硒的用途
2018-01-04 11:02:50
首要用于出产二氧化硒作为电解锰冶冻催化剂,另其他用于整流器,照相曝光剂,石油化工作催化剂,复印硒鼓,硒感光板,合金,饲料以及塑料、油漆、珐琅和玻璃中的颜料,医疗与保健药物等行业。
硒的理化性质及用途
2019-01-04 09:45:40
一、硒的理化性质 元素符号:Se 相对原子质量:78.84 原子序数:34 摩尔质量:79 原子半径:1.22 所属周期:4 所属族数:VIA 颜色和状态: 有灰色金属光泽的固体 密度: 4.81克/厘米³ 熔点: 217℃ 沸点: 684.9℃ 发现人:贝齐里乌斯(J.J.Bergelius) 发现年代:1817年 稀散元素之一。在已知的六种固体同素异形体中,三种晶体(α单斜体、β单斜体,和灰色三角晶)是最重要的。也以三种非晶态固体形式存在;红色和黑色的两种无定形玻璃状的硒。前者性脆,密度4.26克/厘米3;后者密度4.28克/厘米3。第一电离能为9.752电子伏特。硒在空气中燃烧发出蓝色火焰,生成二氧化硒(SeO2)。也能直接与各种金属和非金属反应,包括氢和卤素。不能与非氧化性的酸作用,但它溶于浓硫酸、硝酸和强碱中。溶于水的硒化氢能使许多重金属离子沉淀成为微粒的硒化物。硒与氧化态为+1的金属可生成两种硒化物,即正硒化物(M2Se)和酸式硒化物(MHSe)。正的碱金属和碱土金属硒化物的水溶液会使元素硒溶解,生成多硒化合物(M2Sen),与硫能形成多硫化物相似,硒可从电解铜的阳极泥和硫酸厂的烟道灰、酸泥等废料中回收而得。
二、硒的用途: 硒的主要用途为干印术的光复制,这是利用无定形硒的薄漠对于光的敏感性,能使含有铁化合物的有色玻璃退色。也用作油漆、搪瓷、玻璃和墨水中的颜色、塑料。还用于制作光电池、整流器、光学仪器、光度计等。 硒在电子工业中可用作光电管、太阳能电池,在电视和无线电传真等方面也使用硒。另外,硒可在玻璃、颜料及冶金工业中应用。硒能使玻璃着色或脱色,高质量的信号用透镜玻璃中含2%硒,含硒的平板玻璃用作太阳能的热传输板和激光器窗口红外过滤器。冶金方面,含硒的碳素钢、不锈钢和铜合金具有良好的加工性能,可高速切削,加工的零件表面光洁;硒与其他元素组成的合金用以制造低压整流器、光电池、热电材料。硒以化合物形式用作有机合成氧化剂、催化剂,可在石油工业上应用。硒可作动物饲料微量添加剂。硒加入橡胶中可增强其耐磨性。硒与硒化合物加入润滑脂。
硒知识
2019-03-08 09:05:26
硒属半金属,固态硒分无定形和晶体两种,无定形硒又分赤色粉状、玻璃状和胶体状三种。晶体硒有单斜晶体和六方晶体之分,其间以灰色六方晶体最为安稳。赤色的单斜晶体和灰色的六方晶体是硒的同素异形体。红硒在受热后,会敏捷变成灰硒。灰硒的熔点为2l7℃。灰硒的重要特性是它具有典型的半导体功用,能够用于无线电的检波和整流。硒整流器具有耐负荷、耐高温、电安稳性好等特色。
硒对光十分灵敏。据测定,在足够阳光的照射下,硒的导电率比在漆黑时要大一千倍。这样,硒被用来制作光敏电阻和光电管,在自动控制、电视制作等方面有着广泛的用处。硒还被制成光电池。硒及其化合物均有毒。
硒首要赋存在黄铜矿、黄铁矿、方铅矿中,有时也存在于辉钼矿、铀矿中,首要的硒矿藏有硒铜矿、硒铜银矿、硒银铅矿、辉矿。工业上硒一般是从铜电解精粹的阳极泥中提取。现在广泛选用的是硫酸化焙烧法,此办法的首要长处是硒的收回率高,适用于处理多种质料。此外,还有苏打焙烧法收回硒。关于高纯硒的制取办法有蒸馏法和氧化-还原法,后者广泛用于制备纯度大于99.992%纯硒。为制取纯度超越99.999%的高纯硒,可选用真空蒸馏法、离子交换法、硒化物热分化及二氧化硒气相还原法等。
工业纯硒约有55%用于玻璃的上色和脱色颜料。高质量信号用的透镜玻璃含硒2%,参加硒的平板玻璃用作太阳能的热传输板和激光器窗口红外过滤器。在冶金工业上,硒能够改进碳素钢、不锈钢和铜的切削加工功用。大约有30%的硒以高纯方式(99.99%)与其他元素作成合金。硒还用于制作低压整流器、光电池、热电材料以及各种复印复写的光接受器。其他15%的硒,以化合物方式用作有机组成的氧化剂和催化剂。硒及硒化物参加光滑脂中,可用于超高压光滑。
镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。
稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。
稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。
我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
铜铟镓硒
2017-06-06 17:50:12
铜铟镓硒主要用于生产太阳能电池。铜铟镓硒薄膜太阳电池具有生产成本低、污染小、不衰退、弱光性能好等显著特点,光电转换效率居各种薄膜太阳电池之首,接近于晶体硅太阳电池,而成本只是它的三分之一,被称为下一代非常有前途的新型薄膜太阳电池,是近几年研究开发的热点。此外,该电池具有柔和、均匀的黑色外观,是对于外观有较高要求场所的理想选择。由于铜铟镓硒薄膜太阳电池具有敏感的元素配比和复杂的多层结构,因此,其工艺和制备条件的要求极为苛刻,
产业
化进程十分缓慢。仅在数年以前,薄膜光伏(Thin Film Photovoltaics,以下简称TF PV)技术在光伏
产业
中还只能用“微不足道”来形容,只是在诸如计算器这样一些简单的产品中得到应用。除非晶硅外,一些TF PV材料还只是刚刚走出实验室。 但在今天,TF PV已经是PV技术中最耀眼的一员,其生产份额不断扩张。起初,这一
市场
是由于晶硅的短缺而得以发展,但如今短缺现象已经结束,TF PV则以其低成本、低重量和灵活性而继续发展。而且,除了非晶硅外,铜铟镓硒(CIGS)具有TF PV的所有优点,能量转换效率也并不远逊于传统PV,碲化镉太阳能面板已经出现了繁荣局面。根据美国NanoMarkets公司2008年3月发布的白皮书《走向成功的薄膜光伏》及之前出版的《薄膜、有机、可印刷光伏
市场
:2007-2015》研究报告中的
预测
,由于采用简单印刷和roll-o-roll(R2R)制造工艺降低了成本,新产能的增加,以及通过技术改进提高了效率,这些都将使得薄膜光伏成为PV
市场
的主要角色,TF PV太阳电池将取代目前
市场
上由传统的晶硅制造的PV面板而成为主流技术。铜铟镓硒发展态势 随着近年来能源
价格
如火箭般上窜,加之PV
价格
的滑落,PV领域的成长非常显著,有些观察家声称PV最终可满足美国能源需求达20%之多。 与传统PV比较,TF PV因用于制造薄膜电池的材料较少,因而成本更为低廉。TF PV的制造是将由光电材料构成的薄层沉积于衬底,这就大大减少了原料的使用。新生产工艺的出现,包括roll-o-roll和印刷技术,又可以进一步降低成本。 铜铟镓硒性能方面,在不久的将来薄膜技术效率的显著提高已成为大势所趋。例如,CIS/CIGS的效率已经可以和传统PV相提并论。但尽管已取得某些进展,薄膜技术和传统PV的效率之间仍存在一定差距,且在某些情况下差异明显。其结果是:TF PV必须与传统PV在成本基础上竞争,或者TF PV需要在性能基础上创造出新的应用。想要了解更多关于铜铟镓硒的资讯,请继续浏览上海
有色
网(
www.smm.cn
)小
金属
频道。
固体废弃物铬渣的无害化资源化新工艺技术
2019-02-20 14:07:07
到2003年,我国已堆存铬渣450多万吨,且每年仍以超越40万吨的速度在添加,已成为我国化学工业的严峻污染之首。半个世纪以来,对铬渣的无害化、资源化已提出了许多办法,这些办法大体可分2大类:解毒处理(即无害化)和归纳使用(即资源化)。其间解毒处理又分为干法解毒和湿法解毒,但都因解毒不完全、本钱高、处理量小、功率低一级许多问题而没有得到广泛应用。而归纳使用一般要与其他相关厂商(如水泥、炼铁、钙镁磷肥、玻璃及釉面砖、耐火材料等)联接,不然就会由于运送及防护等问题而使其不具有经济性。
中国科学院进程工程研讨地点绿色清洁出产领域已研讨、探究多年,并提出了以铬盐“亚熔盐”清洁出产新工艺为代表的多项基础性新技能。其“酸碱联产”课题组通过10多年的研讨,提出了“酸碱联产与酸碱盐再生循环”新系统,并一向致力于将该基础性技能应用于资源归纳使用、废弃物资源化及生态化进程中山;通过研讨,对铬渣的资源化也提出了新的工艺,为铬渣处理及资源的二次使用供给了可供挑选的新办法。
一、实验部分
(一)反响原理
铬渣呈强碱性,其间的首要元素可用氧化物表明,铬渣与氯化铵反响可使铵游离出来,而氯根则与金属离子结组成氯化物。化学反响式如下:
用氯化铵浸出铬渣,系统pH约为4,此刻Fe、Al氯化物大部分以氢氧化物方式留在渣中,此渣经进一步处理可用作水泥质料。向浸出液中参加和二氧化碳可得到Ca、Mg、Cr氢氧化物沉积,回来出产进程中循环使用;氯化铵溶液增浓后循环使用。
(二)实验办法
所用铬渣由河南义马铬盐厂供给,首要成分见表1。氯化铵浸出铬渣实验装置如图1所示。
表1 铬渣的组成%NaCaMgFeAlSiCr6+*1.5420. 1310.019.195.339.611.48∑Cr*Na20CaOMgOFe203Al203Si024.352.0828.1816.6813.1310.0720.59
*:以Cr203计。 铬渣研磨后过筛,取必定质量按必定配比与氯化铵溶液混合,并参加到反响器中,密闭,拌和,程序升温。抵达设定温度后,开端排放惰气、CO2、气等。的蒸出夹藏必定水量,故要守时定量补水,以保持系统的液固体积质量比稳定。反响完成后,趁热过滤,洗刷滤饼。滤液与洗水兼并,丈量体积和pH并取样送分析;滤饼于干燥箱中恒温烘干2h以上,称量并取样送分析。
样品元素分析选用电感耦合等离子体发作光谱(ICP-AES),首要调查Ca、Mg、Na、Cr的浸出率,以渣相分析成果为核算依据。核算公式如下: 式中:Me为金属元素(Ca、Mg、Na、Cr等);mi为铬渣中的金属元素质量,g;mo为铬渣浸出尾渣中的金属元素质量,g。
二、成果与评论
(一)温度对金属浸出率的影响
铬渣质量100g(粒度100目一下),氯化铵质量192g(配成300g/L水溶液),FeCl2·4H20质量18g,拌和转速300r/m,反响时刻4h(到达设定温度时开端计时)。反响温度对金属元素浸出率的影响实验成果如图2所示。
由图2可知:Na、Cr6+的浸出率随反响温度升高改变不大;Ca浸出率随温度升高而升高;Mg浸出率则随温度升高先升高后下降;Fe、Al浸出率均较低。归纳考虑,浸出温度以120~140℃较为适合。
(二)浸出时刻对金属浸出率的影响
铬渣质量100g(粒度100目以下),氯化铵质量192g(配成300g/L水溶液),FeC12·4H2O质量18g,拌和转速300r/m,浸出温度120℃。反响时刻对铬渣中金属元素浸出率的影响实验成果如图3所示。 由图3可知:浸出进程中Na、Fe浸出率比较稳定Ca、Mg、Cr6+浸出率均随温度升高而先升高后下降;Al浸出率则动摇较大。这首要是与苛化蒸速度有关,反响前期,系统碱性较强,反响速度较快;反响后期则反响动力显着削弱,直至到达动态平衡。归纳考虑,反响时刻以3~4h较为适合。
(三)物料配比对金属浸出率的影响
铬渣质量100g(粒度100目以下FeCl2·4H20质量18g,拌和转速 300r/m,反响温度120℃,反响时刻4h(到达设定温度时开端计时),氯化铵用量对铬渣中金属元素浸出率的影响实验成果如图4所示。
由图4可知:氯化铵与铬渣的配比对Mg及Cr6+浸出率的影响较为显着,二者均随配比的升高而升高;对Na、Ca浸出率的影响则不显着。这是由于Na与Ca的氧化物因其碱性较强而更容,易与NH4Cl发作反响,Mg氧化物碱性弱,Cr6+还有复原进程。依据实验成果,断定适合的氯化铵用量为理论量的1.1~1.3倍。
(四)铬渣粒度对金属浸出率的影响
铬渣质量100g,氯化铵质量192g(配成300g/L水溶液),FeC12·4H20质量18g,拌和转速300r/m,反响温度120℃,反响时刻4h(以到达设定温度时开端计时),铬渣粒度对金属浸出率的影响实验成果如图5所示。能够看出:随铬渣粒度减小,一切元素的浸出率升高Ca、Mg浸出率升高的特别显着。这是由于粒度减小,比表面积添加,传质得到较大程度进步,有利于反响的进行。但粒度过小意味着操作负荷添加,因而粒度也不能过小。依据实验成果,铬渣粒度以100~150μm较为适合。 (五)拌和速度对金属浸出率的影响
铬渣质量100g(粒度100目以下),氯化铵质量192g(配成300g/L水溶液),FeC12·4H20质量18g,反响温度120℃,反响时刻4h(以到达设定温度时开端计时),拌和转速对金属元素浸出率的影响实验成果如图6所示。 由图6可知:各金属元素浸出率基本上随拌和速度进步而进步,但进步起伏不大,可见反响不受扩散控制。拌和速度对反响的影响与拌和桨方式,反响器方式有关,因而只要对特定的反响器及拌和方式才可断定适合的拌和速度。实验成果表明,实验条件下,拌和速度以200~300r/min较为适合。
三、结语
依据实验成果,用氯化铵浸出铬渣可完成铬渣中钙、镁、钠、铬等金属元素的高效浸出。实验条件下,氯化铵浸出的较适合工艺参数为:反响温度120~140℃,反响时刻3~4h,氯化按用量为理论用量的1.1~1.3倍,铬渣粒度为100~150μm,拌和速度200~300r/m。处理后,铬渣质量大大削减,含铬钙镁沉积及氯化铵均可循环使用,浸出残渣进一步处理后可用作水泥质料,完成了无渣排放。
硒常识
2019-03-14 09:02:01
硒 硒属半金属,固态硒分无定形和晶体两种,无定形硒又分赤色粉状、玻璃状和胶体状三种。晶体硒有单斜晶体和六方晶体之分,其间以灰色六方晶体最为安稳。赤色的单斜晶体和灰色的六方晶体是硒的同素异形体。红硒在受热后,会敏捷变成灰硒。灰硒的熔点为2l7℃。灰硒的重要特性是它具有典型的半导体功用,能够用于无线电的检波和整流。硒整流器具有耐负荷、耐高温、电安稳性好等特色。 硒对光十分灵敏。据测定,在足够阳光的照射下,硒的导电率比在漆黑时要大一千倍。这样,硒被用来制作光敏电阻和光电管,在自动控制、电视制作等方面有着广泛的用处。硒还被制成光电池。硒及其化合物均有毒。 硒首要赋存在黄铜矿、黄铁矿、方铅矿中,有时也存在于辉钼矿、铀矿中,首要的硒矿藏有硒铜矿、硒铜银矿、硒银铅矿、辉矿。工业上硒一般是从铜电解精粹的阳极泥中提取。现在广泛选用的是硫酸化焙烧法,此办法的首要长处是硒的收回率高,适用于处理多种质料。此外,还有苏打焙烧法收回硒。关于高纯硒的制取办法有蒸馏法和氧化-还原法,后者广泛用于制备纯度大于99.992%纯硒。为制取纯度超越99.999%的高纯硒,可选用真空蒸馏法、离子交换法、硒化物热分化及二氧化硒气相还原法等。 工业纯硒约有55%用于玻璃的上色和脱色颜料。高质量信号用的透镜玻璃含硒2%,参加硒的平板玻璃用作太阳能的热传输板和激光器窗口红外过滤器。在冶金工业上,硒能够改进碳素钢、不锈钢和铜的切削加工功用。大约有30%的硒以高纯方式(99.99%)与其他元素作成合金。硒还用于制作低压整流器、光电池、热电材料以及各种复印复写的光接受器。其他15%的硒,以化合物方式用作有机组成的氧化剂和催化剂。硒及硒化物参加光滑脂中,可用于超高压光滑。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
二氧化硒的用途有哪些
2018-08-30 10:44:27
二氧化硒(Selenium dioxide)+4价的氧化物,化学式SeO2。白色晶体,蒸气为绿色;熔点340~350℃,315℃时升华,密度3.95克/厘米3(15℃)。二氧化硒相应的酸为 H2SeO3,其酸性比 H₂SO₃ 弱。硒在空气或氧气中燃烧,或将H2SeO3脱水,都可制得二氧化硒,并可用升华法提纯。二氧化硒主要用在电解锰工业上,每生产一吨电解锰约需1公斤二氧化硒(各工艺略有不同),电解锰工业约占二氧化硒用量的80%。其次用于饲料工业上生产 Na2SeO3,现在在农工业上也作为含硒农作物的叶面硒肥原料。其他也可用于:分析用,沉淀锆、铪。检定生物碱。氧化剂。制造其他硒化合物和高纯硒。催化剂。1、用于制高纯硒和其他硒化合物,还是有机合成药物的氧化剂和催化剂2、用作植物碱之特殊试剂,还可用于沉淀锆、铪和制备硒化合物3、用作有机化合物氧化剂、催化剂、化学试剂,各种无机硒化合物制造的原料。也在复印机、整流器等中使用。4、制造其他硒化合物,生物碱检定,氧化剂。
铬渣的无害化治理和综合利用
2019-02-20 14:07:07
一、前语
在金属铬和铬盐产品的出产进程中,会发生许多铬渣。鉴于质料档次纷歧、破坏程度殊异、出产设备和工艺的不尽相同,铬渣的发生量也有动摇。一般,每出产l t金属铬会排放约10t铬渣,每出产l t铬盐排放3~5t铬渣。我国年排放铬渣约20万t,迄今堆存的铬渣已超越300万t。铬渣的化学成分见表l。
表1 铬渣的典型化学成分Cr2O3Al2O3SiO2CaOMgOK2ONa2OSPH2OFe2O3烧成老渣/%4.665.7410.1730.0222.330.0422.180.0080.08149.4419.28新渣/%3.444.589.5731.1121.790.260.740.0210.051228.1319.65
由表1可知,铬渣既是有害废渣,又是可使用的二次资源。一方面,铬渣中可溶性的Cr6+毒性剧烈,不只损害生态环境,影响动植物成长,并且可通过消化道和皮肤进入人体,散布在肝和中,或经呼吸道积存于肺部,长时刻触摸Cr6+在100μg/m3以上的环境,可引起皮炎、铬疮、支气管炎、肺炎、肺气肿等疾病。国内外因铬渣中Cr6+的强氧化性、致突变性和致癌性所引发的公害事端时有发生;另一方面,因为我国铬资源缺少,综合使用铬渣中各种形状的铬十分必要;而其间含量丰厚的CaO、MgO、Fe2O3等成分,在工业出产中能替代石灰石、白云石等质料运用,可到达节省资源、下降能耗的意图。
国外对铬渣管理的总趋势是将Cr6+解毒处理后堆存或填埋。我国自20世纪60年代开端,先后就铬渣制砖、出产钙镁磷肥、干(湿)法复原解毒、作玻璃上色剂、复原铬渣制五颜六色水泥以及使用铬渣制矿渣棉制品及铸石制品等办法进行了实验研讨,取得了不同程度的发展。鉴于不断添加的铬渣及其严峻损害,其无害化处理和综合使用技能的开发已火烧眉毛。
二、铬渣的无害化处理
铬渣的物相组成杂乱,无害化管理难度大。现在管理铬渣的办法根本分三类:高温复原法(干法)、湿法复原法(湿法)和固化法,三者的比较见表2。
表2 铬渣无害化处理的三种办法比较办法原理使用实践特色干法将粒度小于4 mm的铬渣与煤粒按100∶15的份额进行混合,在高温下进行复原培烧,使Cr6+复原成不溶性的Cr2O3。烧制玻璃上色剂、钙镁磷肥助熔剂、炼铁辅料、铸石和水泥等。可得到有价值的产品;但处理本钱高,吃渣量小,铬渣解毒不完全。湿法将粒度小于120意图铬渣酸解或碱解后,向混合溶液中参加Na2S、FeSO4等复原剂,将Cr6+复原成Cr3+或Cr(OH)3。与呈复原性的造纸废液、味精废水等联合使用,可到达以废治废的意图。处理后Cr6+≤2×10-6,但处理费用高,不宜处理大宗铬渣。固化法将铬渣破坏后参加必定量的FeS04、无机酸和水泥,加水拌和、凝聚,使铬渣被关闭在水泥里,不易再次溶出。以水泥固化为主,也有少数沥青、石灰、粉煤灰和化学药剂的固化使用。该法须参加相当量的固化剂,经济效益差。(一)铬渣的复原解毒处理
在铬渣的复原解毒处理中,干法和湿法最为常用,它们的根本原理都是把毒性大的Cr6+复原为毒性甚小的Cr3+,详细工艺见表3。
表3 铬渣的复原解毒工艺解毒工艺分类复原剂办法简介湿法酸性溶液复原钠、硫酸亚铁等该工艺耗酸量大,适用于有废酸排放的厂商。办法为:将碱性铬渣调至酸性,然后参加Na2SO3、FeSO4等复原剂,在液固两相状况将Cr6+复原为Cr3+(机理如下:CrO2-4+3Fe2++8H+→Cr3++3Fe3++4H2O)。碱性溶液复原、等直接在碱性铬渣中参加、等进行Cr6+的复原反响,构成Cr( OH)3沉积后,过滤收回铬污泥。解毒机理如下:8Na2CrO4+6Na2S+23H2O→8Cr(OH)3+3Na2S2O3+22NaOH纯碱溶液复原碳酸钠、用碳酸钠溶液处理湿磨后的铬渣,使其间酸溶性铬酸钙与铬铝酸钙转化为水溶性而被浸出,收回产品。余渣再用溶液处理,使剩下的Cr6+复原为Cr3+,参加硫酸中和,并用硫酸亚铁固定过量的S。络合复原木质素磺酸盐及硫酸亚铁用造纸废液中的木质素磺酸盐及硫酸亚铁作复原剂,使铬渣中的Cr6+起复原及络合反响,生成铁络木质磺酸盐,解毒后Cr6+含量低于1.8mg/kg。该法不光削减了铬渣对环境的损害,还消除了造纸废液对环境的污染。水蒸汽转化废水中具有复原性的有机物用制糖或味精废水作复原剂,与铬渣混合调成浆状,放入受压密封的电加热容器内,通过电加热,使容器内浆料发生300℃以上过热蒸汽,促进渣中的Cr6+的复原反响顺利进行。该法还消除了制糖和味精废水的污染。干法碳复原碳粉、无烟煤粉等将铬渣和碳粉、无烟煤粉等按必定份额(约100∶15)混合在复原气氛中加热至800℃左右,继续一段时刻直至将Cr6+转化为无毒的Cr3+。烧结矿硅质助熔剂、补助性复原剂将铁精矿和铬渣混协作质料生成烧结矿,在烧结进程中对铬渣进行解毒。这种办法出产10t烧结矿要参加80%的铁精矿,并且处理废渣量少,所以本钱较高,不能从根本上处理铬渣的处理问题。密封焙烧煤炭、稻壳或其它有机物将铬渣与适量煤炭或锯末、稻壳混合,在540~600℃下焙烧,以进程发生的CO和H2为复原剂,并在密封条件下水淬,投加过量的硫酸亚铁与硫酸混合,以稳固复原效果,解毒渣中的Cr6+降至极低,可堆存或使用。
(二)铬渣的固化/安稳化处理
铬渣的固化/安稳化处理是将铬渣破坏后参加必定量的无机酸或硫酸亚铁,使其间的Cr6+复原成Cr3+,再参加相当量的水泥,加水拌和,凝聚,跟着水泥的水化与凝聚硬化进程,铬化合物会构成安稳的晶体结构或化学键,且被关闭在固体基材中,不易再溶出,然后到达安稳化和无害化的意图。
在铬渣的固化处理中,选用高炉矿渣和粉煤灰参加到水泥基材中对铬渣进行固化/安稳化处理,实验标明:参加超细高炉渣后,因为矿渣的复原性,固化体的强度和铬渣的浸出毒性已大大进步,铬渣的参加量最高可达40%,固化体的抗压强度可达30MPa以上,可用于建材。
研讨标明:硫酸亚铁经预复原后所得到的铬渣固化体的浸出毒性比没有预复原处理的固化体浸出毒性要下降60%以上;一起硫酸亚铁的加料办法对处理效果影响很大,适合的加料办法是硫酸亚铁先配成水溶液后与铬渣进行拌和,这能够增大复原反响进行的程度;硫酸亚铁的参加量应以理论核算值的1.25倍为宜。
三、铬渣的综合使用
铬渣具有硬度大、熔点高的性质,所以,人们常使用铬渣制成铸石、砖等建筑材料,或用作某些产品的替代质料,并使Cr6+转变成Cr3+或金属铬,到达解毒和资源化综合使用的两层意图。现在,比较老练的综合使用铬渣的办法有:
(一)作建筑材料
1、出产辉绿岩铸石
辉绿岩铸石是优秀的耐酸碱、耐磨材料。广泛用于矿山、冶金、电力、化工等工业部门,出产铸石时需用铬铁矿作为晶核剂。因为铬渣中含有残存的铬,是出产铸石的杰出的晶核剂,铬渣中还有必定数量的硅、钙、铝、镁、铁等,这些都是铸石所需求的元素。
2、出产铬渣棉
矿渣棉是优秀的保温、轻体建筑材料。用铬渣制成的渣棉的质量相功能与矿渣棉根本相同,因为是在1400℃的高温下复原解毒,因而解毒完全。浸液毒性实验结果标明,矿渣棉水溶性Cr6+含量为0.15mg/kg,大大低于有关固体废物污染操控标准。
3、制砖
将铬渣同粘土、煤混合烧制红砖或青砖技能简略、出资及出产费用低、用渣量大。研讨标明,因为质料中许多粘土在高温下呈酸性,加之砖坯中煤及其气化后CO的效果,有利于Cr6+分解为Cr3+,使制品砖所含Cr6+显着下降,特别是制青砖的饮窑工序构成的CO,不只将红褐色氧化铁复原为青灰色的Fe3O4,并且进一步将剩余Cr6+解毒,效果更好;铬渣掺量较少时,对制品砖的抗压、抗折强度无显着影响。如广州铬盐厂以铬渣40%(破坏至100目)、粘土60%制成的青砖,经化验分析,Cr3+约0.5%~3%,砖的抗压强度140kg/cm3以上,抗折强度60kg/cm3以上。
若将铬渣与陶瓷质料制得的基料按份额充沛混合,喷入雾化水,混匀、造粒,用压机成型,枯燥后素烧,然后上釉再枯燥,最终入窑将烧制得彩釉玻化砖。此种砖外形漂亮,装修办法多,商场销路好;并且因为选用干料混磨法,使得粒径均匀,反响完全,玻化量大,解毒效果好,无二次泻染。
4、制水泥
铬渣的首要矿藏组成为硅酸二钙、铁铝酸钙和方镁石(三者含量达70%),与水泥熟料矿藏组成类似。铬渣用于水泥有三种办法:
① 铬渣干法解毒后作为混合材,同水泥熟料、石膏磨混制得水泥,铬渣用量约为制品水泥的10%。
② 铬渣作为水泥质料之一烧制水泥熟料,铬渣用量约占水泥熟料的5%~10%。
③ 铬渣替代氟化钙作为矿化剂烧制水泥熟料,铬渣用量占水泥熟料的2%。三种办法的铬渣用量首要取决于质料石灰石的含镁量。
以粉煤灰(或煤矸石)、石灰石、铬渣、矿渣等为质料,在950~1100℃下煅烧,可出产一种化学组成、矿藏组成差异于普通硅酸盐水泥,但水泥28天强度可超越325#水泥标号的新式低温水泥。
(二)用作玻璃制品的上色剂
玻璃是一种由熔融体经冷却而呈无规则摆放的非晶态固体。在玻璃熔制进程中引进含铬化合物时,该玻璃可吸收某些波长的光,出现与透过部分波长的光相应的色彩。玻璃料在高温熔融时,Cr6+不安稳,转化为Cr3+,而使玻璃出现绿色。曾经,做绿色玻璃上色剂的首要为铬铁矿、、三氧化二铬等。20世纪60年代中期起,沈阳、天津及青岛等地开端用铬渣替代铬矿及其它铬系产品作绿色玻璃上色剂。
该法要求铬渣粒度为0.2mm左右,含水量应低于10%。因为各厂所用质料的化学组成不尽相同,铬渣的参加量也有差异。依据部分供应商的经历,铬渣做玻璃上色剂的参加量为3%~5%。铬渣替代其它铬系质料做绿色上色剂的长处可归纳为:
① Cr6+解毒完全,无二次污染,安稳性好,资源化程度高。但在破坏、运送、装卸进程中应留意劳动保护。
② 用铬渣替代铬矿粉所得的玻璃色彩鲜艳,质量有所进步。
③ 铬渣是经高温氧化焚烧的活性物质,内含必定量的熔剂,能下降玻璃料的熔融温度,缩短熔化时刻,节省能源。
④ 铬渣价廉易得,除其间铬离子可使玻璃上色外,其间的MgO、CaO、Al2O3、SiO2等也是玻璃的有用成分。因而用铬渣可相应削减某些质料参加量,然后有效地下降了玻璃制品的出产本钱。
(三)替代石灰用于炼铁
炼铁需用石灰石、白云石作熔剂。铬渣中含约50%~60%的MgO和CaO,此外尚含10%~20%的Fe2O3,这些都是炼铁所需的成分。少数铬渣替代消石灰同铁矿粉、煤粉混合在烧结炉中烧结后,送高炉冶炼,炉内高温文CO强复原气氛将渣中Cr6+复原为Cr3+乃至金属铬,金属铬熔入铁水,其它成分熔入熔渣,后者水淬后可作水泥混合材。少数铬渣对烧结矿质量、高炉出产无影响,炼铁本钱略有下降。
(四)替代蛇纹石出产钙镁磷肥
用铬渣替代蛇纹石作助熔剂出产钙镁磷肥,肥料质量契合钙镁磷肥三级标准,经田间实验,肥效与用蛇纹石制作的钙镁磷肥相同。因为使用铬渣中的钙、镁节省了蛇纹石,使钙镁磷肥本钱下降10%以上,每吨钙镁磷肥可处理铬渣约400kg。在生严中因以煤或焦炭为燃料和复原剂,所以可把铬渣中的Cr6+复原成Cr3+,到达无害化的意图。
(五)制防锈颜料
铬渣经物理办法加工制成钙铁粉,具有杰出的防锈功能,其质量安稳,已使用于酚醛、醇醛和环氧等防锈涂料的防锈颜料,该产品通过查验系无毒产品,已在两家厂商出产。工艺关键是选用恰当办法加快颗粒沉降速度,缩短出产周期,留意选用防潮功能杰出的包装材料。该法铬渣用量大,每出产1t钙铁粉可耗费铬渣1.2~1.3t。
(六)制备其它铬系产品
铬渣通过复原、别离、浸取、蒸腾、酸化等工艺,可制成Na2Cr2O7、Na2S等产品;铬渣与废混合,参加解毒剂、添加剂,可制成铬黄、石膏和氧化镁等。
对铬渣在95℃下用水浸取溶解得到可溶性铬盐,然后用15%NaOH溶液调PH值至13,再用H2O2将Cr3+氧化为Cr6+,参加PbAc2溶液,沉积生成PbCrO4,通过滤枯燥后即得到产品。实验中质料的最佳配比为铬渣:H2O2(30%)∶PbAc2=7∶3∶3.2,lkg铬渣能够制得0.457kg。
四、定论和主张
(一)铬盐工业是重要的根底质料工业,涉及到国民经济10%以上的产品,在国民经济中占有亘要的位置。铬渣的毒性大,排放量大,堆积占地面积大,严峻污染了周围环境,影响人体健康;但铬渣除铬外,还含有CaO、MgO、Fe2O3等有用成分,对其综合使用很有必要。
(二)铬渣的管理应根据“减量化、无害化、资源化”的考虑。在铬盐出产中,首先应活跃选用清洁出产工艺,变结尾消沉管理为最大极限地消减产渣量;铬渣发生后,需采纳适合的技能进行无害化处理,将其间的Cr6+尽可能地复原为毒性甚小的Cr3+,或是固化在水泥、粉煤灰、炉渣等基材中,使之不再溶出;最终,对经无害化处理的铬渣应量体裁衣,综合使用,使之成为新的资源。
(三)国内外的实践标明:铬渣使用潜力很大,能开发的技能和产品许多,现有的无害化和综合使用水平仍需进步,效果规模还要扩展,特别是适用于中小型铬盐厂商的铬渣综合使用技能仍待开发,以完全处理这一环境损害。
铬渣的处理及利用一体化
2019-02-20 11:59:20
铬渣是指在铬出产进程中由铬铁矿、纯碱和钙质填料按必定份额混合,经高温煅烧、用水制取后所得的灰绿色残渣,是一种强碱性物质。因为所用质料及配方的不同。每出产一吨所排铬渣量也不尽相同,大约在2.0-3.0吨左右。根据所用质料与配方的不同,在出产进程中所排铬渣的元素组成也不尽相同。
渣中的Cr6+,具强氧化性;水溶Cr6+对环境的污染和损害更大,铬渣的无害化处理被认为是我国铬盐职业健康发展的瓶颈问题,也是世界性的难题。因为铬渣中含有钙、镁、铁、铝、硅、铬等元素,这就为铬渣的管理与资源化供给了或许。石家庄市亚富化工有限公司和济南裕兴化工厂是合作单位,公司技能组从实际出发找到了三条卓有成效的铬渣处理及使用的途径。
一、 水泥固化法
(一)FeSO4复原铬渣中的Cr6+
铬渣中含有很多碱性物质,如方镁石、铬铝酸钙、碱性铬酸铁等,它们都溶于酸。铬渣如处于酸性条件下,这些物质必被溶解.其成果,铬渣所剩无几达不到使用意图。所以咱们有必要在碱性条件或中性条件下复原渣中Cr6+,而FeSO4能作为复原剂来到达这一意图,其首要反响式如下:
FeSO4 →Fe2+ +SO42-
碱性条件:
Fe2++2OH-=Fe(OH)2
CrO42-+3Fe(OH)2+4H20=Cr(0H)3+3Fe(OH)3+2OH-
中性条件:
CrO42-+3Fe2++8H2O=Cr(OH)3+3Fe(OH)3+4H+
这样,只需 FeSO4与铬渣相混合在水溶液中,不管其所在条件,都能进行反响,使处理工艺大为简略。Cr3+的毒性很小,且是人体和生物所必需的一种微量元素,因而对铬渣的处理是把六价铬离子转换成三价铬离子,这就是铬渣的无害化处理。并且FeSO4是价廉易得的复原剂,咱们用的FeSO4是济南裕兴钛厂的副产品,富含水和硫酸、FeSO4·7H2O含量达98.5%以上,含有少数废酸和钛。
(二)水泥的固化处理
铬渣元素组成的60%是CaO 、SiO2、Al2O3和Fe2O3,这四种元素也是水泥的基本成分;它们在铬渣中以硅酸二钙和铁铝酸钙方式存在,是水泥四种有胶凝活性化合物中的两种。假如没有六价铬和方镁石(游离氧化镁,其量占铬渣的20%左右),铬渣可以直接作低标号水泥使用。所以,去除Cr6+和氧化镁是使用水泥固化铬渣的要害,而FeSO4除了首要的复原作用外,仍是硫酸盐的激起剂,可激起水泥活性;别的,它还能促进氧化镁的改变,避免其胀裂作用,提高了水泥的安定性。
铬渣和FeSO4遇水即与铬渣中Cr6+发作反响,去除铬害,其间水溶Cr6+可从本来的 1000-2000ppm降低到5ppm以下.再与水泥混合,复原铬渣中极少数的可溶性六价铬能跟着水泥的水化和凝聚硬化进程的进行,被封存在水泥石凝胶硬体内,即便初期有微量的水溶性六价铬溶出,但跟着水泥石的硬化和强度的增加,六价铬的溶出量将随之削减。直至这部分六价铬完全被封固在混凝土内而不再溶出。功能安稳,解毒完全,经过屡次测定,水泥制品的Cr6+浓度都远在5ppm以下。
(三)使用举例
铬渣(济南裕兴化工厂)100Kg、FeSO4·7H2O(济南裕兴钛厂)15Kg、水适量参加拌和机拌和6 min,再参加425#硅酸盐水泥25Kg拌和 3 min,用于我公司的土建施工中,铺设混凝土路途约1公里,地上600余平方米,复原铬渣混凝土首要用于路途、地上的混凝土垫层中,再在混凝土垫层上面做一层15-20mm厚的水泥砂浆面层,这样就可以到达将复原铬渣中剩余部分水溶性六价铬完全固化的意图。
二、 铬渣作燃煤固硫剂
我公司坐落华北平原中部无极县,无极县是传统的农业大县,乡村居民大部分都用蜂窝煤来煮饭取暖。而煤焚烧后将发生很多的SO2、NOx气体,构成严峻的空气污染。
原煤因产地不同,含不同份量的有机硫,无机硫,碳和有机物等具复原性,铬渣含Na、Ca、Mg、Cr、Fe和Al等元素不只具有氧化性还具催化焚烧作用,使用两者的氧化复原特性在必定的焚烧条件下可将铬渣作为原煤的固硫剂、而原煤则作为铬渣的解毒复原剂。这样就处理了铬渣的污染管理难题和燃煤的固硫本钱问题,做到了处理及使用一体化。
因为渣中六价铬首要以四水和铬酸钙方式存在,所以首要反响式如下:
2Cr6+ + 3S2- + 3OH- = 3S+Cr(OH)3
2C+O2=2CO (1)
2Na2CrO4·4H2O+3CO=Cr2O3+2Na2O+3CO2↑+4H2O↑ (2)
2CaCrO4+3CO=Cr2O3+2CaO+3CO2↑ (3)
解毒后的煤铬渣,其六价铬含量可达8PPm以下,契合铬盐工业污染物标准GB4280-84中规则的第二级标准、且安稳性较好,长时间露天堆存六价铬无显着“上升”现象。
使用举例
原煤:铬渣=90:10 将上述物料破坏至<3mm,加适量水陈化二天,使煤中部分硫与铬渣中的Cr6+进行反响被固化,然后参加10%的粘土和适量水,拌和均匀,经蜂窝煤机揉捏成型。固硫率达68%,炉渣经破坏可作混凝土垫层材料等。
三、 铬渣作脱硫剂
动力在我县乡村散布广泛,就地使用粪便、桔杆、杂草、废渣、废料等出产。含有必定量的 ,有时也含极少数的有机硫 ,是剧毒的有害物质。空气中含0.1 %的数秒内可使人丧命。它对输气管、仪器仪表、焚烧设备有很强腐蚀作用 ,其焚烧产品二氧化硫也是一种腐蚀性很强的气体 ,一起进入大气能发生“酸雨”。为确保人体健康和维护大气环境 ,延伸燃气设备等的使用寿命 ,有必要进行脱硫。
气体的脱除办法较多 ,其间氧化铁法是一种经典而有用的脱硫办法 ,其长处是工艺简略、操作简单、能耗低 ,至今仍被广泛使用。铬渣见表1 Fe2O3含量10.6%,我公司用FeSO4·7H2O把铬渣中的Cr6+复原,这样即便用了铬渣中的Fe2O3又对铬渣进行了解毒,即便有残留Cr6+也会被中H2S的再次复原,所以解毒完全,脱硫进程是在碱性液膜中进行的。
氧化铁系脱硫剂的脱硫原理
在含有H2S的气体经过脱硫剂时 ,首先是H2S分子分散到颗粒表面 ,然后在水膜中离解:
H2S →H+ +HS-
HS- →H+ + S2-
离解的 HS- 、S2- 替代了 O = Fe - OH 中的 - OH 和=O ,生成 S= Fe - SH,即 Fe2S3的水合物和 FeS。
FeSO4 → Fe2+ +S042-
Cr207 2- + 3Fe2++14H+ = Cr3++ 3Fe3+ +7H2O
Fe2O3·H2O +3H2S = Fe2S3 ·H2O +3H2O
Fe2O3·HO +3H2S = 2FeS+S+4H2O
2Cr6+ + 3S2- + 3OH- = 3S+Cr(OH)3
出产举例:
FeSO4·7H2O 100Kg,铬渣25Kg,木屑10kg加水适量参加拌和机拌和6 min,参加熟石灰25kg拌和均匀,混碾10 min,经成型机揉捏成条形固体,烘干活化成黄色条形制品。
小结:
1、水泥固化是根据水泥的水合和水硬胶凝作用而对复原铬渣进行固化处理的一种办法,它将复原铬渣和普通水泥混合,构成具有必定强度的固化体,然后到达复原铬渣中残留Cr6+的风险成分浸出的意图。此法处理铬渣量大,是使用最好的技能之一,且用于土建施工中,每立方米可节省本钱20元左右。
2、用铬渣作固硫剂处理了铬渣的污染管理难题和燃煤的固硫本钱问题,具有必定的环境效益和经济效益。
3、使用铬渣制备脱硫剂是一杰出的以废治害,化害为利的综合使用办法,对具有较好的脱硫作用,经其脱硫后,使H2S含量从3000-5000 mg/m3降到20 mg/m3以下,契合国家规则的排放标准,并且对铬渣解毒最为完全。该作业具有较好的环境效益和经济效益。
锌硒宝价格
2017-06-06 17:49:51
锌硒宝是以通过生物转化的锌硒碘蛋白质粉为主要原料,辅以淀粉、甜菊糖甙、明胶等加工而成的保健食品。锌硒宝大多以锌硒宝片的形式出售,价格在100/瓶左右.锌硒宝富含锌、硒、碘等多种微量元素,它能增强人体免疫功能,提高人体血清锌、硒的浓度,具有促进食欲、提高抗感染能力、促进体弱多病者康复的作用。锌是人体内酶的重要组成部分,直接影响到核酸及蛋白质的合成,对儿童的生长发育起着关键作用。缺锌会导致生长矮小、生殖器发育不良、智力发育差等。牛羊肉、瘦猪肉、蛋黄中的含锌量较高。硒作为谷胱甘肽过氧化酶的成分,具有抗氧化作用;调节免疫、抗肿瘤作用。硒缺乏症又叫克山病,是因硒缺乏造成的骨骼肌、心肌及肝脏变质性病变为基本特征的一种营养代谢病.微量元素的作用,协助普通元素的输送,例如铁是血红蛋白的一个重要部分,血红蛋白之所以能把氧带到全身每一个细胞去,主要是依靠铁;微量元素为酶的活性不可缺少的因子,有些是酶的激活剂,如锌离子能激活肠磷酸酶及肝、肾过氧化氢酶,为胰岛素合成所必需;参与激素的作用;一些微量元素能影响核酸代谢,儿童正处于生长发育时期,除了需要更多的碳水化合物、脂肪、蛋白质等营养素外,还需要一定量的铁、锌、铜等等。其中尤为铁、锌最为重要。铁的摄入量不足,会发生缺铁性贫血,轻度缺铁的儿童注意力会明显降低,进而影响学习。缺锌会影响骨骼生长和性发育,表现为食欲不振、味觉不灵敏,身高体重都赶不上正常的儿童。因此,儿童的饮食一定要多样化,以保证充足的营养成分.