锡铋合金
2017-06-06 17:50:01
锡铋合金的配制及其主要物理性能把已敲碎成60×60(mm)的锡、铋两
金属
小块,按一定百分比均匀混合(其百分比为一定值,不能随意配制)后,放入已加热到350℃的增锅或其它加热容器内。在其熔化过程中,要不断地搅拌至均匀。若有浮渣,要除去。然后,把该均匀合金熔液在角钢或槽钢中浇注成条状,以备浇注样件时用。该锡铋合金在常温下,呈固态、银白色,熔点低只有1350C,硬度低,固液体积收缩率为0.051%,具有较强的渗透性。锡铋合金技术的原理在模具型槽检验中,主要运用锡铋合金固液间体积收缩率极小、可近似认为固液间体积不变的特点,浇注出型槽的样件,然后对该样件进行外观、各个部位尺寸(锻件的热尺寸)及几何形状等的整体检查,从中发现加工或设计的不足。锡秘合金样件在模具型槽中的浇注第一步,根据型槽容积大小取适量锡秘合金条,放入已加热到135℃的增锅或其它加热容器中,在其熔化过程中要不断地搅拌至其均匀。第二步,把需浇注样件的模具均匀加热到160-200℃(根据模块大小而定,大者温度低)。第三步,以常规浇盐的方法,把模具垂直立起(浇盐口朝上),沿浇盐口浇注合金液体,直至型槽浇满为止。第四步,待模具完全冷却至室温后,采用适当的方法打开模具,取出样件(样件不能断开)。第五步,检查样件是否符合型槽形状,若能真实地反映型槽,则交检检测;若不符合,则重新浇注直至符合型槽形状。第六步,根据交检检测结果,对模具进行适当的处理。在浇注过程中应注意的事项:①模具加热必须做到均匀,否则对大型模具浇注出的样件影响尤为突出;②要浇注的模具在其浇注前必须先处理好裂纹;③必须把锡Q,合金残余物从浇注后的模具型槽中清理干净;④样件不能有充不满、残留飞边过大、弯曲、局部变形大等直接影响检测结果的缺陷。锡秘合金技术在模具检验中的运用(1)对已加工好的模锻模,采用浇注锡秘合金样件的方法来检查其质量。(2)用它验证模具修复的质量,即在已修复好的型槽中,浇注出锡秘合金样件,再对该样件进行检测。(3)采用浇注锡秘合金方法来区分两种或多种除了个别尺寸等不同外、其它基本一致的锻件模具。(4)对校正模总体尺寸等的掌握,是确定如何进行修复的关键。对复杂类锻件的校正模,其修复难度相当大,修复质量也难以保证。采用修复前浇注出该模具的锡秘合金样件的方法就可以加以解决。锡秘合金技术在我厂已被广泛地推广应用,它不仅使模具质量得到了有效的控制--真正地做到提前预防、事前消除,而且大大地缩短了新产品的开发周期和品种批量生产的周期,为我厂提高产品质量,开拓、占领和巩固
市场
,作出了不可低估的贡献。
6063铝合金强度
2017-06-06 17:50:10
6063铝合金强度比6061低,抗拉强度 σb (MPa):130~230 ,受拉屈服强度 55.2 MPa。 6063铝合
金属
低合金化的Al-Mg-Si系高塑性合金。具有诸多可贵特点: 1.热处理强化,冲击韧性高,对缺可不敏感。 2.有极好的热塑性,可以高速挤压成结构复杂.薄壁.中空的各种型材或锻造成结构复杂的锻件,淬火温度范围宽,淬火敏感性低,挤压和锻造脱模后,只要温度高于淬火温度。即可用喷水或穿水的方法淬火。薄壁件(6<3mm)还可以实行风淬。 3.焊接性能和耐蚀性优良,无应力腐蚀开裂倾向,在热处理可强化型铝合金中,Al-Mg-Si系合金是唯一没有发现应力腐蚀开裂现象的合金。4.加工后表面十分光洁,且容易阳极氧化和着色。其缺点是淬火后若在室温停放一段时间在时效,会对强度带来不利影响(停放效应)。 6063铝合金广泛用于建筑铝门窗、幕墙的框架,为了保证门窗、幕墙具有高的抗风压性能、装配性能、耐蚀性能和装饰性能,对铝合金型材综合性能的要求远远高于工业型材标准。 在国家标准GB/T3190中规定的6063铝合金成分范围内,对化学成分的取值不同,会得到不同的材质特性,当化学成分的范围很大时,其性能差异会在很大范围内波动,以致型材的综合性能会无法控制。因此,优选6063铝合金的化学成分成为生产优质铝合金建筑型材的最重要的一环。 合金元素的作用及其对性能的影响 6063铝合金是AL-Mg-Si系中具有中等强度的可热处理强化合金,Mg和Si是主要合金元素,优选化学成分的主要工作是确定Mg和Si的百分含量。 了解更多有关6063铝合金强度的信息,请关注上海
有色
网。
高强度铝合金成分
2018-12-28 14:46:50
类别 代号主要化学成分(余量为铝)(%)锌镁铜铁硅锰其它相当美国牌号压力加工铝合金LY120.251.2-1.83.8-4.90.500.500.30-0.90铬0.1020242124LY160.100.025.8-6.80.300.200.20-0.40 2219LC45.1-6.12.1-2.91.2-2.00.500.400.30铬0.18-0.35钛0.02-0.107075 铸造 铝合 金ZL702 0.4-0.61.3-1.8≤0.358-100.10-0.35钛0.10-0.35SAE354.0ZL204 4.6-5.3≤0.1≤0.060.6-0.9镉0.15-0.25钛0.15-0.35K0-1(210.0)ZL-S3051.0-1.57.5-9.0 铍0.03-0.10钛0.10-0.20锆0.10-0.20 X-250ZL-50126.39-6.461.51-1.65 0.11-0.16 铬0.14-0.17钛0.15-0.17Arcast67
高强度铜合金
2017-06-06 17:50:05
高强度铜合金牌号:QSn8-0.3标准:GB/T 13808-1992●特性及适用范围:为含有铁、锰元素的铝青铜,属于高强度耐热青铜,高温(400℃)下力学性能稳定,有良好的减摩性,在大气、淡水和海水中抗蚀性很好,热态下压力加工良好,可热处理强化,可焊接,不易纤焊,可切削性尚好。●化学成份:铜 Cu :余量锡 Sn :≤0.1锌 Zn:≤0.5铅 Pb:≤0.02铅 Pb:≤0.02硼 P:≤0.01镍 Ni:3.5~5.5铝 Al:9.5~11.0铁 Fe:3.5~5.5锰 Mn:≤0.3硅 Si :≤0.1注:≤1.0(杂质)
高强度7068铝合金
2018-12-28 15:58:41
高强度7068铝合金是美国凯撒铝及化学公司(Kaiser Aluminium & Chemical Comp.)发明的,现已由先进金属材料国际集团公司(Advanced Metals International Group)投入生产。这种合金的力学性能比传统的7XXX系超强合金的高得多,其屈服强度高达700N/mm2,比7075合金的高15%—20%,可用于制造航空航天器、汽车的阀体、联杆,以及自行车与爬山器械零部件。
高强度铝合金栏杆
2019-01-16 11:51:40
铝合金栏杆扶手采用微弧圆角宽幅高强度铝合金型材,时尚、稳重、高雅、大方;栏杆立柱及主要横梁采用圆弧形图案设计,动感流创,且尽量增大立柱受力面,安全、可靠,并配合普通圆形连接立柱。弧面一律朝外,整体美观、和谐统一,色彩鲜艳、丰富多样且可根据建筑外墙及整体环境色彩需要进行搭配。较重要的一点是铝合金栏杆的抗腐蚀性能极强。50年内不用作维修,维护处理,可节省一笔数额不菲的维护费用,同时也解决了因阳台栏杆生锈而造成的景观破坏及客户投诉而造成的地产开发公司的信誉损失。中煌建筑护栏设计有限公司网址http://www.all618.com
抗拉强度符号_抗拉强度的定义
2019-05-29 18:51:08
抗拉强度的界说及表明符号------抗拉强度符号试样拉断前接受的最大标称拉应力。抗拉强度是金属由均匀塑性变形向部分会集塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载才能。关于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在接受最大拉应力之前,变形是均匀共同的,但超出之后,金属开端呈现缩颈现象,即发作会集变形;抗拉强度符号关于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的开裂抗力。符号为RM,单位为MPa。试样在拉伸过程中,材料通过屈从阶段后进入强化阶段后跟着横向截面尺度显着缩小在拉断时所接受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或许强度极限(σb),单位为N/mm2(MPa)。它表明金属材料在拉力效果下反抗损坏的最大才能。计算公式为:σ=Fb/So式中:Fb--试样拉断时所接受的最大力,N(牛顿); So--试样原始横截面积,mm。抗拉强度( Rm)指材料在拉断前接受最大应力值。当钢材屈从到必定程度后,因为内部晶粒从头排列,抗拉强度符号其反抗变形才能又从头进步,此刻变形尽管开展很快,但却只能跟着应力的进步而进步,直至应力达最大值。尔后,钢材反抗变形的才能显着下降,并在最单薄处发作较大的塑性变形,此处试件截面敏捷缩小,呈现颈缩现象,直至开裂损坏。钢材受拉开裂前的最大应力值称为强度极限或抗拉强度。单位:N/mm2(单位面积接受的公斤力)抗拉强度:Tensile strength.抗拉强度=Eh,其间E为杨氏模量,h为材料厚度抗拉强度符号目前国内丈量抗拉强度比较遍及的办法是选用全能材料试验机等来进行材料抗拉/压强度的测定!
铜合金金属强度特性的影响
2019-05-29 19:33:30
铜合金金属强度特性的影响 (1)强度高的金属比强度低的金属活动均匀一般俐、磷青铜,H%等合金.金属活动均匀,而a黄铜, H68 , H80, HSn70-1、白钢、镍合金等金属活动不均匀。 (2)对同一种金属,低温时强度高.其金属活动要比高沮时的均匀。 (3)关于萦铜(纯铜),在热揉捏条件下,因为表面载化皮其有较好的光滑效果,所以揉捏时的金属活动较均匀。
高强度塑合金管性能
2019-03-15 10:05:15
高强度塑合金管的性能指标要求
塑合金管又称塑合金复合通信管或塑合金电力电缆保护管。 是以聚氯乙烯为主要原料,综合应用具有协同效应的 多元高分子材料共混合金技术,配以增韧剂,抗老化 剂及其他辅助添加剂等,经分部捏合及配合整体捏合 工艺,经过互穿网络合金化处理。
高强度塑合金管通过大量的摸底、调研、咨询后,采用正交试验法和多元合金网络协同技术,综合运用了多种具有协同效应的功能型高分子材料,配以相应的增韧剂、刚性增补剂、防老剂及其他辅助添加剂等,并经分部捏合与整体捏合相配合的方法,经过试制、试验、分析、总结、删选和改进等,最后成功地开发出了第三代通讯管材——高强度塑合金管。也称为塑合金管或塑合金复合通信管。高强度塑合金管各项综合技术指标处于国内同类产品的领先水平,可替代钢管用于信息管线穿越马路的埋地敷设工程。组合排列容易、施工简便、既可降低工程造价,又可延长通信管道的使用寿命。产品广泛适用于互联网、移动电力及所有使用光、电缆作为传输路由的部门。 1 .外观与结构 (1) 外方内圆双层复合结构,一次挤压成型,可放置不同口径的光电缆,与原有水 泥管块、波纹管等管道可以自由过渡、组合,并有相应的配件如接头、堵头、勒带、专用胶水、修补片等便于施工操作。如图1 所示。高强度塑合金管结构
(A:内径 B:外形 C:壁厚) (2) 结构尺寸 表1 结构尺寸
规格最小内径(毫米)外形(毫米)每根长度(米)壁厚(毫米)92mm规格不小于8392X92(±0.5)6(+0.03)不小于3.5110mm规格不小于100110X110(±0.5)6(+0.03) 不小于4.4 (3) 外形结构为弧角方形,管材R角:15±2mm。
(4) 内壁光滑,穿线省力。
(5) 管材颜色均匀一致,管材内外壁不允许有气泡、裂口、分解变色线及明显的杂质等缺陷。
(6) 管材两端面应平整且轴线垂直,管材轴线方向不应有明显的弯曲现象。每米翘曲不大于20毫米。
(7) 接头、堵头产品外观无缺陷、损伤、性能尺寸符合设计要求。
2、材料
(1) 采用优质ABS等工程塑料一次挤出。
(2) 柔韧性:可弯曲,一段6米的管材,弯曲强度大于1米。
(3) 在各种酸缄度的环境中,耐腐蚀性和抗老化性能好
(4) 阴燃(离火即熄),其燃烧性能应符合GB/T5169.7 1985标准中有关规定。
(5) 使用寿命50年以上。
(6) 专用胶水内不得含有硬块,不溶颗粒和其他杂质;不得呈胶凝状态;不得有分层现象,在未搅拌的情况下不得有析出物。
3、 性能要求
表2 性能要求
序号项目条件性能要求92mm规格110mm规格1抗冲击性能0℃,2kg,1.5m9/10通过9/10通过2抗压强度≥400 KN/m2≥300 KN/m23拉伸屈服强度≥30MPa≥30MPa4维卡软化温度GB/T8802≥82℃≥82℃5低温坠落试验-20℃,1m高度,不开裂不开裂6老化后拉伸强度变化率120℃,6h-20~20%-20~20%7耐腐蚀性28~32%小于1.50g/ m2小于1.50g/ m228~32%硫酸 38~42
抗拉强度单位和抗拉强度单位换算
2019-05-29 18:38:53
抗拉强度单位 抗拉強度(tensile strength) 抗拉強度( бb )也叫強度極限指材料在拉斷前接受最大應力值。 抗拉强度单位-當鋼材屈从到必定程度后,因为內部晶粒从头排列,其反抗變形才能又从头进步,此時變形雖然發展很快,但卻只能隨著應力的进步而进步,直至應力達最大值。尔后,鋼材反抗變形的才能明顯下降,并在最单薄處發生較大的塑性變形,此處試件截面敏捷縮小,出現頸縮現象,直至斷裂破壞。鋼材受拉斷裂前的最大應力值稱為強度極限或抗拉強度。 單位:kn/mm2(單位面積接受的公斤力) 抗拉強度:extensional rigidity. 抗拉強度=Eh,其间E為楊氏模量,h為材料厚度 现在國內測量抗拉強度比較遍及的办法是才用萬能材料試驗機等來進行材料抗拉/壓強度的測定! 1.屈从點(σs)鋼材或試樣在拉伸時,當應力超過彈性極限,即便應力不再添加,而鋼材或試樣仍繼續發生明顯的塑性變形,稱此現象為屈从,而產生屈从現象時的最小應力值即為屈从點。設Ps為屈从點s處的外力,Fo為試樣斷面積,則屈从點σs=Ps/Fo(MPa),MPa稱為兆帕等于N(牛頓)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈从強度(σ0.2)有的金屬材料的屈从點極不明顯,在測量上有困難,因而為了衡量材料的屈从特性,規定產生永久殘余塑性變形等于必定值(一般為原長度的0.2%)時的應力,稱為條件屈从強度或簡稱屈从強度σ0.2。3.抗拉強度(σb)僥饧在拉伸過程中,從開始到發生斷裂時所達到的最大應力值。它表明鋼材反抗斷裂的才能巨细。與抗拉強度相應的還有抗壓強度、抗彎強度等。抗拉强度单位設Pb為材料被拉斷前達到的最大拉力,Fo為試樣截面面積,則抗拉強度σb= Pb/Fo (MPa)。4.伸長率(δs)僥饧在拉斷后,其塑性伸長的長度與原試樣長度的百分比叫伸長率或延伸率。5.屈強比(σs/σb)鋼材的屈从點(屈从強度)與抗拉強度的比值,稱為屈強比。屈強比越大,結構零件的可靠性越高,一般碳素鋼屈強比為0.6-0.65,低合金結構鋼為0.65-0.75合金結構鋼為0.84-0.86。6.硬度泥度表明材料反抗硬物體壓入其表面的才能。它是金屬材料的重要功能指標之一。一般硬度越高,耐磨性越好。常用的硬度指標有布氏硬度、洛氏硬度和維氏硬度。瓥布氏硬度(HB)以必定的載荷(一般3000kg)把必定巨细(直徑一般為10mm)的淬硬鋼球壓入材料表面,坚持一段時間,去載后,負荷與其壓痕面積之比值,即為布氏硬度值(HB),單位為公斤力/mm2(N/mm2)。痥洛氏硬度(HR)盥HB>450或许試樣過小時,不能选用布氏硬度試驗而改用洛氏硬度計量。它是用一個支撑角120°的金剛石圓錐體或直徑為1.59、3.18mm的鋼球,在必定載荷下壓入被測材料表面,由壓痕的深度求出材料的硬度。根據試驗材料硬度的不同,分三種不同的標度來表明:HRA:是选用60kg載荷和鉆石錐壓入器求得的硬度,用于硬度極高的材料(如硬質合金等)。HRB:是选用100kg載荷和直徑1.58mm淬硬的鋼球,求得的硬度,用于硬度較低的材料(如退火鋼、鑄鐵等)。HRC:是选用150kg載荷和鉆石錐壓入器求得的硬度,用于硬度很高的材料(如淬火鋼等)。盥維氏硬度(HV)以120kg以內的載荷和支撑角為136°的金剛石方形錐壓入器壓入材料表面,用材料壓痕凹坑的表面積除以載荷值,即為維氏硬度值(HV)抗拉强度单位换算延伸率(δ):描绘材料塑性功能的目标——延伸率δ和截面缩短率ψ。延伸率即试样拉伸开裂后标距段的总变形ΔL与原标距长度L之比的百分数:δ=ΔL/L×100%。 抗拉强度的单位:kn/m㎡(单位面积接受的公斤力) 压强单位是帕(Pa),1Pa= 1N/㎡ 1kg的质量能够发生9.8牛顿的力 1MPa=10^6Pa=10^6 kn/㎡=1 kn/m㎡, 1pa=1 kn/㎡, 1kg=9.8n, 1mpa=1000kpa=1000000pa,lbf是 是1磅力,1lbf=4.44822N 不是应力单位应力、压强、压力:磅力每平方英寸 lbf/in2 1 lbf/in2=144 lbf/ft2=6894.76Pa 应力、压强、压力:磅力每平方英尺 lbf/ft2 1 lbf/ft2=47.3880 kPa 我就找到这么多抗拉强度单位换算,不太全,可是仍是想拿出来和我们共享一下.....
低合金高强度结构钢
2019-03-19 09:03:26
低合金高强度结构钢是指加入硼元素的钢。硼在钢中的作用主要是增加钢的淬透性,一般加入量很少(0.0003%~0.005%)。硼元素资源富有,价格便宜。钢中添加硼能显著节省镍、铬、钼等昂贵的合金元素,有可观的经济效益。低合金高强度结构钢的主要优点是价格便宜,在保证钢具有所需淬透性和力学性能的同时,钢的热、冷加工性能较好。主要缺点是,淬透性的波动比不含硼元素的钢大。
低合金高强度结构钢:含碳量为0.1%-0.25%,加入主要合金元素锰、硅、钒、铌和钛等;它的含合金总量<3%。钢管按强度分为300、350、400和450MPa等4个级别。 主要有Q295、Q345、Q390、Q420、Q460。
高强度Al-Mg-Si合金
2019-01-15 17:45:30
据美国专利6 994 760 B2报道,德国柯鲁斯集团(Corus Group)科布伦茨轧制厂(Corus Aluminium Walzrodukte GmbH, Koblenz)发明一种高强度Al-Mg-Si合金,其特点是中间金属化合物的含量低,因而既有高的强度又有良好的疲劳性能,其主要成分(质量%):Si痕量。铸锭在均匀化处理后,于530℃-560℃加热4-30h后热轧。
纯铜抗拉强度
2017-06-06 17:50:05
纯铜抗拉强度是245-315N/mm2。 此外黄铜:335-440N/mm2、铬铜:380N/mm2以上、磷青铜:490N/mm2以上、快削黄铜:335N/mm2以上。可以说纯铜的抗拉强度没有铜合金的抗拉强度要高。 1.普通黄铜 它是由铜和锌组成的合金。 当含锌量小于 39% 时,锌能溶于铜内形成单相 a ,称单相黄铜 ,塑性好,适于冷热加压加工。 当含锌量大于 39% 时,有 a 单相还有以铜锌为基的 b 固溶体,称双相黄铜, b 使塑性小而抗拉强度上升,只适于热压力加工。 若继续增加锌的质量分数 ,则抗拉强度下降,无使用价值。 我们用代号“ H +数字”表示, H 表示黄铜,数字表示铜的质量分数。如 H68 表示含铜量为68%,含锌量为32%,的黄铜,铸造黄铜则在代号前“ Z ”字,如 ZH62。如 Zcuzn38 表示含锌量为38%,余量为铜的铸造黄铜。H90、H80单相,金黄色,故有金色共称之,称为镀层,装饰品,奖章等。H68、H59 属于双相黄铜,广泛用于电器上的结构件,如螺栓,螺母,垫圈、弹簧等。一般情况下,冷变形加工用单相黄铜 热变形加工用双相黄铜。 2.特殊黄铜 在普通黄铜中加入其它合金元素所组成的多元合金称为黄铜。常加入的元素有铅、锡、 铝等,相应地可称为铅黄铜、锡黄铜、铝黄铜。加合金元素的目的。主要是提高抗拉强度改善工艺性代号:为“ H +主加元素符号(除锌外)+铜的质量分数+主加元素质量分数+其它元素质量分数”表示。如:HPb59-1 表示铜的质量分数为59%,含主加元素铅的质量分数为1%,余量为锌的铅黄铜。 锡黄铜:锡可显著提高黄铜在海洋大气和海水中的抗蚀性,也可使黄铜的强度有所提高。压力加工锡黄铜广泛应用于制造海船零件。 铅黄铜:铅能改善切削加工性能,并能提高耐磨性。铅对黄铜的强度影响不大,略为降低塑性。压力加工铅黄铜主要用于要求有良好切削加工性能及耐磨的零件(如钟表零件),铸造铅黄铜可以制作轴瓦和衬套。 铝黄铜:铝能提高黄铜的强度和硬度,但使塑性降低。铝能使黄铜表面形成保护性的氧化膜,因而改善黄铜在大气中的抗蚀性。铅黄铜可制作海船零件及其它机器的耐蚀零件。铅黄铜中加入适量的镍、锰、铁后,可得到高强度、高耐蚀性的特殊黄铜,常用于制作大型蜗杆、海船用螺旋桨等需要高强度、高耐蚀性的重要零件。 硅黄铜:硅能显著提高黄铜的机械性能、耐磨性和耐蚀性。硅黄铜具有良好的铸造性能,并能进行焊接和切削加工。主要用于制造船舶及化工机械零件。 锰黄铜:锰能提高黄铜的强度,不降低塑性,也能提高在海水中及过热蒸汽中的抗蚀性。锰黄铜常用于制造海船零件及轴承等耐磨部件。 铁黄铜:黄铜中加入铁,同时加入少量的锰,可起到提高黄铜再结晶温度和细化晶粒的作用,使机械性能提高,同时使黄铜具有高的韧性、耐磨性及在大气和海水中优良的抗蚀性,因而铁黄铜可以用于制造受摩擦及受海水腐蚀的零件。 镍黄铜:镍可提高黄铜的再结晶温度和细化其晶粒,提高机械性能和抗蚀性,降低应力腐蚀开裂倾向。镍黄铜的热加工性能良好,在造船工业、电机制造工业中广泛应用。 由于纯铜抗拉强度比较低,所以应用并不广泛。
低合金高强度结构钢性能
2019-03-18 10:05:23
表1 低合金高强度结构钢的牌号和化学成分牌号等
级化学成分(质量分数)(%) 低合金高强度结构钢性能C≤MnSi
≤P
≤S
≤VNbTiAl≥Cr≤Ni≤Q295AO.160.80
~1.500.550.0450.0450.02
~O.150.015
~O.060O.02
~0.20 B0.040O.040 Q345AO.201.00
~1.600.550.045O.0450.02
~O.150.015
~O.0600.02
~O.20 BO.040O.040 C0.0350.035O.015 DO.180.030O.030O.015 E0.025O.025O.015 Q390A0.201.00
~1.60O.550.0450.045O.02
~O.20O.015~
0.060O.02
~O.20 O.300.70BO.040O.040 O.30O.70CO.035O.035O.0150.30O.70DO.0300.0300.015O.300.70E0.025O.025O.015O.300.70Q420AO.201.00
~
1.70O.55O.045O.045O.02
~0.20O.015
~0.0600.02
~O.20 O.40O.70B0.040O.040 O.40O.70CO.035O.0350.0150.40O.70DO.0300.0300.015O.40O.70E0.0250.0250.015O.40O.70Q460CO.201.00
~
1.70
O.550.0350.0350.02
~0.200.015
~O.0600.02
~O.20O.015O.700.70DO.0300.0300.0150.700.70E0.025O.025O.0150.700.70
(2)力学性能
表2 低合金高强度结构钢的力学性能牌号等
级屈服点ós/Mpa ≥抗拉强度ób/MPa伸长率δ5 (%)≥冲击吸收功Akv(纵向)
/J ≥厚度(直径、边长)/mm≤16>16~35>35~50>50~100+20℃O℃-20℃-40℃Q295A295275255235390~57023 B2334 Q345A345325295275470~63021 B2l34 C22 34 D22 34 E22 27Q390A390370350330490~65019 B1934 C20 34 D20 34 E20 27Q420A420400380360520
~68018 B1834 C19 34 D19 34 E19 27Q460C460440420400550
~72017 34 D17 34 E17 27
(3)用途
表3 低合金高强度结构钢的特性和应用牌号主要特性应用举例Q295钢中只含有极少量的合金元素,强度不高,但有良好的塑性、冷弯、焊接及耐蚀性能建筑结构,工业厂房,低压锅炉,低、中压化工容器,油罐,管道,起重机,拖拉机,车辆及对强度要求不高的一般工程结构Q345
Q390综合力学性能好,焊接性、冷、热加工性能和耐蚀性能均好,c、D、E级钢具有良好的低温韧性船舶,锅炉,压力容器,石油储罐,桥梁,电站设备,起重运输机械及其他较高载荷的焊接结构件Q420强度高,特别是在正火或正火加回火状态有较高的综合力学性能大型船舶,桥梁,电站设备,中、高压锅炉,高压容器,机车车辆,起重机械,矿山机械及其他大型焊接结构件Q460强度最高,在正火,正火加回火或淬火加回火状态有很高的综合力学性能,全部用铝补充脱氧,质量等级为C、D、E级,可保证钢的良好韧性备用钢种,用于各种大型工程结构及要求强度高,载荷大的轻型结构
表4 新旧低合金钢的标准牌号对照新标准GB/T159l—1994旧标准GB1591一88Q29509MnV、09MnNb、09Mn2、12MnQ34518Nb、09MnCuPTi、10MnSiCu、12MnV、14MnNb、16Mn、16MnREQ39010MnPNbRE、15MnV、15MnTi、16MnNbQ42014MnVTiRE、15MnVNQ460
注:旧标准中尾数b为半镇静钢。
表5 低合金结构钢的特性和应用牌 号主要特性应用举例新标准(GB/T
1591-1994)旧标准Q29509MnV 09MnNb具有良好的塑性和较好的韧性、冷弯性、焊接性及一定的耐蚀性冲压用钢、用于制造冲压件或结构件;也可制造拖拉机轮圈、螺旋焊管、各类容器09Mn2塑性、韧性、可焊性均好,薄板材料冲压性能和低温性能均好低压锅炉锅简、钢管、铁道车辆、输油管道、中低压化工容器、各种薄板冲压件12Mn与09Mn2性能相近。低温和中温力学性能也好低压锅炉板、船、车辆的结构件。低温机械零件Q34518Nb含Nb镇静钢,性能与14MnNb钢相近起重机、鼓风机、化工机械等09MnCuFri耐大气腐蚀用钢,低温冲击韧性好,可焊性、冷热加工性能都好潮湿多雨地区和腐蚀气氛环境的各种机械12MnV工作温度为一70°C低温用钢冷冻机械,低温下工作的结构件Q34514MnNb性能与18Nb钢相近工作温度为-20~450°C的容器及其他结构件16Mn综合力学性能好,低温性能、冷冲压性能、焊接性能和可切削性能都好矿山、运输、化工等各种机械16MnRE性能与16Mn钢相似,冲击韧性和冷弯性能比16Mn好同16Mn钢Q39010MnPNbRE耐海水及大气腐蚀性好抗大气和海水腐蚀的各种机械15MnV性能优于16Mn高压锅炉锅筒、石油、化工容器、高应力起重机械、运输机械构件15MnTi性能与15MnV基本相同与15MnV钢相同16MnNb综合力学性能比16Mn钢高,焊接性、热加工性和低温冲击韧性都好大型焊接结构,如容器、管道及重型机械设备Q42014MnVTiRE综合力学性能、焊接性能良好。低温冲击韧性特别好与16MnNb钢相同15MnVN力学性能优于15MnV钢。综合力学性能不佳,强度虽高,但韧性、塑性较低。焊接时,脆化倾向大。冷热加工性尚好,但缺口敏感性较大大型船舶、桥梁、电站设备、起重机械、机车车辆、中压或高压锅炉及容器及其大型焊接构件等
隔热断桥型材抗剪强度试验和横向抗拉强度检测
2018-12-29 16:57:11
隔热断桥型材抗剪强度试验:
取(100±1)mm长复合隔热铝合金型材,在(23±2)℃、湿度为45%~55%的环境中保存两天,通过抗剪强度检测仪将作用力均匀地推向型材切面,给进速度为1~5mm/min,记录所加荷载和相应的剪切变形数。
抗剪强度计算式:
T=F1mix/L
式中:T——抗剪强度;
F1max——最大抗剪力;
L——试样长度。
组合弹性值是在剪切失效单位长度的作用力与位移H的比值,按下公式计算:
K=F1/(H×L)
DIV>式中:K——组合弹性;
H——在剪切力F(N)作用下产生的位移,单位为mm;
L——试样长度;
F1一抗剪力。
隔热断桥型材横向抗拉强度检测:横向抗拉强度试验在剪切力失效后进行。内、外层铝合金型材之间出现2mm位移后为剪切力失效。通过横向抗拉强度检测仪,将作用均匀地施加在隔热铝型材的内、外层铝合金型材上,时向外拉伸。横向抗拉强度计算式:
Q=F2max/L
式中:Q——横向抗拉强度;
F2max——最大抗拉力;
L——试样长度。
超高强度铝合金在航空航天中的应用
2019-03-11 13:46:31
材料是飞机结构的根底,铝合金因为其具有比强度高、成形和加工功能好、耐腐蚀功能好等特色,将作为非常重要的飞机结构材料,在大飞机结构中占有很大的运用份额。 国外大型民用客机从波音707开展到现在以波音787和A380为代表的新一代大型民机,从舒适性、安全性、经济性等首要查核民机功能指标上,发生了很大的改变,规划办法也从静强度规划、到破损安全规划、到现在的损害容限规划,其选用的材料也从片面追求高强度、到要求疲劳强度较好的材料、到除考虑损害容限之外,一起考虑抗蚀性和低本钱的新要求,因而主体结构材料也发生了很大的改变,特别是跟着先进复合材料用量大幅度添加,对传统轻质合金的用量冲击很大,如B787飞机的复合材料用量达50%,而铝合金的用量只要20%。 现在正在运用的民用客机如大型客机A380,铝合金还占着主导作用。波音777是美国波音公司90年代推出的大型民用客机,选用的材料多是80年代末90年代初比较老练的材料,或90年代商品化的材料。因而,它的选材具有必定的代表性。其首要部位的材料选用见表1。 A380作为法国Airbus公司推出的面向21世纪的大型民用客机,其机体结构材料,优质铝合金用量最大,占分量的61%,复合材料占25%(22%为CFRP,用量达32t;3%为初次用于民机的GLARE),钛和钢占10%,其他4%,A380飞机首要部位的材料挑选见表2。 分析世界首要大型民用客机制作厂商的机型能够看出,超高强度铝合金作为飞机的结构材料依然占有着非常重要的位置。结合我国大力开展民用大型客机的全体局势能够看出,超高强度铝合金在航空范畴也是有着很宽广的商场使用远景。 复合材料在航天结构上的使用扩展,铝合金在以固体火箭发动机为动力的战略上的使用显着削减。但在往后适当长时问内,超高强度铝合金依然是运载火箭、宇宙飞船和空间站等航天器的主体结构材料,也是等武器系统的重要结构材料之一。现在国内、外飞船、航天飞机起结构件还是以铝合金为主。 超高强度铝合金在建筑职业中的使用 跟着建筑材料中绿色材料(削减材料运用量、可收回)要求的进步以及建筑职业中门窗面积的增大,尤其是在一些体育场馆、展览会场的建设中,轻质超高强度铝合金型材的需求将非常巨大。 超高强度铝合金,能够使用于建筑业中需求轻质超高强度、高塑性型材的场合,如体育场馆、展览会馆、临时性住所等的结构用材,还可使用于有必定承载要求的铝合金建筑门窗和玻璃幕墙、阳台护栏、广告牌、交通桥梁设备。 因为超高强度铝合金的轻质高强度特性,将大大下降建筑物的全体分量,简化建筑结构,削减建筑用材;因为材料的高塑性特性,将进一步使建筑的外观结构多样漂亮化;因为材料杰出的耐腐蚀功能,将削减建筑的保护本钱。一起,因为铝合金材料易于收回,将削减建筑废物,美化环境,然后大大下降建筑职业的能耗,完成节能减排的方针。 超高强度铝合金在其它职业中的使用 超高强度铝合金具有高强度、高硬度、低密度、优异的抗腐蚀功能等特色,使得其在促进节能减排,下降单位GDP能耗和添加经济效益方面具有不行忽视的重要商场位置。其不只能够使用在轿车、航空、航天、建筑等范畴,并且能够使用于自行车、纺织工业、模具等职业中。
冷拔钢筋的强度
2019-03-18 08:36:58
一般情况下我们经常接触的冷加工有两种:冷拉和冷拔 1.冷拉:对钢筋施加拉力进行强力拉伸,要求拉应力超过钢材的屈服强度但要低于抗拉强度。拉伸完成后静止一段时间使冷拉时效发挥出来。此时的钢筋塑性、冲击韧性变差,强度和硬度提高。强度提高幅度可达50%。 2.冷拔:加工措施与冷拉相似,稍微复杂些,强度提高可达90% 这两种冷加工都是以牺牲钢材的变形能力为代价,达到了提高强度和硬度的效果,但是经过处理后的钢材屈强比增大,安全储备降低,延性降低,破坏前不再有明显的变形发生。对于可能承受动力荷载的部位或重要部位是禁止使用此类钢筋的。 冷拔钢筋的强度
冷拔的冷作硬化可提高材料的抗拉强度。提高的程度与材料的原始机械性能和冷拔的减径量、冷拔道次有密切关系。
金属的塑性变形是通过位错运动来实现的.塑性变形过程中,位错运动的阻力主要来自位错本身.而在冷加工时,依靠机械使钢筋塑性变形时其位错交互作用的增强、位错密度提高和变形抗力增大这些方面的相互促进,很快导致金属强度和硬度的提高.冷拉可提高屈服度节约材料,将热轧钢筋用冷拉设备加力进行张拉,经冷拉时效后使之伸长.冷拉后,屈服强度可提高20%-25%,可节约钢材10%-20%, 冷拔此工艺比纯拉伸作用强烈,钢筋不仅受拉,而且同时受到挤压作用,经过一次或多次冷拔后得到的冷拔低碳钢丝其屈服点可提高40%~60%,抗拉强度高,塑性低,脆性大,具有硬质钢材特点.
铜合金的屈服点及抗拉强度指什么?
2019-05-29 20:00:38
铜铜合金的屈从点及抗拉强度指什么?屈从点:铜合金或试样在拉伸时,当应力超越弹性极限,即便应力不再添加,而铜合金或试样仍持续发作显着的塑性变形,称此现象为屈从,而发生屈从现象时的最小应力值即为屈从点;抗拉强度:铜合金材料在拉伸开裂前所可以接受的最大拉应力。金屈从点,铜合金
UOE钢管强度各向异性对抗压强度的影响及其预测方法
2019-03-15 11:27:19
最近10年来,为输送天然气,开展了在海底铺设管道管的深水研究项目。在天然气的远距离输送中,要求管道在深海下具有抵抗外部水压的抗压强度,因此一般使用UOE钢管。UOE钢管的制造方法为冷冲压成形法,钢管强度各向异性。为预测UOE钢管的抗压强度和弄清钢管的压坏机理,新日铁进行了钢管成形-性能评价一体化的数值解析模拟。数值解析模拟由钢管的二维成形模型和反映成形形状及残留应力的钢管三维压坏模型构成。通过实验,对钢管的壁厚、圆周方向位置中的强度各向异性进行了测定,同时对残留应力进行了测定,根据钢管的实际抗压强度,对数值解析模型的妥当性进行了评价。 1.UOE钢管的强度各向异性和残留应力 众所周知,影响钢管抗压强度的因素有形状不良(钢管的正圆度和壁厚不均)、屈服强度(YS)和残留应力。圆周方向的压缩屈服强度和残留应力有很大的相互关系。圆棒和圆柱试样(直径都是6mm)测定的壁厚断面的屈服强度分布表明,钢管外部圆周方向压缩屈服强度的下降特别明显。对壁厚位置中的S-S曲线比较表明,从壁厚中心开始出现在外部因弹性变形的鲍辛格效应而产生的圆形的S-S曲线。根据UOE钢管和油井用无缝钢管的比较可知,两种钢管的残留应力都趋于内面压缩,但UOE钢管残留应力值小。 2.数值解析模拟 在数值解析过程中,使用了综合模型对UOE钢管的成形-抗压强度进行了评估。在UOE钢管的成形模型(二维平面变形要素)中,使用了板材的S-S曲线,并将残留应力应用于压坏模型(三维固体要素)。由于只进行数值解析模拟难以精确预测对从板材到钢管的S-S曲线变化,因此采用半实验的方法(模拟变形试验)预测S-S曲线。即,把计算的等效塑性应变滞后作用于从板材取样的圆棒试样,然后对每个壁厚位置所得的压缩S-S曲线进行定义。 3.结果和研究 3.1压坏模型的妥当性 预测精度受模型的要素组合数、压力增量值、收敛判断值的支配,如果对这些影响因素进行校正,估计本模型的预测误差在5%左右,通过校正误差,可以进一步提高预测精度。 在对给出相同正圆度时的综合模型和椭圆近似模型的压坏值进行比较后发现两者没有比较大平均差,由此可知,通过将取决于最大外径和最小内径的正圆度做成近似于椭圆的参数,就可以将局部曲率变化的UOE钢管的外径分布用模型表示。对用椭圆模型预测的压坏值和预测UOE钢管抗压强度的普通公式的计算值进行了比较,发现不同D/t(外径/壁厚)和正圆度的预测值与普通公式预测值相同,由此推定采用成形-压坏综合模型也能获得相同的结果。因此,可以说综合模型能解析压坏机理,可以应用于成形条件对抗压强度影响的量化。 3.2UOE钢管的压坏机理 调查了采用圆棒试样模拟UOE钢管生产过程中预测的等效塑性应变滞后时的应力-应变关系,并对预测的S-S曲线和模拟曲线进行了比较,结果可知预测的S-S曲线与实际钢管的S-S曲线较一致,即使是受到不同应变滞后作用的壁厚断面,其YS也与实测值相同。在此次成形条件下的应变滞后中壁厚外部YS的下降受U冲压时的拉伸应变负荷所支配。另外,在钢管内侧几乎看不到因弹性变形的鲍格辛效应而产生的压缩YS下降。采用以上提出的模拟应变试验,能更加精确预测实际钢管圆周方向的强度。 4.结束语 根据UOE钢管的强度分布、强度各向异性和残留应力实测值,通过数值解析,求出了这些因素对钢管外部压坏特性的影响。结果明确了UOE钢管特有的现象,即由于圆周方向压缩YS的下降,因此抗压强度比均质材低,压坏的起点和残留应力的效果与均质材不同等。另外,还提出了用板材进行钢管成形时预测机械特性能变化的有效方法。
铝合金紧固件与金属紧固件强度特性比较
2019-01-11 10:51:58
铝制紧固件的重量是其同类钢制紧固件重量的1/3。这种经常被使用的合金的强度特性出奇的好。实际上,在强-质比上,铝制紧固件比其它任何一种工贸易用材料制成的紧固件都要高。铝是不可磁化的。铝的热电传导性很好,约为同体积下铜传导性能的2/3。铝有很好的加工特性,易于冷成型和热锻。 铝合金紧固件与金属紧固件强度特性比较: 外螺纹紧固件铝合金材料2024-T4、6061-T6和7075-T73的强度特性在B-158页的ASTMF468有具体论述;螺母铝合金材料2024-T4、6061-T6和6062-T9的强度特性在B-184页的ASTMF467中有具体论述。 在这里有必要说明一下铝合金制螺纹紧固件和其它金属材料制紧固件在机械性能上的两点差别。 靠前点就是:计算零件的负载能力时,要测定横截面牙底部分的区域而不是面积更大的拉应力区域。只有在ASTMF468的表格2中给定的机械测试样本的抗拉、屈服强度值才是真正的强度值。在对整个尺寸的紧固件做强度计算时,可以做适当的调整。这样在将应力值与螺纹受力区域面积相乘以计算以磅为单位的负载能力时,计算结果大约即是表中真值与更小的牙底区域面积的乘积。 第二点是铝合金的硬度区别很小,而且象检查准则一样没什么意义。作为硬度测试的替换,通常引进抗剪强度测试。 2024-T4型铝合金(含4.5%的铜,1.6%的锰,1.5%的镁,其余为铝)是重负荷合金。它在强度、抗腐蚀性、制造性、经济性的结合上达到了完美的平衡,广泛地应用于螺纹紧固件的制造。 用7075-T73型铝合金(含1.6%的铜,2.5%的锰,0.3%的铬,其余为铝)制成的螺栓、螺钉和双头螺栓在强度上有了微小的进步,而且由于T73特殊的热处理工艺,使它能在很大程度上阻止应力腐蚀的发生。但昂贵的造价使它的普及受到限制。 6061-T6型铝合金(含0.6%的硅,0.25%的铜,1%的镁,0.2%的铬,其余为铝)可用于设计对抗腐蚀能力有更高要求的内、外螺纹紧固件。 6062-T9型铝合金(含0.6%的硅,0.25%的铜,1%的镁,0.09%的铬,0.5%的铅,其余为铝)几乎为设计螺母专用。这种合金比6061-T6型铝合金强度更高并有相对较好的抗腐蚀性。 6062-T9型铝合金制成的全厚度螺母有足够的强度用来配合2024-T4或7075-T73型铝合金制成的螺栓。机用螺钉、螺母和其它1/4英寸及更小尺寸的螺母用2024-T4型铝合金制成。 铝合金用于紧固件制造的优势 已经提到的四种铝合金在螺纹承载紧固件的制造中应用较为广泛,而其它的铝合金则用于其它类型紧固件的制造业。小固体、半管和盲铆钉分别由1100-F、5052-F、5056-F型铝合金制得。可热处理的2017-T4、2117-T4、2024-T4、6061-T6型铝合金和相对新研制出的7075-T73型铝合金有着优越的抗剪强度,并且不需要进行预传动处理就可以传动。 平垫圈通常由镀铝的2024-T4合金制得;螺旋弹簧垫圈通常用7075-T6合金制得;攻牙螺钉可利用7075-T6合金制得;自攻螺钉由同材料合金通过阳极处理得到。2011-T3型铝合金(含5.5%的铜,0.5%的铅,0.5%的铋,其余为铝)可用于制造螺纹切削机的零件。 在正常环境下,铝有足够的抗腐蚀能力。而且当预计的暴露环境很恶劣时,它的抗腐蚀能力可以通过阳极处理得到极大的改善。阳极处理是一种在金属表面形成氧化膜的电加工工艺。阳极处理不仅增强了抗腐蚀的能力,同时还增强了对磨损和划伤的保护能力。阳极镀层出于装饰和辨认的目的有着很多种颜色。在大气腐蚀中,铝在表面形成一层淡灰色的氧化膜。这些腐蚀产物不会污染铝的表面,或者蔓延到毗邻的表面上,它和其他很多金属在腐蚀作用下的表现在这一点上不一样。 纯铝的抗拉强度约为13,000psi,增加少量合金元素而极大进步强度是可能的。2XXX、6XXX、7XXX的铝合金对热处理的效果很好。因此,实际上所有用于载荷传递的螺纹紧固件都由这三大类铝合金制成。有四种铝合金几乎是专用的。
低合金高强度结构钢(GB/T1591-1994)
2019-03-15 11:27:19
此类钢中除含有一定量硅或锰基本元素外,还含有其他适合我国资源情况的元素。如钒(V)、铌(Nb)、钛(Ti)、铝(Al)、钼(Mo)、氮(N)、和稀土(RE)等微量元素。按化学成分和性能要求,其牌号由Q295A、B,Q345A、B、C、D、E,Q390A、B、C、D、E,Q420A、B、C、D、E,Q460C、D、E等钢级表示,其含义同碳素结构钢。 V、Nb、Ti、Al等细化晶粒微量元素,在此类钢中除A、B级钢外,其C、D、E级钢中至少应含有其中的一种;为了改善钢的性能,A、B级钢中亦可以加入其中的一种。另外,此类钢的Cr、Ni、Cu残余元素含量各不大于0.30%。Q345A、B、C、D、E是此类钢的代表牌号,其中A、B级钢通常称16Mn;C级以上钢需加入一个以上微量元素,其力学性能中增加1项低温冲击性能。 此类钢同碳素结构钢比。具有强度高、综合性能好、使用寿命长、应用范围广、比较经济等优点。该钢多轧制成板材、型材、无缝钢管等,被广泛用于桥梁、船舶、锅炉、车辆及重要建筑结构中。
铝合金铸造温度、铸造速度、冷却强度与铸锭质量的关系
2019-01-02 14:54:44
铸造工艺参数主要有铸造温度、铸造速度、冷却强度,其次是液位高度、铸造开始与结束条件等。
1 铸造温度
铸造沏度通常是指液体金属从保温炉通过转注工具注入结晶器过程中具确良好流动性所需要的温度。但是,目前铝合金熔铸大部分已应用了在线除气与过滤装置,铸造温度仍然按上述的概念是不够 全面与正确的。实践证明,在线除气装置中液体温度不同具除气效果也不同。因此,要考虑在线除气装置除气效果对液体温度的要求。另外,还应考虑液体在结晶器内的气体析出情况,因铸造温度低,液体在结晶器内的气体来不及上浮逸出液面,造成气孔、疏松,还可能产生灾渣及冷隔等铸锭质量缺陷、铸造温度最高不宜超过熔炼温度。铸造温度过高会导致铸造开始时漏铝。底部裂纹与拉裂,还可能产生羽毛品组织缺陷,又因为转注工具长度不同而液体温降不同,在线装首有加热点,液体在转注过程中温度变化起伏大,所以科学规范铸造温度应指注入结晶器内的液体温度一般情况下铸造温度比合金的实际结晶温度高50℃~70℃,1 x x x、3x x x系铝合金在铸造过机中过渡带较窄,铸造温度宜偏高;而2x x x、7x x x系合金的过渡带较宽.铸造温度宜偏低。
2 铸造速度
连续铸造时,单位时间铸锭成形的长度称为铸造速度。老式铸造通常是一个铸次为—个固定铸造速度;而现代铸造是曲线铸造速度,即铸造开始与铸造过程不是同一个铸造速度:铸造速度的快与慢对铸锭裂纹、铸锭表面质量、铸锭组织和性能有很大影响,在保证铸锭质量的前提下,应采用最高的铸造速度。老式铸造法为解决某些合金及规格铸锭的裂纹问题,铸造时采用铺底或回火的工艺方法;而现代铸造法则采用曲线铸锭速度,取代了老式铸造的铺底或回火工艺,它既减少了一些辅助设施,又节省了人力与减轻劳动强度,还可以避免——些铸锭表面质量缺陷铸造速度的选择是依据所生产合金的特性与铸锭截面尺寸而定。一般规律足冷裂纹倾向性较大的合金及铸锭规格,应提高铸造速度;而热裂纹倾向较大的合金及铸锭规格,则应降低铸造速度
3 冷却强度
冷却强度也称为冷却速度。冷却强度不但对铸锭的裂纹有影响,而且对铸锭的组织影响更大、随着冷却强度的增大,铸锭结晶速度提高,晶内结构更加细化;随着冷却强度增人,铸锭液穴变浅。过渡带尺寸缩小.使金属补缩条件得到改善,减少或消除了铸锭中的疏松、气孔等缺陷.铸锭致密度提高:另外还可以细化一次品化合物的尺寸,减小区域偏析的程度。
老式铸造法多采用分体结晶器,尤其是铸造扁铸锭时.水套与结晶器是分开的。随着铸造工艺技术的发展,现代铸造法的结晶器是一体的。用老式结晶器铸造时冷却水消耗量大,因为老式结晶器供 水不是封闭的,一部分冷却水敞火而起不到冷却作用,而且一次冷却与二次冷却的冷却强度差别人,不可避免的产生一些铸锭质量缺陷;而用现代结晶器铸造时.冷却水消耗量小.实践证明它仅是老式结晶 器用水量的70%左右。目前国外多采用低液位结晶器铸造,其目的就是提高冷却强度,减少或消除一次冷却后气隙区的加热现象,因此几乎不存在二次冷却的淬火情况、扁铸锭普通铸造已经将结晶器高度 降至100人,当然这需要操作者有很高的操作水平或增设液位白动控制系统。
冷冲却强度对冷却水温度的要求是不可忽视的,通常情况下,冷却水温设定在20度,但是由于地区气候条件。供水设施条件及厂房温度等不同导致变化较大,因而出现地区性或季节性铸锭质量缺陷。现代结晶器供水系统带有脉冲或交叉变相功能,均由工艺编程决定,因此冷却强度可依据铸造工艺需要设定为曲线,特别是针对某些低温塑性不好的硬合金,铸造时冷裂纹和热裂纹几乎同时存在,附加挡水板系统,使铸锭表面温度升高到拉伸变形塑性温度,消除铸锭冷裂纹,工艺上再采取防止热裂纹措施,即可以获得优质铸锭。
PM和IM高强度铝合金锻件的典型性能
2018-12-28 14:46:50
合金取样方向σb/MPaσ0.2/MPaδ/%E/GPaKIC/MPa.m1/2应力腐蚀门槛值/MPaPM7090-T7E71纵 向长横向61457957954510472.4纵-长横向367091-T7E69纵 向长横向61454557949610973.8纵-长横向32约310CW67-T7X2纵 向长横向6066065795721415 纵-长横向44 MR64-TX7-TX73纵 向长横向60055955249669 约310约310IN9021-T4纵 向长横向627600600586141176.5长横-纵向37约552IN9052纵 向长横向59356555955262.574.5长横-纵向30约552IM7075-T6纵 向长横向64155257249012971.4纵-长横向247075-T73纵 向5034341371.7纵-长横向35>310
黑色金属硬度及强度换算值
2019-01-24 09:35:03
黑色金属硬度及强度换算值硬度洛氏表面洛氏维氏布氏(F/D²=30)HRCHRAHR15NHR30NHR45NHVHBSHBW20.020.521.021.522.022.523.023.524.024.525.025.526.026.527.027.528.028.529.029.530.030.531.031.532.032.533.033.534.034.560.260.460.761.061.261.561.762.062.262.562.863.063.363.563.864.064.364.664.865.165.365.665.866.166.466.666.967.167.467.768.869.069.369.569.870.070.370.670.871.171.471.671.972.272.472.773.073.373.573.874.174.474.774.975.275.575.876.176.476.740.741.241.742.242.643.143.644.044.545.045.545.946.446.947.347.848.348.749.249.750.250.651.151.652.052.553.053.453.954.419.219.820.421.021.522.122.723.323.924.525.125.726.326.927.528.128.729.329.930.531.131.732.332.933.534.134.735.335.936.5226228230233235238241244247250253256259262266269273276280284288292296300304308313317321326225227229232234237240242245248251254257260263266269273276280283287291294298302306310314318(适用于含碳量由低到高的钢种)抗拉强度ób/MPa碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢7747847938038138238338438548648758868979089199309429549659779891002101410271039105210651078109211057427517607697797887988088188288388488598708808919029149259379489609729849961009102210341048106173674475376177077978879780781682683784785886988089290391592894095396698099310071022103610511067782787792797803809815822829836843851859867876885894904914924935946957969981994100710201034104874775376076777478178979780581382283184085086087088089190291392493694896197498710011015102910438508598698798909019129239359479599729859991012102710411056107178178879480180981682483284084885686587488389390291292293394395496597798910011013102610391052106674074975876777778679680681682683784785886887989090191392493694795997198399610081021103410471060硬度洛氏表面洛氏维氏布氏(F/D2=30)HRCHRAHR15NHR30NHR45NHVHBSHBW35.035.536.036.537.037.538.038.539.039.540.040.541.041.542.042.543.043.544.044.545.045.546.046.547.047.548.048.549.049.550.050.551.067.968.268.468.769.069.269.569.770.070.370.570.871.171.371.671.872.172.472.672.973.273.473.773.974.274.574.775.075.375.575.876.176.377.077.277.577.878.178.478.779.079.379.679.980.280.580.881.181.481.782.082.382.682.983.283.583.784.084.384.684.985.285.585.786.086.354.855.355.856.256.757.257.658.158.659.059.560.060.460.961.361.862.362.763.263.664.164.665.065.565.966.466.867.367.768.268.669.169.537.037.638.238.839.440.040.641.241.842.443.043.644.244.845.445.946.547.147.748.348.949.550.150.751.251.852.453.053.654.254.755.355.9331335340345350355360365371376381387393398404410416422428435441448454461468475482489497504512520527323327332336341345350355360365370375380385391396401407413418424430436442449370375381386392397403409415422428435441448455463470478486494502510518抗拉强度ób/MPa碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢1119113311471162117711921207122212381254127112881305132213401359137813971417143814591481150315261550157516001626165316811710107410881102111611311146116111761192120812251242126012781296131513351355137613981420144414681493151915461574160316331665169817321768108210981114113111481165118312011219123812571276129613171337135813801401142414461469149315171541156615911617164316701697172417521780106310781093110911251142115911771195121412331252127312931314133613581380140414271451147615021527155415811608163616651695172417551786105810741090110611221139115711741192121112301249126912891310133113531375139714201444146814921517154215681595162216491677170617351764108711031119113611531171118912071226124512651285130613271348137013921415143914621487151215371563158916161643167116991728175817881819107910941108112311391155117111871204122212401258127712961316133613571378140014221445146914931517154315691595162316511679170917391770117011951219124312671290131313361359138114041427145014731496152015441569159416201646167417021731176117921074108711011116113011451161117611931209122612441262128012991319133913611383140514291453147915051533156215921623165516891725硬度洛氏表面洛氏维氏布氏(F/D2=30)HRCHRAHR15NHR30NHR45NHVHBSHBW51.552.052.553.053.554.054.555.055.556.056.557.057.558.058.559.059.560.060.561.061.562.062.563.063.564.064.565.065.566.066.567.067.568.076.676.977.177.477.777.978.278.578.779.079.379.579.880.180.380.680.981.281.481.782.082.282.582.883.183.383.683.984.184.484.785.085.285.586.686.887.187.487.687.988.188.488.688.989.189.489,689.890.090.290.490.690.891.091.291.491.591.791.891.992.192.270.070.470.971.371.872.272.673.173.573.974.474.875.275.676.176.576.977.377.778.178.679.079.479.880.280.681.081.356.557.157.658.258.859.459.960.561.161.762.262.863.463.964.565.165.666.266.867.367.968.469.069.570.170.671.271.7535544552561569578587596606615625635645655666676687698710721733745757770782795809822836850865586894909527535544552561569577585593601608616622628634639643647650抗拉强度ób/MPa碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢1806184518091839186918991930196119932026181818501883191719511986202220581794182518561888185018811914194718011834186719011936197120082045182418571892192919662006204720902135218122302281233423902448250925722639附表4黑色金属硬度及强度换算值(主要适用于低碳钢)硬度抗拉强度ób/MPa洛氏表面洛氏维氏布氏HRBHR15THR30THR45THVHBSF/D2=10F/D2=3060.060.561.061.562.062.563.063.564.064.565.065.566.066.567.067.568.068.569.069.570.070.571.071.572.072.573.073.574.074.580.480.580.780.880.981.181.281.481.581.681.881.982.182.282.382.582.682.782.983.083.283.383.483.683.783.984.084.184.384.456.156.456.757.157.457.758.058.358.759.059.359.659.960.360.660.961.261.561.962.262.562.863.163.563.864.164.464.765.165.430.430.931.431.932.432.933.534.034.535.035.536.136.637.137.638.138.639.239.740.240.741.241.742.342.843.343.844.344.845.4105105106107108108109110110111112113114115115116117118119120121122123124125126128129130131102102103103104104105105106106107107108108109110110111112112113114115115116117118119120121375377379381382384386388390393395397399402404407409412415418421424427430433437440444447451硬度抗拉强度ób/MPa洛氏表面洛氏维氏布氏HRBHR15THR30THR45THVHBSF/D²=10F/D²=3075.075.576.076.577.077.578.078.579.079.580.080.581.081.582.082.583.083.584.084.585.085.586.086.587.087.588.088.589.089.584.584.784.885.085.185.285.485.585.785.885.986.186.286.386.586.686.886.987.087.287.387.587.687.787.988.088.188.388.488.665.766.066.366.667.067.367.667.968.268.668.969.269.569.870.270.570.871.171.471.872.172.472.773.073.473.774.074.374.675.045.946.446.947.447.948.549.049.550.050.551.051.652.152.653.153.654.154.755.255.756.256.757.257.858.358.859.359.860.360.9132134135136138139140142143145146148149151152154156157159161163165166168170172174176178180122123124125126127128129130132133134136137138140152155156158159161163164166168170172174455459463467471475480484489493498503508513518523529534540546551557563570576582589596603609硬度抗拉强度ób/MPa洛氏表面洛氏维氏布氏HRBHR15THR30THR45THVHBSF/D²=10F/D²=3090.090.591.091.592.092.593.093.594.094.595.595.096.096.597.097.598.098.599.099.5100.088.788.889.089.189.389.489.589.789.889.990.190.290.490.590.690.890.991.191.291.391.575.375.675.976.276.676.977.277.577.878.278.578.879.179.479.880.180.480.781.081.481.761.461.962.462.963.464.064.565.065.566.066.567.167.668.168.669.169.670.270.771.271.7183185187189191194196199201203206208211214216219222225227230233176178180182184187189192195197200203206209212215218222226229232617624631639646654662670678686695703712721730739749758768778788
6061铝棒强度分析及提高方法
2019-01-14 11:15:13
采用实验的方法研究了铝钛硼、过量硅、稀土、AlTiBRE中间合金以及热处理方式对6061铝棒强度的影响,并分析了其内部机理。研究表明,铝钛硼的含量,稀土的多少,AlTiBRE中间合金的加入以及热处理工艺对其强度均有影响。较后,在分析实验结果的基础上找到了提高强度的方法与途径 引言被广泛用于建筑等行业的6061铝棒不仅具有良好的热塑性、优良的耐蚀性及理想的加工性能,而且很易氧化着色。但生产中由于工艺不当,6061铝棒熔铸常出现粗晶组织、羽毛组织、相析出物,并在凝固时易出现铸造裂纹,严重影响了合金的质量,即使通过均匀化处理后 一是在铸锭时采用的铝合金成份;二是在铸锭完成时的材料均质;三是在铝型材成型前的三温控制及在线淬火;四是在铝型材成型后的时效,这是铝型材生产时提高硬度和强度的较基本的流程。如果从研究铝型材设计图纸的,还要考虑铝型材的厚薄、直线度、受力部位的承重等等。 测量不确定度的概念及其在测量活动中的重要意义,并结合实际,以6061铝棒固定滑×6000B电泳涂漆型材为试验材料,建立测量不确定度数学模型,确定其来源为屈服载荷、破坏载荷、试样宽度和试样厚度,计算出各分量的合成标准不确定度,进而算出抗拉强度、规定非比例伸长应力的合成标准不确定度,得出抗拉强度、规定非比例伸长应力的扩展不确定度。
高强度工业铝挤压型材优势
2018-12-29 16:57:09
1.该铝型材制作过程简单:
只需设计、切断/钻孔、组合即可完成;而传统材料通常要经过设计、切断/钻孔、焊接、喷沙/表面处理、表面喷涂等复杂过程。
2.材料可重复使用:
由于使用工业铝型材的机件在全部制作过程中没有热焊接,所以各部件可很方便的拆卸,所有材料和附件都可重复使用;而传统材料由于切割变形和高额拆解成本等原因事实很少重复使用。
3.节省工时:
由于制作过程简单,可节省大量工时成本;尤其是在由于制作错误而返工时,比使用传统材料可节省几倍的工时。
4.制作精度高:
于制作过程没有经历热焊接,材料无变形,所以装配精度高;而使用热焊接的传统材料则不可避免的要出现变形,从而影响最终装配精度。
5.外观华丽:
使用工业铝型材的设备外观更具现代感,其特有的阳极氧化镀膜比现有的各种涂装方法更加牢固稳定。
钨钢耐磨损性和强度
2019-05-29 21:08:52
钨钢耐磨损性和强度 为硬质合金的特征的耐磨损功能,随硬度增高而增高。一起,一般以为强度随抗弯强度增高而增高。这些特性与钴含量、碳化钨颗粒直径巨细等有联系。硬度随钴量削减、碳化钨颗粒直径减小而变高,抗弯强度随钴量增多、碳化钨粒径减小而增大。
铜棒计算方法及铜棒抗拉强度
2019-05-29 19:17:43
什么是铜棒核算方法及铜棒抗拉强度?我们关于铜棒仍是十分了解的。所谓的铜棒是指运用铜经过挤制或拉制而成的横断面为实心的棒材。铜棒能够直接理解为纯铜棒。铜棒能够分为有氧铜棒和无氧铜棒。此外依据铜棒的形状能够分为圆形铜棒、六角形铜棒和方形铜棒。这儿说的铜棒核算方法,说的是铜棒分量核算方法;而铜棒抗拉强度是指表征铜棒材料最大均匀塑性变形的抗力。铜棒抗拉强度反响的是该材料的开裂抗力。那么全铜网专家来说下“铜棒核算方法及铜棒抗拉强度”。铜棒 铜棒核算方法及铜棒抗拉强度符号? 1、铜棒核算方法符号:铜棒核算方法符号为“W”。 2、铜棒抗拉强度符号:现在铜棒抗拉强度符号为“Rm”,GB/T228-1987旧国标规则抗拉强度符号为σb。 铜棒核算方法及铜棒抗拉强度单位? 1、铜棒核算方法单位:铜棒分量核算的终究单位有两个 (1)如果是每米铜棒分量的话,此刻单位便是“公斤/米”。 (2)如果是铜棒总分量的话,此刻单位便是“公斤”。 2、铜棒抗拉强度单位:铜棒抗拉强度单位为“MPa”。 铜棒抗拉强度核算方法?铜棒抗拉强度核算方法为“σb=Pb/Fo(MPa)”,其间Pb为材料被拉断前到达的最大拉力,Fo为试样截面面积。 铜棒核算方法及铜棒抗拉强度? 1、铜棒核算方法: (1)每米铜棒核算方法: ①每米圆形紫铜棒分量(公斤/米)=0.00698×直径(毫米)×直径(毫米) ②每米六角形紫铜棒分量(公斤/米)=0.0077×对边宽(毫米)×对边宽(毫米) ③每米方形紫铜棒分量(公斤/米)=0.0089×边宽(毫米)×边宽(毫米) (2)铜棒核算方法:这儿时分铜棒总分量的核算方法如下, ①圆形紫铜棒分量(公斤)=0.00698×直径(毫米)×直径(毫米)×长度(m) ②六角形紫铜棒分量(公斤)=0.0077×对边宽(毫米)×对边宽(毫米)×长度(m) ③方形紫铜棒分量(公斤)=0.0089×边宽(毫米)×边宽(毫米)×长度(m) 2、铜棒抗拉强度: (1)普通铜棒抗拉强度: ①技术标准规则普通铜棒抗拉强度:见技术标准规则普通铜棒抗拉强度表技术标准规则普通铜棒抗拉强度表种类牌号牌号状况δ或d/mmRm/MPa技术标准铜棒T2、T3Y5~40275GB/T4423-1992>40~60245>60~80210M5~80200R30~120186 ②不同状况下普通铜棒抗拉强度:不同状况下普通铜棒抗拉强度表不同状况下普通铜棒抗拉强度表种类牌号牌号铜含量状况Rm/MPa铜棒T199.96700℃退火30min20399.96(Fe、Ni、Sn痕迹)退火态22799.98700℃退火态227T299.2600℃退火态21799.2冷拉态25299.95(0.036%O2)冷拉态262 ③制作普通铜棒抗拉强度:制作普通铜棒抗拉强度表制作普通铜棒抗拉强度表种类牌号代号、成分、状况温度θ/℃Rm/MPa铜棒T2,棒材,冷制作21%260262316241371124426103T2,棒材,冷制作50%3002755001076006870040 (2)无氧铜棒抗拉强度:见不同状况下无氧铜棒抗拉强度表不同状况下无氧铜棒抗拉强度表种类牌号状况Rm/MPa铜棒,直径6mmH80(40%)380铜棒,直径25mmM20220OS050220H80(35%)330铜棒,直径50mmH80(16%)310 (3)磷脱氧铜棒抗拉强度:见磷脱氧铜棒抗拉强度表磷脱氧铜棒抗拉强度表种类牌号状况d或D×S/mmRm/MPa铜棒TP2RY 铜棒理论分量?见铜棒理论分量表 铜棒理论分量表 影响铜棒抗拉强度要素有哪些?铜棒抗拉强度与铜棒原料、状况有关;铜棒抗拉强度与屈从强度没有肯定的联系;制作硬化的时,晶粒破碎,一方面晶粒细化,从Hall-Petch公式可知,晶粒越细,强度越大另;一方面,制作时位错增殖与位错之间的緾结,使强度越大。
高强度的H80黄铜特性
2019-03-06 11:05:28
高强度的H80黄铜特性
普渡大学研制出强度比肩不锈钢的新型铝合金材料
2019-01-08 13:40:18
铝合金是一种很不错的轻量级材料,许多软饮料都喜欢用它制作易拉罐。不过铝合金的缺点也很明显 —— 太脆了。好消息是,普渡大学的研究人员,已经开发出了一种新型的铝合金材料。通过在金属的晶体结构中引入“断层”(faults),这种“缺陷”竟然可以极大地提升材料强度。除了让新型铝合金的强度比肩不锈钢,这项特性也可用于耐腐蚀涂层。研究员在准备一份样品,左为 Sichuang Xue,右为 Qiang Li 。
从微观层面上来讲,金属就是一层层重复堆叠起来的晶体原子组成的。当某一层的模式缺失时,就会遭致“堆垛层错”(stacking fault)。
如果有两个断层,则被称作“双边界”(twin boundaries)或“纳米孪晶”(nanotwins)。若达到了 9 层,就被称作“9R 相”。
有趣的是,这些堆叠起来的断层竟然能够让材料强度变得更高。有鉴于此,普渡大学的研究人员们希望同时将“纳米孪晶”和“9R 相”两种特性包含进去。这份铝合金样品将被透射式电子显微镜分析,以研究其结晶结构。
难度在于,金属有一个“高堆垛层错能”(high stacking fault energy),即材料会倾向于“自我纠错”。两项新研究作者 Xinghang Zhang 表示:
此前有人证实了铝材料很难引入‘双边界’,而‘9R 相’的引入就更难了,因为它的‘堆错能’太高了。
即便如此,他们还是克服了难题,将两项特性引入到新型铝材中,在增加材料的强度和延展性的同时,还改善了它的热稳定性。
普渡大学研究人员发明的这种新型铝合金,拥有比肩不锈钢的强度特性。
为了在新型铝材中引入“9R 相”,科学家们使用了两项不同的技术。其一是“冲击诱发”(shock-induced),即利用激光来轰击超薄铝片和二氧化硅粒子。
论文一作 Sichuang Xue 称:“我们发现,该技术可诱发宽度达到数十纳米的‘9R 相’形变”。第二项技术则是“磁控溅射”(magnetron sputtering)。
该工艺可以可将铁原子引入铝的晶体结构中,从而打造出迄今为止强度较高的铝合金材料。研究团队称,该工艺可以拓展至工业化生产的规模。
新技术有望在电子设备和车辆的耐腐蚀涂层领域得到应用。Xinghang Zhang 表示:“这些结果展示了如何制造强度比肩不锈钢的铝合金材料,该发现对商业有着很多的潜在影响”。