下作业,浸液腐蚀性小,易于施行。但毒性太大,严峻影响到它的推行。
5、氟化浸出
浮选钼精矿(甚至高纯钼精矿)还往往含必定量的石英或硅酸盐,在制取MOS2润滑剂时,还须参加使其脱除。
浸除硅类杂质的机理在于生成可溶性盐:
SiO2+6HF=H2SiF4+3H2O
Ca3Fe2(SiO4)3+8HF+6HCl=3CaSiF6+2FeC13+12H2O
HF是一种中强酸,电离度较低(3.53×10-4)。为进步F-离子浓度,加速反响。1978年罗马尼亚专利改用(NH4F)替代HF。
HF或NH4F都要添加HC1(H2SO4),在加温下进行。因为F-对硅酸盐的溶解效果,使惯例搪玻璃反响釜遭到应战。
上海某化工厂在每产出1t含MoS2 97%产品时,需耗费50%350kg,30%2t。终究产品含SiO2<0.5%,
笔者氟化浸出在玻璃钢(粉醛树脂)反响釜内进行,浸液中HF浓度3%~5%、HC1浓度1%、反响液固比1:1,反响温度:75~80℃。在加温浸出3~4h后,产品中SiO2含量降至0.0275%,钼含量达59%以上。
氟化浸出无法脱除钼精矿中非钼硫化杂质,出产MoS2润滑剂(Molykote)时,有时还须在氟化浸出前添加氯化浸除硫化铜、铁的工艺。
由化浸出、氯化浸出、氟化浸出等化学选矿手法,一般可出产出由浮选工艺无法到达的高纯度钼精矿。
超纯金属的制备和检测方法
2019-03-08 11:19:22
超纯金属,指的是相对高纯度的金属,一般指金属纯度到达纯度9以上的金属,物理杂质的概念才是有意义的,任何金属都不能到达肯定纯。“超纯”具有相对的意义,是指技能上到达的标准。因为技能的开展,也常使“超纯”的标准晋级。
材料的纯度对其功能,特别是微电子学、光电子学功能影响很大,现代高技能产业要求制备出超纯金属以利于制造高功能器材。例如曩昔高纯金属的杂质为ppm级(即百万分之几),而超纯半导体材料的杂质达ppb级(十亿分之几),并将逐渐开展到以ppt级(一万亿分之几)表明。
“超纯”的相对名词是指“杂质”,广义的杂质是指化学杂质(元素)及“物理杂质”(晶体缺陷),后者是指位错及空位等,而化学杂质是指基体以外的原子以代位或填隙等方式掺入。但只当金属纯度到达很高的标准时(如纯度9以上的金属),物理杂质的概念才是有意义的,因而现在工业生产的金属仍是以化学杂质的含量作为标准,即以金属中杂质总含量为百万分之几表明。比较清晰的办法有两种:一种是以材料的用处来表明,如“光谱纯”、“电子级纯”等;一种是以某种特征来表明,例如半导体材料用载流子浓度,即一立方厘米的基体元素中起导电效果的杂质个数(原子/厘米)来表明。而金属则可用剩余电阻率(ρ4.2K/ρ300K)表明。
实际上纯度以几个“9”()来表明(如杂质总含量为百万分之一,即称为6个“9”或6),是不完整概念,如电子器材用的超纯硅以金属杂质核算,其纯度相当于9个“9”,但如计入碳,则可能不到6个“9”。
制备办法
超纯金属的制备有化学提纯法如精馏(特别是金属氯化物的精馏及氢复原)、提高、溶剂萃取等和物理提纯法如区熔提纯等(见硅、锗、铝、镓、铟)。其间以区熔提纯或区熔提纯与其他办法相结合最有用。
因为容器与药剂中杂质的污染,使得到的金属纯度遭到必定的约束,只有用化学办法将金属提纯到必定纯度之后,再用物理办法如区熔提纯,才能将金属纯度说到一个新的高度。能够用半导体材料锗及超纯金属铝为例阐明典型的超纯金属制备及检测的原理(见区域熔炼)。
提纯金属时,杂质的分配系数对提纯金属有严重的联系,因为锗中大部分杂质的分配系数都小于1,所以锗的区熔提纯是非常有用的。半导体材料的纯度,也可用电阻率来表征。区域提纯后的金属锗,其锭底表面上的电阻率为30~50欧姆·厘米时,纯度相当于8~9,能够满意电子器材的要求。但关于杂质浓度小于[KG2]10原子/厘米[KG2]的探测器级超纯锗,则尚须通过特殊处理。因为锗中有少量杂质如磷、砷、铝、镓、硅、硼的分配系数接近于1或大于1,要加强化学提纯办法除掉这些杂质,然后再进行区熔提纯。电子级纯的区熔锗锭用霍尔效应丈量杂质(载流子)浓度,一般可达10~10原子/厘米。经切头去尾,再利用屡次拉晶和切开头尾,一向到达所要求的纯度(10原子/厘米),这样纯度的锗(相当于13)所作的探测器,其分辨率已接近于理论数值。
超纯金属铝的制备与检测办法与锗不同。用三层电解法制备的精铝,其纯度为99.99%,金属铝中杂质的分配系数如表1 [金属铝中杂质的分配系数]。
精铝通过区熔提纯,只能到达5的高纯铝,但如运用在有机物电解液中进行电解,可将铝提纯到99.9995%,并可除掉有晦气分配系数的杂质,然后进行区熔提纯数次,就能到达接近于 7的纯度,杂质总含量
检测办法
超纯金属的检测办法极为困难。痕量元素的化学分析系指一克样品中含有微克级(10克/克)、毫微克级(10克/克)、微微克级(10克/克)杂质的断定。常用的手法有中子和带电粒子活化分析,原子吸收光谱分析,荧光分光光度分析,质谱分析,化学光谱分析及气体分析等。
在单晶体高纯材料中,晶体缺陷对材料功能起明显影响,称为物理杂质,首要依靠在晶体成长过程中操控单晶平稳均匀的成长来削减晶体缺陷。
阳极氧化法制备彩色铝粉
2019-03-11 11:09:41
铝粉的阳极氧化是通过电解液的阳极反响而生成氧化铝膜的电化学进程。这个氧化膜吸附有机染料、无机颜料的色彩而上色。将铝粉置于硫酸电解液中,并不断地加以拌和,使铝粉呈漂浮和半漂浮状况,边活动边随时触摸阳极,并坚持不触摸阳极状况,从而在铝粉表面生成易于上色的氧化铝膜。阳极反响是阳极分出的初生态氧与铝粉表面的铝原子化组成氧化铝的反响,其间部分氧化铝立刻与水化组成水合氧化铝,这就是氧化铝膜的构成进程。一起氧化铝膜可被硫酸电解液溶解,所以阳极氧化进程一起存在成膜反响和溶膜反响,因而有必要操控适合的条件,才干构成必定厚度的氧化铝膜。阴极反响中发生,故使构成的氧化铝膜具有多孔疏松的特色,有利于吸附才能的增强。 铝粉上色是一个物理化学进程,将经阳极氧化处理过的铝粉置于有机染色液中浸泡,使铝粉表面氧化膜吸附有机染料分子,一起氧化铝膜中的氧化铝分子可与有机染料分子以共价键、配位键或氢键等方式结合生成合作物,从而使氧化膜上色。
阳极氧化在铝粉粒子表面构成氧化铝膜的进程中,影响成膜的要素较多,一起不同的上色液导致不同的上色作用,因而应该考虑电解液浓度、反响时刻、温度、上色液等要素的影响。研讨结果标明:(1)硫酸电解液的浓度对氧化膜的生成具有显着的影响。硫酸浓度过低,电解液的导电性不强,氧化铝的成膜速度慢,硫酸浓度过高,生成的氧化膜又溶解,最佳的试验条件:硫酸电解液的浓度应为5-10%。(2)阳极电流密度与氧化铝膜生成速度成正比,因为铝粉在某一瞬间触摸阳极,因而阳极电流密度越大,越有利于铝粉在阳极放电,阳极电流密度越大,生成的氧化铝膜越疏松,有利于上色。试验标明,在7%硫酸电解液中进行阳极氧化,一般操控电流密度为5安/分米2以上,电压不该小于40伏。(3)在阳极氧化进程中,只要通过必定的时刻后,才干使铝粉与阳极充沛触摸,试验标明,氧化时刻以60-90分钟为宜,一起氧化时温度也要坚持在25-35°C为宜。(4)在氧化铝膜上上色,其上色的难易程度与氧化膜的厚度及上色液的浓度有关,氧化膜越厚,越易上色;上色液的浓度越大,越易上色,且色彩越深[4]。因而在上色进程中,一般选用较浓的上色液。试验标明:依据所需色彩的深浅,对上色液浓度加以调整。一起上色液温度为50-60°C,上色时刻为20-40分钟,pH为4.5-6.0为宜。
电石渣制备碳酸钙工艺研究
2019-03-07 09:03:45
渣是制取聚氯乙烯(PVC)、气体时发生的工业废渣。渣中首要的物质为氢氧化钙,还含有少数的无机杂质,比方MgO、FeO和SiO2等,因为渣内含有少数的C、S、P等杂质使其呈现灰白色,并伴有浓郁的冲鼻滋味。渣中的颗粒十分的细小,粒径大约在10-15μm;渣的pH值大约能够到达12.5左右,呈现比较强的碱性。因而以渣为质料出产高需求量的超细活性碳酸钙,无疑是处理渣最好的途径。
1、渣的预处理
渣浆的预处理方法直接影响到CaCO3产品质量的好坏和渣的运用率。一般渣的预处理方法包含两种,105℃下枯燥和530℃下锻烧。挑选105℃下枯燥一方面能够除掉渣内的水分,另一方面能够使渣内的有机物和挥发性杂质分化,然后能够减小碳酸钙制品中杂质的含量。530℃下锻烧一方面是使渣内的氢氧化钙分化成氧化钙,另一方面使渣内的金属化合物转换成难溶物质。
试验标明,渣经105℃枯燥的作用最好。在这种预处理方法下所得Ca(OH)2回收率和碳酸钙白度最高。
2、渣的浸出
许多金属氢氧化物是不溶性阳离子物质,只需操控必定的碱性条件,可使系统中的金属阳离子有挑选性的沉积。依据溶度积原理,在浸取的进程中,pH操控在必定规模以内,就能够使Mg2+、Fe3+、Mn2+等杂质离子先构成氢氧化物沉积,而Ca2+达不到Ca(OH)2的溶度积仍留在溶液中,过滤掉沉积即可得到不含镁、铁、锰杂质的精制Ca2+溶液。
(1)浸出
高传相等选用对渣进行杂质处理后得到球形超细CaCO3,所得碳酸钙纯度大于98%,白度大于97,均匀晶粒尺度为45nm,电镜均匀粒径约为80nm,比表面积约为32m2/g。乔叶刚等选用必定浓度的溶解渣,过滤除掉不溶性杂质,使CaCl2溶液得到净化。
(2)氯化铵浸出
卢忠远等将渣参加质量分数为J%、过量30%的NH4Cl的溶液中反响,CaCO3的回收率最高达99%,所组成的碳酸钙为针状文石型碳酸钙。
(3)甘酸浸出
袁可等选用甘酸水溶液将渣中的有用钙转变为可溶性的甘酸钙,经过碳化,组成出球形碳酸钙。其工艺与氯化钱工艺十分类似,但在氯化铵系统中,所制备的碳酸钙描摹为立方形,而在甘酸系统中,碳酸钙的描摹则为球形。两者描摹彻底不同,这或许是因为甘酸对碳酸钙的描摹有抑制作用。
3、碳酸钙的制备
(1)CO2碳化
吴琦文等以渣为质料,CO2为碳源,制备纳米碳酸钙。在其制备进程中,研讨质料的浓度、CO2气体的浓度、CO2气体的流速、反响温度、拌和速率以及添加剂的用量对碳酸钙产品粒径和晶型的影响,结果标明:质料的浓度、CO2浓度和流速对碳酸钙均匀粒径有稍微的影响,在必定的条件下可制备颗粒粒径为50nm、均匀晶粒尺度约30nm的方解石型纳米碳酸钙颗粒。
Jun-HwanBang等运用CO2微气泡发生器组成得到小尺度、高比表面积的碳酸钙,并研讨了Ca(OH)2浓度、电解质的量、CO2流量和注入方法对碳酸钙的尺度、比表面积的影响。结果标明:CO2流量的添加会减小碳酸钙粒子的尺度,或许的原因是CO2流量的添加使得剪切速率变大而且添加了CO2的涣散;运用MBG(微气泡发生器)注入CO2要比惯例的泡沫发生器制得的碳酸钙粒子更小。
(2)碳酸钠碳化
YuDong等运用微乳液作为组成途径,以碳酸钠为碳源,可控的得到不同描摹的碳酸钙。经过操控这些参数:表面活性剂的品种、陈化时刻以及W0(水与表面活性剂的摩尔比)得到了许多新颖的描摹,纳米棒、六角圆片以及类镜头像结构。碳酸钠和氯化钙量的添加会使得碳酸钙粒子形状不规则,到达必定量后不会构成微乳液。
Fang-zhiHuang等以碳酸钠为碳源,经过参加可溶性添加物的正向微乳液得到不同描摹的碳酸钙粒子。当在甘酸润饰的正向微乳液下,碳酸钙生成中空的微球粒子,然而在Mg2+润饰的正向微乳液下,得到了许多新颖的分层霞石碳酸钙晶体,比方轴型霞石碳酸钙、圆片霞石碳酸钙等等。这些不同晶相的特殊描摹碳酸钙或许是因为碳酸钙的前体(球形的或许片状的纳米粒子)在两层的模版下,自发拼装构成的,意味着咱们能够在两层模版下,经过仿生组成手法,组成得到具有特殊描摹和结构的无机或许有机一无机杂化材料。
(3)碳酸铵碳化
张宏等选用以下试验工艺条件:浸取液Ca2+浓度为0.85mol/L,(NH4)2CO3:CaCl2=0.95:1(物质的量比),反响温度位15℃,组成得到碳酸钙的晶形为立方体,均匀粒径为50nm。试验进程发现,Ca2+浓度在1mol/L以下,跟着浓度的添加粒径线性下降,1mol/L以上则改变不明显;而且,Ca2+浓度在1mol/L以上,对渣中杂质的去除是十分晦气的。
闻琨等以渣为质料、氯化铵溶液为浸取剂、碳酸铵为碳化剂、柠檬酸为晶行操控剂,选用液相法制备了高纯度的纳米级碳酸钙。调查了钙浓度、柠檬酸的用量、碳化温度三种要素对碳酸钙晶型和粒径的影响,结果标明:钙浓度为0.6mol/L、柠檬酸与碳酸钙质量比为0.03、碳化温度为12℃为最佳工艺,所得碳酸钙粒径为40-60nm,为纯洁的方解石晶型。
4、渣碳酸钙在塑猜中的使用
聚
董卫龙等以渣为质料,或氯化铵为浸取剂提取渣内的Ca2+离子,并别离选用液相法和微乳法制备碳酸钙。选用微乳液法得到的超细活性碳酸钙与浙江菱化活性钙、纳米钙三种碳酸钙填充PP,力学功能结果标明:跟着碳酸钙含量的添加,力学功能都呈现了明显地下降,可是渣制备的碳酸钙填充PP的力学功能一直比浙江菱化活性钙、纳米钙填充PP的要高;流变功能显现渣制备的碳酸钙和浙江菱化活性钙填充PP后的熔体粘度整体比浙江菱化纳米钙填充PP的小。
粉体制备的物理方法
2019-01-03 09:37:01
目前常用的粉体制备的物理方法如下。
1 粉碎法:借用各种外力,如机械力、流能力、化学能、声能、热能等使现有的块状物料粉碎成粉体。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
粉碎法是超细粉体中最常用的方法之一,在金属、非金属、有机、无机、药材、食品、日化、农药、化工、电子、军工、航空及航天等行业广泛应用。常用的:辊压式、辊碾式、高速旋转式、球磨式、介质搅拌式、气流式粉碎机;新近开发的:液流式、射流粉碎机、超低温、超临界、超声粉碎机等。
2 蒸发冷凝法:用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。
蒸发冷凝( IGC) 法是纳米粉体制备的主要物理方法之一, 可成功应用于金属、合金、金属氧化物等多种类型纳米粉体的制备; 制备装置容易实现,可采用多种加热方式, 如电阻加热法、等离子喷射加热法、感应加热法、电子束加热法、激光加热法等;目前关于制备工艺的研究主要集中在对影响纳米粉体粒径的工艺参数的研究和提高纳米粉体产率的研究上,而粉体粒径的影响因素多、产率难以明显提高也一直是制约该法发展的瓶颈; 对采用该法制备的纳米粉体的性能研究表明,蒸发冷凝法制备的纳米粉体具有良好的力学性能、磁性能和光学特性。
超全面泡沫铝制备工艺汇总
2019-03-12 10:12:51
泡沫铝是一种在金属铝基体中散布有很多气泡的多孔质材料。其特殊的结构决议了它具有许多细密金属所没有的特殊功能,结构特色如: 功能特色包含: 泡沫铝功能的好坏首要取决于其孔隙率、孔径、通孔率、孔类型、比表面积等孔结构参数,而其孔结构参数首要取决于制备工艺。 因而泡沫铝的制备技能已成为新材料范畴的研讨热门。下面就泡沫铝的制备工艺做翔实介绍: 1、固态金属烧结法 用这种办法出产的泡沫铝大都具有通孔结构,这是由于大部分固相法经过烧结使铝颗粒相互联合,铝一直坚持在固态。 1.1、粉末冶金发泡法 工艺原理是将混合铝粉与发泡剂粉,经紧缩得到具有气密结构的预制体,加热预制体使发泡剂分化释放出气体,迫使预制体胀大得到泡沫铝。 特色:一是与其他办法比较可用的合金成分更为广泛,有利于改进泡沫铝的力学功能;二是能够直接制作形状杂乱的部件。缺陷是该办法工艺参数区间较窄,本钱较高,制得的泡沫铝尺度有限。 1.2、散粉烧结法 此办法多用于制备泡沫铜。由于铝粉表面具有的细密氧化膜将阻挠颗粒烧结在一同,因而用散粉烧结法制备泡沫铝相对困难。这时能够经过变形手法损坏氧化膜,使颗粒更易粘结在一同;或参加镁、铜等元素在595~625摄氏度烧结时构成低共熔合金。 特色:长处是工艺简略、本钱低,缺陷是孔隙率不高、材料强度低。假如用纤维替代粉末烧结相同可制得多孔材料。 1.3、粉浆成型法 粉浆成型法是将金属铝粉、发泡剂(、氢氧化铝或)、反响增加剂和有机载体组成悬浮液,将其拌和成含有泡沫的状况,然后置入模具中加热焙烧,接着浆开端变粘,并跟着发作的气体开端胀大,终究得到必定强度的泡沫铝。 假如把粉浆直接灌入高分子泡沫中,经过升温把高分子材料热解,烧结后相同可制得开孔泡沫材料。 特色:所制得的泡沫铝强度不高并有裂纹。 1.4、烧结溶解法 铝粉与盐粉均匀混合,限制成坯,在限制进程中盐粉根本坚持原貌,铝粉发作塑性变形,填充盐粒之间的空地构成接连的网状基体。然后,将坯烧结,使网状铝基结组成一体。终究,将烧结后的坯样置于热水中,滤掉坯内盐粒即可得到均匀的开孔泡沫铝件。 特色:长处是经过挑选盐粉的形状与粒径,能够在必定规模内操控孔洞的描摹和尺度;能够经过混合粉末的体积比准确操控孔隙率;能够制作梯度泡沫材料;能够制作净形产品;设备简略,易于完成大规模出产。局限性是只能取得50%~80%孔隙规模的中密度泡沫铝;制品内易残留氯化钠,然后构成铝基的部分腐蚀;工艺周期较长。 1.5、中空三维骨架法 一种把液态金属压铸到有中空骨架三维网眼结构的陶瓷中,冷却然后去除骨架的制作泡沫金属的办法。 特色:泡沫孔隙率可调,操作繁琐、本钱稍高,制品广度有限,故其推广使用受到限制。 1.6、纤维烧结法 此办法的工艺进程是首要经过机械拉拔或其他办法得到金属铝丝,接着经过粉浆浇注或机械制毡圈的办法将金属铝丝制成毡圈,然后进行烧结使之抵达所需求的强度和孔隙率。 纤维烧结法的长处:是可取得比粉末烧结更高的孔隙率;在最大孔隙度下坚持了材料的结构功能;在相同孔隙度下,此法制得的泡沫铝强度和耐性比粉末冶金法高。可是该办法本钱较高。 1.7、浸浆海绵烧结法 该办法是将海绵状的有机物质制成所需形状的有机前驱体,然后用含有待加工金属铝粉的浆液浸透(悬浮液的载体是水和有机液体)。将浸后的有机前驱体枯燥以除掉溶剂,烧结并冷却后即可得到高孔隙率的三维结构的泡沫铝。 特色:首要受有机前驱体的挑选和预处理、浆料的组成、增加剂的挑选、烧结温度等要素影响。 2、液态金属凝结法 这种办法是经过液态铝发作泡沫结构,能够经过铝液直接发泡,也能够用泡沫材料或严密堆积的造孔剂铸造来得到多孔材料。 2.1、直接吹气发泡法 直接吹气发泡法:是首要向金属熔融液中参加SiC、Al2O3等,并均匀涣散以进步熔体粘度,然后向熔体底部吹入气体(如氮气、慵懒气体等),在金属液中构成很多气孔后冷却凝结。 2.2、发泡剂发泡法 发泡剂发泡法是:在铝熔融体中参加发泡剂拌和均匀,加热使发泡剂分化发作气体,气体胀大而发泡,冷却后得泡沫金属。所用发泡剂一般为TiH2或ZrH2等金属氢化物。 特色:对设备要求简略,本钱低价,可完成产品的接连制备。发泡剂发泡时刻间隔短、发泡温度不易操控、气泡散布不均匀、产品重现性差等缺乏。 2.3、渗流铸造法 渗流铸造是将可移去颗粒(如NaCl)堆积在铸模中,限制成坯,经预热后浇注金属,然后将颗粒去除,制备出孔洞相互连接的通孔泡沫结构。 特色:制备工艺孔径参数可控,通孔率高、比表面积大、本钱低,适宜大规模工业出产。缺陷是由于液态金属的表面张力较高,不能彻底潮湿颗粒,然后不能彻底填充颗粒之间的空地。 2.4、熔模铸造法 熔模铸造法是将成型的高分子泡沫材料浸入到液态耐火材料中,使耐火材料充溢其空地,在耐火材料硬化今后加热使泡沫材料气化分化,构成一个具有原泡沫材料形状的三维骨架,将金属铝液浇注到铸型内,凝结后把耐火材料去除就能够得到具有三维网状通孔的泡沫铝材料。 2.5、固体-气体共晶凝结法 许多金属液体能与气体(如)构成共晶体系,假如在高压气氛中熔化这些金属,就能够得到含有过饱和的均匀熔体。在随后的冷却凝结进程中,这种熔领会发作共晶改变而分化为固相和气相。定向凝结时,由于在固相和液相中溶解度不同较大,过饱和的将从固相中分出构成气泡,然后取得所需求的泡沫铝。 特色:准确操控冷却条件(压力、冷却速度、散热方向)能够取得各种孔隙形状的各向同性和各项异性的高孔隙度泡沫铝。 2.6、增加球料法 增加球料法是在铝合金熔液中参加颗粒或中空球,加以强化拌和,并且在熔体仍处于相对活动时进行铸造,然后得到铝合金与颗粒的复合体,然后溶解去除铝合金团体中的可溶性颗粒,终究得到一种连通孔泡沫铝。 特色:液态金属的表面张力较高,不能彻底潮湿颗粒或中空球,然后不能彻底填充颗粒之间的空地。则所得泡沫铝结构接连性较差。 3、金属堆积法 3.1、电堆积法 原理是以预处理过的泡沫塑料为阴极,工业纯铝板为阳极,在烷基铝溶液中电镀制成泡沫铝。 特色:简单操控孔隙结构、孔径小、孔隙均匀、孔隙率高,且其隔热和阻尼特性优于铸造法出产的泡沫铝。可是该办法工序长、操作繁琐、本钱稍高,制品厚度有限,故其推广使用受到限制。 3.2、气相蒸腾堆积法 该办法即在较高的慵懒气氛(102~104Pa)中缓慢蒸腾金属铝,蒸腾出来的金属原子与慵懒气体分子磕碰、散射,敏捷失掉动能,这一进程在微观上表现为金属蒸汽温度下降。接着蒸腾出来的金属原子在未抵达基衬前便相互结合构成原子团簇,故在蒸腾进程中可看到“金属烟”。这些团簇在慵懒气体的携带下持续降温并堆积在基衬上,由于温度低原子难以搬迁或涣散,所以“金属烟”微粒仅仅疏松的堆砌起来构成多空泡沫结构。 特色:金属泡沫的构成受金属材料、加热功率、慵懒气体气压、蒸腾源加热器类型及其与基衬间隔、基衬材料等多种要素影响。其间加热功率、慵懒气体气压和慵懒气体流量是最重要的操控参数。 3.3、喷溅堆积法 喷溅堆积是选用喷溅技能把加有慵懒气体的粉末均匀地喷射到铝合金金属上,并加热到金属的熔点,使加在金属中的气体胀大并构成一个个均匀散布且细密的小孔,冷却后即得具有细密网状的泡沫铝制品。 特色:经过操控堆积中慵懒气体的分压,能够操控所得产品的孔的体积分数。 3.4、熔融盐电镀法 以泡沫塑料为电极阴极,铝板为阳极,在熔融盐中经过电堆积制得泡沫铝的一种办法。 特色:泡沫铝孔隙率高、孔隙均匀。 4、其它 此类办法首要用于科研或许小批量试制,在工业出产中使用并不多。 二次发泡法 二次发泡法是一种归纳了粉末冶金发泡法及熔体发泡法长处的泡沫铝制备办法,其技能工艺道路是在铝熔体中参加增粘剂(Ca、Al2O3等)拌和均匀,在适宜的温度和粘度条件下参加发泡剂(预处理好的TiH2),涣散均匀,在TiH2未分化前将熔体铸入模具中快速冷却凝结,即得到发泡前驱体。当发泡前驱体受热抵达必定温度时,前驱体中TiH2开端分化并发泡,终究制得泡沫铝。 金属空心球法 该办法是将一个个的金属空心球经过烧结粘结到一同而构成多孔结构。金属空心球能够经过化学组成和电堆积的办法在高分子球的表面镀上一层金属,然后把高分子球去除而得到。 泡沫铝的制备工艺较多,各种办法各有好坏,在实践出产中熔体发泡法、渗流铸造法、粉末冶金发泡法、电化学法等使用较广泛。而其他的工艺首要作为科研或小批量试制等使用。
硝酸银电解液的制备
2019-03-06 09:01:40
制造电解液,一般是运用含银99.86~99.88%以上的电解银粉或附近纯度的化学精粹银。将银粉置于耐酸瓷缸中,先加适量水湿润后,再分次参加硝酸和水,在自热条件下使其溶解而制得。某厂生产中,每批造液运用银粉40kg,配入工业纯硝酸40~45kg,水25~30kg。因为硝酸的激烈氧化,会放出很多的氧化氮和热,为防止氧化过火激烈形成溶液的外溢,硝酸应选用小流量接连参加或连续小批量参加的方法。当或许呈现外溢时,便参加适量自来水冷却之。待加完硝酸和水,反响逐步缓慢后,用不锈钢管刺进缸内,直接通蒸汽加热并拌和以加快溶解。银粉彻底溶解后,持续通入蒸汽以赶除过量的硝酸。一次造液进程约需4~4.5h。最终加水弥补至60L,溶液含银约600~700g∕L,硝酸小于50g∕L。再加水稀释至所需浓度供作电解渡用,或直接将浓液按核算量弥补于电解进程中。
造液作业通常在硬塑料的通风柜中进行,产出的很多氧化氮气体,经过塑料烟囱经洗气后排出。
国内外的一些工厂,也有用含银较低的银粉或许租银合金板及各种不纯银质料造液的。但因杂质含量高,需常常替换电解液。
超微金刚石的制备技术
2019-02-18 10:47:01
超微金刚石(UFD)是均匀粒径为纳米量级的微粉,关于把纳米材料视为二十一世纪材料的材料界来说,超微金刚石兼具了两层重要性,是金刚石宗族中极具发展前途的簇新成员。 爆轰即供给了碳源,也供给了相变所有必要的高温高压条件,使得UNF生成工艺较简略,为了收回爆轰固态产品-爆轰灰,可运用密闭金属容器,称为爆破罐,将带的挂在爆破罐的中心处,灌中充以惰性气体(如CO2,N2等),爆破后搜集爆轰灰(可用水冲刷),用酸和强氧化剂(如HClO4)除掉石墨等非金刚石型固态碳及金属杂物,最终用去离子水或蒸馏水除掉酸和水溶性杂质即可得到UFD。 就UFD的生成办法来说,冲击波法(用飞板高速冲石墨,转化的金刚石中有少数的UFD)和爆破法(将石墨粉和混合,制备成,在爆破罐中爆破,收回爆轰灰提纯得到金刚石)这两种办法UFD产值小,并且需要将UFD从颗粒中分离出来的工艺。 到目前为止,爆轰法是工业规划出产纳米颗粒金刚UFD的仅有办法。
超细铜粉的制备方法
2019-03-14 09:02:01
一种超细铜粉的制备办法,采用在液相中,用将二价铜离子还原成铜粉的办法,顺次包含下列过程:1.将铜盐溶于水中,升温至40—100℃,参加与水不溶且不与反响的有机溶剂,然后参加无机盐分散剂或有机分散剂,参加的有机溶剂与铜盐水溶液的体积比为1:3-0.5∶1,参加的无机盐分散剂或有机分散剂的量为铜盐分量的0.5%-4%;2.在充沛拌和下参加水溶液,使的参加量为化学计量的1-2倍,操控反响温度在40-100℃,反响10-20min,搜集产品。
单晶仲钨酸铵的制备工艺技术
2019-01-30 10:26:27
钨是战略资源,是我国的丰产元素和保护矿种。长期以来,我国出口钨的初级产品,进口高端产品,出口产品的价格仅为进口产品的1%,与我国的经济发展要求极不适应。为加快钨新材料研发进程,实现钨产品由初级向高技术含量、高附加值产品的转变,使我国钨资源优势转化为经济优势,研究高性能钨材料的制备技术具有重要的现实意义和发展前景。
由于遗传关系,仲钨酸铵(APT)的晶体特性,如晶体形貌、平均粒度和粒度分布、松装密度和流动性对后续粉末冶金产品-钨粉、钨丝和钨合金的材料性能影响极大。单晶APT因其具有优良的物理性能,是生产高性能钨材料的理想原料。首先,单晶APT粉体具有良好的流动性,由单晶APT经焙烧-氢还原制取的钨粉,在压制过程中因滑动磨擦阻力小,坯料的空洞缺陷明显降低,加工材料的力学性能大幅度提高。由于抗拉、抗断裂性能好,拉制过程钨丝的成品率为90%,而以多晶APT为原料生产的钨丝其成品率仅为70%。因此,单晶APT成为生产车用高品质钨丝的必选粉体原料。此外,单晶APT粉体具有较高的松装密度,坯料中晶粒间隙小而均匀,力学缺陷少,压实密度高,以其制取的合金材料其抗压、抗剪力、抗冲击性能优良。如以单晶APT制取的顶锤寿命是以多晶APT制取的2~3倍。由于配重作用大,单晶APT是生产装甲弹、高密度合金、微钻、数控刀片等高性能钨材料的优良粉体原料。
因此,单晶APT粉体的制备技术及其制备原理的研究,是一关键课题。国内外现有的对APT性能的研究,较多的是关注工艺条件与仲钨酸铵的粒度、粒度分布、松装密度和流动性等晶体特性的关系。笔者在探明单晶APT结晶原理基础上,研究了结晶装置、搅拌转速、温度等因素对仲钨酸铵团聚的影响。
一、试验部分
(一)试验原料及试剂
(NH4)2WO4溶液:为黑钨矿精矿经碱溶、离子交换法除杂净化转型后所得溶液,其ρ(WO3)=285.66 g/L,pH=9.80,c(Cl-)=2.5mol/L,Mo、Si、P、As杂质微量。
试验过程中,溶液结晶至初始溶液体积的40%。
(二)试验仪器
DF-1集热式恒温磁力搅拌器(江苏金坛市中大仪器厂);5312数显搅拌器(江苏金坛市中大仪器厂);0.1mg电光分析天平(成都科学仪器厂);721型分光光度计(上海精密科学仪器有限公司);SFC-100FL麦克奥迪显微镜;红外线快速干燥器。
(三)试验装置 试验装置如图1所示。图1 制备球形仲钨酸铵的蒸发结晶装置
二、单晶仲钨酸铵的制取机理
晶粒团聚的先决条件是接触。晶粒的接触方式有2种:一是沉积于结晶器底部的堆积接触;二是悬浮于结晶溶液中的碰撞接触。其中,碰撞接触的机会大小与结晶器内流体的流动方式和溶液中固体颗粒的浓度有直接关系。
堆积接触可以通过搅拌使晶体颗粒悬浮而避免,因此,在保证晶粒处于悬浮前提下,降低以至消除晶粒在溶液中运动碰撞的机会是制取仲钨酸铵单粒晶体的前提。
由于搅拌装置和搅拌转速不同,晶粒在运动中碰撞的机会有很大不同。根据研究,在横截面为圆形的结晶器中,流体围绕搅拌轴做圆周同心层流运动时,晶粒碰撞机会最小。
流体运动是层流还是紊流,取决于流速,即搅拌速度。搅拌越慢,流体偏离紊流越远。因此,在保证晶粒不沉积的前提下,搅拌转速越慢越好。
APT晶粒的沉降速度与其粒度有关。粒度越大,越易沉降,维持其保持悬浮状态所需的转速越快。因此,结晶过程根据晶粒长大的情况,对搅拌转速进行由慢到快的控制,确定不同粒径范围,APT晶粒既不沉积也不碰撞的最佳转速是制取单粒晶形APT的技术关键之一。
APT晶粒在结晶过程中的碰撞机会也与单位体积晶液中颗粒多少(即固相浓度)、晶粒大小有关。根据前期研究结果,在起始钨酸铵溶液浓度相同条件下,降低结晶前期溶液温度、搅拌转速是降低成核数量(即降低固相浓度)和晶粒生长速度(即降低晶粒粒径)、减少APT晶粒碰撞、制取单粒晶形APT的技术关键之二。
三、结果和讨论
(一)结晶装置对仲钨酸铵团聚的影响
反应条件:搅拌转速70 r/min,结晶温度95℃。定性考察结晶装置对仲钨酸铵团聚的影响。
结晶装置均为横截面为圆形的结晶器。根据仲钨酸铵结晶动力学理论及流体力学原理,这种结晶装置中,流体围绕搅拌轴作圆周运动,相同半径点的流体速度基本一致,基本实现流体层流。研制的结晶器与普通结晶器流体流动状态显著不同,如图2所示。图2 不同结晶器中流体的流动状态
基于上述原理,对搅拌浆进行改进。装置分为A、B、C 3种。A未进行改进,B、C分别为改进1和改进2装置。试验结果见表1。可见,经过改进的结晶装置,所得APT粉体单晶率明显升高。以下试验均在C装置中进行。
表1 结晶装置对仲钨酸铵团聚的影响结晶装置APT粉体单晶率/%APT粉体粒度/μmAPT粉体松装密度/(g·cm-3)A46462.2B78351.8C85422.1
(二)搅拌转速对仲钨酸铵团聚的影响
结晶温度95℃,试验结果如图3所示。图3 搅拌速度对APT粉体团聚的影响
由图3可知:1、低搅拌速度下所得APT的单晶率较低,转速为30 r/min时,单晶率为62%。这是因为搅拌转速较慢时,APT颗粒在溶液中不能充分悬浮于溶液中,而是以堆积方式沉积于结晶器底部,这必然导致APT团聚现象发生。随着搅拌速度提高,APT团聚现象逐步得到缓解,因而APT单晶率逐步提高,并在70~90 r/min时达到最佳值,此时单晶率在86%左右。
2、随着搅拌转速的进一步提高,APT单晶率逐步下降。这是因为搅拌转速的提高必然导致结晶器内溶液的流动状态从层流变为紊流,紊流状态使悬浮于溶液中的APT颗粒碰撞接触机会加大,从而导致APT团聚现象发生。
3、可以得出结论:搅拌转速70~90r/min是一个分界点。低于70r/min,溶液中的APT颗粒有部分因搅拌力不足而沉积团聚;在此范围内,溶液中的APT颗粒基本悬浮于溶液中;大于90r/min,溶液搅拌加剧,悬浮于溶液中的APT颗粒碰撞加剧而团聚。因而,从结晶的整个过程来看,搅拌转速应控制在70~90r/min范围内。
(三)搅拌转速对不同时期仲钨酸铵团聚的影响
从结晶局部过程来看,搅拌速度70~90r/min并非为最佳值。如前所述,最佳搅拌速度是在保证APT晶粒不沉积前提下越慢越好。但在结晶不同时期,由于晶粒的数量和大小是不同的,因而保证APT晶粒不沉积的最慢转速也不同。因此,有必要进一步探索不同结晶时间时维持层流和阻止晶粒沉积的最佳转速。
结晶从开始到结束,APT颗粒的大小应该呈总体增大趋势,因而搅拌速度在结晶初期可以取较小值,随着结晶过程的进行,搅拌速度应逐步提高。在结晶后期,搅拌转速达到70^90 r/min总体最佳值。
结晶时间取3个点:晶核出现前,晶核出现时和晶核出现后1h。对于时间点1,取转速分别为10,20,30r/min;对于时间点2,取转速分别为30,40,50r/min;对于时间点3,取转速分别为60,70,80r/min;结晶温度为95℃。在此条件下进行正交试验。试验结果见表2。
表2 不同结晶时期搅拌转速对APT团聚的影响试验序号时间点1时间点2时间点3APT单晶率/%120406089230507093340608091420508092530606088640407092720607091830408092940506090
由表2可知:2号试验所得产品单晶率最高,即晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现1h后,搅拌转速为70r/min;结晶后期,搅拌转速控制在70~90r/min范围内。在此条件下,所得产品APT单晶率达93%。
结晶后期指的是溶液中不再形成新的晶核,即溶液的过饱和度达到了最低值。据测算,这个点溶液的密度为1.116~1.125g/cm3。结晶后期到结晶结束,仍有5~6h的结晶时间,但这段时间工艺条件的改变对APT单晶率影响很小,因为这段时间晶体已经长的比较大了,相互的碰撞不再易于团聚。
(四)温度对仲钨酸铵团聚的影响
APT晶粒在结晶过程中的碰撞机会与单位体积溶液中颗粒数量的多少也有关系。如上所述,对APT单晶率影响最大的阶段是结晶前期,即从成核开始至成核结束。因此,着重研究了结晶前期不同温度对APT单晶率的影响。溶液温度仍取95℃,加速加热以缩短周期;成核终了至结晶结束,温度仍控制在95℃。
试验条件:晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现后1h,搅拌转速为70r/min;结晶后期至结晶终了,搅拌转速为80r/min。结晶前期,改变蒸汽温度,试验结果如图4所示。图4 结晶温度对APT粉体单晶率的影响
由图4可知:适当降低结晶前期的温度,APT粉体的单晶率有较大的提升空间,但温度不能降低得太多;温度为80℃时,APT单晶率达到最佳值,为96%;进一步降低温度,晶体成核率过低,晶体长大速度过快,晶粒粗大,反而对APT粉体单晶率有负面影响。
四、验证试验
根据上述试验结果,在最佳工艺条件下进行验证试验。结果表明,APT粉体单晶率大于95%,松装密度1.5~3.0 g/cm3,费氏粒度在30~60μm之间,霍尔流动性30~50s/50g。产品单晶电镜扫描图如图5所示。图5 单晶APT电镜扫描图
五、结论
采用改进的结晶装置,APT粉体单晶率明显提高。这种改进主要体现在搅拌浆上,可以促进结晶器内溶液层流的实现。所研发的单晶APT粉体制备流体层流控制技术及装置,可有效减少晶粒间的碰撞,使制备出的单晶APT粉体单晶率达90%以上。
APT粉体最佳结晶条件为:晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现1h后,搅拌转速为70r/min;结晶后期至结晶结束,搅拌转速为70~90r/min;适当降低结晶前期温度,APT粉体单晶率有较大提升空间,在结晶温度为80℃时达到最佳值,单晶率为96%。
黑镍的制备和除钴
2019-01-24 09:37:16
合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。
除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。
表1 除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31
表2 钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5
有色金属六项国家污染物排放标准进行修改完善
2019-05-27 10:11:36
遵循《中华人民共和国环境维护法》和《中华人民共和国大气污染防治法》,执行国务院批复施行的《要点区域大气污染防治“十二五”规划》的相关要求,维护和改进生态环境,保证人体健康,我部决议对《铝工业污染物排放标准》(GB 254652010)、《铅、锌工业污染物排放标准》(GB 254662010)、《铜、镍、钴工业污染物排放标准》(GB 254672010)、《稀土工业污染物排放标准》(GB 264512011)和《钒工业污染物排放标准》(GB 264522011)等六项国家污染物排放标准进行修正完善,拟定了上述六项标准的修正单,并由我部与国家质量监督查验检疫总局联合发布。 上述六项标准的修正单自发布之日起施行。 上述六项标准的修正单由我国环境科学出书社出书,标准内容可在环境维护部网站(bz.mep.gov.cn)查询。 特此布告。 (此布告业经国家质量监督查验检疫总局田世宏会签) 附件 1.《铝工业污染物排放标准》(GB254652010)修正单 2.《铅、锌工业污染物排放标准》(GB254662010)修正单 3.《铜、镍、钴工业污染物排放标准》(GB254672010)修正单 4.《镁、钛工业污染物排放标准》(GB254682010)修正单 5.《稀土工业污染物排放标准》(GB264512011)修正单 6.《钒工业污染物排放标准》(GB264522011)修正单环境维护部 2013年12月27日 发送各省、自治区、直辖市环境维护厅(局),新疆加工建设兵团环境维护局,辽河维护区管理局,环境维护部环境标准研究所。
粗钴阳极板的制备
2019-01-31 11:06:04
二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。
反射炉煅烧的意图有3个:
(一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块;
(二)参加石油焦,使氧化钴半复原;
(三)脱除部分硫。
反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。
反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。
钨铜合金的制备方法--粉末冶金
2019-05-27 10:11:36
粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为质料,通过成形和烧结,制作金属材料、复合材料以及各种类型制品的技术技能。粉末冶金法与加工陶瓷有类似的当地,因而,一系列粉末冶金新技能也可用于陶瓷材料的制备。因为粉末冶金技能的优势,它已成为处理新材料问题的钥匙,在新材料的发展中起着无足轻重的效果。粉末冶金具有共同的化学组成和机械、物理功用,而这些功用是用传统的熔铸办法无法取得的。运用粉末冶金技能能够直接制成多孔、半细密或全细密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削技术。(1)粉末冶金技能能够最大极限地削减合金成分偏聚,消除粗大、不均匀的铸造安排。在制备高功用稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新式金属材料(如AlLi合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的效果。(2)能够制备非晶、微晶、准晶、纳米晶和超饱满固溶体等一系列高功用非平衡材料,这些材料具有优异的电学、磁学、光学和力学功用。(3)能够容易地完成多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本加工高功用金属基和陶瓷复合材料的技术技能。(4)能够加工普通冶炼法无法加工的具有特殊结构和功用的材料和制品,如新式多孔生物材料,多孔别离膜材料、高功用结构陶瓷磨具和功用陶瓷材料等。(5)能够完成近净形成形和自动化批量加工,然后,能够有用地下降加工的资源和能源消耗。(6)能够充分利用矿物、尾矿、炼钢污泥、轧钢铁鳞、收回废旧金属作质料,是一种可有用进行材料再生和综合利用的新技能。咱们常见的机制作刀具,五金磨具,许多便是粉末冶金技能制作的。