高碳铬轴承钢
2019-03-18 08:36:58
GCr91.00~1.10O.15~0.35O.25~O.45O.90~1.20O.025O.025GCr9SiMn1.00~1.10O.45~O.75O.95~1.25O.90~1.20O.025O.025GCr150.95~1.05O.15~0.350.25~0.451.40~1.65O.025O.025GCr15SiMnO.95~1.05O.45~O.750.95~1.251.40~1.65O.025O.025
高碳铬轴承钢
表3-52高碳铬轴承钢退火后的硬度牌 号布氏硬度HBS压痕直径/mmGCr9、GCrl5179~2074.2~4.5GCr9SiMn、GCrl5SiMn179~2174.1~4.5
表3-53碳铬轴承高钢的特性和应用牌号主要特性应用举例CCr9耐磨性和淬透性较高,切削性及应变塑性中等,白点形成较敏感,焊接性差,有回火脆性倾向,主要在淬火并低温回火状态使用用于制造转动轴上尺寸较小的钢球和滚子,一般条件下工作的大套圈及滚动体,是一种应用广泛的轴承钢,用于机床、机车、电机及航空的微型轴承及一般轴承;也可以制作弹性、耐磨、接触疲劳强度都要求高的重要机械零件CCrl5淬透性好,耐磨性高,疲劳寿命高,冷加工塑性变形中等,有一定的切削加工性,焊接性差,一般经淬火、低温回火后使用用于制造大型机械轴承的钢球、滚子和套圈,还可以制造耐磨、高接触疲劳强度的较大负荷的机器零件,如牙轮钻头的转动轴、叶片、泵定子、靠模、套筒、心轴、机床丝杠、冷冲模等CCr9SiNn性能与GCr15相近,但淬透性和工艺性能较高用于制造尺寸较大的轴承套圈,可代替GCrl5使用GCrl5Si Mn耐磨性和淬透性比GCrl5更高,冷加工塑性中等,焊接性差,对白点形成敏感,热处理时有回火脆性用于制造大型轴承的套圈、钢球和滚子,还可制造高耐磨、高硬度的零件,如轧辊、量规等,特性和应用与GCrl5相近
某高碳、高硫复杂难选铅锌矿石选矿工艺研究
2019-01-24 17:45:41
某高碳、高硫复杂难选铅锌矿石选矿工艺研究
郭亮明 王庚辰 李跃林 何海涛
摘要:对内蒙古某高碳、高硫铅锌矿石试验研究表明,该矿石属复杂难选铅锌矿石,矿物之间及其与脉石之间呈粗中细极不均匀嵌布,不易单体解离;矿石中的碳质、次生矿泥严重干扰浮选过程,且油药耗量大;铅锌矿物可浮性差,浮游速度慢;矿石中的硫铁矿易浮,较难抑制;锌矿物以铁闪锌矿为主,影响锌精矿品位的提高。经多种工艺方案的探索试验,最终确定采用以浮选为主的流程,并试制出新的浮选药剂A3、M3,试验取得了较好的选别指标。
关键词:高硫;高碳;复杂难选铅锌矿石;新药剂
中图分类号:TD925.9 文献标识码:A
受内蒙古某公司的委托,对其下属矿山的铅锌矿石进行铅锌分离,产出单一铅锌精矿和锌精矿,要求重点研究锌矿物的回收,同时尽可能产出合格铅精矿。
1 矿石性质
矿石的金属物主要为黄铁矿、铁闪锌矿,其次为磁黄铁矿、方铅矿。脉石物以石英、硅酸盐矿物、方解石为主,其次为石墨(碳质)。其中铁闪锌矿是矿石中最主要的锌矿物,呈不规则状、他形粒状集合体,粒度粗细不均,一般为0.02~2mm,属粗中细极不均匀嵌布;方铅矿主要呈不规则粒状,粒度较细,一般多在0.1mm以下,与铁闪锌矿的嵌布关系特别密切;硫铁矿是矿石中含量最高的金属硫化矿物,以黄铁矿为主,其次为磁黄铁矿。粒度一般在0.1~2.0mm,属中粗粒嵌布。与铁闪锌矿嵌布关系最密切,其次为方铅矿、氧化铁等矿物;碳质大多呈鳞片状、微细粒状散步于闪锌矿、方铅矿中。原矿多元素分析结果见表1。
表1 原矿多元素分析结果/%元素PbZnSFeCuCdCCaOAl2O3SiO2MgOAuAg含量2.459.5029.6724.970.0110.0247.145.282.3012.032.70<0.14.21
Au、Ag品位单位为g/t,下同。
2 浮选试验
2.1 浮选流程方案选择
对铅锌硫复杂硫化矿石,仅考虑回收铅锌,目前国内外铅锌矿浮选产出单一产品的流程方案有:优先选铅、再选锌,铅锌等可浮-再分离、后选锌,铅锌全混合浮选、再分离等三种流程方案。
原矿性质研究表明,矿石中碳质、次生矿泥含量较高,且部分碳质极为易浮,如采用铅锌等可浮和铅锌全混合浮选两种流程,将对整个浮选过程干扰较大,影响铅锌浮选指标。因此,应尽量让部分易浮的碳质脱除或随铅优先选出,以保证锌精矿质量。矿石中含硫铁矿亦较高。硫品位达29.67%,具有一定的综合回收价值,但受价格、销售等因素影响,合同未要求回收这部分硫铁矿。初步试验证明,大部分硫铁矿可浮性好,极难抑制,如采用铅锌等可浮和铅锌全混合浮选,部分硫铁矿的上浮会降低铅锌矿物的可浮性,延长其浮选时间,而且未受抑制的易浮硫铁矿上浮后吸附了捕收剂,给后续分离带来更大的困难。如果采用优先选铅、再选锌流程则可缓解上述矛盾。另外,矿石中主要金属矿物之间呈粗中细极不均匀嵌布,需阶段磨矿才能单体解离,若采用一段磨矿会使部分铅锌矿物过磨,降低浮游速度,延长浮选时间。为保证铅锌矿物的可浮性并结合选矿厂实际情况,决定采用两段磨矿方式。
综上所述,确定浮选试验的原则流程为:采用两段磨矿方式,脱碳或不脱碳优先选铅,再选锌的工艺流程。
2.2 浮选探索试验
经大量探索试验证明,该矿石中铅矿物嵌布粒度细,锌矿物嵌布粒度呈粗中细不均匀嵌布,均不易完全单体解离;铅、锌矿物可浮性差,浮选速度慢,需要较长的浮选时间,尤其选铅时铅矿物不易矿化且终点不明显。采用新药剂M3作捕收剂能提高铅锌矿物的可浮性,缩短浮选时间。矿石中的碳质、次生矿泥严重干扰浮选过程,影响铅锌矿物选别指标;矿石中的高碳质可浮性好,极难抑制,为了减弱碳质干扰,选铅前进行了脱碳和不脱碳对比试验,试验结果表明,铅粗精矿品位基本相当(分别为11.03%和10.95%),但脱碳的铅粗精矿回收率比不脱碳铅粗精矿回收率低6.06%,脱出的碳含铅、锌较高(铅4.64%、锌7.00%),损失铅回收率6.06%、锌回收率2.22%。为考察脱碳对铅精矿品位的影响,其后又对脱碳后的铅粗精矿品位的影响,其后又对脱碳后的铅粗精矿进行了三次精选,多次试验结果表明,铅精矿品位仍在27%~37%,未达到合格产品的要求。从简化流程结构、降低成本考虑,确定选铅前不脱碳;为了进一步考察提高铅精矿品位的可能性,对铅精选还进行了铅粗精矿再磨,添加脉石分散剂试验,三次精选后,铅精矿仍未达到合格产品,故确定选铅不进行再磨,将再磨放至选锌回路;硫铁矿含量高,易浮,较难抑制,经多种抑制剂比较得出,还是采用石灰对硫铁矿抑制效果较好。
经多种浮选药剂的单用、混用探索试验,最终确定选铅调整剂采用石灰、A3抑制锌矿物和硫铁矿效果较好,选锌调整剂仍采用常规的石灰、硫酸铜较合适,铅、锌选别采用同一捕收剂M3和起泡剂松醇油
2.3 主要工艺参数对浮选指标的影响
2.3.1 铅粗选指标与原矿磨矿细度关系
原矿磨矿细度对浮选至关重要。图1为铅粗选指标与原矿磨矿细度的关系。图1 表明,随着磨矿细度的增加,铅粗精矿铅的品位基本相当,铅的回收率升高,含锌降低,但过磨会降低部分铅的浮游速度,延长浮选时间,故确定原矿磨矿细度为88%-74µm。
图1 铅粗选指标与原矿磨矿细度的关系
1—铅回收率;2—锌回收率;3—铅品位
[next]
2.3.2 锌粗选指标与硫酸铜用量的关系
图2为锌粗选指标与硫酸铜用量的关系。图2表明,随硫酸铜用量增加,锌粗精矿品位降低,锌回收率升高,但硫酸铜用量增大到一定程度,锌回收率反而下降。为了避免硫酸铜不足导致精选时掉槽,选用硫酸铜用量为600g/t·原矿。
图2 锌粗选指标与硫酸铜用量的关系
1—锌回收率;2—锌品位
2.3.3 锌粗精矿再磨细度对锌精选Ⅰ指标的影响
图3为锌粗精矿再磨细度与单体解离度的关系。图3表明,在-43µm粒级,铁闪锌矿单体解离度达不到90%;方铅矿、黄铁矿的单体解度亦较低,部分连生体影响锌精矿品位。图4为锌精选Ⅰ指标与锌粗精矿再磨细度的关系。图4表明,随着再磨细度的增加,锌精矿品位增加,说明细磨有利于锌矿物的单体解离,但细度增大到一定程度,部分锌的可浮性变差,浮游时间延长。综合考虑,确定再磨细度为95%-43µm 。
图3 锌粗精矿再磨细度与单体解离度的关系
图4 锌精选Ⅰ指标与锌粗精矿再磨细度的关系
[next]
2.4 闭路试验
在条件试验的基础上,闭路试验对部分药剂进行适当调整。为了减少铅、碳、矿泥对锌精矿质量的影响,保证锌精矿的回收率,选铅时应尽量将大部分碳质、次生矿泥选入铅精矿,并对铅进行三次精选,以降低锌在铅精矿中的损失。闭路试验流程见图5,结果见表2,其后又按图6流程进行了铅中矿再磨后返回粗选的闭路试验,结果见表2。
图5 锌粗精矿再磨闭路试验流程
表2 闭路试验结果/%方 案产品名称产 率品 位回 收 率PbZnPbZn锌粗精矿
再 磨铅精矿
锌精矿
尾 矿
原 矿7.53
17.16
75.31
100.020.20
1.18
0.85
2.365.86
46.89
1.35
9.5064.35
8.57
27.08
100.04.64
84.66
10.70
100.0锌中矿
再 磨铅精矿
锌精矿
尾 矿
原 矿7.48
16.77
75.75
100.020.79
1.00
0.91
2.415.95
47.61
1.40
9.4964.47
6.95
28.58
100.04.69
84.13
11.18
100.0
图6 锌中矿再磨返回锌粗选闭路试验流程
根据试验结果,采用锌粗精矿再磨和锌中矿再磨后返回锌粗选,两工艺流程指标相当,但前者流程操作不稳定,具体体现为,磨矿量大;随流程循环的延续,锌矿物的浮游速度变慢,浮选时间延长;锌矿物在精选中易掉槽;锌粗选、精选硫酸铜耗量比条件试验时耗量大。采用后者克服了上述不足之处,操作稳定,故推荐锌中矿再磨会返回锌粗选的工艺流程作为选矿厂生产的技术依据。
3 重选
根据其各种矿物密度差异,将锌中矿再磨后返回锌粗选的闭路试验产品高碳铅精矿直接进行摇床重选,以考察产出合格铅精矿的可能性。表3为摇床分选试验结果。由表3结果可见,对浮选所获得低品位铅精矿采用摇床分选可以产出铅品位达58.43%的部分合格精矿。作业回收率低是由于铅矿物嵌布粒度细,受磨矿细度的限制,单体解离度偏低,部分铅的连生体进入中矿和尾矿。如现场条件许可,可将浮选铅精矿先再磨。如现场条件许可,可将浮选铅精矿先再磨重选,进一步提高铅精矿作业回收率。
表3 摇床分选试验结果/%产品
名称作业
产率品 位作业回收率PbZnPbZn铅精矿
中 矿
尾 矿
给 矿14.47
61.95
23.58
100.058.43
13.33
14.67
20.173.91
7.07
6.25
6.4241.91
40.94
17.15
100.08.81
68.23
22.96
100.0
4 结语
1、探索试验结果表明,该矿石铅、锌矿物可浮性差,浮游速度较慢,采用捕收剂M3可提高铅、锌矿物的可浮性;部分铅、锌矿物因嵌布粒度较细,需阶段细磨,但受磨矿条件的限制,磨矿细度达不到单体完全解离,影响铅、锌精矿品位的提高;矿石中的高碳质、次生矿泥严重干扰浮选过程;同时使整个浮选过程油药耗量大,为了减弱碳质的影响,部分易浮的碳质随铅优先选入铅精矿;矿石中高硫铁矿易浮,较难抑制,经比较,还是采用石灰抑制效果较好。
2、浮选试验最终确定将原矿磨至88%-74µm,在石灰介质条件下,添加调整剂A3、捕收剂M3和松醇油进行优先选铅,铅粗精矿经三次精选产出高碳铅精矿;选铅尾矿添加石灰、硫酸铜、M3及松醇油选锌,并分别对锌粗精矿再磨和中矿再磨两种流程方案进行了闭路试验,均取得了锌精矿锌品位47%左右、锌回收率84%以上的较好指标,但浮选铅精矿未获得合格产品。两种方案的指标相当,但锌中矿再磨后返回锌粗选的流程结构合理,磨矿量少,操作方便,推荐其作为选矿厂生产的技术依据。
3、为考察产出合格铅精矿的可能性,将浮选闭路产品的高碳铅精矿进行了摇床重选,获得了铅品位58.43%的部分铅精矿。此措施可作为选矿厂今后回收部分铅矿物的技术储备。
4、新研制的调整剂A3对易浮的锌矿物、硫铁矿具有较强的抑制作用,对铅矿物有一定的活化作用;捕收剂M3对铅、锌矿物捕收能力强、选择性好,且能提高铅、锌矿物的浮选速度、改善浮选泡沫状态。制备两种药剂原料来源广,无毒、无味,易溶于水,现场添加方便。
云南某高碳钼镍矿石选矿试验研究报告
2019-01-25 15:50:21
对该矿石进行选冶试验研究,为该矿石开发利用的可能性提供依据。
1、该矿石类型为黑色页岩,即炭质黄铁矿页岩。矿石主要由微粒草莓状黄铁矿和炭质组成。 2、主要金属矿物为黄铁矿,少量白铁矿;脉石矿物主要为隐晶质石墨,有机炭、水云母、石英、长石、方解石、白云石、重晶石等。 3、镜下未见钼矿物和镍矿物,推测钼可能以炭质吸附状态存在,镍以类质同象赋存在黄铁中及包裹在炭质中。由于草莓黄铁矿粒度微细并与炭质密切伴生,而钼镍又与炭质和黄铁矿关系紧密,矿石上述嵌布特性是导致精矿品位和回收率不高,以及钼镍难以分离的主要原因。 4、伴生元素镍在钼精矿中品位2.75%、回收率35.75%。 5、由于矿石中炭质很高,产生大量泡沫,粘度大,难以进行闭路试验。 6、钼精矿浸出试验。 浮选钼精矿经湿法冶炼试验获得标准钼酸钙,钼浸出率84%,钼回收率80%,该工艺技术上可行,经济上合理。 试验采用浮选――浸出(选冶)联合工艺流程。浮选经二粗、二扫、三精开路流程试验,获得钼精矿钼品位8.08%、钼回收率80.19%;镍品位2.75%、镍回收率35.75%;含碳23%以上。
低碳高铝刚玉畅销国内外市场
2019-01-15 09:49:15
3月25日,位于高平市三甲镇工业园区内山西天坤特种材料有限公司碎选车间内,一派繁忙生产景象,大型行车设备正将冷却了类似铁锭东西粉碎,十几名工人则把已经粉碎碎块装入铲车运回仓库。公司企管部工作人员李冰告诉记者:“那些碎块低碳高铝刚玉,该产品工业发展基础原料,除用于磨削、研磨、抛光耐火材料行业外,还广泛应用于钢铁、汽车、电子、陶瓷、蓄电池、石油化工、精密铸造、航天航空等领域,产品大部分出口欧美、东南亚等国家地区,市场前景广阔。”
低碳高铝刚玉以优质铝钒土为原料,采用国内较先进线脱碳技术,通过高科技加工等手段制成。山西天坤特种材料有限公司集低碳高铝刚玉科研、生产、销售、服务一体化高新技术企业,其低碳高铝刚玉项目第四届国部投资贸易博览会省政府招商引资项目。 我国高铝刚玉行业有着60多年发展历程,近年来得到快速发展。山西天坤特种材料有限公司瞄准高铝行业发展蕴藏商机上马了这一项目。该项目总投资1.5亿元,将依托高平市及周边丰富铝钒土资源,生产低碳高铝刚玉及其深加工产品刚玉纳米材料,项目投产达效后,年可生产低碳高铝刚玉 6万吨,年产低硅铁1万吨,年产值可达3亿元,实现利税6500多万元,并可安排350余人就业。
该项目拥有7500KVA倾倒式电弧炉四台,加工线两条,其制粒线一条,制粉线一条,工程从去年5月开始建设,年底土建工作已基本结束,设备也基本安装到位。今年2月初3月初一、二号炉分别点火成功并投入生产,三号四号炉将于5月初6月初点火投产。制粒车间厂房前,工人们正加紧铺装路面,李冰说:“制粒车间设备也紧张安装,投产后可将低碳高铝刚玉产品深加工成各种颗粒尺寸产品,进一步提升产品附加值。”
该公司总经理助理牛玉梅介绍说:“为使产品工艺领先,我们已从北京、河南、贵阳等地聘请了多名专家,组建了高水平技术团队,进一步加大自主创新力度。
碳的知识
2019-03-12 11:03:26
碳是一种非金属元素,坐落元素周期表的第二周期IVA族。它的化学符号是C,它的原子序数是6,电子构型为[He]2s22p2。碳是一种很常见的元素,它以多种方法广泛存在于大气和地壳之中。碳单质很早就被人知道和运用,碳的一系列化合物——有机物更是生命的底子。拉丁语为Carbonium,意为“煤,木炭”。汉字“碳”字由木炭的“炭”字加表固体非金属元素的石字旁构成,从 炭字音。性状碳单质通常是无臭无味的固体。单质碳的物理和化学性质取决于它的晶体结构,外观、密度、熔点等各自不同。 碳的单质已知以多种同素异形体的方法存在:石墨莫氏硬度:石墨1-2 金刚石 10金刚石富勒烯(Fullerenes,也被称为巴基球)无定形碳(Amorphous,不是真的异形体,内部结构是石墨)碳纳米管(Carbon nanotube)六方金刚石(Lonsdaleite,与金刚石有相同的键型,但原子以六边形摆放,也被称为六角金刚石)赵石墨(Chaoite,石墨与陨石磕碰时发生,具有六边形图画的原子摆放)黝矿结构(Schwarzite,因为有七边形的呈现,六边形层被歪曲到“负曲率”鞍形中的设想结构)纤维碳(Filamentous carbon,小片堆生长链而构成的纤维)碳气凝胶(Carbon aerogels,密度极小的多孔结构,相似于熟知的硅气凝胶)碳纳米泡沫(Carbon nanofoam,蛛网状,有分形结构,密度是碳气凝胶的百分之一,有铁磁性)最常见的两种单质是高硬度的金刚石和柔软滑腻的石墨,它们晶体结构和键型都不同。金刚石每个碳都是四面体4配位,相似脂肪族化合物;石墨每个碳都是三角形3配位,能够看作无限个环稠合起来。常温下单质碳的化学性质比较安稳,不溶于水、稀酸、稀碱和有机溶剂。同位素现在已知的同位素共有十二种,有碳8至碳19,其间碳12和碳13属安稳型,其他的均带放射性,傍边碳14的半衰期长达五千多年,其他的均全缺乏半小时。在地球的自然界里,碳12在全部碳的含量占98.93%,碳13则有1.07%。C的原子量取碳12、13两种同位素丰度加权的均匀值,一般核算时取12.01。碳12是国际单位制中界说摩尔的规范,以12克碳12中含有的原子数为1摩尔。碳14因为具有较长的半衰期,被广泛用来测定古物的时代。成键碳原子一般是四价的,这就需求4个单电子,可是其基态只要2个单电子,所以成键时总是要进行杂化。最常见的杂化方法是sp3杂化,4个价电子被充分运用,均匀散布在4个轨迹里,归于等性杂化。这种结构彻底对称,成键今后是安稳的σ键,并且没有孤电子对的排挤,十分安稳。金刚石中全部碳原子都是这种以此种杂化方法成键。烷烃的碳原子也归于此类。根据需求,碳原子也能够进行sp2或sp杂化。这两种方法呈现在成重键的情况下,未经杂化的p轨迹垂直于杂化轨迹,与邻原子的p轨迹成π键。烯烃中与双键相连的碳原子为sp 2杂化。因为sp2杂化能够使原子共面,当呈现多个双键时,垂直于分子平面的全部p轨迹就有或许相互堆叠构成共体系。是最典型的共体系,它现已失去了双键的一些性质。石墨中全部的碳原子都处于一个大的共体系中,每一个片层有一个。化合物碳的化合物中,只要以下化合物归于无机物:碳的氧化物、硫化物:(CO)、二氧化碳(CO2)、(CS2)、碳酸盐、碳酸氢盐、一系列拟卤素及其拟卤化物、拟卤酸盐:(CN)2、氧,硫。其它含碳化合物都是有机化合物。因为碳原子构成的键都比较安稳,有机化合物中碳的个数、摆放以及替代基的品种、方位都具有高度的随意性,因而造成了有机物数量极端繁复这一现象,现在人类发现的化合物中有机物占绝大多数。有机物的性质与无机物大不相同,它们一般可燃、不易溶于水,反响机理杂乱,现已构成一门独立的分科 有机化学。散布碳存在于自然界中(如以金刚石和石墨方法),是煤、石油、沥青、石灰石和其它碳酸盐以及全部有机化合物的最主要的成分,在地壳中的含量约0.027%。碳是占生物体干重份额最多的一种元素。碳还以二氧化碳的方法在地球上循环于大气层与平流层。在大多数的天体及其大气层中都存在有碳。发现金刚石和石墨史前人类就现已知道。 富勒烯则于1985年被发现,此后又发现了一系列摆放方法不同的碳单质。同位素碳14由美国科学家马丁·卡门和塞缪尔·鲁宾于1940年发现。单质的精粹金刚石金刚石即钻石能够找到会集的块状矿产,挖掘出来时一般都有杂质。用别的的钻石粉末将杂质削去,并打磨成形,即得制品。一般在切削、打磨过程中要损耗掉一半的质量。石墨用处在工业上和医药上,碳和它的化合物用处极为广泛。丈量古物中碳14的含量,能够得知其时代,这叫做碳14断代法。石墨能够直接用作炭笔,也能够与粘土按必定份额混合做成不同硬度的铅芯。金刚石除了装修之外,还可使切削用具更尖利。无定形碳因为具有极大的表面积,被用来吸收毒气、废气。富勒烯和碳纳米管则对纳米技术极为有用。碳是钢的成分之一。碳能在化学上自我结合而构成很多化合物,在生物上和商业上是重要的分子。生物体内大多数分子都含有碳元素。碳化合物一般从化石燃猜中取得,然后再别离并进一步组成出各种生发日子所需的产品,如乙烯、塑料等。理化特性整体特性元素称号:碳元素符号:C元素类型:非金属元素原子量:12.01质子数:6中子数:7原子序数:6所属周期:2所属族数:IVA电子层散布:2-4密度、硬度 密度为3.513 g/cm3(金刚石)、2.260 g/cm3(石墨)(20 ℃)、0.5 (石墨)10.0 (钻石)色彩和表面 黑色(石墨)无色(钻石)地壳含量 无数据原子特点原子量 12.0107 原子量单位原子半径(核算值) 70(67)pm共价半径 77 pm范德华半径 170 pm电子构型 [氦]2s22p2电子在每能级的排布 2,4氧化价(氧化物) 4,3,2(弱酸性)晶体结构 六方(石墨)立方(钻石)物理特点物质状况 固态(反磁性)熔点 熔点约为3 550 ℃(金刚石)沸点 沸点约为4 827 ℃(提高)摩尔体积 5.29×10-6m3/mol汽化热 355.8 kJ/mol(提高)熔化热 无数据(提高)蒸气压 0 帕声速 18350 m/s其他性质电负性 2.55(鲍度)比热 710 J/(kg·K)电导率 0.061×10-6/(米欧姆)热导率 129 W/(m·K)榜首电离能 1086.5 kJ/mol第二电离能 2352.6 kJ/mol第三电离能 4620.5 kJ/mol第四电离能 6222.7 kJ/mol第五电离能 37831 kJ/mol第六电离能 47277.0 kJ/mol最安稳的同位素同位素 丰度 半衰期 衰变方式 衰变能量MeV 衰变产物12C 98.9 % 安稳13C 1.1 % 安稳14C 微量 5730年β衰变 0.156 14N在没有特别注明的情况下运用的是国际标准基准单位单位和标准气温和气压碳,原子序数6,原子量12.011。元素名来历拉丁文,情愿是“炭”。碳是自然界中散布很广的元素之一,在地壳中的含量约0.27%。碳的存在方法是多种多样的,有晶态单质碳如金刚石、石墨;有无定形碳如煤;有杂乱的有机化合物如动植物等;碳酸盐如大理石等。单质碳的物理和化学性质取决于它的晶体结构。高硬度的金刚石和柔软滑腻的石墨晶体结构不同,各有各的外观、密度、熔点等。常温下单质碳的化学性质比较安稳,不溶于水、稀酸、稀碱和有机溶剂;不同高温下与氧反响,生成二氧化碳或;在卤素中只要氟能与单质碳直接反响;在加热下,单质碳较易被酸氧化;在高温下,碳还能与许多金属反响,生成金属碳化物。
碳圆的材质
2019-03-18 08:36:58
它们的化学成分、力学性能及特性和应用都不一样。 45钢是优质碳素结构钢,而65Mn是弹簧钢。 以下为45钢的参数: 化学成分: 化学成分质量分数%|C: 0.42~0.50 化学成分质量分数%|Si: 0.17~0.37 化学成分质量分数%|Mn: 0.50~0.80 化学成分质量分数%|Cr≤: 0.25 化学成分质量分数%|Ni≤: 0.30 化学成分质量分数%|Cu≤: 0.25 力学性能: 试样毛坯尺寸/mm: 25 碳圆的材质推荐热处理/℃|正火: 850 推荐热处理/℃|淬火: 840 推荐热处理/℃|回火: 600 力学性能|σb/MPa≥: 600 力学性能|σs/MPa≥: 355 力学性能|δ5(%)≥: 16 力学性能|ψ(%)≥: 40 力学性能|AKU/J≥: 39 钢材交货状态硬度HBS10/3000,≤|未热处理钢: 229 钢材交货状态硬度HBS10/3000,≤|退火钢: 197 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理 应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火 以下为65Mn的技术参数: 化学成分: 化学成分质量分数(%)|C: 0.62~0.70 化学成分质量分数(%)|Si: 0.17~0.37 化学成分质量分数(%)|Mn: 0.90~1.20 化学成分质量分数(%)|Cr: ≤0.25 化学成分质量分数(%)|其他: 化学成分质量分数(%)|Ni≤: 0.25 化学成分质量分数(%)|Cu≤: 0.25 化学成分质量分数(%)|P≤: 0.035 化学成分质量分数(%)|S≤: 0.035 力学性能: 淬火温度/℃: 830 淬火介质: 油 回火温度/℃: 540 σs/MPa: 785 σb/MPa: 980 δ5(%): - δ10(%): 8 ψ(%): 30 交货状态: 热轧|冷拉+热处理 交货状态下布氏硬度HBS≤: 321 主要特性: 锰提高了钢的淬透性,经热处理后的综合力学性能优于碳钢。 应用举例: 小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环 、气门簧、 离合器、 刹车弹簧 、冷卷螺旋弹 簧 碳纳米管是一种奇异分子,它是使用一种特殊的化学气相方法,使碳原子形成长链来生长出的超细管子,细到5万根并排起来才有一根头发丝宽。这种又长又细的分子,人们给它取个计量单位“纳米”(百万分之一毫米)的名字,叫“纳米管”。尽管碳纳米管的理论上可长到几公里而不断,但人们已用多种方法制备的碳纳米管,最长也只有一二百微米。我国科学家另辟蹊径,创造性的制出了3毫米长的碳纳米管,把长度增加了上万倍。 碳纳米管有着不可思议的强度与韧性,重量却极轻,导电性极强,兼有金属和半导体的性能;把纳米管组合起来,比同体积的钢强度高100倍 ,重量却只有1/6。
高纯铝锭
2017-06-06 17:49:59
高纯铝锭相关知识很多,让我们对它进行下介绍。高纯铝锭指的是Al含量≥99.999%(5N)的铝。高纯铝具有许多优良性能,用途广泛。它具有比原铝更好的导电性、延展性、反射性和抗腐蚀性,在电子工业及航空航天等领域有着广泛的用途。在电子工业中,用于制作高压电容器铝箔、高性能导线、集成电路用键合线;航空航天工业中,高纯铝用来开发制作等离子帆(推动航天器的最新动力);高速轨道交通中,高速轨道交高纯铝锭参数范围: 10±1Kg ,YS/T275-2000。铝及铝产品分类 1、电解铝的生产过程:铝土矿→氧化铝→电解铝。 2、按照铝锭的主成份含量可以分成三类:高级纯铝(铝的含量99.93%-99.999%)、工业高纯铝(铝的含量99.85%-99.90%)、工业纯铝(铝的含量98.0%-99.7%)。 3、按照铝锭的市场产品型态可以分成三类:一类是加工材,如板、带、箔、管、棒型、锻件、粉末等;一类是铸造铝合金、盘条线杆电缆等;一类是日常生活中的各类铝制品等。 铝锭分类铝锭按成分不同分重熔用铝锭、高纯铝锭和铝合金锭三种:按形状和尺寸又可分为条锭、圆锭、板锭、T形锭等几种,下面是几种常见的铝锭; 重熔用铝锭--15kg,20kg(≤99.80%Al): T形铝锭--500kg,1000kg(≤99.80%Al): 高纯铝锭--l0kg,15kg(99.90%~99.999%Al); 铝合金锭--10kg,15kg(Al--Si,Al--Cu,Al--Mg); 板锭--500~1000kg(制板用); 圆 锭--30~60kg(拉丝用)。在我们日常工业上的原料叫铝锭,按国家标准(GB/T 1196-2008)应叫“重熔用铝锭”,不过大家叫惯了“铝锭”。它是用氧化铝-冰晶石通过电解法生产出来的。铝锭进入工业应用之后有两大类:铸造铝合金和变形铝合金。铸造铝及铝合金是以铸造方法生产铝的铸件;变形铝及铝合金是以压力加工方法生产铝的加工产品:板、带、箔、管、棒、型、线和锻件。按照?重熔用铝锭?国家标准,“重熔用铝锭按化学成分分为6个牌号,分别是Al99.85、Al99.80、Al99.70、Al99.60、Al99.50、Al99.00”(注:Al之后的数字是铝含量)。目前,有人叫的“A00”铝,实际上是含铝为99.7%纯度的铝,在伦敦市场上叫“标准铝”。大家都知道,我国在五十年代技术标准都来自前苏联,“A00”是苏联国家标准中的俄文牌号,“A”是俄文字母,而不是英文“A”字,也不是汉语拼音字母的“A”。和国际接轨的话,称“标准铝”更为确切。标准铝就是含99.7%铝的铝锭,在伦敦市场上注册的就是它。通过了解高纯铝锭的知识,我们才可以掌握其真正的价值,你可以登陆上海有色网查找更多的信息。
氟碳喷涂
2019-03-08 12:00:43
多年来,铝材的表面处理一向选用阳极氧化处理,为了确保氧化膜的结实和光泽,国内外对用于铝门窗的型材进行了仔细的挑选,终究选中了6063合金(我国为LD31)。该合金杰出的氧化性能使人们对氧化膜结实度和氧化膜光泽的要求得以完成。跟着建筑技能的开展,阳极氧化处理已不能满意建筑师和业主对门窗颜色的要求。由于,阳极氧化后只要白色和古铜色两种颜色。 氟碳喷涂是选用液态氟碳喷涂料喷涂在铝合金制品上。这种喷涂在香港被称为煸油。它具有优异的抗褪色性、抗起霜性、抗大气污染(酸雨)腐蚀性、抗紫外线照耀和较强的抗裂性。因而,它一呈现便于工作遭到人们广泛的注重和喜爱。 一、氟碳喷涂的质料 氟碳喷涂是以聚偏地氟乙烯树脂为基料或配以金属粉为色料制成。它于1965年由美国Penwalt化学公司首要推出,并以Ky—nar500作为商标。该喷涂料经美国研究机构对其和别的两种涂料进行的长达12年暴露在湿润含盐环境中的测验结果表明,它能够在各种恶劣的环境下运用。 二、氟碳喷涂的技能要求和标准 氟碳喷涂为高级的铝材表面涂装工艺,故对全进程的质量要求极为严厉。现在,国际上公认的查看涂装质量的首要标准为美国建筑制作业协会标准AA-MA-605.02.90。该标准中的一些首要技能指标为: 1.最小涂层厚度:3O.5 μm(2层)、40.6μm(3层) 2.颜色均匀度:肉眼操控。 3.附着性:1/16” 方格,湿、干涂层时均无掉落。 4.冲击性:1/1O” 变形,无掉落。 5.耐酸性:1%滴在表面,15min后无腐蚀。 6.耐碱性:Mortar Pat试验,24h无腐蚀。 7.耐清洁剂:浸泡于30%、38℃清洁剂中,72h无腐蚀。 8.耐盐雾污染:5%的38℃盐水300h,底层掉落中于1/16”。 三、氟碳喷涂的设备及工艺 氟碳喷涂的设备有必要确保有超卓的雾化作用,确保喷涂均匀。质量优异的氟碳涂层应具有金属光泽,颜色鲜明,有显着的立体感。不然,构件表面颜色不均,有阴影或涂层不牢。 氟碳喷涂工艺多选用多层喷涂,以充分发挥Ky—nar500的耐外尾和耐候性,从铝材的前表面处理到各喷涂进程都需求严厉操控质量,终究产品有必要到达美国建筑制作业协会AAMA-605.02-90标准。 氟碳喷涂工艺流程为: 前处理流程:铝材的去油去污→水洗→碱洗(脱脂)→水洗→酸洗→水洗→铬化→水洗纯水洗。 喷涂流程:喷底漆→面漆→罩光漆→烘烤(180~250℃)→质检。 喷涂工艺有三次喷涂(喷底面漆、面漆及罩光漆)和二次喷涂(底漆、面漆)。 1.意图:对工件表面进行去油去污及化学处理,意图是发生铬化膜,添加涂层与金属表面的结合力和氧化才能,有利于延伸漆膜的运用年限。 2.底漆涂层:为了进步涂层抗浸透才能,增强对基材的维护,安稳金属表面层,加强面漆与金属表面的附着力,能够确保面漆涂层的颜色均匀性,漆层厚度一般为5~1Oμm。 3.面漆涂层:面漆涂层是喷涂层要害的一层,在于供给铝材所需求的装修颜色,使铝材外观到达规划要求,而且维护金属表面不受外界环境的腐蚀,避免紫外线穿透。漆层厚度一般为23~3Oμm。 4.罩光漆涂层:意图是更有效地增强漆层抗外界腐蚀才能,维护面漆涂层,添加面漆颜色的金属光泽。涂层厚度一般为5~1 Oμm。 5.固化处理:三喷涂层一般需求二次固化,铝材进入固化炉处理,固化温度一般在180~250℃之间,固化时刻为15~25min。 6.质量检验:质量检验应按AAMA605.02.90标准。氟碳喷涂在我国仍是一个较新的产品,但已具有出产厂商3O佘家,年喷涂面积已超越400万平方米。在这些厂商中,有选用手艺喷涂的,也有自动化喷涂的,喷涂质量差异很大。因而用户在选材时,要严厉查看产品的喷涂质量,既要考虑出产供应商的设备先进程度,也要考虑其技能人员的技能落后水平缓操作工人的工作经验。
硫化矿酸浸--高尔峒流程-硫酸高铁法
2019-01-25 15:49:17
高尔峒山(Mt. Gordon)在澳大利亚东北部的昆士兰省的西北边,原来叫做冈拍德(Gunpowder),是一个老矿山。高尔峒山主要的铜矿物是辉铜矿、铜蓝及与黄铁矿紧密镶嵌的黄铜矿,浮选不能分开的两种矿物。脉石主要是硅化的粉砂岩。 高尔峒山所属依斯拍兰札(Esperanza)矿的辉铜矿平均铜品位高达8.4%,决定先开采这部分矿石。脉石主要是硅化的粉砂岩。经过比较,决定采用酸性硫酸铁溶液直接浸取原矿,纯氧作氧化剂。这样就可以在高压釜中低压、低温下进行浸取[1]。 矿石平均成分为:Cu 7.5%~8.5%、Fe 28%、S 37%、As 0.2%。铜的矿物组成:辉铜矿91%、斑铜矿1%、黄铜矿2%、铜蓝5%、硫砷铜矿1%。浸取液的成分(g/L) : Fe3+为10, Fe2+为35,H2S04为70,CuS04为10。维持氧化电位635~640mV。浸取温度80℃,总压力0.8MPa。 分析结果表明大约有2%~3%的黄铁矿与氧气直接作用而被氧化。同时也有少量的单质硫被氧化为硫酸,从而有利于减少酸的消耗。 工业流程 高尔峒的工业流程见下图。这是第一家用加压酸浸处理硫化铜矿的湿法冶金工厂。 每个高压釜的总容积是180m3,有效容积120m3。釜分为5个室,各有单独的搅拌桨,下面的桨是涡轮式桨叶,上部是轴向流的桨叶。由于浸取是放热反应,浸取时温度从77~80℃上升至85~90℃。为了控温,向第三室中喷入冷的萃余液。这个喷液装置是后来安装的。控制温度有利于氧气的有效利用,反而可以提高浸取速度。 投资和生产成本 工厂于1998年7月建成,首先用堆浸的矿石进行试车,直至1999年12月才正常运转。在后面的18个月生产十分平稳,达到原设计的45000t/a的指标。高尔峒厂设备、厂房直接投资4400万美元,加上间接投资(如开工费用、设计采购调试费用等)总计5370万美元。 高尔峒厂在2001年6至12月的半年期间内实际生产电解铜23933t,消耗铜品位8.85%的矿石31.4万t。相当年产47866t电解铜,消耗铜品位8.85%的矿石62.8万t,铜的总回收率86%(设计900k)。吨铜矿石成本682美元与运行成本504美元之和为1186美元。[next] 参考文献 1.Dreisinger D,Richmond G,et al.,ALTA Copper-7 Technical Proceedings,23 May 2002,Perth,Australia
含碳铅锌矿石预先除碳工艺技术
2019-01-30 10:26:21
如何消除含碳多金属硫化矿石分离过程中碳的影响,一直是国内外选矿研究的难题之一。由于碳的可浮性好,会随着铅、锌一起浮出,并且由于矿物之间致密共生、互相嵌镶,有些铅锌矿石铅锌分离本身就存在一定的困难,再加上碳的干扰,会严重影响铅锌矿的选别效果,影响铅、锌精矿品位。
四川龙塘铅锌矿为一较典型的沉积一改造成因的层控型铅锌矿床,其中含有大量的藻层纹石、叠层石白云岩及含藻白云岩,大量菌藻存在是龙塘铅锌矿中碳的来源。该矿区矿石中的碳以有机碳形式存在。
内蒙古天宝山铅锌矿处于狼山一渣尔泰矿带,此矿带是我国北方重要的多金属成矿带。该矿区赋矿围岩是一套海相沉积岩,因为静水深海沉积的缺氧还原环境,形成了高含量的碳质沉积。该矿区矿石中的碳主要以石墨形式存在。
以上两个矿山都存在铅锌矿石中含碳的问题,由于碳的可浮性好,它的存在造成铅、锌选别指标差,经济效益低。比较两种矿石的矿石性质后,对两个矿石中的碳分别进行了除碳处理,目的是比较不同性质的含碳铅锌矿石采取相同除碳工艺后,铅、锌选别指标的变化,以及比较分析铅锌矿石中所含的易浮碳对铅、锌浮选的影响。
一、矿石性质研究对比
四川龙塘含碳铅锌矿石(以下简称龙塘矿石)是硫化铅锌矿石,其中硫化物中的铅占铅总量的96.09%,硫化物中的锌占锌总量的96.19%。内蒙古天宝山含碳铅锌矿石(以下简称天宝山矿石)也是硫化铅锌矿石,其中,硫化物中的铅占铅总量的92.03%,硫化物中的锌占锌总量的98.74%。
分别对两种矿石进行了化学分析,结果见表1。由表1可看出,两个矿石中有价金属均为铅、锌,且都具有工业开采的价值。其中,龙塘铅锌矿中铅、锌品位分别为1.23%、8.78%;天宝山矿石铅、锌品位略低于龙塘石矿铅锌的品位,分别为1.12%、5.58%。两种矿石中都含碳,且含碳量差别较大,龙塘矿石的含碳量达到11.26%,而天宝山矿石的含量只有4.30%。两种矿石化学成分的另一个主要区别是硫的品位,龙塘矿石硫品位为4.68%,而天宝山矿石硫品位达为25.95%。
表1 两种矿石主要化学成分比较矿石PbZnCuFeSAsCSiO2Al2O3CaOMgOAg(g/t)龙塘矿石1.238.780.0470.44.680.04911.263.800.2124.7216.4226.93天宝山矿石1.125.580.00622.225.950.00584.3014.42.8312.874.1326.93
两种矿石的矿物组成见表2。由表2可看出,虽然两个矿石中都有碳,但碳的存在形式不同。龙塘矿石中总碳含有11.26%,有机碳在矿物组成中占1.17%,结合表1数据,可计算出有机碳占总碳量的10.39%;其他的碳主要含在白云石和方解石等脉石中,其中白云石中所含碳占总碳量的87.47%,方解石中所含碳占总碳量的3.56%,这部分碳基本不会影响铅、锌的浮选。天宝山矿石总碳含量为4.30%。石墨在矿物组成中占2.61%,占总碳量的60.70%,其他含碳的脉石主要为方解石,占总碳量的39.35%。由以上对比分析可见,天宝山矿石中易浮的碳含量要高于龙塘矿石中易浮的碳含量。因此,碳对天宝山矿石的影响要高于对龙塘矿石的影响。为考察和比较不同矿石中碳与其他矿物的关系,进行了详细的工艺矿物学研究。结果表明,龙塘矿石中的有机碳分布比较广泛,中细粒有机碳常嵌生在脉石矿物中,有机碳多与闪锌矿紧密共生,或沿粗粒闪锌矿裂隙中嵌生,或呈微细粒沿闪锌矿周边嵌生,此外也有少量的有机碳以细粒-微细粒包裹的形式嵌生在闪锌矿中。磨矿时,部分有机碳与闪锌矿充分单体解离比较困难。天宝山矿石中,大多数石墨嵌布粒度比较细,多呈细小片状嵌布在脉石矿物中,也有部分与闪锌矿、方铅矿、磁黄铁矿等金属矿物紧密共生。少量结晶较差的石墨嵌布在闪锌矿中或与闪锌矿紧密共生,二者充分解离比较困难。
综上所述,龙塘矿石和天宝山矿石中均含碳,但碳的形式、含量以及与脉石矿物结合程度均不相同。龙塘矿石含有机碳,而天宝山矿石中含石墨。有机碳占龙塘矿石中总碳的比例小于石墨占天宝山矿石中总碳的比例。龙塘矿石中的有机碳与锌矿物结合紧密,而天宝山矿石中的石墨多与脉石结合紧密,也有相当部分与铅、锌矿物共生。
二、除碳工艺研究及对比
针对矿石性质以及矿石中碳嵌布特点,为避免矿石中的碳对后面的铅、锌选别造成影响,对两种矿石进行了预先浮选除碳工艺小型试验。在进行详细条件试验的基础上,分别进行了闭路试验,闭路实验的原则流程以及产品的结果见图1。浮选闭路时,不同矿石的详细流程有所不同。对龙塘矿石,除碳流程为一次粗选一次扫选四次精选的预选;铅浮选为一次粗选一次扫选三次精选;锌浮选为一次粗选两次扫选三次精选。对天宝山矿石,除碳流程为一次粗选一次扫选一次精选;铅浮选为一次粗选一次扫选三次精选;锌浮选为一次粗选一次扫选三次精选。
由图1A图所列出的试验结果可以看出,由于龙塘矿石中碳和锌的紧密嵌生,碳产品1中锌的含量高达46.25%,同时回收率也达到22.36%。可将碳产品1作为一个锌精矿,但其中的铅的品位为5.66%,不符合锌精矿的质量要求。将它与除碳后铅锌顺序浮选得到的锌精矿混合作为总的锌精矿,成为含锌50.37%、回收率95.34%的合格锌精矿,其中含铅品位为1. 94%,回收率为30.87%,这样才能具有最优的工业生产价值,同时也可以消除碳对铅锌浮选的影响。除碳后,进行铅锌顺序浮选,可以得到品位为71.76%、回收率为66.13%的铅精矿,其中含锌品位为6.50%、回收率为0.71%。
由图1B图所示,对于天宝山矿石,采取预选除碳工艺消除了碳对铅、锌浮选的影响,得到合格的铅、锌精矿。其中,铅精矿铅品位达到64.08%、回收率71.09%,锌品位为2.88%;锌精矿锌品位为50.55%、回收率88.35%,铅品位为0.29%。
由于在两种矿石中硫含量差异很大,在天宝山矿石中所含的硫比龙塘矿石中的硫高出4倍还多。因此,黄铁矿对天宝山矿石在浮选过程中的影响,要远高于龙塘矿石。天宝山矿石采用预先除碳工艺后,得到的碳产品2中,用肉眼就可见大量的黄铁矿颗粒。最终的产品显微镜下观察发现,该碳产品2中除了石墨外,金属矿物主要为黄铁矿,其矿物相对含量接近40%;其次为闪锌矿、方铅矿和磁黄铁矿,脉石矿物主要为微细粒的云母和方解石。由于碳产品2中有大量的黄铁矿存在,没有成为铅精矿或锌精矿的可能。而龙塘矿石采用预除浮碳工艺后,碳产品1中除有机碳外,主要金属矿物为闪锌矿,其次是方铅矿和少量的黄铁矿,其他的脉石矿物很少。多数闪锌矿以细粒单体或与有机碳组成细粒连生体的形式产出,碳产品1中锌的品位能够达到低级别锌精矿的要求,同时也没有黄铁矿的干扰。因此,最终与除碳后铅锌顺序浮选得到的锌精矿混合,作为一个总的锌精矿产出。
由以上两个实际矿石试验可以看出,由于碳的天然可浮性好,铅锌矿中如果有大量碳的存在,确实影响铅、锌的品位和回收率。采用预先除碳的流程,使天宝山矿石和龙塘矿石都达到了除碳的目的,消除了碳对铅浮选影响,并得到合格铅精矿以及锌精矿。但如果应用预先除碳工艺,在实际操作过程中,碳是作为一种副产品还是精矿,要根据含碳铅锌矿石的性质以及碳与有价金属矿物的嵌布特征,来最终确定对碳产品处理的问题。
预先浮碳在浮碳过程中,必定会有部分细粒、易浮的方铅矿和闪锌矿以及部分连生体进入到碳产品中。在对龙塘矿石进行预先除碳过程中,得到的碳产品中,铅的品位达到5.66%,回收率高达23.03%,导致两个锌精矿混合后有30.87%的铅损失在锌精矿中,使得铅精矿中铅的回收率只有66.13%。天宝山矿石预先除碳所得的碳产品中,铅品位1.50%、回收率4.64%;锌品位2.51%、回收率1.8%,这会影响铅锌的回收率。
因此,这种预先除碳工艺流程中,铅、锌的回收率会低于一般的铅锌分离工艺。通过以上试验研究可以说明,预先除碳工艺在实际工程中是可以被采用的,但要根据含碳矿石的性质来确定最终的工艺流程。
三、结论
(一)两种矿石中所含碳的存在状态不同,龙塘矿石含1.17%的有机碳,占总碳量的10.39%;天宝山石矿含2.61%石墨,占总碳量的60.70%。同时,龙塘矿石中的有机碳与锌矿物结合紧密,而天宝山矿石中的石墨多与脉石结合紧密。
(二)虽然两种矿石中碳的含量和存在状态不同,但采用浮选预先除碳工艺,都可以消除碳对铅、锌选别的影响。经过除碳后再铅锌顺序浮选,两种矿石都可以得到合格的铅、锌精矿。但由于矿石性质的差异,两种矿石所得碳产品的处理方法不同,龙塘矿石所得碳产品1可以合并到锌精矿中,而天宝山矿石所得碳产品2不能利用。
(三)在实际工业应用过程中,应根据含碳铅锌矿石的性质对碳产品进行处理。因为含碳铅锌矿在碳预处理工艺流程中,碳产品中会有部分铅、锌进入其中,所以铅、锌的回收率会低于不除碳直接进行铅、锌顺序分离浮选工艺。
高精黄铜
2017-06-06 17:50:01
高精黄铜就是指精度比较高的黄铜合金。随着黄铜合金在人们的日常的生活中和工业生产中的广泛应用,高精黄铜越来越受到人们的青睐。 高精黄铜用途: 由于具有较好的延展性、冲压、电镀、耐腐蚀性,多应用于各种复杂冷冲、深冲五金件、散热器、汽车连接器、端子、继电器、钮扣、工艺品、电池弹片等行业中。 不同牌号的高精黄铜特性及用途:高精黄铜C2720∶延展性,深冲性能好,用于浅冲加工。 高精黄铜C2620∶延展性,可焊性,深冲性,可镀性,耐蚀性均佳,用于各种复杂冷深冲件。 高精黄铜C2600∶延展性,深冲性优,可镀性好,用于汽车散热片。 高精黄铜C2200∶色泽美,延展性,深冲性,耐蚀性均佳 高精黄铜带厚度公差:±0.005--±0.01MM ,宽度公差:±0.05--±0.1MM 高精黄铜带产品状态:M、Y2、Y、T(O,H,EH,1/2H) 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 更多关于高精黄铜的资讯,请登录上海有色网查询。
氟碳喷涂工艺流程
2019-01-02 09:41:20
氟碳喷涂工艺多采用多层喷涂 ,以充分发挥Kynar 500金属漆的耐久性、耐候性的优势,从铝材的前表面处理到各喷涂过程都需要严格控制质量,最终产品必须达到美国建筑制造业协会AAMA-605.02.90标准。
氟碳喷涂工艺流程为:
前处理流程:铝材的去油去污→水洗→碱洗(脱脂)→水洗→酸洗→水洗→铬化→水洗→纯水洗
喷涂流程:喷底漆→面漆→罩光漆→烘烤(180-250℃)→质检
多层喷涂工艺以三次喷涂(简称三喷),喷底面漆、面漆及罩光漆和二次喷涂(底漆、面漆)。
1.前处理的目的:在铝合金型材 、板材进行喷涂前,工件表面要经过去油去污及化学处理,以产生铬化膜,增加涂层和金属表面结合力和防氧化能力,有利于延长漆膜的使用年限。
2.底漆涂层:作为封闭底材的底漆涂层,其作用在于提高涂层抗渗透能力,增强对底材的保护,稳定金属表面层,加强面漆与金属表面的附着力,可以保证面漆涂层的颜色均匀性,漆层厚度一般为5-10微米。
3.面漆涂层:面漆涂层是喷涂层关键的一层 ,在于提供铝材所需要的装饰颜色,使铝材外观达到设计要求,并且保护金属表面不受外界环境大气,酸雨,污染的侵蚀,防止紫外线穿透。大大增强抗老化能力,面漆涂层是喷涂中最厚的一层漆层,漆层厚度一般为23-30微米。
4.罩光漆涂层:罩光漆涂层也称清漆涂层, 主要目的是更有效地增强漆层抗外界侵蚀能力,保护面漆涂层,增加面漆色彩的金属光泽,外观更加颜色鲜明,光彩夺目,涂层厚度一般为5-10微米。三喷涂层总厚度一般为40-60微米,特殊需要的可以加厚。
5.固化处理:三喷涂层一般需要二次固化,铝材进入固化炉处理,固化温度一般在180℃-250℃之间,固化时间为15-25分钟,不同氟碳涂料生产厂家 ,都会根据自己的涂料,提供最佳的温度和时间。氯碳喷涂厂(锔油厂)也有的根据自己经验把三喷时的两次固化改为一次固化。
6.质量检验:质量检验应按AAMA-605.02.90标准。严格的质量检查才能保证高质量喷涂产品。
涂碳铝箔的性能特点
2018-12-28 09:57:11
1、显著提高电池组使用一致性,大幅降低电池组成本。如:明显降低电芯动态内阻增幅;提高电池组的压差一致性;延长电池组寿命;大幅降低电池组成本。
2、提高活性材料和集流体的粘接附着力,降低极片制造成本。如:改善使用水性体系的正极材料和集电极的附着力;改善纳米级或亚微米级的正极材料和集电极的附着力;改善钛酸锂或其他高容量负极材料和集电极的附着力;提高极片制成合格率,降低极片制造成本。
3、减小极化,提高倍率和克容量,提升电池性能。如部分降低活性材料中粘接剂的比例,提高克容量;改善活性物质和集流体之间的电接触;减少极化,提高功率性能。
4、保护集流体,延长电池使用寿命。如:防止集流极腐蚀、氧化;提高集流极表面张力,增强集流极的易涂覆性能;可替代成本较高的蚀刻箔或用更薄的箔材替代原有的标准箔材。
高铝水泥
2018-12-29 11:29:09
美国能源部下属的阿贡国家实验室与来自日本、芬兰、德国的科学家合作,用激光对液体高铝水泥(又称矾土水泥)进行处理,使其变成了能导电的半导体,或可被用来制造计算机芯片、触摸屏等。
高铝水泥是以铝矾土和石灰为原料,按一定比例配制,经煅烧、磨细所制得的一种以铝酸盐为主要矿物成分的水硬性胶凝材料,又称铝酸盐水泥。研究人员使用一种经过二氧化碳激光束加热的空气动力悬浮装置,在2000摄氏度的高温下将高铝水泥熔化;然后在不同的空气中对这种材料进行处理,以便控制得到的玻璃中氧原子的结合方式。
这种悬浮装置可以让热液体不接触任何容器表面并形成晶体,这就会使该液体冷却成能捕获电子的玻璃状,从而使其获得导电能力。
钨铜块
2019-05-27 10:11:36
产地日本 牌子金宝牌号W70 特性钨铜是运用高纯钨粉优异的金属特性和高纯紫铜粉的可塑性、高导电性等优势,经静压成型、高温烧结、溶渗铜的技术精制而成的复合材料。断弧功能好,导电导热好,热胀大小,高温不软化,高强度,高密度,高硬度。 应用范围 1.电阻焊电极归纳了钨和铜的优势,耐高温、耐电弧烧蚀、强度高、比严重、导电、导热性好,易于切削制作,并具有发汗泠却等特性,因为具有钨的高硬度、高熔点、抗粘附的特色,常常用来做有必定耐磨性、抗高温的凸焊、对焊电极。 2.电火花电极针对钨钢、耐高温超硬合金制造的模具需电蚀时,普通电极损耗大,速度慢,而钨铜高的电腐蚀速度,低的损耗率,准确的电极形状,优秀的制作功能,能确保被制作件的准确度大大提高。 3.高压放电管电极高压真空放电管在作业时,触头材料会在零点几秒的时间内温度升高几千摄氏度,而钨铜的抗烧蚀功能、高韧性,杰出的导电、导热功能给放电管安稳的作业供给必要的条件。 4.电子封装材料既有钨的低胀大特性,又具有铜的高导热特性,其热胀大系数和导电导热性能够经过调整材料的成分而加以改动,然后给材料的运用供给了便当。 化学成份 钨W 70% 铜Cu 30%使用电阻焊电极,电火花电极,高压放电管电极,电子封装材料。 物理功能及机械功能 密度g/cm3 13.814 导电率%IACS 42 硬度 185HV 抗弯强度Mpa 700 软化温度℃ 900
高纯铝
2019-01-02 16:33:39
相对于传统的初级加工铝锭而言,高纯铝的生产有着较高的产品附加值及利润空间。高纯铝指的是Al含量≥99.999%(5N)的铝。高纯铝具有许多优良性能,用途广泛。它具有比原铝更好的导电性、延展性、反射性和抗腐蚀性,在电子工业及航空航天等领域有着广泛的用途。在电子工业中,用于制作高压电容器铝箔、高性能导线、集成电路用键合线;航空航天工业中,高纯铝用来开发制作等离子帆(推动航天器的最新动力);高速轨道交通中,高速轨道交通车辆除了需要用高纯铝配制高性能合金外,还由于高纯铝具有导磁率低、比重轻的特点,在磁悬浮体材料中得到大量应用;光学应用方面,汽车工业中的车灯反射罩,天文望远镜等大量使用铝反射器,国外也在研究用高纯铝作为大型天文望远镜的反光面。随着对高纯铝性能的进一步认识和开发,高纯铝的应用前景越来越广阔。
国际上成熟的提纯技术有三层液电解法和偏析法两种。三层液法现在应用比较广泛,但与偏析法比较起来,后者有着省电、低能耗、环保的优势,平均每吨能省电6000度。而且偏析法利用物理的方法,整个过程中不涉及其他的任何添加物质,不需要特别额外施加能源促进凝固和偏析过程,除了铝熔炼本身产生的气体和粉尘外,在生产过程中不产生任何有毒有害物质,符合环保生产的要求。
高铝砖
2018-12-28 11:21:28
高铝砖主要用于砌筑高炉、热风炉、电炉炉顶、鼓风炉、反射炉、回转窑内衬。此外高铝砖还广泛地用做平炉蓄热式格子砖、浇注系统用的塞头、水口砖等。但高铝砖价格要比粘土砖高,故用粘土砖能够满足要求的地方就不必使用高铝砖。
而高铝砖的耐火度比粘土砖和半硅砖的耐火度都要高,达1750~1790℃,属于高级耐火材料。因为高铝制品中Al2O3高,杂质量少,形成易熔的玻璃体少,所以荷重软化温度比粘土砖高,但因莫来石结晶未形成网状组织,故荷重软化温度仍没有硅砖高。所以抗碱性渣的能力比抗酸性渣的能力弱些。
高铍铜
2017-06-06 17:50:06
高铍铜就是高性能铍铜的简称。高性能铍青铜主要围绕
有色金属
低压、重力铸造模具使用的各种工况,通过深入研究铍青铜模具材料失效原因、成份和耐
金属
液侵蚀性内在关系,开发了高导电(热)性、高强度、耐磨性、耐高温性、高韧性、耐
金属
液侵蚀相结合的高性能铍青铜模具材料,解决了国内
有色金属
低压、重力铸造模具易裂、易磨损等难题,显著提高了模具寿命和铸件强度;克服了
金属
液渣粘附和侵蚀模具;改善了铸件表面质量;降低了生产成本;使模具寿命接近进口水平。铍铜经过淬火调质后,具有高的强度,弹性,耐磨性,耐疲劳性和耐热性,同时铍铜还具有很高的导电性,导热性,耐寒性和无磁性,碰击时无火花,易于焊接和钎焊,在大气,淡水和海水中耐腐蚀性极好。铍铜合金在海水中耐蚀速度:(1.1-1.4)×10-2mm/年。腐蚀深度:(10.9-13.8)×10-3mm/年。腐蚀后,强度、延伸率均无变化,故在还水中可保持40年以上,是海底电缆中继器构造体不可替代的材料。在硫酸介质中:在小于80%浓度的硫酸中(室温)年腐蚀深度为0.0012-0.1175mm,浓度大于80%则腐蚀稍加快。铍铜是力学,物理,化学综合性能良好的一种合金, 铍青铜材料经过淬火调质后,具有高的强度,弹性,耐磨性,耐疲劳性和耐热性,同时铍青铜还具有很高的导电性,导热性,耐寒性和无磁性,铍铜材料碰击时无火花, 铍青铜易于焊接和钎焊,在大气,淡水和海水中耐腐蚀性极好,铍铜合金是一种不可多得的合金。铍青铜是一种含铍铜基合金(Be0.2~2.75%wt%),在所有的铍合金中是用途最广的一种,其用量在当今世界已超过铍消费总量的70%。铍青铜是沉淀硬化型合金,固溶时效处理后具有很高强度、硬度、弹性极限和疲劳极限,弹性滞后小,并具有耐蚀、耐磨、耐低温、无磁性、高的导电性、冲击无火花等特点。同时还具有较好的流动性和重现精细花纹的能力。由于铍铜合金的诸多优越性能,使其在制造业获得了广泛的应用。想要了解更多高铍铜的相关资讯,请浏览上海
有色
网(
www.smm.cn
)铜频道。
高铜合金
2017-06-06 17:50:05
高强高导合金是指具有优良导电、导热性能,同时强度远高于纯铜的一类合金,其主攻方向是在不剧烈损失导电率的原则下,使用合金化方法提高强度,这类合金在国民经济和国防建设中具有重要的应用价值,其中电真空器件和集成电路框架材料需求最为迫切。电真空器件中前相波放大器、行波管、空调管、磁控管等需要大量无氧铜材,要求铜材在具有高强高导性能的同时,又具有抗软化性能,能够经历920℃、20min氢气退火,又不改变尺寸与形状。为此铜合金具有的强度应大于500MPa,导电率大于90%IACS的高强高导合金成为主要攻关目标。 固溶强化与析出强化是铜合金重要强化方法,Zr、Ag、Cd、Ti、Si、Mg、Te等,它们在铜中的溶解度随温度下降而急骤下降,这些元素于固态下,以单质或
金属
化合物质点析出,从而产生固溶强化和析出强化,由于合金元素从固溶体中析出,减少了晶格畸变,降低了应力场的强度,从而使合金的导电率也明显提高。从而诞生许多优秀的高强高导合金,在国外又称为高铜合金,它们的特点是加入的合金元素重量比很少,一般不超过3.0%,经过时效和热处理后,强度可为纯铜的2~3倍,导电和导热性能降低不多,一般仅降低10~30%IACS,除此之外,有些合金还具有优良的弹性(铍铜合金)、良好的切削性能(碲铜)等;高强高导合金广泛的应用于国民经济各部门,重要的应用方向有:电机整流子、电阻焊电极、连续铸钢用结晶器、电气化铁路架空接触线、电子通讯导电元件、集成电路引线框架等。 高效电机端子,通常使用含Ag 0.03%的拉制异型铜材;连续铸铜铜结晶器大量使用银铜、磷铜、铬铜、锆铬铜、结晶器为带有锥度和弧度的矩形或方型铜管,一般使用挤压管坯经成型冷拉而成;电极合金几乎全部是Cu-Cr-Zr合金,加工材的形状有棒、片、圆盘件,加工方法多为锻造、挤压、拉伸,直径φ8~φ12毫米,内孔φ0.8~φ1.2毫米小眼管材也正在试制中;随着电气化铁路和高速列车的发展,对供暖电接触线提出高强高导电的要求,过去 的纯铜导线已不能满足要求,由于列车速度的提高,要求接触线具有高的强度,车速与接触的线的抗张里平方根成正比,因此,多选用银铜和铜铬合金来制造导线,接触线的断面形状为双沟形状,断面积为100、110、120mm2,导线长度要求大于1000m,通常使用卧式和上引方法铸造大长度卷坯,然后经过盘拉法生产,盘拉一般为五模速拉;精密导电器件由于形状复杂,加工精度要求高,纯铜的切削性能不好,重要器件多选用含碲0.5%的碲铜合金,该合金可以使用常规方法生产,上述应用的合金性能列入表1.3.1。 常用高铜合金性能 TP2 TAg0.1 QCr0.5 QCr0.5-0.2-0.05 TTe0.5 性能名称 0.015%P 0.1%Ag 0.5%Cr 0.5%Crm0.2%Zr,0.05%Mg 0.5%Te0.015%P 熔点℃ 1083 1083 1080 1078 1080 比重g/cm3 8.9 8.9 8.9 8.89 8.89 传热系数Cal/cm.sec.℃ 0.8 0.81 0.8 0.8 0.88 导电率%IACS 85 90 85 80-85 90-95 强度Mpa 265-343 265-343 300-480 370-450 250-320 硬度HB 75-95 75-95 110-140 125-150 75-110 抗软化温度℃ 200 250 300 450 250 热加工温度℃ 750-850 800-850 850-900 850-950 800-850
高纯钨条
2017-06-06 17:50:03
高纯钨条要求纯度在99.98%以上。钨金原名钨
金属
条,简称钨金、钨条。 钨金是世界上少有的一种
有色
矿产品,年
产量
很低,用途非常广泛,主要用于铸造配料用原料。钨金来源于一种白色砂型矿体,矿线特别微小,经过采掘、研磨、水重选、提炼等多道工艺,得到品位达到95%以上的钨矿粉,再经过高温电炉提炼成型生产出的成品才是钨金。钨金的熔点:3500℃。目前钨矿主要分布在中国和俄罗斯,中国现在是世界上最大的钨金出口国。钨的应用非常广,最常见的是以碳化钨(WC)的形式使用在硬质合金。这样的硬质合金用在
金属
加工、采矿、采油和建筑工业中作为耐用
金属
。此外在电灯泡和真空管中钨丝的应用也很广。钨还常用作电极。钨可以被拉成很细的丝,而且熔点非常高。其它应用包括:由于钨的熔点非常高,常用于航天和高温应用,比如电子、加热、焊接,比如钨极气体保护电弧焊。钨非常坚硬,非常紧密,因此制作重
金属
合金非常理想,这样的合金用在装甲、散热片和高密度应用如压重、平衡重物、船和飞机的压重等。由于钨非常紧密,飞镖往往含80%至97%的钨。高速钢含钨,有时含18%的钨。制造涡轮机片、耐用部分和保护层的高温合金含钨(哈氏合金、钨铬钴合金等)。子弹中使用钨来取代铅。钨的化合物被用作催化剂、无机颜色。二硫化钨是高温润滑剂,它在500 °C依然稳定。由于钨的热胀性与硅酸硼玻璃类似,它被用来做玻璃/
金属
密封钨与镍、铁和钴的合金被用来制作重合金,这样的重合金用在动能弹中取代贫铀。在集成电路中钨是前路之间的连接物。在二氧化硅绝缘体中侵蚀接触孔,注入钨,磨平来连接三极管。典型的接触孔可以小到65纳米。碳化钨是最硬的物质之一,被用在机器工具和磨料中。碳化钨是磨具和转具中最常见的材料,往往也是最好的材料。在放射性医学中钨被用作屏蔽物质。运输氟脱氧葡萄糖一般用钨容器,由于氟脱氧葡萄糖中的高能氟-18铅容器无法使用。氧化钨被用在陶瓷釉中,钙或镁钨常用在荧光粉中。在核物理和核医学中钨晶体被用作闪烁探测器。钨被用作X射线目标和在电子炉中作为加热器。含钨的盐被永在化学和皮革工业中。青铜色的氧化钨被用在绘画中。由于它的低敏感性碳化钨被用作首饰,此外由于它非常硬它不会像其它擦光的
金属
被划痕。有些乐器的铉使用钨丝。高纯钨条外观呈灰色或暗灰色
金属
光泽,主要用于铸造配料用原料;加工用车刀刀头及各种导热体;炼钢的配料及添加剂,制造高级汽车的曲轴、缸筒的配料及电极,广泛用於枪支、火炮、火箭、卫星、飞机、舰船的制造。
高铝矾土
2017-06-06 17:49:59
高铝矾土就是指铝矾土,只是其中含铝量比较高。铝矾土又称矾土或铝土矿,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。白色或灰白色,因含铁而呈褐黄或浅红色。密度3.9~4g/cm3,硬度1~3,不透明,质脆。极难熔化。不溶于水,能溶于硫酸、氢氧化钠溶液。主要用于炼铝,制耐火材料。 高铝矾土的用途: (1)炼铝工业。用于国防、航空、汽车、电器、化工、日常生活用品等。 (2)精密铸造。矾土熟料加工成细粉做成铸模后精铸。用于军工、航天、通讯、仪表、机械及医疗器械部门。 (3)用于耐火制品。高铝矾土熟料耐火度高达1780℃,化学稳定性强、物理性能良好。 (4)硅酸铝耐火纤维。具有重量轻,耐高温,热稳定性好,导热率低,热容小和耐机械震动等优点。用于钢铁、有色冶金、电子、石油、化工、宇航、原子能、国防等多种工业。它是把高铝熟料放进融化温度约为2000~2200℃的高温电弧炉中,经高温熔化、高压高速空气或蒸汽喷吹、冷却,就成了洁白的“棉花”——硅酸铝耐火纤维。它可压成纤维毯、板或织成布代替冶炼、化工、玻璃等工业高温窑炉内衬的耐火砖。消防人员可用耐火纤维布做成衣服。 (5)以镁砂和矾土熟料为原料,加入适当结合剂,用于浇注盛钢桶整体桶衬效果甚佳。 (6)制造矾土水泥,研磨材料,陶瓷工业以及化学工业可制铝的各种化合物。 目前,已知赋存高铝矾土的国家有49个。我国有丰富的高铝矾土资源,约37亿吨,居世界前列,与几内亚、澳大利亚、巴西同属世界高铝矾土资源大国。但生产供耐火材料用的高铝矾土的国家只有圭亚那和我国,其他国家的铝矾土含铁量高,多用于炼铝和研磨材料。 我国高铝矾土矿资源比较丰富,在全国18个省、自治区、直辖市已查明高铝矾土矿产地205处,其中大型产地72处(不包括台湾)。主要分布在山西、山东、河北、河南、贵州、四川、广西、辽宁、湖南等地。 更多关于高铝矾土的资讯,请登录上海有色网查询。
高锰耐磨钢知识
2019-03-18 08:36:58
高锰耐磨钢是(HIGH MANGANESE STEEL SCRAP)抵抗强冲击、大压力物料磨损等耐磨材料中的最佳选择,具有其它耐磨材料无法比拟的加工硬化特性。在较大冲击或较大接触应力的作用下,高锰钢板表层产生加工硬化,表面硬度由HB200迅速提升到HB500以上,从而产生高耐磨的表面层,而钢板内层奥氏体仍保持良好的冲击韧性。 高锰钢最大的特点有两个: 高锰耐磨钢知识
一 是外来冲击越大,其自身表层耐磨性越高;
二 是随着表面硬化层的逐渐磨损,新的加工硬化层会连续不断形成。高锰钢这一特殊的性能,适于制作长时间经受高冲击物料磨损的耐磨构件,长期以来广泛广泛应用于冶金、矿山、建材、铁路、电力、煤炭、水泥等机械设备中。尤其是近年来,随着现代工业的高速发展和科学技术的突飞猛进,高锰钢已成为磁悬浮列车、凿岩机器人、新型坦克等先进设备中首选的耐磨材料。许多新型材料和现代表面工程技术在性能价格比上无法与高锰钢相比。 目前,国外耐磨机械的衬板、护板早已淘汰铸件,而采用高锰耐磨钢Mn13轧制钢板。高锰耐磨钢Mn13轧制钢板以其优良的耐磨性能,广泛用于抛丸机、球磨机、粉碎机等易被强冲击磨损的部位,已在造船、汽车、机械、发电、水泥、矿山、煤炭等外资、合资企业中高端用户中得到广泛应用,已成为新一代耐磨钢选材的必然发展趋势。高锰耐磨钢是抵抗强冲击、大压力物料磨损等耐磨材料中的最佳选择,具有其它耐磨材料无法比拟的加工硬化特性,在较大冲击载荷或较大接触应力的作用下,钢板表层产生加工硬化,表面硬度由HB200迅速提升到HB500以上, 从而产生高耐磨的表面层,而钢板内层奥氏体仍保持良好的冲击韧性。高锰钢最大的特点有两个:一是外来冲击载荷越大,其自身表层耐磨性越高;二是随着表面硬化层的逐渐磨损,新的加工硬化层会连续不断形成。高锰钢这一特殊的性能,适于制作长时间经受高冲击物料磨损的耐磨构件,长期以来广泛应用于冶金、矿山、建材、铁路、电力、煤炭等机械设备中。尤其是近年来,随着现代工业的高速发展和科学技术的突飞猛进,高锰钢已成为磁悬浮列车、保险柜、防弹车、凿岩机器人、新型坦克等先进设备中首选的耐磨材料。许多新型材料和现代表面工程技术在性价比上仍无法与高锰钢相比。2002年初,经我公司专业技术人员的努力,借鉴国外成熟产品工艺,成功开发出符合我国实际、填补国内空白的高锰耐磨钢Mn13轧制板材,经上海材料研究所检测中心(机械工业材料质量检测中心)和宝钢特殊钢检测中心鉴定以及国内许多大中型企业设备中几年来的实际使用证明:已完全达到了进口同类产品的质量性能(相对应的国外牌号:JIS:SCMnH11、AFNOR:Z120Mn12 和DIN/EN:X120Mn12)。
高铝矾土小知识
2018-12-29 16:56:48
高铝矾土,简称高铝料。高铝料的主要矿物是水铝石和高铝硅石组成。水铝石含量随着三氧化二铝与二氧化硅的比例的提高而增多。次要的矿物为金红石、揭铁矿等。有时还含有少量的波美石和迪开石。 按高铝矾土含三氧化二铝的高低,一般可分为3等5级,其含量和颜色分别为: 一等特级:85%以上土灰色或深灰色 一等一级:75-85%土灰色或深灰色 二等二级:65-75%白灰色 三等三级:50-65%青灰色 四级:50%以下青灰色
主要用途 用其熟料制造的各种高铝砖,是冶金工业和其它工业广泛使用的耐火或防腐材料,在电炉炉顶、高炉和热风炉上使用。
矿床特点分析和开采 高铝矾土属于沉积矿床,分为土生矿和石脉矿。土生矿,最上面覆盖着硬质红粘土,伴有石灰石厚土层,人们称之为“粒姜石”。矿体呈层状产出,面积较大,沿走向可达数里长,矿厚一般为3-4米,再厚者可达7一9米以上,材质纯净,结构坚硬致密。石脉矿由石灰岩覆盖,面积较小,呈窝状产出,一般十几米至几十米一窝,有时与石灰岩混生,中间夹一层细红胶泥,材质较粗而且不太纯净。
我国开采状况 我国自解放以来,由于冶金工业和其他工业的发展,促进了耐火材料工业的发展,目前我国已成为世界上耐火材料产量最高的国家。山西省有丰富的高铝矾土资源,贮量多,品位高,在全国名列前茅。
高纯铝价格
2017-06-06 17:50:01
目前高纯铝
价格
一直为广大企业投资者所关注。对于目前的供应过剩的铝
行业
中,高纯铝正是当下很多铝厂接下来的工作目标。相对于传统的初级加工铝锭而言,高纯铝的生产有着较高的产品附加值及利润空间。通常而言高纯铝的
价格
一般也要比普通铝锭的
价格
贵一些,一般也要在几十元/千克不等。接下来给高纯铝材作一下简单的知识介绍。通常把纯度(铝含量)大于99.8%的纯铝叫做高纯铝(highpurity aluminium).它是以优质精铝为原料,采用定向凝固提炼法生产的。高纯铝又可细分为次超高纯铝(铝含量99.5%~99.95%)、超高纯度铝(铝含量99.996%~99。999%)和极高纯度铝(铝含量99.999%以上)。高纯铝呈银白色,表面光洁,具有清晰结晶纹,不含有夹杂物。高纯铝具有低的变形抗力、高的电导率及良好的塑性等性能,主要被应用于科学研究、电子工业、化学工业及制造高纯合金、激光材料及一些其他特殊用途。产品一般以半圆锭或长板锭供货,每个半圆锭质量不小于45kg.每个长板锭质量不大于25kg,长板锭断面尺寸一般为200mm*65mm,长度不大于600mm. 高纯铝具有良好的延展性,通常可以碾压成极薄的铝箔或极细的铝丝,目前使用机械碾压可以制作达到厚度为0.4微米的独立铝箔,而电沉积则可制作厚度达到7.5纳米的铝膜,但该铝膜必须依附在塑料基膜上。目前中国高纯铝年
产量
不足10万吨,产品供不应求。根据有关资料统计,国内每年高纯铝的缺口在十几万吨左右。相信随着国内生产工艺的发展,产品质量的提高,高纯铝将是铝工业发展的新方向。更多高纯铝
价格
可登陆上海
有色
网查询,更新更权威的信息等着你!
高导铜合金
2017-06-06 17:50:05
高导铜合金 过对Cu Cr Zr系和Cu Fe P Ag系两种高强高导铜合金框架材料合金成分的分析 ,获得如下结论 :1)利用双相析出强化 ,可以改善析出相的形态和析出过程 ,也是获得高强高导铜合金的有效途径 ;2 )固溶 0 .1%Ag元素 ,通过Ag元素与其他固溶元素的交互作用 ,减少基体内对导电率影响较大的元素溶入 ,可改善材料的导电性和强度 ;3)通过对Cu Fe P Ag系合金成分的分析 ,提出了铜合金多元固溶体微观畸变累积假说 ,利用此假说 ,可有效地指导高强高导铜合金基体成分设计。 引线框架材料是半导体和集成电路的主要材料之一, 其装配工艺及材料成本约占全部集成电路的 25 %。自集成电路于1958 年问世以来, 在很长一段时间内, 作为集成电路引线框架和电子管封接材料的 Kovar 合金曾占绝对优势, 但从上世纪 70 年代以来, 由于Co 价暴涨出现了代用品 FeNi 42 合金。近年来, 铜合金以其优异的性能进入了引线框架用材行列, 并有取代 FeNi42 合金的趋势。目前铜合金用量已占到全部引线框架材料的 60 %~80 %, Kovar 合金已处于几乎被淘汰的境地, FeNi42 合金则由于其强度高而在高可靠性电路中仍占据统治地位, 但对于非特殊用途的电路, 将来可能全部被铜合金取代。铜合金引线框架材料之所以能引起重视并得到推广, 是与其高导电、高导热性能和低廉的
价格
分不开的, 随着集成电路向高密度、多功能、小型化、低成本方向发展, 特别是封装形式由传统的陶瓷封装向塑料封装转变, 与塑料封装相匹配的铜合金必将大有用武之地; 铜框架材料目前存在的主要问题是强度较低, 有必要通过加入合金元素来大幅度提高其强度。 但合金强化往往伴随导电性的降低, 而导电性对框架材料也是非常重要的性能指标。处理好两者的矛盾, 开发研制导电性接近纯铜而强度较纯铜提高一倍以上的高强高导铜合金。作者的目的是通过对上述两系列高强高导铜合金的成分分析, 寻求高强高导铜合金的合金化规律, 以指导今后高强高导铜合金的研究开发。 高强高导铜合金成分的主要原则是: 1) 加入适当的强化相形成元素; 2) 采用室温下在铜合金溶解较低的元素; 3) 选择对铜合金导电率影响较小的元素。 采用少量第二颗粒提高铜合金强度对合金导电性影响较小。其值为0.03%-0.08%。
两种含碳铅锌矿石预先除碳工艺对比研究
2019-01-24 09:38:21
Abstract: We compared the lead zinc ores’properties from two places, Sichuan and Inner Mongolia. Predecarbonization was used to remove carbonaceous material in the two ores. And then the selective flotation for lead and zinc was adopted. We compared the effects coming from the process flow above. The results showed that the carbonaceous material in Sichuan Longtang ore was organic carbon and in Inner Mongolia Tianbaoshan was graphite. Using predecarbonization to the two ores could remove carbonaceous material. The carbon product 1 gained from Longtang ore could be mixed with zinc concentrate. But the carbon product 2 gained from Tianbaoshan ore could not be utilized at all. 如何消除含碳多金属硫化矿石分离过程中碳的影响,一直是国内外选矿研究的难题之一。由于碳的可浮性好,会随着铅、锌一起浮出,并且由于矿物之间致密共生、互相嵌镶,有些铅锌矿石铅锌分离本身就存在一定的困难,再加上碳的干扰,会严重影响铅锌矿的选别效果,影响铅、锌精矿品位。 四川龙塘铅锌矿为一较典型的沉积-改造成因的层控型铅锌矿床,其中含有大量的藻层纹石、叠层石白云岩及含藻白云岩[1-2],大量菌藻存在是龙塘铅锌矿中碳的来源。该矿区矿石中的碳以有机碳形式存在。
内蒙古天宝山铅锌矿处于狼山-渣尔泰矿带,此矿带是我国北方重要的多金属成矿带。[3-5]该矿区赋矿围岩是一套海相沉积岩,因为静水深海沉积的缺氧还原环境,形成了高含量的碳质沉积。该矿区矿石中的碳主要以石墨形式存在。
以上两个矿山都存在铅锌矿石中含碳的问题,由于碳的可浮性好,它的存在造成铅、锌选别指标差,经济效益低。比较两种矿石的矿石性质后,对两个矿石中的碳分别进行了除碳处理,目的是比较不同性质的含碳铅锌矿石采取相同除碳工艺后,铅、锌选别指标的变化,以及比较分析铅锌矿石中所含的易浮碳对铅、锌浮选的影响。
一、矿石性质研究对比
四川龙塘含碳铅锌矿石(以下简称龙塘矿石)是硫化铅锌矿石,其中硫化物中的铅占铅总量的96.09%,硫化物中的锌占锌总量的96.19%。内蒙古天宝山含碳铅锌矿石(以下简称天宝山矿石)也是硫化铅锌矿石,其中,硫化物中的铅占铅总量的92.03%,硫化物中的锌占锌总量的98.74%。分别对两种矿石进行了化学分析,结果见表1。由表1可看出,两个矿石中有价金属均为铅、锌,且都具有工业开采的价值。其中,龙塘铅锌矿中铅、锌品位分别为1.23%、8.78%;天宝山矿石铅、锌品位略低于龙塘石矿铅锌的品位,分别为1.12%、5.58%。两种矿石中都含碳,且含碳量差别较大,龙塘矿石的含碳量达到11.26%,而天宝山矿石的含量只有4.30%。两种矿石化学成分的另一个主要区别是硫的品位,龙塘矿石硫品位为4.68%,而天宝山矿石硫品位达为25.95%。
两种矿石的矿物组成见表2。由表2可看出,虽然两个矿石中都有碳,但碳的存在形式不同。龙塘矿石中总碳含有11.26%,有机碳在矿物组成中占1.17%,结合表1数据,可计算出有机碳占总碳量的10.39%;其他的碳主要含在白云石和方解石等脉石中,其中自云石中所含碳占总碳量的87.47%,方解石中所含碳占总碳量的3.56%,这部分碳基本不会影响铅、锌的浮选。天宝山矿石总碳含量为4.30%。石墨在矿物组成中占2.61%,占总碳量的60.70%,其他含碳的脉石主要为方解石,占总碳量的39.35%。由以上对比分析可见,天宝山矿石中易浮的碳含量要高于龙塘矿石中易浮的碳含量。因此,碳对天宝山矿石的影响要高于对龙塘矿石的影响。 为考察和比较不同矿石中碳与其他矿物的关系,进行了详细的工艺矿物学研究。结果表明,龙塘矿石中的有机碳分布比较广泛,中细粒有机碳常嵌生在脉石矿物中,有机碳多与闪锌矿紧密共生,或沿粗粒闪锌矿裂隙中嵌生,或呈微细粒沿闪锌矿周边嵌生,此外也有少量的有机碳以细粒一微细粒包裹的形式嵌生在闪锌矿中。磨矿时,部分有机碳与闪锌矿充分单体解离比较困难。天宝山矿石中,大多数石墨嵌布粒度比较细,多呈细小片状嵌布在脉石矿物中,也有部分与闪锌矿、方铅矿、磁黄铁矿等金属矿物紧密共生。少量结晶较差的石墨嵌布在闪锌矿中或与闪锌矿紧密共生,二者充分解离比较困难。
综上所述,龙塘矿石和天宝山矿石中均含碳,但碳的形式、含量以及与脉石矿物结合程度均不相同。龙塘矿石含有机碳,而天宝山矿石中含石墨。有机碳占龙塘矿石中总碳的比例小于石墨占天宝山矿石中总碳的比例。龙塘矿石中的有机碳与锌矿物结合紧密,而天宝山矿石中的石墨多与脉石结合紧密,也有相当部分与铅、锌矿物共生。
二、除碳工艺研究及对比
针对矿石性质以及矿石中碳嵌布特点,为避免矿石中的碳对后面的铅、锌选别造成影响,对两种矿石进行了预先浮选除碳工艺小型试验。在进行详细条件试验的基础上,分别进行了闭路试验,闭路实验的原则流程以及产品的结果见图1。 浮选闭路时,不同矿石的详细流程有所不同。对龙塘矿石,除碳流程为一次粗选一次扫选四次精选的预选;铅浮选为一次粗选一次扫选三次精选;锌浮选为一次粗选两次扫选三次精选。对天宝山矿石,除碳流程为一次粗选一次扫选一次精选;铅浮选为一次粗选一次扫选三次精选;锌浮选为一次粗选一次扫选三次精选。
由图1A图所列出的试验结果可以看出,由于龙塘矿石中碳和锌的紧密嵌生,碳产品1中锌的含量高达46.25%,同时回收率也达到22.36 %。可将碳产品1作为一个锌精矿,但其中的铅的品位为5.66%,不符合锌精矿的质量要求。将它与除碳后铅锌顺序浮选得到的锌精矿混合作为总的锌精矿,成为含锌50.37%、回收率95.34%的合格锌精矿,其中含铅品位为1.94%,回收率为30.87%,这样才能具有最优的工业生产价值,同时也可以消除碳对铅锌浮选的影响。除碳后,进行铅锌顺序浮选,可以得到品位为71.76%、回收率为66.13%的铅精矿,其中含锌品位为6.50%、回收率为0.71%。
由图1B图所示,对于天宝山矿石,采取预选除碳工艺消除了碳对铅、锌浮选的影响,得到合格的铅、锌精矿。其中,铅精矿铅品位达到64.08%、回收率71.09%,锌品位为2.88%;锌精矿锌品位为50.55%、回收率88.35%,铅品位为0.29%。
由于在两种矿石中硫含量差异很大,在天宝山矿石中所含的硫比龙塘矿石中的硫高出4倍还多。因此,黄铁矿对天宝山矿石在浮选过程中的影响,要远高于龙塘矿石。天宝山矿石采用预先除碳工艺后,得到的碳产品2中,用肉眼就可见大量的黄铁矿颗粒。最终的产品显微镜下观察发现,该碳产品2中除了石墨外,金属矿物主要为黄铁矿,其矿物相对含量接近40%;其次为闪锌矿、方铅矿和磁黄铁矿,脉石矿物主要为微细粒的云母和方解石。由于碳产品2中有大量的黄铁矿存在,没有成为铅精矿或锌精矿的可能。而龙塘矿石采用预除浮碳工艺后,碳产品1中除有机碳外,主要金属矿物为闪锌矿,其次是方铅矿和少量的黄铁矿,其他的脉石矿物很少。多数闪锌矿以细粒单体或与有机碳组成细粒连生体的形式产出,碳产品1中锌的品位能够达到低级别锌精矿的要求,同时也没有黄铁矿的干扰。因此,最终与除碳后铅锌顺序浮选得到的锌精矿混合,作为一个总的锌精矿产出。
由以上两个实际矿石试验可以看出,由于碳的天然可浮性好,铅锌矿中如果有大量碳的存在,确实影响铅、锌的品位和回收率。采用预先除碳的流程,使天宝山矿石和龙塘矿石都达到了除碳的目的,消除了碳对铅浮选影响,并得到合格铅精矿以及锌精矿。但如果应用预先除碳工艺,在实际操作过程中,碳是作为一种副产品还是精矿,要根据含碳铅锌矿石的性质以及碳与有价金属矿物的嵌布特征,来最终确定对碳产品处理的问题。
预先浮碳在浮碳过程中,必定会有部分细粒、易浮的方铅矿和闪锌矿以及部分连生体进入到碳产品中。在对龙塘矿石进行预先除碳过程中,得到的碳产品中,铅的品位达到5.66%,回收率高达23.03%,导致两个锌精矿混合后有30.87%的铅损失在锌精矿中,使得铅精矿中铅的回收率只有66.13%。天宝山矿石预先除碳所得的碳产品中,铅品位1.50%、回收率4.64%;锌品位2.5i%、回收率1.8 %,这会影响铅锌的回收率。因此,这种预先除碳工艺流程中,铅、锌的回收率会低于一般的铅锌分离工艺。通过以上试验研究可以说明,预先除碳工艺在实际工程中是可以被采用的,但要根据含碳矿石的性质来确定最终的工艺流程。
三、结论
(一)两种矿石中所含碳的存在状态不同,龙塘矿石含1.17%的有机碳,占总碳量的10.39%;天宝山石矿含2。61%石墨,占总碳量的60.70%。同时,龙塘矿石中的有机碳与锌矿物结合紧密,而天宝山矿石中的石墨多与脉石结合紧密。
(二)虽然两种矿石中碳的含量和存在状态不同,但采用浮选预先除碳工艺,都可以消除碳对铅、锌选别的影响。经过除碳后再铅锌顺序浮选,两种矿石都可以得到合格的铅、锌精矿。但由于矿石性质的差异,两种矿石所得碳产品的处理方法不同,龙塘矿石所得碳产品1可以合并到锌精矿中,而天宝山矿石所得碳产品2不能利用。
(三)在实际工业应用过程中,应根据含碳铅锌矿石的性质对碳产品进行处理。因为含碳铅锌矿在碳预处理工艺流程中,碳产品中会有部分铅、锌进入其中,所以铅、锌的回收率会低于不除碳直接进行铅、锌顺序分离浮选工艺。
参考文献
[1] 徐旃章,等.四川盐边龙塘铅锌矿资源调查与评价[M].成都:成都科技大学出版社,1993:123-145.
[2] 朱创业,张寿庭,等.菌藻在四川龙塘铅锌矿成矿过程中的作用[J].成都地质学报,1993,3(20):75-81.
[3] 冯俊生.含碳铅锌多金属矿石除碳工艺[J].国外金属矿选矿,2001,(6):6-8.
[4] 冯俊生.含碳铅锌多金属矿石除碳工艺的分析[J].黄金科学技术,2001,9(2):33-36.
[5] 柳振江,王建平,付超,等.内蒙占甲生盘铅锌硫矿床地质特征及成矿机制研究[A].第九届全国矿床会议论文集[C].2008,II:269-270.
涂碳铝箔的性能优势
2018-12-29 11:29:12
1.显著提高电池组使用一致性,大幅降低电池组成本。如: 明显降低电芯动态内阻增幅;
提高电池组的压差一致性;
延长电池组寿命;
大幅降低电池组成本。
2.提高活性材料和集流体的粘接附着力,降低极片制造成本。如: 改善使用水性体系的正极材料和集电极的附着力;
改善纳米级或亚微米级的正极材料和集电极的附着力;
改善钛酸锂或其他高容量负极材料和集电极的附着力;
提高极片制成合格率,降低极片制造成本。
3.减小极化,提高倍率和克容量,提升电池性能。 如部分降低活性材料中粘接剂的比例,提高克容量;
改善活性物质和集流体之间的电接触;
减少极化,提高功率性能。
4.保护集流体,延长电池使用寿命。如: 防止集流极腐蚀、氧化;
提高集流极表面张力,增强集流极的易涂覆性能;
可替代成本较高的蚀刻箔或用更薄的箔材替代原有的标准箔材。
碳纤简介及其种类
2019-03-08 11:19:22
碳纤(CarbonFiber)是由经环氧涂层处理和石墨压织的碳化纤维制成的。其长处是重量轻,抗张强度高,在所有密度低的人工组成手柄材料中,碳纤可能是最巩固的。碳纤也是一种高度加工的材料,因而一般也被用在高端产品上。
碳纤维的品种
经高温处理后,其含碳量超越90%以上之纤维材料,称之为碳纤维。碳纤维之品种分类有许多办法,可依质料、特性、处理温度与形状来分类。若依质料可分为纤维素纤维系之嫘萦(Rayon)系与木质(Lignin)系;聚腈(Polyacrylonitrile)系;沥青(Pitch)系;酚树脂系与气相碳纤系等六种。若依特性则分为普通碳纤维;高强度高模数碳纤维与活性碳纤维等三种。普通碳纤维之强力在120㎏/㎜2以下,杨氏模数(Young掇Modulus)在10000㎏/㎜2以下者称之;高强度高模数者,则强力在150㎏/㎜2以上,模数在17000㎏/㎜2以上时称之。
若依加工处理温度分类时,则可分为耐炎质;碳本质与石墨质等三种。耐炎质碳纤之处理加热温度为200~350℃,可供作电气绝缘体;碳本质碳纤之处理加热温度为500~1500℃,可供电气传导性材料用;石墨质碳纤之处理加热温度在2000℃以上,除耐热性与电气传导性进步外,亦具自我润滑性。
若按碳纤维制品之形状分类时,可分为棉状短纤维;长丝状接连纤维;纤维束(Tow);织物;毡毯与编制长形物等。
含碳金矿氰化实例
2019-02-25 10:50:24
含碳金矿石在自然界中是稀有的,它在国际黄金储量中所占的份额尚不到2%。但在矿石中含有碳质物质时,因它能吸附化溶液中的贵金属,然后添加金、银在尾矿中的丢失。因而,当处理含碳金矿石时,首要有必要测定碳质物质对金的吸附才能。金在化时被碳吸附的数量不只取决于碳质物质的吸附才能,并且还同用化法处理的矿石粒度和浸出时刻有关。所以,在化尾矿中的金档次往往随化矿石的磨矿细度的变细而添加,这是由于磨矿粒度越细,则碳质物质的活性表面越大所造成的。又如浸出时刻较长时,金在尾矿中的档次因碳质物质对金的吸附效果较长而添加。因而,在断定含碳金矿石的化条件时,有必要断定最适合的矿石粒度和浸出时刻。
为了进步含碳金矿石的化目标,可用下列办法:
一、用高浓度溶液进行浸出。
二、物料先用对碳质物质的吸附才能具有抑制效果的药剂加以处理,然后进行化。
莤素黄P(用量1公斤/吨,在水介质中与物料拌和2小时)、酸(用量0.67公斤/吨,处理时刻25分钟)以及火油、重油、石油、(这些药剂用量1~2公斤/吨,参加磨矿机中)均能挑选性地吸附于碳质颗粒表面并且构成脂肪酸薄膜,然后不只能够下降碳对金的吸附,并且使碳质物质具有显着的疏水性。这样一来,碳质物质常常漂浮在浓缩机或拌和槽的矿浆面上,并且能够随浓缩机的溢流排出掉。
三、分两段或三段进行化,在各段化中间进地过滤,以及用新鲜化溶液将滤饼设制成矿浆。
四、用脱金溶液或新鲜化溶液对化尾矿重复进行激烈的洗刷。假如尾矿中含有许多已被吸附的金,那么可用Na2S(0.2~0.15%)溶液、碱、热化溶液和浓化溶液对其进行洗刷。
五、用吸附-浮选法处理含碳金矿石,即在化进程中参加细粒活性炭或离子交换树脂,进而用浮选法将吸金的活性,炭或离子交换树脂同矿石中的含金碳质成分一同浮游出来。
六、含碳金矿石及其精矿可用二芳基二硫代磷酸、a-羟基腈、、基偏桃酸等有机是行浸出,由于这些有机对金的浸出率较常用的无机高十几倍。
含碳金矿石除用化法处以外,也可用重选和浮选法加以处理。在浮选化之前,用溜槽和跳汰机从矿石中能够收回粗粒游离金,重选精矿则用混法处理。
浮选的首要意图在于取得抛弃尾矿。碳质物质只加起泡剂(丁醇、、二乙氧基、松根油)就能很好浮游。如有必要,可用抑制剂(水玻璃、三聚磷酸钠等)处理物料。含碳金精矿能够直接化(此刻应该采纳避免碳质物质有害影响的办法)或经氧化焙烧使焙砂中含碳量小于0.1%之后进行化;有时直接送去冶炼厂熔炼。
当处理含碳金-砷硫化矿石时,可用混合浮选法(参加、丁基黄药、硫酸铜)从中选出含碳金-砷精矿或用优先浮选法从中顺次选出含碳金精矿和金-砷精矿,并且将这两种精矿兼并后加以处理。含碳金-砷精矿一般先实施氧化焙烧,然后焙砂则进行化。
含碳金-砷精矿的氧化焙烧分两段进行比较好:在温度为500~600℃和空气给入量缺乏的条件下进行榜首段焙烧,使砷在焙砂中的含量小于1%;而在温度为650~700℃和空气给入量足够的条件下则进行第二段焙烧,使碳和硫烧尽。为了烧尽活性碳,不只需要给入过量空气和适当高的温度,并且还需要适当长的时刻。在欢腾焙烧炉中进行焙烧时,焙烧进程进行得比较快且比较完全。为了在焙烧炉中完成自生焙烧,精矿中的含硫量应为22%~24%。
加纳阿丽斯顿-高尔德-马英兹选金厂处理含碳金矿石。该厂处理才能1200吨/日。金属矿藏首要有金、毒砂、黄铁矿,其次有闪锌矿、黄铜矿、磁黄铁矿。脉石矿藏首要有石英,其次有方解石、铁白云石、金红石以及碳质片岩(或碳质千枚岩)。矿石含金9~11克/吨,含碳1%。一部分金呈游离状况被包裹在石英之中,而其他部分则与黄铁矿和毒砂共生。该厂选用重选-浮选和浮选精矿焙烧-化的联合流程,其出产工艺流程如图1所示。图1 加钠阿丽斯顿-高尔德-马英兹选金厂出产工艺流程
矿石经两段破碎至-6毫米,然后进行两段磨矿(I段磨碎至55%-0.074毫米)至65%-0.074毫米。在磨矿分级循环顶用溜槽、摇床和跳汰机收回游离金,其金收回率约60%。然后,重选尾矿进行浮选,浮选精矿实施氧化焙烧,焙砂进行化。在浮选及氧化进程中收回了30%的金。浮选精矿除含金85克/吨外,还含有很多的硫化物和碳质物盾。浮选精矿先进行浓缩、过滤和枯燥,然后用艾德瓦尔德斯双动焙烧炉进行氧化焙烧(炉子排料端的温度为800℃)。焙砂用圆筒冷却机进行冷却,并用水进行冲刷。浓缩产品用拌和浸出槽进行榜首段化浸出(NaCN浓度为0.08%,浸出时刻为24小时)。一段化浸出后的矿浆用过滤机进行过滤,含金溶液送入沉积作业,而滤饼经调浆则送去第二段氧化浸出(浸出时刻为72小时)。两段浸出的含金溶液给入澄清和沉积作业,而化尾矿则抛弃。该厂金总收回率为90%。二段化尾矿中含金平均为1克/吨(浮选尾矿中金档次为0.7~0.8克/吨)。
加拿大最近宣布了一篇关于安达略省玛克因尔矿山含碳金矿石的研究陈述。陈述中指出,矿石中金属矿藏首要有琥珀金、黄铁矿,其次有金红石、闪锌矿、黄铜矿、磁黄铁矿、针铁矿、钛铁矿、赤铁矿、磁铁矿以及铜蓝等;脉石矿藏首要有石英,其次有云母、绿泥石、黑石墨矿藏、方解石、白云母以及长石等。金在矿石中呈琥珀金状况存在。琥珀金是一种金银合金,其金银之比为3∶1。矿石含金14.6克/吨,含银4.7克/吨;85%的琥珀金被包裹于黄铁矿中,其他15%则被包裹在脉石矿藏中。琥珀金粒度一般在1~60毫米之间,其间-20微米者约占30%。矿石含碳3%,其间呈石墨和其他有机碳为1%,呈碳酸盐(方解石和白云石)者则为2%;大部分石墨呈细粒被包裹在脉石矿藏中。黄铁矿八成呈游离状况存在,并在矿石中与琥珀金细密共生。
研究成果指出:1、矿石直接化(磨矿细度-0.074毫米,用量分别为0.453、0.907和1.360公斤/吨,化时刻为48小时)时,因石墨矿藏吸附已溶金,所以金收回率都不超越47%;2、试图用跳汰机在化之前从矿石中预先脱除石墨矿藏,但实验成果不能令人满意,由于矿石粗磨(+0.59毫米)时不能脱掉石墨矿藏;细磨(-0.15毫米)时则金丢失于石墨矿藏中;3、矿石磨至-0.074毫米,然后从中脱除6%的矿泥(-50微米或-25微米)时,不只金丢失于矿泥中,并且不能脱掉大部分石墨矿藏;4、矿石磨至-0.074毫米后,在矿浆pH=8.1的条件下独自参加甲基异丁基(用量为22.68克/吨)进行石墨浮选便能脱除45%~50%的石墨,此刻石墨精矿产率为3%,石墨精矿含金6.6克/吨,金在石墨精矿中丢失为1.4%;5、石墨浮选尾矿(磨矿细度-0.074毫米)实施化(NaCN用量0.68公斤/吨,CaO用量0.453公斤/吨,化时刻为48小时)时,金总收回率为81.3%;6、将戊基钾黄药(用量272克/吨)参加于石墨浮选尾矿(磨矿细度-0.074毫米)中进行金-黄铁矿浮选时,金-黄铁矿精矿产率为16.2%,含金84.9%,金总收回率为94.1%,终究浮选尾矿含金0.8克/吨,金在终究浮选尾矿中的丢失为4.5%;7、金-黄铁矿精矿再磨至-0.043毫米后实施化(NaCN用量0.68公斤/吨、CaO用量0.453公斤/吨,化时刻为48小时)时,金总收回率为85.1%,化尾矿含金8.1克/吨,金在化尾矿中的丢失9.0%。金-黄铁矿精矿(再磨至-0.043毫米)经氧化焙烧(温度500℃、焙烧时刻为1小时)和冲突磨矿后实施化(NaCN用量0.068公斤/吨焙砂,CaO用量0.453公斤/吨焙砂,化时刻为48小时)时,金总收回率则93.6%,化尾矿含金0.6克/吨,金在化尾矿中的丢失为0.5%。由此可见,金-黄铁矿精矿在化之前实施焙烧时,金总收回率能进步8.5%。
该研究陈述所引荐的流程如图2所示。
碳还原氧化铜
2017-06-06 17:50:00
碳还原氧化铜原理:在加热的条件下,碳能从氧化铜中夺取氧使氧化铜还原成铜。2CuO+C=2Cu+CO2↑用品:试管、单孔塞、酒精灯、铁架台、木炭、氧化铜、粉笔、石灰水。操作:1.把木炭放在研钵里,研磨成极细的粉末。按1:10的质量比称取木炭和氧化铜,放在研钵里搅拌半分钟,使两者充分研细混均。2.取一段玻管(直径10mm左右),把一端拉细。3.取干燥的15×150mm试管,按图1所示装置。在试管里放2g上述混合物,用干燥的粉笔,沿试管内壁放入,大端跟混合物接触,另一端跟单孔塞接触。4.用酒精灯先均匀加热,然后集中加热反应物。5.随着反应的进行。澄清的石灰水变浑浊,说明生成了二氧化碳。6.当反应放出的热量足以维持反应的进行时,管底的反应物开始发红。这时移去酒精灯,剧烈的放热反应在几秒钟内很快蔓延到管内所有反应物,使它发生红光。7.反应停止后,生成的铜在二氧化碳气氛中逐渐冷却到室温时,取出金属铜粒。备注:1.本实验用酒精灯加热,只需3~4min,就能生成较大的铜粒,实验现象明显。2.反应物木炭和氧化铜的用量比是做好本实验的关键之一。3.本实验所用的氧化铜中20%为工业品,80%为化学纯。如果全部用工业品,生成物中含有较多的氧化亚铜。如果全部用化学纯氧化铜,虽能生成铜粒,但需要高温,而且时间较长。4.所用的木炭和氧化铜都要烘干。5.本实验的装置中,把一端拉细的粗玻管装在石灰水液面的目的有两个:防止反应完毕因试管冷却而石灰水倒吸;保证还原出来的铜在未冷却前保持在二氧化碳的气氛中,不致被空气氧化。6.用粉笔是为了防止反应剧烈时,混合物冲出,如果一支不够,可以放两支。。