硝酸银电解液的制备
2019-03-06 09:01:40
制造电解液,一般是运用含银99.86~99.88%以上的电解银粉或附近纯度的化学精粹银。将银粉置于耐酸瓷缸中,先加适量水湿润后,再分次参加硝酸和水,在自热条件下使其溶解而制得。某厂生产中,每批造液运用银粉40kg,配入工业纯硝酸40~45kg,水25~30kg。因为硝酸的激烈氧化,会放出很多的氧化氮和热,为防止氧化过火激烈形成溶液的外溢,硝酸应选用小流量接连参加或连续小批量参加的方法。当或许呈现外溢时,便参加适量自来水冷却之。待加完硝酸和水,反响逐步缓慢后,用不锈钢管刺进缸内,直接通蒸汽加热并拌和以加快溶解。银粉彻底溶解后,持续通入蒸汽以赶除过量的硝酸。一次造液进程约需4~4.5h。最终加水弥补至60L,溶液含银约600~700g∕L,硝酸小于50g∕L。再加水稀释至所需浓度供作电解渡用,或直接将浓液按核算量弥补于电解进程中。
造液作业通常在硬塑料的通风柜中进行,产出的很多氧化氮气体,经过塑料烟囱经洗气后排出。
国内外的一些工厂,也有用含银较低的银粉或许租银合金板及各种不纯银质料造液的。但因杂质含量高,需常常替换电解液。
硝酸氧化改性活性炭处理含铬废水的研究
2019-01-25 15:49:34
含Cr的电镀废水严重污染环境,利用改性的活性炭对它进行处理,效果明显.活性炭用HNO3(1:1)氧化并经300℃左右温度煅烧改性后,具有较高的阳离子交换容量,其阳离子交换容量达到1.88mmol/g.常温条件下以该改性活性炭作吸附材料处理镀铬厂含铬废水,在酸性条件下具有较高的还原性和吸附性,可将废水中以CrO2-4和Cr2O2-7两种形式存在的Cr(Ⅵ)离子完全还原成Cr3+,获得了较高的Cr(Ⅵ)离子去除率,并对溶液的pH值和吸附时间对废水中Cr(Ⅵ)离子去除率的影响进行了探讨.结果表明,当溶液的pH值为2.5~3.0,吸附时间为3~4 h时,废水中Cr(Ⅵ)离子的去除率可达到97.5%左右.
铬渣处理工艺
2019-02-20 15:16:12
消除金属铬和铬盐出产进程中排出的废渣对环境的污染和使其得到综合运用的进程。铬渣是由铬铁矿参加纯碱、白云石、石灰石在1100~1200℃高温焙烧、用水浸出后的残渣。每出产1t铬酸盐约发生3~5t铬渣。
成分 铬渣的化学成分见下表。
铬渣的矿藏组成首要有方镁石(MgO)、硅酸二钙(β–2CaO•SiO2)、铁铝酸钙(4CaO•Al2O3•Fe2O3)、亚铬酸钙(α–Ca(CrO2)2)、铬尖晶石((Mg•Fe)(CrO2)2)、四水(4Na2CrO4•4H2O)等。其间,有很大一部分相似水泥的物相组成,故铬渣也有水硬性,在空气中吸水结块。损害 铬渣中的首要毒物为水溶性的四水,是强氧化剂,毒性强。铬渣堆置不只占有土地,并且细粒随风飘扬构成空气污染;铬渣露天堆积,受雨雪淋浸,所含的六价铬被溶出进入地下水或进入河流、湖泊中,污染环境。我国某铁合金厂的铬渣堆场,未采纳相应的防渗方法,致使地下水六价铬离子含量猛增到150~180mg/L,超越饮用水标准数千倍,构成严峻的污染公害,下流污染规模增加到15~20km2,污染区域几个村庄的日子用水,全赖由外面引入自来水或用车送水直销;各种农作物也都遭到不同程度的污染。六价铬、铬化合物以及铬化合物的气溶胶,能以多种形式损害人畜健康。因而,铬渣的堆存场有必要采纳铺地防渗和加设棚罩。
处理和运用 避免铬渣污染的方法是进行解毒处理。在有复原剂的酸性条件下,或在有碱金属硫化物、硫氢化物的碱性条件下,或在有硫、碳和碳化物存在的高温、缺氧条件下,六价铬都可复原为毒性较小的三价铬。铬渣的运用首要有六方面。
1、制烧结砖。将铬渣枯燥、破坏,按铬渣粉40%和粘土60%的份额混合配料,制坯、焙烧。在高温文强复原性环境中,六价铬复原为不溶于水的三价铬,消除剧毒,砖材可到达建筑要求。
2、制作水泥。用铬渣、石灰石、粘土等质料按普通硅酸盐水泥配料,能够烧制水泥熟料,用来制作水泥。运用碳复原后的铬渣同高炉粒化渣,转炉钢渣和硅酸盐水泥熟料。参加5%左右的石膏,也可制作少熟料钢铁渣水泥。
3、出产铬渣铸石。将30%铬渣、25%硅砂(含SiO2>95%)、45%烟道灰、3%~5%氧化铁皮(轧钢铁皮)混合、破坏、于1500℃池窑中熔融,在1300℃下浇铸成型,结晶、退火后缓慢降温即为制品,模仿辉绿铸石组分是优秀的耐酸耐腐蚀材料。
4、替代蛇纹石出产钙镁磷肥。蛇纹石的首要成分为MgO和SiO2,可用铬渣替代。先将铬渣造球,按无烟煤:磷矿:铬渣:硅石=37.5:50∶35∶15(分量比)的配料比装入高炉中,于1600℃进行熔融反响,经水淬骤冷,沥水别离,转筒内枯燥后,球磨破坏即得制品。
5、替代白云石、石灰石作炼铁熔剂。铬渣中CaO、MgO的含量与炼铁运用的白云石、石灰石中的量附近,能够替代白云石、石灰石炼铁。炼1t生铁耗用600kg铬渣,六价铬可悉数复原、解毒完全,并且生铁中铬成分上升、硬度、耐磨和耐腐蚀性都有所提高。
6、替代铬铁矿做玻璃着色剂。制作绿色玻璃时常用铬矿粉做着色剂,首要是运用三价铬离子在玻璃中的光学特性。铬渣中含有部分未反响掉的铬矿粉和六价铬,高温有利于六价铬转变为三价铬,完全除毒,所得制品色泽碧绿艳丽。铬渣参加量3%~5%为宜。
此外,水淬铬渣还可作为水泥混合材料、矿棉质料、耐热胶凝材料、熔融水泥质料等。因为铬渣具有毒性,难以运送,因而使它的运用受到了必定约束。
熔盐电解直接制备钛铬合金的研究
2019-02-12 10:07:54
金属间化合物作为颇有开发潜力的高温结构材料已广泛引起了人们的爱好。而Laves相是金属间化合物中最大的一族,Laves相TiCr2是一种易在过共析成分钛铬合金中构成的金属间化合物,在1100℃仍表现出优秀的抗蠕变功能,并具有很好的抗氧化才能,TiCr基合金不只具有优秀的力学功能,也具有潜在的优胜储氢功能。TiCr基储氢合金最早是在80年代初期由美国haven试验室研发发现的,这类合金从发现以来就因为其杂乱的氢化物组成而一向遭到极大的重视。TiCr基储氢合金具有很高的储氢密度,其最大储氢质量比超越2.4%(质量分数),日本在对储氢合金的分类和发展趋势研讨中将TiCr合金与Mg基储氢合金并列为第三代储氢合金。
现在TiCr合金的制备首要是以纯金属为质料,然后用粉末冶金法或高温真空熔炼法制得细密合金。因为质料海绵钛出产工艺杂乱,能耗高,功率低,再加上合金化进程需求添加新的能耗,导致钛铬合金的出产本钱高,因而下降钛合金的冶炼与加工本钱是材料界和钛工业界一向尽力寻求的方针。金属氧化物的熔盐电解法是一种新的电解工艺,首要是由英国剑桥大学的Fray等在20世纪末提出的,这种办法最大的特色就是工艺简略,无污染,适用性强,能够从金属氧化物的混合物直接出产合金;该办法的设备出资少,本钱有望低于传统的出产办法。环绕此办法,国际上报导了从金属氧化物中电解提取钛、铌、铬、硅等金属的研讨工作。国内外对熔盐电解制备Nb3Sn合金、TiW合金、TiNi、TiFe等有报导,而对钛铬合金还鲜有研讨。本文探究用熔盐电解直接制取钛铬合金的可行性。
一、试验
(一)设备及质料
试验设备如图1所示,试验中选用电阻加热坩埚炉,并配有温度操控器,电解槽为石墨坩埚,内置于不锈钢反响器中,电解电源为WYK-3010直流稳压电源。
图1 电解试验设备简图
试验中所用的电解质料为分析纯TiO2和Cr2O3;熔盐为分析纯无水氧化钙,含量>96%,其间除含水外,其他杂质含量不超越0.5%。
电解进程在高纯氩气维护下进行,其间Ar含量>99.999%,O2含量<3×10-4%,H2O含量<3×10-4%。
首要分析设备为:选用荷兰PHILIPS公司X′Pert Pro Super X射线衍射仪分析产品的物相和组成(Cu Ka靶,管电压为40kV,电流为40mA);选用日本HITACHI S-4800场发射扫描电镜仪分析样品描摹,并配有X射线能谱仪(EDS)进行元素分析;选用美国LECO公司TC-436氮氧测定仪分析电解产品的氧含量。
(二)试验进程
二氧化钛、氧化铬粉末按摩尔比1∶1混合后参加一定量的胶粘剂,混合均匀后,压制成直径为10mm的电极,电极成型压力4~10MPa。在室温下放置2d,使其天然枯燥,然后在马弗炉中于900~1200℃温度下烧结数小时后即可用于电解试验。电解试验在如图1所示的设备中进行,以高密度石墨坩埚壁作阳极,烧结后的金属氧化物的混合物作阴极,在氩气(100ml·min-1)维护下的氯化钙熔盐中进行电解。首要以石墨棒为阴极,石墨坩埚为阳极,在1.5V电压下进行预电解,意图是脱除熔盐中残存的水分和杂质,然后在指定的电压下进行恒压电解,电解温度操控在900℃。电解完毕后,电解产品在氩气维护下炉内天然冷却至室温。
(三)样品检测
电解后的产品,用水冲刷表面后,在超声波辅佐下用蒸馏水清洗夹盐,枯燥后对所得样品进行SEM,EDS,XRD分析以及氧含量分析。
二、结果与评论
(一)钛铬合金的制备
以TiO2+Cr2O3(摩尔比1∶1)为质料的电极在1050℃烧结2h所得微观结构如图2(a)所示,XRD分析结果表明电极由TiO2和Cr2O3组成如图3(a),阐明在烧结进程中TiO2和Cr2O3并未发作化学反响。图2(b)给出了2.8V电解6h所得产品的微观结构,颗粒长大至初始电极的2倍左右,XRD分析电解产品首要为TiCr2和少数Cr,见图3(d)。对电解产品进行DES分析,结果表明电解产品中Cr和Ti的摩尔比为1.95,考虑到分析差错,电解产品中Cr和Ti挨近初始电解中质料的配比2,阐明熔盐电解钛铬混合氧化物能够直接制备组成可控的钛铬合金。
图2 电解前后电极的SEM图
(a)-初始电极;(b)-2.8V电解6h电解产品
图3 初始电极以及不一起刻电解产品的XRD谱
(二)恒压下钛铬合金的构成进程
为了更好地了解TiO2和Cr2O3混合氧化物的复原进程,操控槽电压为2.8V,别离电解10min、1h和6h,所得产品的XRD图谱示于图3。从图中能够看出,混合氧化物的电解复原阅历了从优先生成Cr到构成TiCr2的合金化进程,依据电解不同阶段的产品组成和热力学核算,估测TiO2和Cr2O3混合氧化物在复原进程中发作的首要反响如下:
1、电解10min的产品首要是Cr,CaTiO3以及少数的CaO,见图3(b)。因为从热力学上分析Cr2O3比TiO2更易复原,因而在反响初始阶段,Cr2O3首要被复原为Cr。在2.8V电压下进行电解,Cr2O3的复原机制与TiO2的复原机制相似,也是通过氧离子化和钙热复原反响进行的,发作的反响或许为(1)~(3)。
Cr2O3+6e=2Cr+3CO (1)
Ca2++2e=Ca (2)
Cr2O3+3Ca=2Cr+3CaO (3)
电解复原释放出很多的O2-向阳极分散,而熔融盐中的Ca2+向阴极分散,假如氧化物阴极复原生成O2-的速度大于O2-向熔融盐和阳极分散的速度,将会发作反响(4)生成CaTiO3,因而电解产品中有CaTiO3的存在。
Ca2++O2-+TiO2=CaTiO3 (4)
2、电解1h所得电解产品中有新相TiCr2生成,一起含有Cr,如图3(c),其间含有几个不知道的杂峰。因为电解试验所用的电极比较薄,仅有1mm左右,有利于钙、氧从电极中快速脱除,在电解产品中并未发现CaTiO3。作为中间产品在复原进程中生成的CaTiO3其寿数十分短,在随后的电解进程中,CaTiO3在新生成的Cr微粒上反响生成TiCr2,因而在电解产品中并未检测到CaTiO3。跟着TiCr2合金的生成和CaTiO3相的复原,多孔液层中CaO浓度下降,原先分出的CaO随CaTiO3的复原逐步熔解并迁出电极。
在电解较大的TiO2压片时,常常发现CaTiO3生成,因为现场钙钛矿化的发作,使固态颗粒的体积胀大,然后缩小颗粒之间的离子传输通道,阻止了多孔层内的离子搬迁,在TiO2压片彻底电解曾经,即便施加高于3.0V的电压,常常能够看到部分复原的夹心结构,但在电解TiO2和Cr2O3混合氧化物电极时,因为Cr2O3很简单被复原为Cr,Cr的存在进步了电极的导电性,一起又添加了电极的孔隙率,因而并未发现电解TiO2时常常出现的夹心结构。
3、电解6h所得电解产品为钛铬合金,依然含有铬的峰。从图3能够看出当电解时刻从1h延长到6h后电解产品中TiCr2的峰增强,而Gr的峰削弱,杂峰消失。从TiCr二元系相图能够看出,室温下C15相的均匀组成为TiCr1.75(65.5%Cr)~TiCr1.95(68%Cr),因为质料是按TiCr2制造,所以或许含有少数未合金化的Cr。
综上所述,本试验条件下混合氧化物复原为钛铬合金阅历了如下进程:反响最早生成Cr,副产品CaO与TiO2反响生成CaTiO3,在随后的电解进程中生成的CaTiO3和/或TiO2在新生成的Cr微粒上反响生成TiCr2合金。
(三)电解时刻对电解产品氧含量的影响
为了研讨电解时刻对产品氧含量的影响,以TiO2和Cr2O3(摩尔比1∶1)混合物小片为电极在2.8V电压下别离电解1,2,4,6和8h,图4给出了电解产品中氧含量随时刻的改变。从图中能够看出,在2.8V槽电压下电解1h,电解产品中的氧含量现已从初始电极的38.81%下降到11.50%,阐明在开始的1h电化学反响速度快,前1h脱除的氧占总氧量的74.56%,在电解复原反响2h后,产品中氧含量下降至0.64%,前2h脱除的氧占总氧含量的98.98%。当电解时刻从2h延长到6h,电极反响速度变慢,氧含量从2h的0.64%下降到0.20%,前6h脱除的氧占总氧含量的99.68%。这或许是因为从2h后首要发作的反响是从合金的脱氧进程,因而反响变慢。在随后的电解进程中发作脱氧反响,氧含量进一步下降,但氧脱除的速度很慢。
图4 电解产品氧含量随时刻的改变(电解电压2.8V,电解温度900℃,Ar100ml·min-1)
本文仅对熔盐电解直接制备钛铬合金进行了开始研讨,所选用的电解条件并非最优条件,下一步研讨的重点是制备出纯洁的钛铬合金,对其进行储氢功能测验和元素代替然后改善其储氢功能,而且优化电解条件以进步产品纯度和电流功率。
三、定论
(一)在熔融CaCl2系统中,直接电解TiO2和Cr2O3的混合物,在槽电压2.8V下电解6h能够得到氧含量为0.20%的钛铬合金,阐明用直接电解复原法电解TiO2和Cr2O3的混合物制取钛铬合金是可行的。
(二)混合氧化物的复原阅历了优先生成Cr到逐步构成TiCr2的合金化进程,反响最早生成Cr,副产品CaO与TiO2反响生成CaTiO3,在随后的电解进程中生成的CaTiO3和/或TiO2在新生成的Cr微粒上反响生成TiCr2合金。
电镀工业中含铬废水的处理方法
2019-03-11 11:09:41
电镀工业含铬废水的处理最常用的办法有复原法、电解法,工艺老练,运转作用好。可是近来又有许多其他的办法被研究出来,归纳比较会发现这些办法也各有优缺点。作为新办法,他们自有学习之处。 一、复原沉积法
化学复原法是运用硫酸亚铁、盐、二氧化硫等复原剂将废水中六价铬复原成三价铬离子,加碱调整pH值,使三价铬构成氢氧化铬沉积除掉。这种办法设备出资和运转费用低,首要用于间歇处理。
常用处理工艺为在榜首反响池中先将废水用硫酸调pH值至2~3,再参加复原剂,鄙人一个反响池顶用NaOH或Ca(OH)2调pH值至7~8,生成Cr(OH)3沉积,再加混凝剂,使Cr(OH)3沉积除掉。改进的工艺为在榜首反响池中直接投加硫酸亚铁,用NaOH或Ca(OH)2调pH值至7~8,生成Cr(OH)3沉积,再加混凝剂,使Cr(OH)3沉积除掉。运用该技能后,含铬废水日处理量为1000M3,废水中铬含量为10mg/l.该技能适用于含铬工业电镀废水处理。
在一些报导中也有说到运用聚合铁处理电镀含铬废水。聚合铁兼有传统絮凝剂PAC,PFC的长处,构成的絮凝体大而重,沉降速度快。其出水色度比聚合好,除浊作用和絮凝体沉降功能又优于聚合。详细报导内容附于文后。
二、电解法沉积过滤
1.工艺流程概略
电镀含铬废水首要经过格栅去除较大颗粒的悬浮物后自流至调理池,均衡水量水质,然后由泵提升至电解槽电解,在电解过程中阳极铁板溶解成亚铁离子,在酸性条件下亚铁离子将六价铬离子复原成三价铬离子,一起因为阴极板上分出,使废水pH值逐渐上升,最终呈中性。此刻Cr3+、Fe3+都以氢氧化物沉积分出,电解后的出水首要经过初沉池,然后接连经过(废水自上而下)两级沉积过滤池。一级过滤池内有填料:木炭、焦炭、炉渣;二级过滤池内有填料:无烟煤、石英砂。污水中沉积物由过滤池填料过滤、吸附,出水流入排水检查井。然后经过泵进入循环水池作为冷却用水。过滤用的木炭、焦炭、无烟煤、炉渣定时搜集在锅炉房掺烧。
2.首要设备
调理池1座;初沉池1座、沉积过滤池2座;循环水池1座;电源控制柜、电解槽、电解电源、电解电压1套;水泵5台。
3.结果与分析
某电镀厂电镀废水处理设备在正常工况条件下,距离不同的时刻屡次取样。
电镀含铬废水选用电解法沉积过滤工艺处理后悉数回用,过滤池内填料定时集中于锅炉房掺烧,达到了归纳办理电镀含铬废水的意图。
该处理技能尽管运转牢靠,操作简略,但应留意几个方面:
a)需求定时替换极板;
b)在必定的酸性介质中,氢氧化铬有被从头溶解的或许;
c)沉积过滤池内的填料有必要定时处理,燃烧完全,不然会引起二次污染。由此可见,对处理设备加强办理非常重要。
4.定论
1)该处理工艺对电镀含铬废水办理完全,过滤池内填料定时一致处理,不会引起二次污染;处理后清水悉数回用,可节约水资源,具有显着的经济效益。
2)该工艺出资较小,技能老练,运转安稳牢靠,操作便利,易于办理,适应于不同规划的电镀出产厂商.
硝酸镍
2017-06-06 17:49:59
硝酸镍化学式Ni(NO3)2。硝酸镍碧绿色单斜晶系板状晶体,密度2.05g/cm3,熔点56.7℃,沸点136.7℃(饱和溶液)。易溶于水,液氨,乙醇,微溶于丙酮,水溶液呈酸性,有吸湿性,潮湿空气中很快潮解。干燥空气中缓慢风化。受热时会失去四个分子水,温度高于110℃时开始分解并形成碱式盐,继续加热生成棕黑色的三氧化二镍和绿色的氧化亚镍的混合物。继续加热生成棕黑色的三氧化二镍和氧化亚镍混合物。易溶于水,水溶液呈酸性,溶于氨水,液氨,氧化剂,与有机物还原及易燃物硫,磷等混合有引起燃烧和爆炸危险。分子式 Ni(NO3)2·6H2O外观与性状 青绿色单斜结晶,易潮解分子量 290.81 沸 点 136.7℃熔 点 56.7℃ 溶解性 易溶于水、乙醇、氨水密 度 相对密度(水=1)2.05 稳定性 稳定制备:1、由镍板与浓硝酸发生反应,再经稀释、调节酸度、静置、过滤、滤液酸化、减压蒸发浓缩、冷却结晶、离心分离得到成品。2、由含镍工业废料酸溶、精制、沉淀出氢氧化镍,再用稀硝酸溶解得到。硝酸镍用途:用于电镀镀镍铬合金制件,使制件镀层细致,也用于制造蓄电池和彩釉着色,以及用于制造其他镍盐和镍催化剂。
硝酸稀土
2017-06-06 17:50:12
硝酸稀土是由轻稀土元素镧、铈、镨、钕中的两种或两种以上硝酸盐组成的无机混合物。为白色到浅粉色的晶体颗粒或粉末,极易吸湿潮解,易溶于水,溶于乙醇。质量指标 外观:白色/浅粉色的晶体颗粒或粉末,无肉眼可见的夹杂物。 有效成份:RExOy≥38% 杂质含量:Pb<0..002% Cd:<0.0005% As:<0.0003% Hg:<0.00001% Cl:<1% 水不溶物:<0.5% 总α放射性比活度不大于800Bq/kg。硝酸稀土的应用方法 广泛用于各种粮食、油料、糖料、蔬菜、水果、花卉、烟草、茶叶和橡胶等作物,亦用于牧草和林木种植。 使用方法以喷洒为主,多用于苗期或花期,喷洒次数一般1~2次,也可拌种、浸种、涂抹(橡胶树)等。 喷洒使用时宜把天然水酸度先调至pH值5~6,以提高使用效果。 使用剂量一般为20~60克/亩。更多有关硝酸稀土的内容请查阅上海
有色
网
硝酸稀土
2017-06-06 17:50:03
硝酸稀土硝酸稀土:土微黄色液体或晶体;易溶于水。主要用于稀土微肥。用于肥料添加剂。可以说是植物的肥料.稀土资料稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth),简称稀土(RE或R)。稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。 硝酸稀土也是植物生长调节剂的一种。 以上是硝酸稀土的介绍,更多信息请详见上海
有色金属
网。
稀土硝酸盐
2017-06-06 17:50:13
稀土硝酸盐掺杂的氧化锌压敏陶瓷材料及制备方法,属功能陶瓷材料制造技术领域。其特征在于氧化锌压敏电阻材料按摩尔百分比包括下述组分:ZnO 94-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1-1.0%,稀土硝酸盐为0.01-2.0%,其中稀土硝酸盐为稀土钇、镨、锶的硝酸盐的一种。稀土硝酸盐掺杂的氧化锌压敏陶瓷发明通过稀土硝酸盐掺杂并通过调整稀土硝酸盐的合理掺杂浓度,使氧化锌压敏陶瓷的显微组织均匀,电性能得以提高,压敏陶瓷的电位梯度提高到1000- 1300V/mm,非线性系数为30-50,漏电流为2-20μA。稀土硝酸盐掺杂的氧化锌发明的压敏陶瓷可用于制造超高压电力系统的优质避雷器产品。更多有关稀土硝酸盐的内容请查阅上海
有色
网
铜、镍、铬、生产工艺中六价铬的危害
2019-03-14 11:25:47
5月10日音讯:铜、镍、铬、一步法出产工艺、在出产进程中,镀铜、镀镍液中很简单带入氧化剂(六价铬)这些氧化剂能在阴极上复原,下降电镀进程的阴极电流效率,甚至能排挤铜、镍的堆积,使零件的深凹处不上镀层。 一、铬是怎样进入镀铜、镀镍液中的呢?
1、铜、镍、铬、一步法出产工艺中,挂具起传煤效果,惯例上讲是挂具在镀铬后、清洗不洁净,粘在挂具上镀铬液带入铜、镍缸。
2、工人操作不正确(如;经工人的防护手套)把铬带入铜、镍缸。
3、镀铬槽发生铬雾,空气中铬雾下沉,铬落入铜、镍缸,等。
二、铬的损害
在铜、镍镀渡中如有Cr6+的存在,阴极电流效率变低、工件镀层呈灰色,堆积速度慢、零件深深凹处不上镀层,镀层昏暗、或呈桔皮状、无光亮度,等。
三、处理办法
1、原始的处理办法是;将镀液剧烈拌和,有空气拌和的、也要增加人工拌和,在剧烈拌和下参加0.2~0.5g/L(NaO2SSO2Na),用NaO2SSO2Na将镀液中的六价铬复原成三价铬,然后进步PH值、使三价铬生成氢氧化铬沉积而除掉。
具体操作如下;
a、用硫酸调镀渡PH=3,并把镀液加热至60~70度
b、在剧烈拌和下参加一定量的NaO2SSO2Na(用量最好做小试来断定,一般是0.2~0.5g/L拌和60分钟。
c、加碱溶液(CaCO3和NaOH)进步PH=6.2左右,拌和60分钟,再测、并调PH=6.2
一起也可参加2~3g/l活性炭,趁热返缸过滤,除掉沉积物。
d、参加0.2~0.5ml/l30%的,将过量的NaO2SSO2Na氧化成硫酸盐。
e、调理PH值、调整镀液成份,恰当补加光亮剂,试镀。
用以上办法处理这类缺点、先决条件是停产,当然还有基它办法,如;硫酸亚铁法,法,以上办法都要停产方能处理问题,并且烦。
2、下面介绍一种既便利又方便、易操作的新处理办法;
ZS除铬剂;义乌都得益出产,适用于快速除掉镀镍,镀酸铜,槽液中的六价铬杂质,(铜,镍,铬,一步法工艺须用)增加后经拌和即可恢复出产,每ml除铬剂能处理六价铬以(ycp+计)10mg.。
原理;增加ZS除铬剂后、可将镀液中的六价铬转变成三价铬,根椐材料标明、经实践实验和使用,三价铬存在于镀液中损害不大,如一般的镀镍液中能忍受30g/L的三价铬。
经ZS除铬剂转化后的三价铬、能于镍络合共成积,以到达净化镀液、除铬的意图。过量增加不会对镀液有损害。用量:2-3ml/L。 四、结束语;
要处理问题、最好的办法是从源头抓。把好车间办理关,镀铬后挂具加强清洗,在镀铬液里参加铬雾抑制剂、防止铬雾逸出,等等。当然你定时的在镍缸中、补加适量的除铬剂也是百利而无害的。(Ivy)
氧化铜 硝酸
2017-06-06 17:50:02
氧化铜(CuO)是一种铜的黑色略显两性的氧化物,稍有吸湿性。相对分子质量为79.545,密度为6.3-6.9 g/cm,熔点1326℃。不溶于水和乙醇,溶于酸、氯化铵及氰化钾溶液,氨溶液中缓慢溶解。硝酸(nitric acid)分子式HNO3,是一种有强氧化性、强腐蚀性的无机酸,酸酐为五氧化二氮。硝酸的酸性较硫酸和盐酸小(PKa=-1.3),易溶于水,在水中完全电离,常温下其稀溶液无色透明,浓溶液显棕色。硝酸不稳定,易见光分解,应在棕色瓶中于阴暗处避光保存,严禁与还原剂接触。硝酸同硫酸、盐酸一样,反应所得的生成物会随该物质的浓稀度而发生变化。稀硝酸和氧化铜反应,属于“碱性氧化物与酸的复分解反应”,产物都是“盐和水”CuO+2HNO3==Cu(NO3)2+H2OCuO是黑色固体,溶于稀HNO3后生成蓝色溶液。
红铜的硬度
2019-05-28 09:05:47
红铜即纯铜,又叫紫铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力制作,很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电性ir1u1et能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。 红铜成分很纯,除天然的微量(0.10.2%)杂质外,没有人工参加锡或铅使成合金。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带上海废铜收回、气垫,汇流排端子。电磁开关、笔筒、屋根板等。红铜的硬度虽较差,但直接通过捶打就能制成各种东西和装饰品。特性高纯度,安排细密,含氧量极低。无气孔、沙眼、疏松,导电功能极佳,电蚀出的模具表面精度高,经热处理技术,电极无方向性,合适精打,细打,具有杰出的热电道性、制作性、延展性、防蚀性及耐候性等。可应用于电器、蒸溜建筑及化学工业,特别端子印刷电器路板,电线遮盖用铜带、气垫,汇流排端子。电磁开关、笔筒、屋根板等。 红铜的密度8.96g/(cm) 红铜的比重8.89g/(mm) Cu≥99.95% O<003 电导率≥57ms/m 硬度≥85.2HV
铝及铝合金绿色铬磷化工艺
2019-03-11 11:09:41
前语
铝及铝合金铬酸盐化学处理广泛用于机电产品、日用五金、航空工业、轿车及摩托车零件的表面处理中。铝件在酸性铬酸盐溶液中不必加温,不必通电,浸渍或喷淋后可构成附着力强、耐蚀性好、亮光、细密的化学保护膜层,完全可以替代阳极氧化膜层作为铝件外观装修或油漆、喷塑的底层。该工艺简略、节能、快速,使用远景看好。
1工艺流程
化学除油→热水洗→^冷水洗→碱蚀→冷水洗→酸洗(质量分数为40%的HNO3)→冷水洗→铬磷化→冷水洗→自干或吹干
2成膜反响原理
磷酸溶解铝及铝表面的天然氧化膜,生成磷酸铝和。
铝和铬酸、磷酸发作氧化复原反响生成磷酸铬和磷酸铝。
铝离子和氟离子反响生成安稳的六氟化铝离子。
促进剂的效果在于把生成的氢原子快速氧化成水,促进成膜反响向右进行。
3工艺配方及操作条件
4影响化学成膜质量的要素
4.1铬酐
铬酐是溶液中的强氧化剂,构成磷酸铬0?04膜层;一起按捺了酸对铝的腐蚀溶解,使膜层成长和溶解坚持必定速率。为了保护环境,铬酐的质量浓度尽量控制在3~88/1-04.2磷酸
磷酸是首要成膜物质,能溶解铝和氧化铝生成绿色磷酸铝(八『00,和水,没有磷酸就不能构成绿色膜层。磷酸的体积分数的规模比较宽,在15?40mL/L规模内进行优选。
4.2氟离子
含氟离子的物质(如等)能与铝离子构成结实的配位离子,然后安稳溶液中的铝离子。一起因为氟离子的穿透效果,使铬磷化反响向纵深进行。
4.3组合促进剂
组合促进剂由值缓冲剂、促进剂、表面活性剂复配而成,能加速铬磷化反响速率,细化膜层结晶,进步磷化膜的耐蚀功能。
4.4值
值是铬磷化溶液重要的工艺参数,其对成膜速率和膜层耐蚀功能有很大影响。15只值应坚持在1.5?2.5之间。因为只―的不断耗费,溶液的值会缓慢升高,可用他09或氏?04的稀溶液调整。
4.5温度
温度决议成膜反响的速率。温度≤15°C,成膜反响慢,膜层色彩为浅灰色-彩虹色。温度升高,反响加速,膜层色彩为绿色至金黄色。
铬青铜
2017-06-06 17:50:12
铬青铜是指含有铬的青铜产品。青铜原指铜锡合金﹐后除黄铜﹑白铜以外的铜合金均称青铜﹐并常在青铜名字前冠以第一主要添加元素的名。锡青铜的铸造性能﹑减摩性能好和机械性能好﹐适合於制造轴承﹑蜗轮﹑齿轮等。铅青铜是现代发动机和磨床广泛使用的轴承材料。铝青铜强度高﹐耐磨性和耐蚀性好﹐用於铸造高载荷的齿轮﹑轴套﹑船用螺旋桨等。铍青铜和磷青铜的弹性极限高﹐导电性好﹐适於制造精密弹簧和电接触元件﹐铍青铜还用来制造煤矿﹑油库等使用的无火花工具。铬青铜产品中,最为主要的是QCr0.5铬青铜 QCr0.5铬青铜 牌号:QCr0.5 标准:GB/T 13808-1992 铬青铜特性及适用范围:铬青铜在常温及高温下(400℃)具有较高的强度及硬度,导电性和导热性好,耐磨性和减摩性也很好,经时效硬化处理后,强度、硬度、导电性和导热性均显著提高;易于焊接和钎焊,在大气和淡水中具有良好的抗蚀性,高温抗氧化性好,能很好地在冷态和热态中承受压力加工;但其缺点是对缺口的敏感性较强,在缺口和尖角处造成应力集中,容易引起机械损伤,故不宜作整流子片。 铬青铜应用举例:制作工作温度350℃以下的电焊机电极、电机整流子片以及其他各种在高温下工作的、要求有高的强、硬度、导电性和导性的零件,还可以双
金属
的形式应用于刹车盘和圆盘。 铬青铜化学成份:铜 Cu :余量 镍 Ni:≤0.05 铁 Fe:≤0.1 铬 Cr:0.4~1.1 注:≤0.5(杂质) 铬青铜力学性能: 棒材的纵向室温拉伸力学性能 铬青铜热处理规范:热加工温度900~950℃;淬火温度950~1000℃水冷;l回火温度400~450℃。想要了解更多关于铬青铜的资讯,请继续浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
稀土元素钪的提取及工业制备方法
2019-02-25 13:30:49
在被发现后适当长一段时间里,因为难于制得,钪的用处一向没有表现出来。跟着对稀土元素别离办法的日益改善,现在用于提纯钪的化合物,已经有了适当老练的工艺流程因为钪比起钇和镧系元素来,氢氧化物的碱性是最弱的,所以包含了钪的稀土元素混生矿,通过处理转入溶液后用处理时,氢氧化钪将首要分出,故使用"分级沉积"法可比较简单地把它从稀土元素中别离出来。另一种办法是使用硝酸的分极分化进行别离,因为硝酸钪最简单分化,能够到达别离出钪的意图。
别的,在铀、钍、钨、锡等矿产中归纳收回伴生的钪也是钪的重要来历之一。
获得了纯洁的钪的化合物之后,将其转化为ScCl3,与KCl、LiCl共熔,用熔融的锌作为阴极进行电解,使钪就会在锌极上分出,然后将锌蒸去能够得到金属钪。
这是一种轻质的银白色金属,化学性质也十分生动,能够和热水反响生成。所以****中我们看到的金属钪被密封在瓶子里,用氩气加以维护,不然钪会很快生成一个暗****或许灰色的氧化层,失掉那种闪亮的金属光泽<
铝或铝合金三价铬化学转化膜的制备方法
2019-03-11 09:56:47
铝及铝合金的表面天然氧化膜为5mm左右,因为厚度较薄,简略磨损、擦伤,耐腐蚀性较差,假如暴露在室外、海边等腐蚀性严峻的环境中,表面会很快生成一层铝锈。为了进步铝及铝合金表面氧化膜的抗腐蚀性,需要对铝及铝合金表面进行人工处理,添加氧化膜的厚度。现在,使用较广的首要是化学转化膜及阳极氧化处理。化学转化膜与阳极氧化比较,具有操作简略,成本低,耗能少,成膜时间短,对基体质料要求低,对铝及铝合金疲惫功能影响较小,适用于杂乱零件如细长管、点焊件及铆接件等表面处理的多种长处。
传统上,选用六价铬为首要成份对铝及铝合金表面进行铬化学转化膜处理,但六价铬具有很强的毒性,因而遭到各国环保法规,如欧盟的RoHS法规等的制止或约束。为了替代六价铬转化膜,已有一些相关的研讨,如铈化学转化膜(铝合金上铈氧化膜构成的电化学研讨。材料维护,1995,28(3):1~3)、无铬化学转化膜(铝合金表面无铬化学转化膜的研讨,材料维护,2005,34(6):38~39)等,但铈化学转化膜不光耐腐蚀功能欠好,且这种膜无色通明不便于辨认,无铬化学转化膜的耐腐蚀功能依然较差,只本领35%的NaC1盐水浸泡3天,这依然达不到人们对铝合金表面耐腐蚀性的要求。
由中南大学余会成;陈白珍;徐徽;杨喜云;石西昌创造规划的一种铝或铝合价铬化学转化膜的制备办法:将铝或铝合金工件在50~100g/L水溶液中活化1~2分钟,活化反响温度为5~30℃;用去离子水清洗;将清洗后的工件放入可溶性三价铬盐及磷酸混合水溶液中铬化6~10分钟,三价铬离子浓度为1~20g/L,磷酸浓度为1~25g/L,用稀或稀硫酸调整反响系统pH值至1.6~4.0,铬化温度为10~60℃。本创造处理了现有技能中六价铬毒性大的缺陷,工艺进程和产品到达环保要求,所制得的三价铬化学转化膜与六价铬化学转化膜的质量相同。
与现在的技能比较,本创造具有如下的技能长处和作用:
1、本创造以低毒的三价铬化物为质料对铝及铝合金表面进行化学转化膜处理,处理了原以六价铬为首要成分的铝及铝合金表面转化膜工艺进程毒性大的缺陷,工艺进程及产品契合环保要求,如契合欧盟环保法规的RoHS要求;
2、本创造的三价铬化学转化膜的防腐功能与六价铬化学转化膜的根本相同,膜呈淡绿色或绿色,在3.5%的NaCl盐水中浸泡10天以上不生铝锈;
3、本创造工艺简略易行,成膜时间短,成本低,对铝及铝合金疲惫功能影响小,对基体质料要求低,不受基体质料的影响。
硝酸镍的价格
2017-06-06 17:49:56
硝酸镍的价格一般情况下要和出货方洽谈而定,因为硝酸镍在市场的产量较少。但有了上海有色网,货源的烦恼不再困扰您。硝酸镍,6水,Nickel nitrate,Ni(NO3)分子量290.81,绿色结晶体,有潮解性,在干燥的空气中微微风化,相对密度2.05,熔点56.7度,在95度时转化为无水盐,温度高于110度时分解,形成碱式盐,继续加热生成棕黑色的三氧化镍和绿色的氧化亚镍混合物,易溶于水,液氨.氨水,已醇,微溶于丙酮,水溶液呈酸性,与有机物接触时,能引起燃烧及爆炸.主要用于电镀镍.陶瓷彩由及其它镍盐和含镍催化剂的制造等。使用原材料、制造工艺及其他相关指标:主要用途分析纯 含量99(%) 产品规格国标 CAS一级硝酸镍碧绿色单斜晶系板状晶体,密度2.05g/cm3,熔点56.7℃,沸点136.7℃(饱和溶液)。易溶于水,液氨,乙醇,微溶于丙酮,水溶液呈酸性,有吸湿性,潮湿空气中很快潮解。干燥空气中缓慢风化。受热时会失去四个分子水,温度高于110℃时开始分解并形成碱式盐,继续加热生成棕黑色的三氧化二镍和绿色的氧化亚镍的混合物。继续加热生成棕黑色的三氧化二镍和氧化亚镍混合物。易溶于水,水溶液呈酸性,溶于氨水,液氨,氧化剂,与有机物还原及易燃物硫,磷等混合有引起燃烧和爆炸危险。上海有色网给您提供一个硝酸镍价格的参考数值:55.00元/公斤。
硝酸预氧化法提金—Nitrox法浸金工艺
2019-02-13 10:12:38
除用硝酸/氯化钠浸出金外,硝酸氧化法一般都用于预处理。用于金、银精矿的Nitrox进程和Areno进程是一种用硝酸进行氧化预处理的进程,可将硫化物转化为氧化物,从而使金、银适合于用某种办法(如硫脉法或化法)加以提取。 Nitrox法用常压的空气,而Ar-seno法用加压的氧气。Nitrox法是硝酸循环,而Arseno法以亚硝酸操控反响,氧化速度比硝酸快,但氧化进程中砷生成了亚盐而不是盐并有单质硫生成,单质硫对下一步化浸出金晦气。为了战胜单质硫生成带来的有关问题,最近报导了一种在高温下进行的办法(Redox法),其特点是在反响器中增加石灰石除掉各种硫酸盐,促进铁沉积,防止发作单质硫的费事。 用硝酸提取铜、铀、铂、镍、钴和银业已完结。一切这些作业都触及所研讨元素的溶解及其随后与溶解的其他元素的别离。因为金不被硝酸所溶解,而且与其他的酸不溶物稠浊在一起,所以含金矿石和精矿的硝酸处理与上述情况是不同的。 难浸矿石和精矿中的金常常与黄铁矿、砷黄铁矿和磁黄铁矿共生。Nitrox进程包含将这些硫化物矿藏氧化为硫酸盐和盐。然后,一般用石灰石调理溶液的pH,以沉积法从溶液中除掉这些硫酸盐和盐。各种矿藏在硝酸中的行为互相各异,生成的单质硫的数量不同。曾经有些作业妄图最大极限地生成单质硫,因为这样做意味着下降中和所用的试剂费,减轻硝酸收回体系的负荷,而且便于处置。Bjorling和Kolta(1964)研讨了各种硫化物,发现含硫低的硫化物(如磁黄铁矿和闪锌矿)的单质硫产率高,而含硫高的硫化物(如黄铁矿)的单质硫产率低。砷黄铁矿的功能也相似于含硫低的硫化物,单质硫产率为70%左右。中等浓度的硝酸与砷黄铁矿和黄铁矿的反响敏捷。电位750mV的溶液相当于12%(质量)硝酸。可见砷黄铁矿氧化得十分敏捷,其粒度较细是氧化敏捷的一个原因,可是在选定的80℃、750mV和10%固体的条件下,即使是粒度粗的黄铁矿也能在1h内彻底发作反响。 在Nitrox进程中,一般条件下,砷是留在溶液中的。这就为收回金的各种计划发明了条件,也为从溶液中不构成沉积物而除掉砷、铁和硫供给了比较大的可能性。假定构成了砷、铁和硫的沉积物,贵金属就会与这些沉积物稠浊在一起。 1)金和银的收回 在硫化物已被氧化,首要元素如铁、砷和硫(以及次元素如铜、锌、钴、镍和镁)处于溶液中的情况下,一般有两种流程计划。 ①第一种计划在氧浸出液中,硫以硫酸根方式存在,在酸性介质中加人钙化合物可将其除掉: H2SO4+CaC03+H2O —→ CaSO4·2H20+CO2↑ H2S04+Ca(N03)2+2H20 —→ CaSO4·2H20+2HN03 H2S04+Ca(N03)2+H20 —→ CaSO4·2H20+NO↑+NO2↑ 从Nitrox溶液中沉积的石膏易于过滤,且石膏沉积物不含砷。 一般都在80℃、pH为3-4的条件下沉积铁和砷,要从溶液中有效地除掉砷,铁对砷的份额是很重要的。在Fe/As比为4或大于4时,可构成极尴尬溶的碱性铁。铁和石膏的沉积也会使铜、锌和镍等元素以不同的百分率下降。从pH为4的氧化矿浆的沉积物中收回金有很高的收回率。该计划包含在金的存在下沉积各种已溶解的物质,沉积物很简略过滤,滤饼悉数进行氛化收回金和银。 ②第二种计划在处理含铜等元素很高的质料时,最好阻挠这些元素进入循环。第二种计划与第一种计划有两个不同,一是在氧化工序之后有一个过滤工序,二是金收回循环的规划比较小,是因为进入化循环的固体量比较少。 精矿用回来的Ca(N03)2溶液制浆后,进入石膏沉积工序。在此工序中生成石膏的数量跟着从沉积铁工序回来的钙的数量而改变。矿浆从石膏沉积工序出来后就进入氧化器,这时,Fe、As、S和Cu被溶解,而脉石和金则留在残渣中。氧化后,将矿浆过滤,部分滤液回来石膏沉积工序,使硝酸再生。将其他的滤液送入沉积工序,在其中参加适宜的试剂,使之生成最理想的沉积物。假定以为收回溶解的金属(如铜、钛和镍)是合算的话,把收回金属的工序包含在该流程中是很简略的。 滤渣由金、脉石、石膏和一些单质硫所组成。跟着氧化渣数量的削减,金含量相应地提高了。这说明第二种流程生成低砷渣,该渣能够在化循环中处理,也能够送去熔炼。渣经熔炼可制得大于98%的金。 这个计划的长处是削减了氧化渣数量,还除掉了砷,因而易被熔炼供应商所承受。[next] 2)硝酸的收回 砷黄铁矿和黄铁矿的氧化需求氧气,而在Nitrox进程中氧气是由硝酸供给的.一些硫化物矿藏对氧气的需求见表1。
表1 氧化硫化物对氧气的需求矿藏硫氧化率/%T(O2)/[t·(t矿藏)-1]T(HNO3)/[t·(t矿藏)-1]T(空气)/[t·(t矿藏)-1]FeS2
FeAs
FeS
FeS100
100
100
501.00
0.69
0.82
0.552.63
1.81
2.16
1.454.35
3.00
3.57
2.39
表1给出了发作氧气所需硝酸的数量,因为硝酸是用空气再生的,所以也给出了空气的需求量。硝酸复原生成氧气的反响为: 4HN03 —→ 2H20+4N0+302 复原产品是NO,氮的化合价由+S变为+2;每生成1 mol NO,就失掉3个电子。不管氧气或空气是否存在,像黄铁矿在硝酸中的氧化反响总是能顺畅地进行的: 2FeS2+lOHN03 —→ Fe2(S04)3+H2SO4+1ONO+4H20 因而,反响动力学并不触及氧气穿过气液界面,经过液体向矿藏表面分散的作用。从环保和经济视点看,硫化物分化所构成的NO有必要收回,氧化今后留在溶液中的硝酸盐也应该加以收回。 ①气相。硝酸的再生包含NO氧化为NO2和NO2的吸收。NO2的吸收会使33%的NO2构成NO,而不构成HNO3。生成的NO有必要氧化和吸收。收回100% NO的总方程如下: 6N0+302 —→ 6N02 6N02+2H20 —→ 4HN03+2N0 4N0+302+2H20 —→ 4HN03 在吸收NO2时会构成N0,这意味着NH03的收回需求好多级。许多硝酸工厂为了收回这些硝酸都需求20级以上。因为NO氧化为NO2的动力学比较慢(这是因为NO和02的浓度都变稀的原因),收回后边部分的硝酸所需的级数比收回前面部分的硝酸要多得多,吸收柱最初的7级收回硝酸的90%,其他的13级收回剩余的8%,要想收回终究的2%,所需的级数更是巨大。工厂实践并不收回悉数的N0,剩余部分的NO或许放空或许催化复原为N2和02以契合环保规则。 选用洗刷法吸收终究的NO,在碱性介质中吸收的化学反响不同于硝酸生产中吸收的化学反响。只要NO的50%有必要氧化为NO2,而N203则以亚硝酸盐被吸收,用NaOH、 Ca(OH)2、CaC03洗刷NOx,NaOH作用最佳,但CaC03廉价,所以一般是先用CaC03洗刷,而后用NaOH或许Ca(OH)2洗刷,保证NO终究浓度削减到1000×10-4%。 以单质硫作氧化产品的长处是该体系的规划能够大幅度减小。假定磁黄铁矿中硫的50%变为单质硫,则硝酸的需求量以及NO的生成和随后的收回都能够削减33%。 ②液相。溶液中硝酸盐的收回率随氧化矿浆中硝酸盐的浓度而改变,洗刷功率又取决于待洗产品和能进入循环的洗水的数量。在85℃保持750mV电位的浸出液中,浓度可从无硫酸时的2mol/L(HN03)变为1moVL(H2S04),加Fe2(S04)3时的0.7 mol/L(HN03)。参加过量的FeS精矿,可使硝酸盐浓度进一步减小为0.15mol/L。参加这种精矿也耗费游离酸,使pH提高到发作沉积时的1以上。选用这个流程后所发作的改变是硝酸盐的丢失量将低至氧化(50%黄铁矿精矿)所需HN03的0.3%。[next] 在80℃、pH =4的条件下,用CaC03所得沉积物的过滤试验标明,该物料易于洗刷,溶质的收回率高(99.7%)。所收回的硝酸盐被回来循环,与氧化进程中构成的游离硫酸触摸而生成石膏和硝酸。 3)Nitrox工艺的循环 在湿法冶金体系内,氧在气相中储集,并在液相内被耗费。氧从气相到液相的传递进程是砷黄铁矿氧化进程中的一个重要进程。Nitrox工艺的最基本的长处之一,是能够用较低的本钱将空气中的氧引进矿浆中,这是经过一个中间产品(即气态NO2)来完成的。它易溶于液相,可使处理硫化物矿的氧化进程更易于取得氧。这是因为在矿浆中,NO2与水反响生成硝酸(3NO2+H20 —→ 2HN03+NO),硝酸则简略与硫化物和砷化物反响(以硫为例:S+2HN03 —→ H2S04 + 2N0或S+3NO2+H20 —→ H2S04+3N0)。简略地说,3个NO2分子进入液相把一个硫化物中的硫氧化成硫酸,并发作3个NO分子。气态NO在水中溶解度小(相似氧),因而,立即从溶液中逸出而从头进入气相。 可是NO并不是惰性气体,它简略与空气中的氧反响生成NO2。这种新生成的NO2立即被溶液吸收构成硝酸。后者又转而与难浸硫化物反响,放出NO。这样就树立了Nitrox循环,使得氧十分有效地传递到难浸硫化物的矿浆中。NO的氧化反响式可写为: 3 3NO+——O2 —→ 3NO2 2 或总反响式为: 3 S+——O2+H2O —→ H2SO4 2 能够发现,不管HN03、NO或NO2,都不出现在总反响式中。但是,溶液中硝酸盐的含量使得硝酸与NO应视为Nitrox进程中的反响产品或中间产品,而不该视为催化剂。 4) Nitrox法的研讨与使用实例 ①处理含金砷黄铁矿的Nitrox工艺。加拿大安大略省布兰普顿的Hydrochem开发公司在Serpent河畔树立一座日处理能力为100t Dickenson精矿的Nitrox演示厂。工艺流程图如下图所示。
[next]
砷黄铁矿与含有滤液的在一起调浆,然后与从反响器出来的部分硫酸铁、和硝酸溶液触摸,沉积石膏,并生成硝酸而使矿浆酸化: 3Ca(N03)2+3H2S04 —→ 3CaS04+6HN03 Nitrox法是选用产出的硫酸与滤液中的反响从头产出硝酸。 因为铁、砷和硫悉数溶解,脱离反响器体系,然后过滤,所以氧化的精矿质量明显削减。已发现沉积的石膏大大有助于基本上是由脉石、元素硫和金组成的残渣的过滤。溶液送去沉积铁,剩余的硫酸盐和硝酸盐再分别转变成石膏和。溶液在回来反响器料槽前可用于洗刷尾气。 气流体系是很简略的。氧化仅需求部分空气进入反响器体系。这可使气流中的氧和NO耗尽。蒸腾的硝酸和微量NO2经热洗刷后,从气流中冷凝出的低浓度硝酸盐水被用来作为体系的洗刷水。然后通入剩余的空气以收回额定的硝酸,收回的硝酸再回来反响器。终究用石灰水洗刷尾气,使NO(即NO与NO2)浓度下降到烟囱排放答应的范围内。 流程中Dickenson精矿的化学成分如下:Fe 27%,As 10.8%,S 23.2%,Au 3.7g/t,H20 10%。一切的砷设为以FeAsS 方式存在,一切磁铁矿以FeS方式存在,物猜中的一切铁与硫化物共生,则能够把一系列矿藏核算为:FeAsS 23.4%,FeS2 29.3 %,FeS 8.4%。考虑到热和物料平衡,假定氧化反响如下: 3 FeAsS+lOHN03 —→ 3Fe3++3As043-+H2SO4+2S+4H20+lONO↑ 6FeS2+30HN03 —→ 3Fe2(S04)3+3H2S04+12H20+30N0↑ 2FeS+4HN03+H2SO4 —→ Fe2(S04)3+3H20+4N0↑ 至于溶解的铁、砷(V)和硫的沉积反响,假定的化学反响式为: Fe2(S04)3+3CaCO3+5H20 —→ 2Fe(OH)3+3CaS04·2H20+3C02↑ Fe3++As043-+2H20 —→ FeAs04·2H20 H2SO4+CaCO3+H20 —→ CaSO4·2H20+CO2↑ 从上面6个反响式能够看出,除了砷黄铁矿构成少数单质硫以外,物猜中一切的硫需求用碳酸钙中和,这使CaC03或石灰石构成了Nitrox法中的首要耗费品之一,其费用是构成生产本钱的重要因素。因而,需求考虑这个问题。 在安大略省北部没有含许多方解石的矿床,但美国密执安北部Peninsla有两个石灰石生产厂,在Huron湖或苏必利尔湖的某一港口邻近建厂,经过水运,可在安大略省北部使Ni-trox法的生产本钱下降,终究选定Serpent河邻近建厂。 在物料平衡核算中,对设备、出资和生产本钱进行预算,每吨矿石的加工费为106加元,比加压氧化和微生物氧化费用还低许多。 ②处理含金硫化物矿和精矿。湿法冶金处理含金硫化物精矿的工艺,已在伊尔库茨克稀有金属所经过半工业试验。 试验在比较平缓的条件下进行,温度40~80℃,HNO3浓度20~100 g/L,时刻3 h,通入氧气使硫化物矿氧化,且在氧化进程中不排出有害气体。在进行酸性氧化浸出时,保证反响器中的负压为50~100 kPa,所需氧气的耗量挨近使硫化物矿氧化的理论值。硫化物精矿酸性氧化浸出成果见表2。[next]
表2 硫化物精矿酸性氧化浸出成果精矿类型精矿成分/%浸出率/%浸渣产率/%FeSAsCuFeAsCu黄铁矿
黄铁矿-砷黄铁矿
黄铁矿-黄铜矿33.0
28.1
10.240.4
26.5
9.10.3
3.5
0.00.4
0.0
1.360.2
80.1
85.980.3
96.3
—85.0
—
89.365.4
61.0
76.0
由表2能够看出,在湿法冶金氧化进程中,大部分铁、砷和有色金属转入溶液中,而Au,Ag则富集在固体残渣(浸渣)中。 为了收回金和银,对酸性氧化浸渣进行化,成果见表3。这时金和银的浸出率分别为93.6%~94.8%和86.4%~90.4%,对难浸的硫化物精矿进行碱处理(用石灰或石灰苏打溶液)后,可弥补收回2%~6%的Au和10%~20%的Ag到化溶液中。
表3 酸性氧化浸渣化浸出成果精矿类型原始精矿档次/(g·t-1)化浸出率/%从原始精矿中从酸性氧化浸渣中AuAgAuAgAuAg黄铁矿
黄铁矿-砷黄铁矿
黄铁矿-黄铜矿31.0
53.3
76.318.0
43.0
42.073.6
84.1
88.348.7
37.7
50.594.8
93.6
94.586.4
89.3
90.4
难浸的黄铁矿精矿是在温度70~80℃、液固比为2:1、时刻3h的条件下,间歇地用石灰、苏打溶液进行处理。Na2C03和CaO的用量分别为60kg/t和30kg/t精矿。石灰、苏打中和处理滤渣,在浓度为2g/L NaCN的条件下进行两段化(每段24 h)。NaCN的耗量为4.6 kg/t精矿。化溶液中金和银的浸出率分别为92.0%和73.6%。预处理的矿浆呈酸性溶液和有Fe3+,这是硫脉浸出金的两个首要技能要求。
锌铬涂层
2017-06-06 17:50:12
锌铬涂层的应用范围很广,它不但可以处理钢、铁、合金,还可以处理烧结
金属
,及特殊的表面处理。锌铬涂层所涉及到的
产业
、
行业
也相当多,并正在进一步开发过程中。* 汽车摩托车。由于是高速运行车辆,其零部件要求稳定性好、防热、防潮及防蚀性能高。因此,锌铬涂层技术在汽车摩托车方面有着极广泛的应用前景。许多外国车商对配套零部件都提出了锌铬涂层技术的要求 。* 电器电子。家用电器、电子产品、通讯器材等高档产品的零部件、元器件、配套件等,由于其
价格
高,所以对产品的质量要求也高,过去使用电镀锌的办法,质量低且达不到要求。而改用锌铬涂层工艺技术后,质量、寿命提高了,
市场
也扩大了。* 地铁隧道。地铁和隧道都处于地下,环境阴暗潮湿,通风较差,道轨、螺丝、螺栓及
金属
件极易生锈,锌基铬盐技术则可以有效解决这一问题。北京地铁目前有许多零件,就是采用的锌铬涂层技术。* 高速公路、桥梁、高架路。高速公路档板、高架路、桥梁的
金属
结构件,特别是
金属
紧固件,由于长期处于室外日晒雨淋,很快就会发生锈蚀现象,不但每隔二三年就要敲铲油漆,而且会降低安全系数。关键的结构件和紧固件如果采用锌铬涂层技术涂覆处理,不但安全可靠,而且美观持久,起码二三十年不用维修油漆。* 输配供电。高压输配电、城市供电,除供电电缆外,都处于室外高空,不但日晒雨淋,而且还受环境污染,维护保养任务十分繁重。高压输电线路的铁塔、电杆的横担、撑铁夹箍、弯头、螺栓、钢帽、变压器上的油箱、紧固件等如果都采用锌铬涂层涂覆处理,虽然一次性投入较大,成本较高,但是美观耐用,其优异的耐蚀性,节约了大量的长年维修费用。* 五金工具。小五金、手工具、螺丝、螺帽、垫圈等
市场
消耗量相当大,但过去大都采用电镀的工艺处理,一两年就生锈了,影响外观和质量。如果采用锌铬涂层的工艺处理,不仅美观耐用,而且不生锈,成本增加也不多,肯定会受到用户的欢迎。 除以上举例的几个
行业
外,市政工程、机械电机、铁路码头、造船修船、建筑装潢、航天航空、海洋工程、地质钻探、石油化工、农业科技、生物工程,医疗器械等,都在开发利用锌铬涂层技术。锌铬涂层还包括水性锌铬涂层,水性锌铬涂层的加工有一整套完整的工艺流程,在加工过程中必须严格按照工艺操作才能保证涂层的加工质量。为了提高生产效率和涂层质量,加工流水线的设备也必须适应加工工艺的要求。想要了解更多关于锌铬涂层的资讯,请继续浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
铬锆铜
2017-06-06 17:50:05
铬锆铜( Cr:0.25-0.65, Zr:0.08-0.20)。 硬度:HRB78-83,导电率:43ms/m,软化温度:550℃。铬锆铜具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。 铬锆铜的品质要求: 1.电导率测量用涡流电导仪,测三点取平均值 ≥44MS/M; 2.硬度以洛氏硬度标准, 取三点取平均值 ≥78HRB; 3.软化温度实验,炉温 550℃ 保持两小时后,淬水冷却后与原始硬度比较不能降低15%以上。 对铬锆铜化学成分和机械性能的分析:
铬锆铜
2017-06-06 17:49:59
铬锆铜(CuCrZr)化学成分(质量分数)%( Cr:0.25-0.65, Zr:0.08-0.20)硬 度(HRB78-83)导电率 43ms/m 软化温度 550℃ 特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。 铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本低,适合作为熔接焊机的电极有关管件,但对电镀工件表现一般。 应用:此产品广泛应用于汽车、摩托车、制桶(罐)等机械制造工业的焊接、导电嘴、开关触头、模具块、焊机辅助装置用各种物料。 规格:棒材、板材规格齐全,并可根据客户要求定制。 品质要求: 1.电导率测量用涡流电导仪,测三点取平均值 ≥44MS/M 2.硬度以洛氏硬度标准, 取三点取平均值 ≥78HRB 3.软化温度实验,炉温 550℃ 保持两小时后,淬水冷却后与原始硬度比较不能降低15%以上 物理指标:硬度: >75HRB,导电率:>75%IACS,软化温度:550℃硬度:具有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接成本低,适合作为熔接焊机的电极及有关管件,由于直立性比较好,也常作为花机打薄片用。
无铬前处理喷涂生产工艺
2018-12-28 11:21:19
1生产工艺流程图
自来水洗——预脱脂——脱脂——自来水洗——纯水洗——无铬转化——自来水洗——自来水洗——纯水洗——烘干——静电喷涂——固化——下架
2原材料检验
2.1严格控制前处理所用原材料
经与供货厂家协调沟通,严格按照原材料检验标准对前处理所用药品进行检验,对于不符合技术规范的原材料,一律禁止用于生产线,由采购人员联系供货商进行退换货,检测中心与生产车间紧密配合,在源头上控制产品质量。
2.2严格控制上料时的基材质量
对有手套印、时效油斑或石墨印的型材上挂前采用砂布打磨处理,避免出现局部除油不干净。
3生产过程质量监控
3.1检测中心加大各槽液的检验频率
对于预脱脂槽和脱脂槽的游离酸及铝离子每4小时测一次,确保达到完备的除油效果;对于无铬转化槽的游离酸、PH值、电导率每4小时检测一次,确保无铬转化膜的成形;对于脱脂后与无铬转化后的纯水洗PH值和电导率,均采用每4小时检测一次的频率,确保水洗的效果。脱脂槽的刻蚀量要达到1g/㎡以上,无铬转化的膜重控制在20-150 g/㎡,检测频次均为每天一次。
3.2生产线工艺员加强监控
生产线工艺员加强对链速、各槽液的PH值、电导率的实时监控,对于出现的工艺参数异常,及时做出调整,结合检测中心的检验结果,根据现场的实际经验,使各工艺参数控制在合理的范围内,确保生产工艺的稳定性。
3.3与供应商密切合作
邀请无铬前处理药品供应商与粉末供应商到现场指导,针对实际生产中存在的问题,综合多方力量,查找对策,寻找出系统性解决方案。
3.4综合协调控制
对人、机、料、法、环、测的综合协调控制,提高人员积极性、改良设备性能、加强原材料检验、严格工艺控制参数、改善现场环境、提高检验的效率与效果,实现了生产过程的连续大批量稳定生产。
4成品质量检验
对于成品质量检验,质量部门对下架产品加大抽检频度,避免出现批量质量事故,采用了多种检测方式,如划格、折弯、敲击等,对于有异常的产品,及时追溯前面的生产过程;每班均抽样进行涂层常规性能检测,如附着力、沸水附着力、冲击、杯突等;日常检测采用了高压水煮2小时候划格,用胶带粘贴,无脱落,比GB 5237.4-2008及Qualicoat标准都加严了要求;对无铬粉末喷涂成品按照GB/T 10125规定进行1000H乙酸盐雾试验,结果为合格,按照GB/T 1740规定进行 1000H的耐湿热性试验,结果为合格,按照GB/T 1865-1997规定进行1000H的氙灯照射加速老化试验,结果也为合格。
电石渣制备碳酸钙工艺研究
2019-03-07 09:03:45
渣是制取聚氯乙烯(PVC)、气体时发生的工业废渣。渣中首要的物质为氢氧化钙,还含有少数的无机杂质,比方MgO、FeO和SiO2等,因为渣内含有少数的C、S、P等杂质使其呈现灰白色,并伴有浓郁的冲鼻滋味。渣中的颗粒十分的细小,粒径大约在10-15μm;渣的pH值大约能够到达12.5左右,呈现比较强的碱性。因而以渣为质料出产高需求量的超细活性碳酸钙,无疑是处理渣最好的途径。
1、渣的预处理
渣浆的预处理方法直接影响到CaCO3产品质量的好坏和渣的运用率。一般渣的预处理方法包含两种,105℃下枯燥和530℃下锻烧。挑选105℃下枯燥一方面能够除掉渣内的水分,另一方面能够使渣内的有机物和挥发性杂质分化,然后能够减小碳酸钙制品中杂质的含量。530℃下锻烧一方面是使渣内的氢氧化钙分化成氧化钙,另一方面使渣内的金属化合物转换成难溶物质。
试验标明,渣经105℃枯燥的作用最好。在这种预处理方法下所得Ca(OH)2回收率和碳酸钙白度最高。
2、渣的浸出
许多金属氢氧化物是不溶性阳离子物质,只需操控必定的碱性条件,可使系统中的金属阳离子有挑选性的沉积。依据溶度积原理,在浸取的进程中,pH操控在必定规模以内,就能够使Mg2+、Fe3+、Mn2+等杂质离子先构成氢氧化物沉积,而Ca2+达不到Ca(OH)2的溶度积仍留在溶液中,过滤掉沉积即可得到不含镁、铁、锰杂质的精制Ca2+溶液。
(1)浸出
高传相等选用对渣进行杂质处理后得到球形超细CaCO3,所得碳酸钙纯度大于98%,白度大于97,均匀晶粒尺度为45nm,电镜均匀粒径约为80nm,比表面积约为32m2/g。乔叶刚等选用必定浓度的溶解渣,过滤除掉不溶性杂质,使CaCl2溶液得到净化。
(2)氯化铵浸出
卢忠远等将渣参加质量分数为J%、过量30%的NH4Cl的溶液中反响,CaCO3的回收率最高达99%,所组成的碳酸钙为针状文石型碳酸钙。
(3)甘酸浸出
袁可等选用甘酸水溶液将渣中的有用钙转变为可溶性的甘酸钙,经过碳化,组成出球形碳酸钙。其工艺与氯化钱工艺十分类似,但在氯化铵系统中,所制备的碳酸钙描摹为立方形,而在甘酸系统中,碳酸钙的描摹则为球形。两者描摹彻底不同,这或许是因为甘酸对碳酸钙的描摹有抑制作用。
3、碳酸钙的制备
(1)CO2碳化
吴琦文等以渣为质料,CO2为碳源,制备纳米碳酸钙。在其制备进程中,研讨质料的浓度、CO2气体的浓度、CO2气体的流速、反响温度、拌和速率以及添加剂的用量对碳酸钙产品粒径和晶型的影响,结果标明:质料的浓度、CO2浓度和流速对碳酸钙均匀粒径有稍微的影响,在必定的条件下可制备颗粒粒径为50nm、均匀晶粒尺度约30nm的方解石型纳米碳酸钙颗粒。
Jun-HwanBang等运用CO2微气泡发生器组成得到小尺度、高比表面积的碳酸钙,并研讨了Ca(OH)2浓度、电解质的量、CO2流量和注入方法对碳酸钙的尺度、比表面积的影响。结果标明:CO2流量的添加会减小碳酸钙粒子的尺度,或许的原因是CO2流量的添加使得剪切速率变大而且添加了CO2的涣散;运用MBG(微气泡发生器)注入CO2要比惯例的泡沫发生器制得的碳酸钙粒子更小。
(2)碳酸钠碳化
YuDong等运用微乳液作为组成途径,以碳酸钠为碳源,可控的得到不同描摹的碳酸钙。经过操控这些参数:表面活性剂的品种、陈化时刻以及W0(水与表面活性剂的摩尔比)得到了许多新颖的描摹,纳米棒、六角圆片以及类镜头像结构。碳酸钠和氯化钙量的添加会使得碳酸钙粒子形状不规则,到达必定量后不会构成微乳液。
Fang-zhiHuang等以碳酸钠为碳源,经过参加可溶性添加物的正向微乳液得到不同描摹的碳酸钙粒子。当在甘酸润饰的正向微乳液下,碳酸钙生成中空的微球粒子,然而在Mg2+润饰的正向微乳液下,得到了许多新颖的分层霞石碳酸钙晶体,比方轴型霞石碳酸钙、圆片霞石碳酸钙等等。这些不同晶相的特殊描摹碳酸钙或许是因为碳酸钙的前体(球形的或许片状的纳米粒子)在两层的模版下,自发拼装构成的,意味着咱们能够在两层模版下,经过仿生组成手法,组成得到具有特殊描摹和结构的无机或许有机一无机杂化材料。
(3)碳酸铵碳化
张宏等选用以下试验工艺条件:浸取液Ca2+浓度为0.85mol/L,(NH4)2CO3:CaCl2=0.95:1(物质的量比),反响温度位15℃,组成得到碳酸钙的晶形为立方体,均匀粒径为50nm。试验进程发现,Ca2+浓度在1mol/L以下,跟着浓度的添加粒径线性下降,1mol/L以上则改变不明显;而且,Ca2+浓度在1mol/L以上,对渣中杂质的去除是十分晦气的。
闻琨等以渣为质料、氯化铵溶液为浸取剂、碳酸铵为碳化剂、柠檬酸为晶行操控剂,选用液相法制备了高纯度的纳米级碳酸钙。调查了钙浓度、柠檬酸的用量、碳化温度三种要素对碳酸钙晶型和粒径的影响,结果标明:钙浓度为0.6mol/L、柠檬酸与碳酸钙质量比为0.03、碳化温度为12℃为最佳工艺,所得碳酸钙粒径为40-60nm,为纯洁的方解石晶型。
4、渣碳酸钙在塑猜中的使用
聚
董卫龙等以渣为质料,或氯化铵为浸取剂提取渣内的Ca2+离子,并别离选用液相法和微乳法制备碳酸钙。选用微乳液法得到的超细活性碳酸钙与浙江菱化活性钙、纳米钙三种碳酸钙填充PP,力学功能结果标明:跟着碳酸钙含量的添加,力学功能都呈现了明显地下降,可是渣制备的碳酸钙填充PP的力学功能一直比浙江菱化活性钙、纳米钙填充PP的要高;流变功能显现渣制备的碳酸钙和浙江菱化活性钙填充PP后的熔体粘度整体比浙江菱化纳米钙填充PP的小。
硝酸预氧化法提金—Redox法浸金工艺
2019-02-13 10:12:38
Redox法(复原氧化法)是Arseno法在高温操作下的一个别号,1988年改的名,Redox法也是用硝酸氧化法的另一变种工艺。Minproc工程公司对加拿大ManitobaSnowLake邻近堆存的、品位在12g/t左右的含砷尾矿收回工艺做了研讨。这种尾矿含砷黄铁矿(45%)、磁黄铁矿(12%)和脉石。多数以砷黄铁矿晶粒中的包裹体或固溶体形状存在,其化学组成平均为:金10.7g/t,铁24.6%,砷19.7%,总硫15.0%(其间硫化物硫12.5%,单质硫0.85%),钙1.93%,酸不溶物29.7%。为能选用惯例的化法收回金,要求预处理这种矿石。要进一步考虑的是能生成一种安稳的砷产品以避免形成环境污染问题。并提出运用Redox预处理办法。Redox工艺也是一种运用HN03来氧化难浸硫化物矿石的工艺。 1) Redox工艺的化学原理 Redox工艺是在化前运用硝酸作氧化剂预处理难浸硫化物矿石。SnowLake尾矿含有FeAsS和FeS,它们依据下列总反响式在高温下被氧化: 3FeAsS+14HN03+3H+ ==== 3Fe3++3S042-+3H3AsO4+14N0+4H20 FeS+3HN03+H+ ==== Fe3++SO42-+2H20+3N0 由HNO3复原反响产出的NO与供应工艺进程的氧反响生成NO2 o当反响器中存在有较高的NO和O2分压时,NO2的生成极为敏捷。生成的NO2进入溶液并被溶液吸收,再生成用于氧化的HN03(4N0+302+2H20 ==== 4HN03),硝酸在此是起着催化剂的效果。在氧化进程中,铁主要以铁(FeAsO4)形状从溶液中沉积分出。在高温下,铁也能以针铁矿、黄钾铁钒和赤铁矿的形状沉积: Fe3++H3As04 ==== FeAsO4+3H+ 钙以溶液方式与硝酸一同参加或以石灰石方式参加,以除掉硫酸盐: 2H++SO42-+CaC03 ==== CaSO4+H20+CO2 已标明砷黄铁矿和磁黄铁矿能被氧化成硫酸盐。然而在某些条件下,氧化也能产出单质硫。为了最大极限地削减单质硫的生成(它能包裹金粒并添加的耗费),对工艺条件应加以挑选。 2)中间实验 在进行中间实验时,为了保证硫化物彻底氧化和避免单质硫的发生,选定190~210℃高温操作。在沉积作业时,发现反响器壁上结垢,通过改造后的反响器,加进表面活性剂木质素磺酸钠(参加量2kg/t)可有效地避免结垢。固液别离收回硝酸时,需求一台稠密机,后接一台寄存槽,寄存槽保持在80~90℃,逗留9h,这样有助于石膏的水合效果和促进结晶的成长,一起留意砷铁比大于4:1,以使铁盐沉积。 通过中间实验,选定的Redox工艺参数见表1.固液别离收回HN03的参数见表2。这些数据都是来自处理才能25 kg/h中间工厂的最佳条件。[next] 表1 Redox工艺参数氧化:温度
压力
pH
Eh
逗留时间
再循环溶液的酸度
进口的固体物浓度
化学计量算出的氧参加量
木质素磺酸盐参加量
排出的气体中NO2
构筑材料190~210℃
1600~2275kPa650~700mV
8min(最大时)
70~110g/LNO3-
70~110g/LH2SO4
10%~20%
125%
2kg/t矿石304L不锈钢过滤:温度
pH
逗留时间
化学核算的石灰石参加量
构筑材料190~210℃1min
125%
聚面料、304L不锈钢
表2 固液别离作业参数稠密类型高效所需面积
絮凝剂
絮凝剂耗费
老化温度
逗留时间
过滤速度
滤饼中的水分
洗刷置换
硝酸收回0.07m2·(t·d)-1
Percol 351
275g/t矿石
89~90℃
9h
420kg·(m2·h)-1
25%
2.0
97%~99%
研讨标明Redox残渣有必要通过15min的细磨让被石膏和硬石膏包裹的金露出出来,24h的化浸出,金的浸出率在91%以上。应该指出的是,在反响器中不加钙的情况下,金的浸出率可高于96%。每吨矿石耗费1.25 kg,耗费石灰9.7kg。 中间实验已成功地证明Redox工艺能够用来预处理砷黄铁矿,以解离用化法收回的金。用Redox工艺处理时,砷以一种安稳的残渣从含Fe、As 1~1.7mol的给矿中沉积分出。在Redox工艺中,逗留时间小于8min,气相和液相中的硝酸总丢失少于2%。 依据实验研讨,已完结处理量为12.5万吨/a的工厂可行性研讨。1994年7月在哈萨克斯坦Auezv建成一座日处理12t金精矿提金厂。
单晶仲钨酸铵的制备工艺技术
2019-01-30 10:26:27
钨是战略资源,是我国的丰产元素和保护矿种。长期以来,我国出口钨的初级产品,进口高端产品,出口产品的价格仅为进口产品的1%,与我国的经济发展要求极不适应。为加快钨新材料研发进程,实现钨产品由初级向高技术含量、高附加值产品的转变,使我国钨资源优势转化为经济优势,研究高性能钨材料的制备技术具有重要的现实意义和发展前景。
由于遗传关系,仲钨酸铵(APT)的晶体特性,如晶体形貌、平均粒度和粒度分布、松装密度和流动性对后续粉末冶金产品-钨粉、钨丝和钨合金的材料性能影响极大。单晶APT因其具有优良的物理性能,是生产高性能钨材料的理想原料。首先,单晶APT粉体具有良好的流动性,由单晶APT经焙烧-氢还原制取的钨粉,在压制过程中因滑动磨擦阻力小,坯料的空洞缺陷明显降低,加工材料的力学性能大幅度提高。由于抗拉、抗断裂性能好,拉制过程钨丝的成品率为90%,而以多晶APT为原料生产的钨丝其成品率仅为70%。因此,单晶APT成为生产车用高品质钨丝的必选粉体原料。此外,单晶APT粉体具有较高的松装密度,坯料中晶粒间隙小而均匀,力学缺陷少,压实密度高,以其制取的合金材料其抗压、抗剪力、抗冲击性能优良。如以单晶APT制取的顶锤寿命是以多晶APT制取的2~3倍。由于配重作用大,单晶APT是生产装甲弹、高密度合金、微钻、数控刀片等高性能钨材料的优良粉体原料。
因此,单晶APT粉体的制备技术及其制备原理的研究,是一关键课题。国内外现有的对APT性能的研究,较多的是关注工艺条件与仲钨酸铵的粒度、粒度分布、松装密度和流动性等晶体特性的关系。笔者在探明单晶APT结晶原理基础上,研究了结晶装置、搅拌转速、温度等因素对仲钨酸铵团聚的影响。
一、试验部分
(一)试验原料及试剂
(NH4)2WO4溶液:为黑钨矿精矿经碱溶、离子交换法除杂净化转型后所得溶液,其ρ(WO3)=285.66 g/L,pH=9.80,c(Cl-)=2.5mol/L,Mo、Si、P、As杂质微量。
试验过程中,溶液结晶至初始溶液体积的40%。
(二)试验仪器
DF-1集热式恒温磁力搅拌器(江苏金坛市中大仪器厂);5312数显搅拌器(江苏金坛市中大仪器厂);0.1mg电光分析天平(成都科学仪器厂);721型分光光度计(上海精密科学仪器有限公司);SFC-100FL麦克奥迪显微镜;红外线快速干燥器。
(三)试验装置 试验装置如图1所示。图1 制备球形仲钨酸铵的蒸发结晶装置
二、单晶仲钨酸铵的制取机理
晶粒团聚的先决条件是接触。晶粒的接触方式有2种:一是沉积于结晶器底部的堆积接触;二是悬浮于结晶溶液中的碰撞接触。其中,碰撞接触的机会大小与结晶器内流体的流动方式和溶液中固体颗粒的浓度有直接关系。
堆积接触可以通过搅拌使晶体颗粒悬浮而避免,因此,在保证晶粒处于悬浮前提下,降低以至消除晶粒在溶液中运动碰撞的机会是制取仲钨酸铵单粒晶体的前提。
由于搅拌装置和搅拌转速不同,晶粒在运动中碰撞的机会有很大不同。根据研究,在横截面为圆形的结晶器中,流体围绕搅拌轴做圆周同心层流运动时,晶粒碰撞机会最小。
流体运动是层流还是紊流,取决于流速,即搅拌速度。搅拌越慢,流体偏离紊流越远。因此,在保证晶粒不沉积的前提下,搅拌转速越慢越好。
APT晶粒的沉降速度与其粒度有关。粒度越大,越易沉降,维持其保持悬浮状态所需的转速越快。因此,结晶过程根据晶粒长大的情况,对搅拌转速进行由慢到快的控制,确定不同粒径范围,APT晶粒既不沉积也不碰撞的最佳转速是制取单粒晶形APT的技术关键之一。
APT晶粒在结晶过程中的碰撞机会也与单位体积晶液中颗粒多少(即固相浓度)、晶粒大小有关。根据前期研究结果,在起始钨酸铵溶液浓度相同条件下,降低结晶前期溶液温度、搅拌转速是降低成核数量(即降低固相浓度)和晶粒生长速度(即降低晶粒粒径)、减少APT晶粒碰撞、制取单粒晶形APT的技术关键之二。
三、结果和讨论
(一)结晶装置对仲钨酸铵团聚的影响
反应条件:搅拌转速70 r/min,结晶温度95℃。定性考察结晶装置对仲钨酸铵团聚的影响。
结晶装置均为横截面为圆形的结晶器。根据仲钨酸铵结晶动力学理论及流体力学原理,这种结晶装置中,流体围绕搅拌轴作圆周运动,相同半径点的流体速度基本一致,基本实现流体层流。研制的结晶器与普通结晶器流体流动状态显著不同,如图2所示。图2 不同结晶器中流体的流动状态
基于上述原理,对搅拌浆进行改进。装置分为A、B、C 3种。A未进行改进,B、C分别为改进1和改进2装置。试验结果见表1。可见,经过改进的结晶装置,所得APT粉体单晶率明显升高。以下试验均在C装置中进行。
表1 结晶装置对仲钨酸铵团聚的影响结晶装置APT粉体单晶率/%APT粉体粒度/μmAPT粉体松装密度/(g·cm-3)A46462.2B78351.8C85422.1
(二)搅拌转速对仲钨酸铵团聚的影响
结晶温度95℃,试验结果如图3所示。图3 搅拌速度对APT粉体团聚的影响
由图3可知:1、低搅拌速度下所得APT的单晶率较低,转速为30 r/min时,单晶率为62%。这是因为搅拌转速较慢时,APT颗粒在溶液中不能充分悬浮于溶液中,而是以堆积方式沉积于结晶器底部,这必然导致APT团聚现象发生。随着搅拌速度提高,APT团聚现象逐步得到缓解,因而APT单晶率逐步提高,并在70~90 r/min时达到最佳值,此时单晶率在86%左右。
2、随着搅拌转速的进一步提高,APT单晶率逐步下降。这是因为搅拌转速的提高必然导致结晶器内溶液的流动状态从层流变为紊流,紊流状态使悬浮于溶液中的APT颗粒碰撞接触机会加大,从而导致APT团聚现象发生。
3、可以得出结论:搅拌转速70~90r/min是一个分界点。低于70r/min,溶液中的APT颗粒有部分因搅拌力不足而沉积团聚;在此范围内,溶液中的APT颗粒基本悬浮于溶液中;大于90r/min,溶液搅拌加剧,悬浮于溶液中的APT颗粒碰撞加剧而团聚。因而,从结晶的整个过程来看,搅拌转速应控制在70~90r/min范围内。
(三)搅拌转速对不同时期仲钨酸铵团聚的影响
从结晶局部过程来看,搅拌速度70~90r/min并非为最佳值。如前所述,最佳搅拌速度是在保证APT晶粒不沉积前提下越慢越好。但在结晶不同时期,由于晶粒的数量和大小是不同的,因而保证APT晶粒不沉积的最慢转速也不同。因此,有必要进一步探索不同结晶时间时维持层流和阻止晶粒沉积的最佳转速。
结晶从开始到结束,APT颗粒的大小应该呈总体增大趋势,因而搅拌速度在结晶初期可以取较小值,随着结晶过程的进行,搅拌速度应逐步提高。在结晶后期,搅拌转速达到70^90 r/min总体最佳值。
结晶时间取3个点:晶核出现前,晶核出现时和晶核出现后1h。对于时间点1,取转速分别为10,20,30r/min;对于时间点2,取转速分别为30,40,50r/min;对于时间点3,取转速分别为60,70,80r/min;结晶温度为95℃。在此条件下进行正交试验。试验结果见表2。
表2 不同结晶时期搅拌转速对APT团聚的影响试验序号时间点1时间点2时间点3APT单晶率/%120406089230507093340608091420508092530606088640407092720607091830408092940506090
由表2可知:2号试验所得产品单晶率最高,即晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现1h后,搅拌转速为70r/min;结晶后期,搅拌转速控制在70~90r/min范围内。在此条件下,所得产品APT单晶率达93%。
结晶后期指的是溶液中不再形成新的晶核,即溶液的过饱和度达到了最低值。据测算,这个点溶液的密度为1.116~1.125g/cm3。结晶后期到结晶结束,仍有5~6h的结晶时间,但这段时间工艺条件的改变对APT单晶率影响很小,因为这段时间晶体已经长的比较大了,相互的碰撞不再易于团聚。
(四)温度对仲钨酸铵团聚的影响
APT晶粒在结晶过程中的碰撞机会与单位体积溶液中颗粒数量的多少也有关系。如上所述,对APT单晶率影响最大的阶段是结晶前期,即从成核开始至成核结束。因此,着重研究了结晶前期不同温度对APT单晶率的影响。溶液温度仍取95℃,加速加热以缩短周期;成核终了至结晶结束,温度仍控制在95℃。
试验条件:晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现后1h,搅拌转速为70r/min;结晶后期至结晶终了,搅拌转速为80r/min。结晶前期,改变蒸汽温度,试验结果如图4所示。图4 结晶温度对APT粉体单晶率的影响
由图4可知:适当降低结晶前期的温度,APT粉体的单晶率有较大的提升空间,但温度不能降低得太多;温度为80℃时,APT单晶率达到最佳值,为96%;进一步降低温度,晶体成核率过低,晶体长大速度过快,晶粒粗大,反而对APT粉体单晶率有负面影响。
四、验证试验
根据上述试验结果,在最佳工艺条件下进行验证试验。结果表明,APT粉体单晶率大于95%,松装密度1.5~3.0 g/cm3,费氏粒度在30~60μm之间,霍尔流动性30~50s/50g。产品单晶电镜扫描图如图5所示。图5 单晶APT电镜扫描图
五、结论
采用改进的结晶装置,APT粉体单晶率明显提高。这种改进主要体现在搅拌浆上,可以促进结晶器内溶液层流的实现。所研发的单晶APT粉体制备流体层流控制技术及装置,可有效减少晶粒间的碰撞,使制备出的单晶APT粉体单晶率达90%以上。
APT粉体最佳结晶条件为:晶核出现前,搅拌转速为30r/min;晶核出现时,搅拌转速为50r/min;晶核出现1h后,搅拌转速为70r/min;结晶后期至结晶结束,搅拌转速为70~90r/min;适当降低结晶前期温度,APT粉体单晶率有较大提升空间,在结晶温度为80℃时达到最佳值,单晶率为96%。
硅铬
2017-06-06 17:50:12
硅铬,硅铬合金90%以上用作电硅热法冶炼中、低、微碳铬铁的还原剂。此外,硅铬合金还作炼钢的脱氧剂与合金剂。随着氧气炼钢的发展,用硅铬合金还原钢渣中的铬和补加部分的铬量得到了日益广泛的应用。据统计,平均每吨钢消耗硅铬合金0.5kg左右。硅铬合金的性质硅铬合金系铬、铁的硅化物,是含有足够硅量的铬铁。铬的硅化物较碳化物稳定,因此当Fe-Cr-Si合金中的硅含量增高时,碳含量下降冶炼工艺硅铬合金的冶炼方法有一步法和二步法两种。一步法又叫有渣法;二步法又名无渣法。一步法是将铬矿、硅石和焦炭一起加入炉内,冶炼硅铬合金。二步法的第一步是将铬矿和焦炭加入第一台电炉内,冶炼出高碳铬铁;第二步是将高碳铬铁破碎,把它与硅石、焦炭一起加入另一台电炉内,冶炼硅铬合金。目前,我国在工业生产中采用二步法冶炼硅铬合金,少部分使用一步法。 冶炼原理一步法冶炼硅铬合金是用碳同时还原铬矿中的三氧化二铬和硅石中的二氧化硅。电炉内的主要反应有还原和精炼脱碳反应两部分。还原反应与冶炼高碳铬铁和硅铁的还原反应差不多。所不同的是一步法冶炼硅铬合金使用了难还原铬矿,铬矿的块度也较大,从而确保了Cr2O3的还原和SiO2的还原在温度相差不多的条件下同时进行。二步法冶炼硅铬合金使用的原料有高碳铬铁(再制铬铁)、硅石、焦炭和钢屑。高碳铬铁的成分应符合国家标准;粒度不能太大,采用12500kV.A电炉时要求高碳铬铁粒度小于20mm,采用3000kV.A电炉时要求高碳铬铁粒度小于13mm。对硅石、焦炭和钢屑的要求与冶炼硅铁的技术条件基本相同。二步法冶炼硅铬合金是在高碳铬铁的存在下,由碳还原硅石中的SiO2,被还原出来的硅破坏铬的碳化物,排除合金中的碳而制硅铬合金。冶炼过程与冶炼45%硅铁的过程基本相同。想要了解更多关于硅铬的资讯,请继续浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
硝酸预氧化法提金—Arseno法浸金工艺
2019-02-13 10:12:38
Arseno工艺是阿辛诺矿冶公司研制成功的一种低温文低压氧化浸金工艺,只需在100℃和700 kPa氧压下进行,浸出硫化物不到15min就可使其悉数分化。故易于在工业出产中推广应用。Arseno工艺是硝酸氧化法的另一变种,浸出进程起首要作用的是亚硝酸而不是硝酸,相应的平衡为: 2N02+H20 ==== HNO2+HN03 3HN02 ==== HN03+2N0+H20 因为氧化速度快,浸出时刻短,因而不会有许多的沉积生成。一切的铁、砷和硫酸盐均在溶液里,这样使金得到富集,对随后的化浸出是很有利的。 矿浆从反响器卸人气体别离器中,以收回在反响进程中所发生的气体。这种气体可回来反响器中作为催化剂的质料。经测定99%以上的硝酸盐试剂仍可回来工艺进程中循环运用。溶液中的硝酸盐浓度在0.2~3 mol/L之间改变。 从气体别离器中排出的矿浆,是一些含金的固体残渣和含可溶性铁、硫和砷的溶液。在处理矿石时,这种溶液可通过添加石灰石和石灰中和。用石灰、岩大约可到达80%的中和率,然后再用石灰使其到达彻底中和。经中和处理后的矿浆可用惯例的办法,如炭浆法收回金。 用这种办法处理精矿时,从气体别离器中排出的矿浆先进行固液别离。从精矿浸出工序中所得到的固体残渣的质量,一般只占给矿质量的10%~20%,所以工厂金收回工序的规划是很小的。 用Arseno工艺对矿石和精矿所作的比照实验成果见下表。
不同工艺的浸出金作用质料称号Au档次/(g·t-1)硫档次/%金浸出率/%直接法Arseno法矿石
精矿
精矿
精矿4.7
17.9
32.2
212.02.5
14.7
16.0
5.819.7
81.4
10.0
86.693.6
98.5
93.8
99.3
金的浸出速度一般很高,所以停留时刻以低于12h比较适宜。由固液别离工序所得的溶液,用石灰进行处理,以操控杂质的含量。这时生成的沉积物中含有硫酸钙、赤铁矿和铁。对这些沉积物的稳定性已进行过实验,所得成果表明它们能适于堆存在尾矿池中。 Arseno矿冶公司对国际许多矿床中的金矿石(包含那些金被包裹在黄铁矿、白铁矿或砷黄铁矿中的含金矿石)进行实验,而且都取得了杰出的作用,证明这是处理难选金矿的一种经济有用的新工艺。Arseno法的特点是选用低压氧化,而且所需的处理时刻短。与其他几种工艺比较具有如下的长处: ①这种工艺对物猜中的含硫量不太灵敏。用这种办法对含硫量在1%~50%的各种物料进行实验时,都已取得杰出的成果。因为硫化物矿被溶解了,因而含在硫化物矿中的金就可鄙人一步化处理时得到收回。对实验过的许多种物料来说,金的提取率可到达95%以上。 ②与传统的焙烧工艺比较,Arseno工艺除能进步金的收回率以外,还可省去处理SO2气体和As203产品的工序。矿石或精矿中的硫被氧化成硫酸盐,而且鄙人一步可沉积为硫酸钙,存在于物猜中的砷被氧化成盐,而且可用铁沉积为铁。 ③高压氧化浸出法需在压力为1000~1200 kPa、温度为200℃的条件下进行(浸出时刻约90 min)。而选用本工艺时,只需在100℃和700 kPa左右的条件下进行,而且浸出速度很快(不到15min就可使硫化物彻底分化),易于在工业出产上完结。 ④Arseno法不需添加辅佐工序就可使银到达很高的收回率。又因在浸出进程中没有构成黄钾铁矾沉积,因而一切溶解了的银都很简单从溶液中进行收回。 加拿大温哥华的培根·唐纳德森联合者公司(Bacon,Donaldson&Associate)和美国科罗拉多州的哈曾(Hazen)研讨所都对这种Arseno工艺进行过许多的研讨,证明了该工艺的许多长处,Arseno法已有工厂出产实例。近年来,我国许多区域发现含砷的金矿石,急待开发和运用。因而,探究和拟定脱砷提金新工艺,也已成为我国黄金出产和科研作业的燃眉之急。国内外在处理这类矿石,广泛选用精矿焙烧脱砷,随后再对烧渣进行化,对环境污染非常严峻。 1987年秋,一座接连操作的半工业实验工厂已投产。这个中间实验厂在处理低档次硫化物矿时,其处理才能为1 t/d。已完结实验成果证明,这种工艺是可以接连操作的,而且很易将它们扩大到工业规划运用。中间实验对两个矿床的样品进行实验,就硫化物矿的氧化和下一步金的收回状况看,所得成果仍是比较好的。 据报道,选用Arseno工艺的出资和出产费用,日处理25t精矿的工厂的悉数配备费用为350万加元,日处理的100t精矿为800万加元,规划和转让费为25万加元。这种Arseno工艺的经济效益,精矿直接处理费用1.54加元/t精矿,其间药剂费用占31.5%、水电等占22%、修理办理占15.4%、薪酬占26.1%。 另据报道,加拿大City资源公司已决议出资1.1亿美元,开发它在昆士兰夏洛特岛的圣纳勒(Cinola )金矿(不列颠哥伦比亚省最大的一座金矿)。建造作业在1988年铺开,1989年10月正式投产。每天挖掘矿石6 600 t,当选矿石档次2.5g/t。因矿石中含有黄铁矿和白铁矿,属难选矿石。用惯例的化法难以收回金,故决议选用这种低温低压条件下进行的Arseno工艺。估计头两年金的出产成本为7.3美元/g(207美元/oz)。 实践证明,Arseno法对预处理难浸出的金矿石和精矿是一个比较好的办法。
铬渣回收铬铁合金的工艺
2019-01-24 09:36:35
铬铁冶炼渣简称铬渣,是冶炼铬铁合金时产生的固体废渣,这些固体废渣如果不及时进行科学有效的处理,将会对环境和人类健康造成极大的威胁,而回收铬铁合金渣不仅可以获取一定的经济收益,也为铬渣的下一步处理和回收打下铺垫。
铬渣中含有一定量的铬铁合金颗粒,回收这些铬铁合金颗粒可获取可观的经济效益,那么怎样回收其中的铬铁合金颗粒呢?众所周知,铬铁合金的比重较大,而固体废渣的比重较小,利用重选法从铬渣中回收铬铁合金在理论上是可行的,为此我们对铬铁渣的跳汰选矿进行了深入的研究和实践工作,最终获得非常好的回收效果,也证明的跳汰机回收铬铁合金的可行性。
铬渣中的铬铁合金被包裹在废渣中,要想回收铬铁合金必须对铬铁渣进行破碎,使铬铁合金与废渣单体解离,在这种状态下可最大程度回收铬铁合金颗粒,利用跳汰机对破碎后的铬渣进行跳汰选矿,回收8~30mm粒级粗粒铬铁合金,对跳汰机尾矿进行再次粉碎,再回收0~8mm细粒铬铁合金颗粒,整个过程实现了对粗细铬铁合金的全部回收,获取最大的经济效益。
铬渣硬度较大,必须采用鄂式破碎机进行第一道破碎工艺,第二道细碎处理可采用棒磨机等设备进行。粉碎后的铬渣可销向新型建材厂制成新型建材,基本实现了对铬渣的全部回收利用。
铝及其合金电镀硬铬工艺探讨
2019-03-13 10:03:59
铝及其合金因具有杰出的导电导热性、高延展性、低密度、高强度、易成型等长处,而广泛运用于交通、航空航天、电子、建筑、装潢、纺织等职业。但其表面硬度低、耐磨性差、易腐蚀等缺陷也影响其运用规模和寿数。对铝及其合金进行表面改功能够改进这些缺陷,其最有用的办法之一就是镀硬铬[1 2]。 笔者所从事的纺织职业中有许多铝合金零件需求表面镀硬铬,改进其耐磨和耐蚀性。鉴于我公司对此类零件国产化的迫切要求,我方与南京航空航天大学在铝合金镀硬铬方面展开了相关协作。镀铬层的维氏硬度达1000,较合金基体进步了近10倍;一起硬铬层的耐磨和耐蚀功能均到达规划要求。 1 原理 铝是一种化学活性很高的生动金属,它的电极电势很低(Φ=-1.67V),具有很强的亲氧性。一起又是一种金属,在空气中极易发作钝化,给铝合金电镀带来了困难。铸造铝合金因有砂眼、起泡等缺陷,在电镀中简略停留残液和气体,会引起氢脆和镀层掉落等现象。 铝及其合金电镀的关键是镀层与基体金属的结合力问题;而影响结合力的关键是预镀是否合理。现在常用的工艺有两次浸锌法[3 5]、化学镀镍 磷[6 7]、浸锌后镀镍[3]、浸锌后镀锌[8]、磷酸阳极氧化法[4]和浸蚀法[9]等。这些工艺的进程大致附近,都是先去除表面的氧化膜,再经过不同办法取得安稳的中间层,终究进行电镀。安稳的中间层能够防止天然氧化膜的再生,在镀前维护好裸铝表面;一起构成具有超微观、均匀的凹凸结构以及较大的孔体积和较小的电阻;确保在电镀时堆积金属快,晶核构成多,附着好;而且能够防止高硬度的铬层与较软的铝基体直触摸摸而或许引起开裂和洼陷。 2 铝及铝合金电镀硬铬 2.1 工艺流程 喷砂处理→碱蚀→水洗→酸蚀→水洗→预镀→水洗→镀铬→水洗→吹干→除氢 2.2 首要工序阐明 2.2.1 喷砂处理 一些镀件表面可预先选用喷砂处理,这不只能够使零件表面取得均匀的粗糙面,而且能够添加铝合金表面的显微硬度,添加电镀的表面积,进步镀层结合力。喷砂处理可选用干喷或水喷,运用不同目数的玻璃砂,调整喷砂的参数能够取得不同粗糙度的均匀表面。喷砂后要及时去除表面残留的玻璃砂,防止对后道工序产生影响。 2.2.2 碱蚀除油 碱蚀液配方及工艺条件: 50~100g/L,磷酸三钠30~45g/L,碳酸钠20~30g/L,60~80℃,0.5~1.0min。 此进程可重复操作,但时刻要短以防过腐蚀,除油后要用热水和冷水清洗。有时也可用有机溶剂除油。 2.2.3 酸蚀出光 酸蚀液配方及工艺条件: φ(硝酸)=75%,φ()=25%,室温,3~5s。其间硝酸和的体积分数可根据镀件中硅的含量作恰当调整。经过酸蚀可除掉经碱蚀后残留在工件表面的铜、镁、硅、锌、锰及其化合物残渣,裸露出金属结晶的安排,得到均匀、洁净、亮光或灰白色表面,镀件表面被活化。 2.2.4 预镀 (1)两次浸锌法 一次浸锌液成分及工艺条件: 氧化锌100g/L,500g/L,酒石酸钾钠50g/L,1g/L,室温,30~60s。 退锌液成分及工艺条件: 硝酸200mL/L,室温,3~5s。 二次浸锌液成分及工艺条件: 氧化锌20g/L,120g/L,酒石酸钾钠50g/L,2g/L,室温,20~40s。 浸锌工序联系到镀层的结合力和质量。浸锌应得到薄而详尽且附着力好的锌层,表面均匀,并具有微光泽。有时在浸锌前铝件表面浸重金属处理,使得电位正移,进步镀层的结合力。 (2)浸锌后镀锌 镀锌液配方及工艺条件: 氯化锌60~70g/L,180~220g/L,偏25~35g/L,ZL21亮光剂14~18mL/L,pH值5~6,室温,1~4A/dm2。 一次或二次浸锌后可对镀件进行镀锌。镀锌时,若工件较杂乱,能够在前1~2min内用冲击电流(正常电流的2倍)闪镀,使深凹处堆积镀层,进步深镀才干。浸锌后镀锌可取得更为细密且附着力更好的锌层。它不只能够进步镀层的结合力,而且能够进步成品率,特别关于形状杂乱、要求更高的零件。 (3)浸锌后镀镍 化学镀镍液配方及工艺条件: 硫酸镍35g/L,15g/L,钠15~20g/L,醋酸钠15g/L,柠檬酸钠10g/L,pH值4.8~5.5,80~90℃,15~20min。 镀镍液配方及工艺条件: 硫酸镍200~250g/L,柠檬酸钠200~250g/L,30g/L,氯化铵5g/L,pH值6.6~6.8,55~65℃,0.5~1.0A/dm2。 镀镍时须带电入槽,先用冲击电流电镀,然后转入正常电流电镀。化学镀镍操控杂乱,本钱高,镀层表面易呈现粗糙等缺陷;而选用电镀镍工艺的铬镀层质量高,成品率高,本钱低。浸锌后镀镍可取得细密且附着力更好的镍镀层,能够进步镀层的结合力和成品率,本钱相对较高。 (4)化学镀镍 磷碱性化学镀镍 磷液配方及工艺条件: 硫酸镍20~30g/L,钠20~30g/L,配位剂(柠檬酸钠及三乙醇胺)50~80g/L,22~25mg/L,pH值9.5~10.5,25~35℃,3~5min。 碱性化学镀工作温度低,可有用按捺锌膜溶解,然后取得薄而详尽、均匀的镍 磷合金层,以维护锌膜。 酸性化学镀镍 磷液配方及工艺条件: 硫酸镍25~30g/L,钠25~30g/L,2 羟基27~30mL/L,pH值4.2~4.8,88~92℃,装载量0.5~1.0dm2/L,堆积速率20μm/h。 镍 磷合金层到达15~20μm时,可确保底层均匀无孔隙,防止在镀铬时呈现合金层脱落。当合金层到达25μm时,结合力优秀。 (5)磷酸阳极氧化 磷酸阳极氧化液配方及工艺条件: 磷酸250~350g/L,20~20℃,3~15min,1~2A/dm2。 铝及其合金磷酸阳极氧化生成必定厚度和特殊结构的多孔氧化膜。该氧化膜具有超微观、均匀的凹凸结构,最大的孔体积和最小的电阻。在该氧化膜层上进行电镀,晶核构成多,堆积层能够很快地掩盖表面,并牢固地附着在膜孔里,然后取得滑润均匀、结晶详尽、附着力杰出的合格镀层。 (6)浸蚀 浸蚀液成分及工艺条件: 120~160g/L,缓蚀剂7~15g/L,室温,2~6min。 的质量浓度不只影响镀层的外观,而且还能影响镀层与基体的结合力。一起要操控好浸蚀时刻,以防过腐蚀。浸蚀是一种更为简略、便利的办法。 2.2.5 镀铬及除氢 (1)镀铬 镀铬液配方及工艺条件: 铬酐130~150g/L,硫酸0.5~0.8g/L,稀土添加剂1.5~2.0g/L,三价铬1~2g/L,50~55℃,40~45A/dm2,堆积速率40μm/h。 镀铬配方因选用不同的预镀工艺,需作恰当的调整。而且因添加剂的不同,镀层的外观也会有较大的差异。 (2)除氢为了消除镀层与基体之间所构成的内应力,进步镀层与基体之间的结合力,镀后要进行除氢处理。烘烤温度160℃,烘烤时刻1h。 3 镀层功能测验 镀铬层除了具有杰出的抗蚀功能和平坦亮光的外观外,更重要的是结合力、硬度和耐磨等功能。 镀铬层结合力的测验有加热、曲折和冲击实验法[10]。测验后,镀层均无起皮和脱落等现象,标明结合力杰出。 硬度测验要根据零件巨细、基体材料、镀层厚度、压痕直径、负荷巨细等选用不同的硬度计。在测定镀层硬度时,常运用维氏微型硬度计,可根据厚度,加5g~200g的载荷,使压痕深度到达镀层厚度的1/7~1/10。加厚镀铬层大于100μm时可选用洛氏硬度计测验。
耐磨性测定一般选用厚度削减法、质量损失法、体积磨损法、研磨介质耗费法、切开厚度时刻法、放射性同位素法等。实验标明:镀铬层的维氏硬度为7355MPa~7845MPa时具有较大的耐磨性。镀铬层厚度与耐磨性也有必定的联系,一起对运用寿数也有影响。 4 评论 (1)六种常用的铝及其合金电镀硬铬的预镀工艺有附近的预处理和后续的电镀硬铬规范。 (2)不同的预镀工艺均可构成具有超微观、均匀的凹凸结构,以及较大的孔体积和较小电阻的中间层,能防止天然氧化膜的再生;防止高硬度的铬层与较软的铝基体直触摸摸而或许引起的开裂、洼陷。经过几种电镀工艺所取得的必定厚度的镀层,均具有杰出的结合力、显微硬度、耐磨性及抗冲击功能。 (3)两次浸锌工艺安稳,但工艺杂乱,操作条件严苛。因为浸锌是在强碱溶液中进行,需求很多水冲刷。阳极氧化工艺相对简略,但需严格操控操作温度、电压等,且电解液温度简略上升,影响前处理作用,终究影响镀层质量。浸锌后镀锌和镀镍工艺安稳,成品率高,特别适用于结构杂乱、要求更高的零件。化学镀镍 磷要操控好镍 磷合金层的厚度才干确保杰出的结合力。浸蚀是一种简略、便利的办法。 (4)在施行进程中,可根据本身的条件、环境要求和工件要求,挑选适宜的电镀工艺。.
铝及其合金电镀硬铬工艺原理
2019-03-11 11:09:41
铝是一种化学活性很高的生动金属,它的电极电势很低(Φ=-1.67V),具有很强的亲氧性。一起又是一种金属,在空气中极易发作钝化,给铝合金电镀带来了困难。铸造铝合金因有砂眼、起泡等缺点,在电镀中简单停留残液和气体,会引起氢脆和镀层掉落等现象。
铝及其合金电镀的关键是镀层与基体金属的结合力问题;而影响结合力的关键是预镀是否合理。现在常用的工艺有两次浸锌法、化学镀镍 磷、浸锌后镀镍、浸锌后镀锌、磷酸阳极氧化法和浸蚀法等。这些工艺的进程大致附近,都是先去除表面的氧化膜,再经过不同办法取得安稳的中间层,最终进行电镀。安稳的中间层能够防止天然氧化膜的再生,在镀前保护好裸铝表面;一起构成具有超微观、均匀的凹凸结构以及较大的孔体积和较小的电阻;确保在电镀时堆积金属快,晶核构成多,附着好;并且能够防止高硬度的铬层与较软的铝基体直接触摸而或许引起开裂和洼陷。