您所在的位置: 上海有色 > 有色金属产品库 > 铬矿粉价格

铬矿粉价格

抱歉!您想要的信息未找到。

铬矿粉价格百科

更多

锌矿粉价格

2017-06-06 17:49:53

锌矿粉价格受美元走强打击,有所回落.国内股市经过昨日的大幅下挫后今日小幅反弹,但并未给锌矿粉市场带来支撑. 国内锌矿粉产业方面,因废锌矿粉及夏季用电高峰时期的电力供应吃紧,7月精炼锌矿粉产量较6月创下的纪录水平下滑5.7%至39.8万吨。今日,上海电解锌矿粉现货报价升贴水为贴水70至升水50元/吨,平水锌矿粉价格57350-57450元/吨,升水锌矿粉价格57400-57550元/吨,期锌矿粉价格回落,持货商出货意愿减弱,市场货源一般,仍以国产锌矿粉流通为主,下游低位有接货意愿,成交气氛尚可。今日国内市场上发布重要消息。国家统计局公布7月居民消费价格指数(CPI)同比上涨3.3%,1-7月份CPI同比上涨2.7%。7月工业品出厂价格(PPI)同比增长4.8%,1-7月工业品出厂价格(PPI)较上年同期增长5.8%。7月新增人民币贷款5,328亿元人民币,7月末广义货币供应量(M2)同比增长17.6%。而表征经济发展的其它经济数据上,1-7月份全社会固定资产投资119866亿元,同比增长24.9%,增速比上半年回落0.6个百分点。7月份社会消费品零售总额12253亿元,同比增长17.9%,比上个月回落0.4个百分点。 笔者对锌矿粉价格仍然维持看涨的观点,但技术压力以及近期的一些宏观面事件打击市场信心。建议多单离场观望,静待企稳后重现建立多单。

铜矿粉价格

2017-06-06 17:49:57

2010年4月15日讯,基于国内需求增长及国民经济增速加快,我国对铜矿粉等原料性商品的需求不断增加,铜矿粉价格亚随着我国国内铜矿粉的需求的变化而变化。蒙古国铜矿储藏量丰富,我国每年从该国进口的铜矿粉占全国进口总量的10%-20%之间,地位十分重要。中国二连口岸是进口蒙古铜矿粉的重要陆路口岸,进口数量稳定    据二连浩特海关信息显示,二连浩特口岸进口的铜矿粉由2009年2月份铜矿粉价格的692美元/吨逐月递增至2010年3月份铜矿粉价格的1655美元/吨,在其进口量稳定增长的基础上,进口均价的增长牵动贸易值及海关税收增幅明显。据介绍,今年一季度二连浩特口岸铜矿粉进口量13.09万吨,贸易值达2.17亿美元,海关征收税款2.52亿元人民币,同比分别增长15.66%、153.25%和152.88%。    2009年以来二连口岸铜矿粉进口继续保持相对稳定的态势,铜矿粉价格逐月回升,进口数量稳中有升。据二连海关统计,4月份口岸进口铜矿粉价格均价920美元/吨,同比下降51.21%,环比增长19.48%;进口数量达5.07万吨,同比增长2.01%,环比增长36.65%,创近两年单月进口数量最高水平。分析原因有:一是受国内需求的拉动、铜矿粉价格相对低位及蒙古国铜矿资源丰富等因素的影响,口岸铜矿粉进口一直处于相对稳定态势;二是国际资源类商品价格不断回升,有色金属价格上涨,牵动进口铜矿粉价格回升。    纯铜是一种坚韧、柔软、富有延展性的紫红色而有光泽的金属,又被称为紫铜。1克的铜可以拉成3000米长的细丝,或压成10多平方米几乎透明的铜箔。纯铜的导电性和导热性很高,仅次于银,但铜比银要便宜得多。铜的颜色很像金,但发红,铜离子的颜色为蓝色。有剧毒,不过,用特定加工法加工的铜没有毒。    更多关于铜矿粉价格的资讯,请登录上海有色网查询。 

我国铬矿简介

2019-03-14 10:38:21

概述铬是重要的战略物资之一,因为它具有质硬、耐磨、耐高温、抗腐蚀等特性,在冶金工业、耐火材料和化学工业中得到了广泛的使用。在冶金工业上,铬铁矿首要用来出产铬铁合金和金属铬。铬铁合金作为钢的添加料出产多种高强度、抗腐蚀、耐磨、耐高温、耐氧化的特种钢,如不锈钢、耐酸钢、耐热钢、滚珠轴承钢、弹簧钢、工具钢等。金属铬首要用于与钴、镍、钨等元素冶炼特种合金。这些特种钢和特种合金是航空、宇航、轿车、造船,以及国防工业出产炮、、火箭、舰艇等不行短少的材料。在耐火材料上,铬铁矿用来制作铬砖、铬镁砖和其他特殊耐火材料。铬铁矿在化学工业上首要用来出产,进而制取其他铬化合物,用于颜料、纺织、电镀、制革等工业,还可制作催化剂和触媒剂等。铬铁矿是我国的缺少矿种,储量少,产值低,每年消费量的80%以上依托进口。   一、矿藏质料特色 铬具有亲氧性和亲铁性,以亲氧性较强,只要在复原和硫的逸度较高的情况下才显现亲硫性。在内生效果条件下铬一般呈三价。六次酸位的Cr3+和Al3+Fe3+的离子半径相挨近,故它们之间能够呈广泛的类质同象。此外,可与铬类质同象替代的元素还有Mn、Mg、Ni、Co、Zn等,所以在镁铁硅酸盐矿藏和副矿藏中有铬的广泛散布。在表生带激烈氧化条件下(碱性介质),Cr3+氧化成Cr6+方式的铬酸根离子,使不活动的铬离子变成易溶的铬阴离子发作搬迁。遇极化性很强的离子(如Cu、Pb等),则构成难溶的铬酸性矿藏。在自然界中现在已发现的含铬矿藏约有50余种,别离归于氧化物类、铬酸盐类和硅酸盐类。此外还有少数氢氧化物、盐、氮化物和硫化物。其间氮化铬和硫化铬矿藏只见于陨石中。具有工业价值的铬矿藏都归于铬尖晶石类矿藏,它们的化学通式为(Mg、Fe2+)(Cr、Al、Fe3+)2O4或(Mg、Fe2+)O(Cr、Al、Fe3+)2O3,其Cr2O3含量为18%~62%。有工业价值的铬矿藏,其Cr2O3含量一般都在30%以上,其间常见的是: 1.铬铁矿 化学成分为(Mg、Fe)Cr2O4,介于亚铁铬铁矿(FeCr2O4,含FeO32.09%、Cr2O3 67.91)与镁铬铁矿(MgCr2O4,含MgO20.96%、Cr2O3 79.04%)之间,一般有人将亚铁铬铁矿和镁铬铁矿也都称为铬铁矿。铬铁矿为等轴晶系,晶体呈细微的八面体,一般呈粒状和细密块状集合体,色彩黑色,条痕褐色,半金属光泽,硬度5.5,比重4.2~4.8,具弱磁性。铬铁矿是岩浆成因矿藏,产于超基性岩中,当含矿岩石遭受风化损坏后,铬铁矿常转入砂矿中。铬铁矿是炼铬的最首要的矿藏质料,富含铁的残次矿石可作高档耐火材料。 2.富铬类晶石 又称铬铁尖晶石或铝铬铁矿。化学成分为Fe(Cr,Al)2O4,含Cr2O3 32%~38%。其形状、物理性质、成因、产状及用处与铬铁矿相同。 3.硬铬尖晶石 化学成分为(Mg、Fe)(Cr、Al)2O4,含Cr2O3 32%~50%。其形状、物理性质、成因、产状及用处也与铬铁矿相同。   二、用处与技能经济指标 铬铁矿石按工业用处划分为冶金级、化工级、耐火级和铸石级。 1.冶金级铬矿石的工业要求 冶金级铬矿石首要用于冶炼各种铬铁合金。用来冶炼铬铁合金的铬矿石又按不同的冶炼用处分为4个等第(表3.4.1)。除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。 除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。

铬矿选矿方法

2019-01-18 09:30:20

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。 下图为甘肃大道尔吉铬矿跳汰一摇床选别流程图。

铜精矿粉

2017-06-06 17:50:05

铜精矿粉的制作工艺 一种铜精矿粉制块工艺发明专利,被国家知识产权局评为优秀专利,入编《中国优秀实用专利大全》。    本发明提供一种铜精矿粉制块工艺,使铜精矿粉制块成为具有25-50kg/cm2强度的团(块)直接入富氧密闭鼓风炉冶炼,床能率可达76-80t/m2.d。可利用现有鼓风炉设备(如我国中条山、邵武、富春江、烟台等冶炼厂的富氧密闭鼓风炉),并能充分发挥鼓风炉投资低,热效率高的优越性,降低冶炼成本,提高 金属 回收率,扩大资源的利用率。    制块设在浮选厂和港口附近,无需像闪速炉那样有庞大的烘干系统和计算机在线控制系统。制块干燥不需燃料和电能,只需添加剂放出的化学热能、太阳能,自然干燥就能使制块水份由10-12%降低到3%以下。它节省了能源,减少了运输费4-6%以及运输途中的 金属 损失,减少冶炼厂的堆码场地。    因入炉制块水份含量低于3%,块料在炉内的预热时间缩短,炉内透气性好,炉料和烟气相逆运动,全风口面积熔炼,鼓风炉又有半自热和自热熔炼的特点,热效率高,加快了 金属 物料的反应速度,富氧使硫和焦炭得到充分燃烧,提高了生产率(即床能率),节省了能源,减少了烟气的排放总量,提了二氧化硫的单位浓度。烟尘量小,不需另设烟尘处理设备。    采用"专有技术"二氧化硫的单位浓度会进一步提高。制酸运行费用低,适应性强,具有明显的环境效益、社会效益、经济效益、推广前景广阔,使二氧化硫变废为宝。二氧化硫不是污染,而是资源,不是祸,而是福,两抟两吸制酸,尾气达标排放,利于环保,达到低投入,高效率,高收益的治理效果。    富氧密闭鼓风炉熔炼铜锍,采用本发明制块和"专有技术",其各项技术经济指标,超过富氧熔池熔炼炉。能与世界先进炉型闪速炉相媲美。    闪速炉投资巨大,占地面积大,有庞大的烘干系统和计算机在线控制系统。闪速炉喷咀易损坏、烟尘量大,需设烟尘处理设备。渣含铜4%需另炉处理,抛渣含铜0.7%;需大量精制耐火材料,技术复杂需高素质人员操作。    富氧熔池熔炼炉,最大缺点是无烘干系统,因而在冶炼过程中带来了诸多不利。    鼓风炉投资少,占在面积小,热效率高, 金属 回收率高(96-97%渣含铜低)0.25-0.35%,生产率高76-80%吨/平方米.日(富氧32-33%)。    节省能源,在无富氧的情况下耗焦率1吨铜/0.5吨焦,有半自热和自热熔炼的特点。鼓风炉结构简单,易制作、易拆装,操作简单,异地安装损失小,可适应大、中、小型冶炼厂。    根据我国现有国情,视外购铜精矿而定,可在较短时间内建成多个百万吨级的粗铜冶炼厂。    本发明不仅适用于铜精矿粉的制块冶炼,而且适用于重 有色金属 (锡、镍、铅、锌)等精矿粉、高铜金精矿粉、高铜银精矿粉的制块冶炼。    采用本发明生产粗铜,附属设备少,工艺流程简单,易操作,不易死炉,冶炼连续作业时间长,经济效益明显无风险。更多铜精矿粉的制作工艺信息请详见上海 有色金属 网 

锰矿粉造块

2019-01-04 11:57:12

造块方法包括烧结、球团和压球3种工艺。目前,我国造块多采用烧结法。只是在锰精矿或粉矿很细,-200目在80%以上又不允许产品中含残碳时,则采用球团或压团。 50年代初期,我国锰矿粉多采用烧结锅烧结和土法烧结。随着钢铁生产的发展,土法烧结不能适应要求,因而纷纷着手建设烧结机或其他高效的造块设备。1970年,我国第一台粉锰矿烧结机(18m2)在湘潭锰矿建成投产,1972年江西新余钢铁厂又建成2台24m2烧结机,1977年,我国第一台锰精矿球团设备80m2带式焙烧机在遵义锰矿建成投产。进入80年代,湘潭锰矿、八一锰矿、湘乡铁合金厂相继建成18~24m2烧结机多台,上海铁合金厂引进压球设备作为粉矿造块使用。造块技术的发展,给锰系合金的冶炼带来更大的经济效益。以江西新余钢铁厂为例,增加入炉熟料比和用冷烧矿取代热烧结矿,可使高炉冶炼技术指标大为改善(表3.3.12)。(三)锰矿石冶炼 锰矿石冶炼产品主要有高碳锰铁、中低碳锰铁、锰硅合金以及金属锰等,通称为锰质合金或锰系合金。 高碳锰铁。我国主要采用高炉生产。50年代尚未形成专门厂家生产高炉锰铁(高碳锰铁),而是一些钢铁厂自炼自销,生产量很小。从1958年后,湘潭锰矿先后建起6.5m3、33m3高炉专炼锰铁,60年代以后,新余、阳泉、马钢三厂、重钢四厂等转产高炉锰铁,进入80年代,高炉锰铁发展更快。高炉锰铁产量由1981年的20万t增至1995年40万t。 电炉生产的产品包括碳素锰铁、中低碳锰铁、锰硅合金、金属锰四类。我国电炉生产最早的是吉林铁合金厂,于1956年建成投产,最大电炉容量为12500kVA;60年代初,湖南、遵义、上海等铁合金厂相继建成投产,这些厂都可生产碳素锰铁、中低碳锰铁和锰硅合金;遵义铁合金厂还用电硅热法生产金属锰。据冶金工业部1995年《全国铁合金主要技术经济指标》记载,1994年全国15家重点铁合金厂中有11家生产锰系合金产品。这些重点铁合金厂经过不断发展、扩大,为满足钢铁工业生产作出了重要贡献。 80年代以来,地方中小型铁合金企业发展迅速。据资料统计,地方中小企业铁合金产量占全国比重由1980年的32.39%,上升到1989年的54.01%,到1996年已达69.85%,企业数已达1000家以上。这些中小企业大多数是采用1800kVA的小电炉,设备落后,产品质量比较差。 电炉锰铁与锰硅合金生产所用设备基本相同,都是采用矿热电炉,电炉变压器容量一般为1800~12500kVA。湖南、遵义铁合金厂分别从德国引进3000kVA和31500kVA锰硅电炉,现已投产。 我国电炉高碳锰铁的生产,一般多采用熔剂法生产工艺。锰硅合金的生产,一般都采用有渣法生产工艺。 中低碳锰铁的生产,主要有电炉法、吹氧法和摇包法3种。摇包法包括在摇包中直接生产中低碳锰铁和摇包-电炉法生产中低碳锰铁。摇包-电炉法工艺比较先进、生产稳定可靠、技术经济效果好,目前上海、遵义等铁合金厂都采用此法。 金属锰生产方法有火法冶炼和湿法冶炼。火法冶炼金属锰,我国始于1959年,由遵义铁合金厂首次用电硅热法试制成功,一直独家生产至今。生产工艺采用三步法,第一步用锰矿石炼成富锰渣;第二步用富锰渣炼制高硅硅锰合金,第三步用富锰渣为原料,高硅硅锰作还原剂及石灰作熔剂,即电硅热法制成金属锰。湿法冶炼主要是电解法,常称电解金属锰。我国于1956年由上海901厂建成第一家电解锰生产厂,到90年代初已有大小电解金属锰厂50余家,年总生产能力达4万余t。生产工艺流程大致分硫酸锰溶液制备、电解、后处理3个生产工序。后处理是电解完成后包括产品纯化、水洗、烘干、剥离、包装等系列操作。最终获得合格电解金属锰产品,含Mn99.70%~99.95%。

使用铬矿选矿废料作耐火原料

2019-01-21 18:04:55

由于镁质原料价格昂贵,迫使寻找它的新来源,其中包括寻找工艺特性。金彼尔铬矿选矿废料就属于这种新来源。用化学分析、岩相分析、X-射线照相分析、重量变化分析研究了煅烧前后的废料,并按现有方法测定了某些性能指标。 不烧废料的化学组成列于表1。MgO与SiO2的比波动于1..03~1.37之间。值得注意的是灼减很大(13.47%~16.77%),这要求无论是在生产补炉粉料时还是在生产耐火材料时,必须进行预先煅烧。 表1  铬矿选矿废料的化学组成重量百分数%MgO/SiO2灼减SiO2Fe2O3CaOMgOCr2O3Al2O313.4730.4610.803.0333.000.938.241.0814.4630.468.071.1231.411.9812.71.0316.7729.207.863.0339.901.491.341.3716.1231.286.790.5641.601.291.141.3415.5330.007.580.2833.435.482.381.2815.5433.277.450.2840.001.00-1.2015.2033.417.501.1241.200.951.301.2714.9032.407.800.8438.603.632.051.1914.3832.04-1.1238.301.05-1.19 优质硅酸镁岩特有的高耐火度,(1730~1780℃),说明废料在耐火材料生产中使用是有前途的。 从烧成前的废料试样外观上看为浅绿、淡灰色,均质、密实。 在显微镜下研究表明,试样具有蛇纹岩或蛇纹岩化的纯橄榄岩所特有的网状结构,由形成密网的3MgO·2SiO2·2H20蛇纹石浅绿色鳞片状纤维物质(主要是纤维变体-纤维蛇纹石)组成。在网的结点上不均匀地分布有尺寸为0.06~0.24mm的2(MgO、FeO)SiO2橄榄石无色有棱角非均质颗粒。橄榄石折射指标: Ng=1.680~1.690,Np=1.640~1.650。在橄榄石颗粒周围,常看到细分散氢氧化铁(针铁矿型)不透明薄膜。不透明的磁铁石与透明的褐色含铬尖晶石(Mg,Fe2+)O(Cr,Fe3+,Al)2O3相遇时,呈少有的较粗颗粒的八面体和尺寸为0.08~0.32mm的有棱角的颗粒形式存在。 废料的大致矿物组成(体积比):蛇纹石80%~85%,橄榄石10%~15%,夹有氢氧化铁的磁铁矿3%~5%,含铬尖晶石2%~3%。 原废料总试样的x-射线相分析也表明,主要物质是蛇纹石(纤维蛇纹石,少量叶蛇纹石),有不多量的橄榄石,还发现有微量的舍铬尖晶石和针铁矿。 废料的热重量分析(图1)表明,有3个蛇纹石特有的基本热效应。70℃时的吸热效应与吸附水排出有关;620℃时:矿物结构受到破坏,同时OH-基排除,由分解产物形成x-射线非晶形的镁橄榄石和顽辉石。770℃时的放热效应是由新形成的矿物相结晶作用引起的。图1  铬矿选矿原废料的热谱图 180℃和375℃时的吸热效应与细分散针铁矿的存在有关。在180℃时,处于吸附水与结构水之间的中间位置的水被排出。在375℃时,针铁矿(α-FeOH)发生脱水和其转变为α-Fe2O3。α-Fe2O3向ρ-Fe2O3的多晶转变的第二次吸热赦商与770℃时的蛇纹岩吸热效应同时发生。 在热解重量分析曲线上有4个最大失重阶段:20~150时为3.5%,180~380℃时为3%,380~770℃时为11.75%,770-1000℃时为0.25%。 废料的某些性能指标的变化数据列于表2和表3。表中的数据表明,灼减是随烧成温度的提高而减少。 表2  铬矿选矿废料的某此性能材料粒度mm烧成温度℃重量百分数%灼减SiO2Fe2O3Al2O3Cr2O3CaOMgOFeO耐火度℃密度g/cm33~0不烧17.234.24.711.310.630.5040.9-1730-<0.06不烧19.232.74.161.582.130.8739.7---3~014000.3641.06.221.052.080.3648.01.9117503.2653~015000.1241.74.050.660.830.6549.43.3217803.289 表3  国外耐火材料指标热处理温度℃不烧65070090012001400150015801650活性MgO的重量百分数%-14.313.415.17.78未测开口气孔率%3.626.025.126.818.815.817.714.914.831.918.420.423.9体积密度g/cm32.352.102.002.112.502.582.642.642.042.542.36灼减%1722.52.661.480.660.120.100.10 在废科试样加热过程中,像普通的蛇纹岩一样,在200~300℃时开始脱水,900℃时结束。这些过程促使材料松散,而且在700~900℃时气孔率达到最大值,当温度更高时困蛇纹岩密实而使气孔率降低,在1300~1400℃时气孔率达到最小值。当温度在1500℃左右时,蛇纹岩可能会因密度增加而发生膨胀。 X-射线相分析表职,在7OO℃下烧成后,试样非晶形化强烈。在衍射图上有镁橄榄石线,这证实了热谱图的数据。反射较弱,图象模糊,结构不完整。正方晶格的参数:a=0.4760nm,b=1.0201nm,c=0.5992nm。还有微量富氏体、叶蛇纹石,β-Fe2O3、H2O、含铬尖晶石和其它相。在1400℃下烧成后的试样为浅红、淡灰色有棱角的烧结的多孔碎块。在显微镜下发现,这些碎块主要由无色有棱角等轴颗粒和尺寸为0.04~0.3mm的镁橄榄石片状晶体组成,这些晶体大部分不用玻璃胶结膜、互相贴合(表4),即直接结合。镁橄榄石折射指标是标准的。 表4  煅烧后废料试样的相组成烧成温度℃体 积 比%镁橄榄石斜顽辉石镁铁矿镁磁铁矿含铬尖晶石玻璃140075~8010~155~10-1~31~2150075~803~55~103~51~31 在细晶粒镁橄榄石物料中很不均匀地分布着被浅绿-浅褐色玻璃薄膜粘结的尺寸为0.004~0.02mm的a-MgSiO3斜顽辉石小颗柱晶体和八面体晶体;很少见到尺寸小于3~15mm的Mg Fe2O4铁矿圆形等轴颗粒。 在试样中很不均匀地分布着不多数量的尺寸为0.02~0.12mm的含铬尖晶石稍透明的角状颗粒。气孔大多数是不规则的等轴形状,尺寸为0.02~0.3mm,偶而是宽度为0.02~0.05mm的弯曲纵裂纹状。 1500℃下烧成后的试样,与1400℃下烧成的试样不同,为较黑的颜色,气孔率大。从显微镜上看,它们很象1400℃下烧成后的试样,但不同之处是镁橄榄石折射指标稍高(Ng=1.695,Np=1.660±0.003),这证明有同晶形FeO杂质存在。在普通圆形等轴的镁橄榄石晶体中常常观察有很小的闭气孔(按直径计3μm以下)。此外,不同之处是镁铁矿晶体稍大(25μm以下),在镁橄榄石颗粒表面上有不透明的镁磁铁矿(Mg,Fe)Fe2O4树技状晶体和为数不多的斜顽辉石及玻璃。 在匈牙利Πayrnt硅和Ξpnen式重量变化分析仪上,在加热速度为10/min时得到的1400℃和1500℃时烧成的试样热分析曲线(图2)很相似,表明这些试样是热惰性的。 1500℃时烧成后的废料的x-射线相分析也表明镁橄榄石晶体是主要成份。这个相的曲绒表现得强烈、尖锐、清晰。晶格参数:a=0.477nm;  b=1.020nm, c=0.5992nm。除上述相外,在试样中尚有为数不多的紫苏辉石(Mg,Fe)2Si2O6和磁铁矿,还有微量的硅酸二钙。图2  1400℃时烧成后的废料热谱图 研究结果可知铬矿选矿废料般烧时的性能如下: 正如前面提及,蛇纹石是未烧废料的主要矿物相。在蛇纹岩煅烧时,主要产生下列反应: 3MgO·2Si02·2H20→2MgO·SiO2+MgO·SiO2+H20       (1)      (镁橄榄石)   (斜顽辉石)  770℃和大于770℃时蛇纹岩的热谱图上的放热效应是其晶格改组而生成镁橄榄石的结果。正象上面提到,镁橄榄石曲线首先是在700℃时观察到的,在温度1150℃和更高时生成大量的镁橄榄石,这证实了岩相研究。 随着温度的提高,蛇纹石和橄榄石中所含的氧化铁(l)氧化(约在800℃时),此时橄榄石分解,部分生成偏硅酸盐(辉石),可能也析出为数不多的硅石(玻璃)。 在1200℃以上温度时生成的氧化铁(2)部分地转变成磁铁矿,继而与析出来的镁橄榄石反应而生或顽辉石和镁铁矿: 2Mg0·Si02+Fe2O3→MgO·SiO2+MgO·Fe2O3      (2) 橄榄石与氧化铁(3)反应,生成顽辉石和镁铁矿中的二价铁的固溶体:2(Mg,Fe)O·SiO2+Fe2O3→(Mg,Fe)O·SiO2+(Mg,Fe)O·Fe2O3       (3)镁橄榄石也与磁铁矿反应、并析出橄榄石和有镁铁矿的固溶体: 2MgO·SiO2+Fe3O4→2(Mg,Fe)O·SiO2 +(Mg,Fe)O·Fe2O    (4) 原有的含铬尖晶石与废料的硅酸镁组份反应生成固溶体。 蛇纹石脱水,氧化铁(2)氧化,固溶体生成,使选矿废料个别变体的性能不同,而且视蛇纹石化的程度和氧化铁含量而有不同的性能。 煅烧时看到的废料性能的变化涉及到,除加热时废料密实外,橄榄石颗粒中氧化铁发生再结晶、在蛇纹石区段生成微粒硅酸盐晶体(镁橄榄石),当它们互相作用时(在1450℃时)生成的镁铁矿分解出硅酸盐颗粒,这使气孔率略有增加。硅酸盐强烈再结晶(1450~1500℃),对制品烧结有不良影响。 铬矿选矿废料的最佳烧威温度应当是1400~1450℃。在此温度下,氧化铁已大大氧化和再结晶,而硅酸盐再结晶程度不大。 所进行的研究表明,金彼尔铬矿选矿废料的主要性能与优质的硅酸镁岩相似,这就决定了可能的使用范围,尤其是可用于生产补炉混合料、镁橄榄石质的耐火材料。 结论 对金彼尔铬矿选矿废料及其烧成对的性能进行了综合研究。研究表明,废料的矿物组成是蛇纹石和含量不大的含铬尖晶石。 烧成时废料的性能与蛇纹岩观察到的性能相同。根据性能指标,金彼尔铬矿选矿废料可以作为硅酸镁原料用于耐火材料工业。

铬矿冶炼工艺了解

2019-01-04 09:45:31

增产降耗是铁合金生产永恒的话题,碳素铬铁生产亦是如此,尤其是近来铬矿资源馈乏,生产使用的铬矿往往品种杂乱,配矿单一,给工艺控制造成较大难度,稍有不慎则炉况恶化,生产不能顺行,技术经济指标难以控制。重庆铁合金(集团)有限责任公司近年来使用过十余中铬矿,在应对上述不利因素方面作了较多的探索。我们发现铬矿石中MgO与Al2O3的含量能直接反映铬矿的冶炼性能,针对不同的MgO/Al2O3值采取应对措施,效果明显,是碳素铬铁生产取得良好指标的关键。 1铬矿特性大致分类 1.1铬矿中的MgO/Al2O3值 传统上将铬矿石按粒度分为块矿和粉矿,按理化性能分为难熔矿和易熔矿。在生产实践中,我们发现铬矿的冶炼性能主要与其中MgO及Al2O3含量紧密相关。众所周知,矿石的粒度过小会影响炉料透气性,但可以通过一定的措施进行改善(如增大焦炭粒度、多加回炉渣铁等),矿石的熔化性能也可以通过改变其入炉粒度在一定程度上得到改善。而铬矿中如果MgO及Al2O3含量严重失调,则会使炉况不顺,生态平衡产业指标下滑。在生产实践中我们以铬矿的MgO/Al2O3值作为衡量铬矿冶炼性能的一个重要指标。一般我们将MgO/Al2O3〈1称为低镁铝比矿,MgO/Al2O3〉1.5称为高镁铝比矿,MgO/Al2O3=1~1.5为中度镁铝比矿。 1.2MgO/Al2O3值与铬矿冶炼性能 MgO属碱性氧化物,在溶液中可电离成为Mg2+及O2-,具有较强的导电能力,因此,如果炉料中MgO含量过高,将会使炉料及所形成的炉渣比电阻减小,导电能力增强,电流急剧增大,电极上抬,刺火严重,反应区缩小,炉渣流动性差,产量下降,电耗上升;Al2O3属高熔点氧化物,当其含量过高时,炉料及炉渣比电阻增大,容易使符合使用不足,电极深埋,料面死火,炉温低,产量下降,回收率低,炉渣粘稠,炉衬易损坏.当炉料中MgO与Al2O3的含量达到一定的比例时,形成一种平衡,此时炉料的导电性能\熔化性能以及炉渣的熔点\黏度等都能达到一种良好的状态。在生产过程中我们注意到,无论何种铬矿进行配搭,当炉料MgO/Al2O3 1.5以后,则会呈现前述MgO过高的炉况,而MgO/Al2O3值越高情况越严重。根据铬矿中不同的MgO/Al2O3值,生产中应该采取相应的对策。 2参数选择 2.1二次工作电压 对高MgO/Al2O3矿,应选择较低的二次工作电压;对低MgO/Al2O3矿宜选择较高的二次工作电压。以500kvA电炉为例,当MgO/Al2O3>1.4,二次电压选择为105~110V;当MgO/Al2O3 2.2极心圆直径 高MgO/Al2O3矿及块矿,应选择较大极心圆直径;低错误!链接无效。及粉矿,则应该选择较小极心圆直径。 2.3炉膛深度 通过长期实践摸索我们感觉到,在碳素铬铁生产中,较深的炉膛有利于增加料层厚度,预热炉料,深埋电极,保持炉缸温度,减小热散失,取得较好的技术指标。中小型矿热炉参数一般是通过米库林斯基简易计算法来确定,在计算值的基础上将炉膛加深20%能取得较好的效果。 3渣型与碱度过控制 碳素铬铁生产为有渣冶炼,控制合适的渣型是生产的关键环节。渣型不应是一个固定的形态,不应该只按百分含量去调整其中的氧化物成分,调配渣型最直观的依据是MgO/Al2O3值和碱度。 3.1MgO/Al2O3 在矿种的搭配上,应努力将炉料的综合MgO/Al2O3值调至适中的范围内,我们的实际体会是:如果将MgO/Al2O3值调配在1.05~1.2范围内,再配以合适的碱度能取得较理想的效果,此种渣型导电性能适中,有利于电极深插而用足负荷,炉况稳定,料面火焰均匀,产量高,电耗低,各项指标良好。如果矿石中MgO/Al2O3 3.2炉渣碱度 除了MgO/Al2O3以外,炉渣碱度(MgO+CaO)/SiO2也是一个重要指标.碱度主要是以硅石的配入量来调节,但不能单纯强调碱度,必须要将碱度与MgO/SiO2值进行综合考虑,当MgO/SiO2较大时可适当控制较低碱度,而MgO/SiO2值小时应控制较高碱度,以使炉渣具有恰当的熔点\黏度和导电性能。一般情况,如果MgO/SiO2值在1.05~1.2范围内,碱度控制为1.1~1.25能取得较好效果。 4合金成分控制 合金成分控制主要是指合金中C\Si\S等杂质元素的控制,这些元素在合金中的含量与铬矿的性能及生产技术经济指标有较直接的关系。 4.1[C] 根据铬铁生产精炼脱碳机理,炉内降碳需要两大条件:①要具有较高而且稳定的炉内温度②必须在炉缸高温区存在有足够量的残存Cr2O3。必须同时具备这两个因素,精炼脱碳反应才能进行,产品的含碳量才能有所降低。因此,块矿\高MgO/Al2O3矿能生产出含炭较低的碳素铬铁,反之,粉矿\低MgO/Al2O3矿所生产的铬铁含炭都较高。而生产含炭低的碳素铬铁产品因需要保持较高的炉温和炉缸残存Cr2O3,需造高熔点渣,单位电耗都较高。 4.2[Si] 合金中硅含量与炉温及还原剂用量直接相关,[Si]含量高将使还原剂用量增加,单位电耗升高,但过低的[Si]含量不利于[C]\[S]控制,如果矿石中MgO/Al2O3低时,[Si]过低会导致负荷使用不足。因此合金中[Si]的控制应考虑矿石中MgO/Al2O3值,MgO/Al2O3值高时宜控制较低的[Si],反之,应将[Si]控制得稍高。 4.3[S] 合金中的硫主要是由焦炭代入,在生产过程中控制合金含[S]量的有效手段主要有两方面: 4.3.1调配合适的渣型。适当增加炉渣中CaO的含量,有利于增强炉渣的脱硫能力,增大硫在炉渣中的分配率,降低合金的含硫量。 4.3.2控制合适的合金成分。合金中的[Si]及[C]含量增加,会在一定程度上降低[S]含量。生产过程中的脱硫将增加冶炼的负担,需要控制较高的合金[Si],较高的炉渣(CaO),使焦耗\电耗增加,因此应严格限制入炉原材料中的硫含量。 5结束语  MgO/Al2O3值是铬矿的一个重要指标,在生产中应根据矿石中MgO/Al2O3值,对电炉电气参数\渣型及合金成分等方面采取相应的控制措施,方能取得良好的生产技术经济指标。

铬矿的选矿方法

2019-01-16 17:42:05

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3<20%),也用水力充分选管选别过摇床中矿。在实验室研究了干式强磁选、湿式强磁选、浮选和各种化学选矿法。但在生产技术中采用重选法,个别矿山采用强磁选,浮选法等选矿法目前技术还不成熟。1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。

精矿粉成球的机理

2019-01-04 17:20:20

球团矿靠滚动成型。被水润湿的精矿粉在滚动过程中靠机械力和毛细管作用成为球性,细微的颗粒之间靠毛细管作用力、分子引力、摩擦力等使生球具有一定的强度。 一、水在矿粉中的形态及作用 干燥的矿粉颗粒一般都具有亲水性。在颗粒表面分子力和电场的作用下,水分子被吸附于其表面,由于水分子具有偶极性,所以它的排列有一定秩序。吸附水层的厚度极小,一般只有几个水分子的厚度。它与颗粒的亲水性和周围介质中水蒸气的分压有关,虽然电分子力的作用半径很小,但作用力极大,例如吸附在固体颗粒表面的第一层水分子,其作用力相当于10000大气压(98066.5×104帕)。因此被吸附的多层水分子,牢固地附着在颗粒表面,吸附水的性质已与一般水不同,例如它不能自由流动,密度大于1.0,冰点远低于0度等。当相对湿度达到100%时,吸附水量达到最大值,称为最大吸附水。一般颗粒只含吸附水时,仍然为散砂状,不能结合成团,除非粒度极细(1微米左右)的物料。 颗粒表面达到最大吸附水后,还有未被平衡的分子引力,于是在吸附水外,又形成了一层薄膜水,薄膜水与颗粒表面的结合力比吸附水弱,其内层靠近吸附水的一层受颗粒的作用力较强,称之强结合水。强结合水虽然不及吸附水与颗粒结合之紧密,但是也相当牢固,例如在大于重力加速度70000倍的离心力作用下也不能将它排除。它可以从一个颗粒的表面,向另一个的表面迁移,不受重力的影响。强结合水的冰点也在0度以下。 矿石颗粒所持有的吸附水与强结合水之和叫做最大分子水。最大分子水可以使粉料成型,但仍不具有塑性。 薄膜水的外层叫做弱结合水。它更接近于自由水,矿粉具有弱结合水后,可以在外力作用下发生塑性变形。 吸附水和薄膜水可视为矿粉颗粒的外壳,在外力作用下,它随颗粒一同移动,并使颗粒彼此结合起来。因此矿粉开始滚动成球,并且具有一定的强度。 当矿粉被水润湿超过薄膜水时,在颗粒之间出现了毛细水,开始出现的叫做触点态毛细水,它使颗粒连系起来。继续增加水,以及毛细水表面张力或外力作用,使颗粒靠拢,于是在它们之间形成了蜂窝状毛细水,这时毛细水在颗粒之间开始连接起来,可以迁移。进一步润湿,则出现了饱和毛细水,这时达到了最大毛细水含量。 精矿粉成球,毛细水起主导作用,最适宜的含水量介于触点态和蜂窝状毛细水之间。精矿粉成球速度决定于毛细水的迁移速度。亲水性强的物料,可使毛细水迁移速度加快。 二、精矿粉的成球 颗粒极细的精矿粉,被水润湿到合适的程度,在外力的作用下,会聚集成为一定大小的球。成球过程大致可分为三个步骤: 精矿粉成核是成球的第一步。矿粉颗粒被水润湿,首先在其表面形成薄膜水;若进一步润湿,并且被润湿的颗粒有机会相接触,在触点处形成毛细水,靠毛细管的作用力,使两个或较多的颗粒连系起来,形成小球;继续增加水,以并在机械力的作用下,小球内部颗粒重新排列,进一步密集,形成比较坚实稳定的小球,一般称之为母球。母球的形成过程,即精矿粉的成核过程。母球仍然是多孔的,它内部包含有固体、液体和气体三个相,它的稳定性取决于矿粉的粒度和粒度组成,以及颗粒的形状和亲水性。 生球长大,是成球的第二步。母球在滚动过程中,彼此碰撞,使得内部颗粒之间毛细管形状发生变化,颗粒排列密集,毛细管收缩,蜂窝状毛细水变为饱和毛细水,一部分水被挤到母球表面上来,这时母球可以以三种机理长大。母球水分较高,而且塑性较好,它们互相结合在一起,使生球迅速长大,被称做聚结机理;在工业生产中如果将一大批湿料倾入造球机中,或者精矿粉粒度极细,亲水性极强,母球多靠聚结机理长大,在生产中将湿料均匀不断地加进造球机,表面含水较高的母球,在滚动中遇到粉矿,便将矿粉粘在表层,小球互相碰撞,将新粘上的一层湿矿粉压紧,毛细管中的水,被挤到表面上来,又可粘结新的一层矿粉,如果水分不足,可以向小球表面洒水,如此反复,使母球长大,被称做成层机理;此外小球在造球机中运动,总有少数球由于强度不够,水分较低等原因,发生破损及开裂,产生的碎片,粘附在另一个球上,被称做磨剥转移机理。总之由细粒精矿到生成母球,再到具有一定尺寸的生球,其成长机理,不外以上三种。至于以哪一种机理为主,则取决于原料性质和造球工艺条件。 当母球长大到要求的尺寸,应当停止补充加水润湿,使生球在造球机内滚动一定时间,由于相互碰撞的结果,使生球内部颗粒排列得更加紧密,为成球得第三步。生球滚动过程中机械力的作用会使内部颗粒发生选择性的按最大接触面排列,颗粒相互靠近,毛细管直径缩小,甚至可以达到颗粒表面薄膜水层相互连接。在这种情况下,颗粒之间的分子作用力,毛细管作用力以及摩擦阻力综合作用,使生球具有很高的机械强度。以上所述生球成长的三个步骤,在生产中实际同时发生于同一造球机中。 三、影响精矿成球的因素 影响精矿成球的因素很多,概括起来,可分为两类,一是原料的自然性质,二是造球工艺条件。 (1)原料的自然性质。造球原料的自然性质中,以颗粒表面的亲水性、颗粒形状,对其成球性影响最大。颗粒表面亲水性愈高,固相与液相界面的接触角愈小,颗粒容易被水润湿,薄膜水和毛细水含量高,毛细水的迁移速度也高,从而成球性好。 (2)原料的粒度与粒度组成。粒度小,比表面积大,成球性好。原料具有适宜的粒度组成,可使颗粒排列紧密,毛细管平均直径缩小,颗粒之间的结合力增大。 原料粒度并非愈细愈好,因为磨矿耗费大量电能,过细会导致生产成本升高。况且粒度愈细,毛细管直径愈小,水在颗粒间的迁移速度下降,从而使成球速度降低。 (3)原料的水分。原料含水份多少,对于成球影响很大。对于不同的原料,生球有不同的适宜水份。在正常生产条件下,经常维持原料含水份略低于生球的适宜水份,为造球时补加水份留有余地。 若原料含水过低,虽然在造球时可以洒水补充,但成球速度慢,生产率降低,而且往往由于洒水不均匀,使生球脆弱。 如果原料含水过高,会给造球带来极大困难,使生球粒度不均匀,相互粘结、形成大块。在这种情况下,必须将原料预先烘干,降低其水分。 (4)添加物的影响。在造球原料中配加某些添加物,可以改善物料的成球性。详见粘结剂章节的介绍。 (5)造球工艺的影响。造球工艺对成球的影响可以概括为设备与操作两方面。 在造球设备方面,包括造球机的转速、倾斜角度、造球盘的边高等。西欧和我国的球团矿厂常用圆盘造球机。圆盘的直径大小不等,但倾斜角度一般在45º~50º之间。倾角固定时,造球盘的速度可在一定范围内调节,以造球盘的周边切线速度计,经常保持在1.0~2.0m/s之间。周速过小,物料上升不到圆盘的上部区域,一方面造球盘的面积得不到充分利用,另一方面生球在盘内滚动获得的位能低,因而滚动时动能小,球与球相互碰撞得机械作用力小,因而成球慢,生球得强度低。若周速过大,由于离心力作用,物料抛向边缘,跟随造球盘旋转,中心出现无料区,滚动成球的作用受到破坏,甚至无法成球。造球盘的倾角较大,要求较高的圆周速度,使盘内物料滚动次数增加,有利于提高生球的产量和增加它的强度。 造球盘的边高与其直径有关,直径5.5米的大型造球盘边高600~6500毫米,边高影响造球盘的充填率,造球机的边高大,倾角小,在给料不变的条件下,物料在造球盘中停留时间长,有利于提高生球的强度。 刮料板的位置也很重要,它将粘在造球盘上的物料刮下,保持适当的底料厚度,避免粘料过多,加重驱动马达的负荷。此外刮料板还起疏导料流的作用,使成核区和长大区分开,以便于控制生球的成长。 在工艺操作方面,影响成球的因素有:加水核加料的方法、造球时间控制等。正常情况下,造球物料的水分应控制在略低于适宜造球的水分,造球时补加少量水,以控制母球的形成和生球的长大。补加水的大部分以滴状加在成核区,以形成母球,少部分以雾状喷淋在生球成长区,帮助母球迅速长大。 加料的方式也必须兼顾生成母球核母球长大,要防止形成过多的母球。在保证生球达到要求尺寸的前提下,应使母球的生成速度与生球的长大速度达到平衡。 滚动成球的时间,与对球团矿粒度的要求,以及原料成球的难易有关。球团矿的粒度大,要较长的造球时间;原料成球性差,造球时间也会延长。一般的规律是:延长造球时间,有利于提高生球的强度,特别对于粒度很细的原料,更须要较长的造球时间,才能使生球具有更高的强度。