您所在的位置: 上海有色 > 有色金属产品库 > 铅铬矿用途 > 铅铬矿用途百科

铅铬矿用途百科

锡矿用途

2019-01-04 09:45:40

锡在冶金工业中主要用于生产镀锡板(马口铁)和各种合金。镀锡板是锡的主要消费领域,约占锡的消费量的40%左右,它可以用作食品和饮料的容器、各种包装材料、家庭用具和干电池外壳等。锡铅和少量锑组成的低熔点合金就是焊锡,其占锡的用量的20%左右。轴承合金是锡、铅、锑、铜的合金。含锡的青铜广泛用于船舶、化工、建筑、货币等许多方面。锡还可与其他金属制成巴比特合金、活字合金、钛基合金、铌锡合金,等等,用于原子能工业、航空工业等领域。        锡在化工方面主要用于生产锡的化合物和化学试剂。锡的有机化合物主要用作木材防腐剂、农药等,锡的无机化合物主要用作催化剂、稳定剂、添加剂和陶瓷工业的乳化剂。锡精矿是炼锡的主要原料。

铅用途详解

2018-10-08 09:46:53

金属铅具有良好的延展性、抗腐蚀性,易与其他金属制成性能优良的合金。金属铅、铅合金和其化合物广泛应用于蓄电池、电缆护套、机械制造业、船舶制造、轻工、氧化铅、射线防护等行业。蓄电池蓄电池行业是铅的重要消费行业,其中汽车用蓄电池占蓄电池总量的80%左右。蓄电池的负极和正极分别是用金属铅和其化合物二氧 化铅制成。主要应用于汽车、摩托车、飞机、电动车、坦克、铁路、工厂等方面。电缆保护套由于铅具有耐腐蚀性、熔点低、韧性好、导电性能低等优良性能,过去铅锑合金被用做电缆护套来有效保护电缆,但随着铅资源不断减少,且其相对密度大,使电缆沉重,并具有毒性等因素,近年来电缆护套大量被塑料及其他材料所取代,铅在电缆护套上的应用逐渐减少。机械制造鉴于铅的性能优良,它被普遍制成轴承合金、焊料合金、磨具合金应用于机械制造中,铅板、铅管及其他合金材料均可以用到船舶制造中抵挡海水侵蚀。氧化铅氧化铅主要用作铅酸蓄电池的电池糊,生产塑料的稳定剂,生产橡胶制品的硫化活性剂,生产陶瓷的釉料添加剂,制造防射线玻璃、光学玻璃和水晶玻璃,以及各种颜料、涂料等。其他应用铅由于能够很好地阻挡X射线和放射性射线,用于医院相关工作人员防护阻挡射线侵害。铅字是使用活字合金浇铸成的(活字合金一般含有5~30%的锡和10~20%的锑,其余是铅)。另外,用铅行业还有邮电、冶金、化工、铁路、交通、建筑、武器弹药、航天、航空、石油等行业。

铅的用途

2017-06-06 17:49:50

铅的用途主要是制造铅酸蓄电池,随着汽车工业的发展,用于蓄电池的铅之比重不断增长。目前世界汽车拥有量为6.5亿,而蓄电池的寿命一般只有3~4年,因此每年都要更换大量电池。而从发展来看拥有世界四分之一人口的中国,汽车拥有量只及世界平均水平的6%,还有印度等人口众多的其他发展中国家,汽车工业也在不断发展,因此可以肯定地说,在今后相当长的时间内,蓄电池用铅仍将是铅的最主要的用途。随着技术的发展,人们还不断地开发铅的新用途。如制造设备用和事故用电电源的大型蓄电池,美国加利福尼亚一座40兆瓦容量的大电池装置,约耗用2000吨铅;用于核废料堆存的防护外壳;一种对传统的蒸汽透平发电的替代方案——液态金属电磁流体动力学装置(即LMMJD)正在以色列研制,其工作原理为液体金属通过强磁场而产生电流,一座1.1兆瓦的试验装置约需200吨金属铅作为流体;此外纯铅可吸收地震时释放的大部分震动能量,所以铅被用于建筑物上作防地震的减震器,也显示出良好的前景。在最近日本的一次地震中,这种减震器经受了检验。目前科学家正在研究铅的其他用途,发现还有很多东西需要铅来作为原料。所以对于铅的开采就显得尤为重要,但是我们在开采好资源的同时也要注意保护我们的环境、保护我们的地球。

铅资源的用途

2018-12-19 09:49:44

铅精矿是由主金属铅(Pb)、硫(S)和伴生元素Zn、Cu、Fe、As、Sb、Bi、Sn、Au、Ag以及脉石氧化物SiO2、CaO、MgO、A12O3等组成。铅主要用于制造合金,按照性能和用途铅合金可分为:耐蚀合金,用于蓄电池栅板、电缆护套、化工设备及管道等;焊料合金用于电子工业、高温焊料、电解槽耐蚀件等;电池合金用于生产干电池;轴承合金用于各种轴承生产;模具合金用于塑料及机械工业用模型。用作颜料的铅化合物有铅白、铅丹、铅黄及密陀僧;盐基性硫酸铅、磷酸铅和硬脂酸铅用作聚氯乙烯的稳定剂。另外,铅对x射线及γ射线具有良好的吸收能力,广泛用作x光机和原子能装置的防护材料。目前,国内外正研究将铅应用于电动汽车和电动自行车(动力电池)、重力水准测量装置、核废料包装物、氡气防护屏、微电子和超导材料,有的已进入实用阶段。

锰矿用途与技术经济指标

2019-03-07 10:03:00

锰矿产品包含冶金锰矿、碳酸锰矿粉、化工用二氧化锰矿粉和电池用二氧化锰矿粉等。运用锰矿产品的冶金部分、轻工部分和化工部分依据不同的用处对锰矿产品有不同的质量要求。 (一)冶金工业对锰矿石的质量要求 用于炼钢生铁、含锰生铁、镜铁的矿石,铁含量不受约束,矿石中锰和铁的总含量最好能到达40%~50%。 在冶炼各种牌号的锰系合金中,对矿石的含锰量和锰铁比值有必定的要求。冶炼中、低碳锰铁,矿石含锰量36%~40%,锰铁比6~8.5,磷锰比0.002~0.0036;冶炼碳素锰铁,矿石含锰量33%~40%,锰铁比3.8~7.8,磷锰比0.002~0.005;冶炼锰硅合金,矿石含锰量29%~35%,锰铁比3.3~7.5,磷锰比0.0016~0.0048;高炉锰铁,矿石含锰量30%,锰铁比2~7,磷锰比0.005。 表3.3.2是冶金工业部1965年颁布的冶金锰矿石产品技术标准。表中一级品一般用于电炉出产中、低碳锰铁。二级品一般用于电炉出产碳素锰铁或锰硅合金,但二级品配富锰渣可用以出产中、低碳锰铁。三级品配富锰渣可用于电炉碳素锰铁和锰硅合金的出产。三四级品用于高炉锰铁冶炼,但四级品需配优质矿石或富锰渣。二三级品还可用于平炉或转炉炼钢的添加剂。五级品作炼铁配料。四五级品还可用于富锰渣的出产,锰硅合金的出产多配用富锰渣进行冶炼。(1965年冶金工业部颁标准YB319-65)(二)化工及轻工部分对锰矿石的质量要求化学工业上主要用锰矿石制取二氧化锰、硫酸锰、,其次用于制取碳酸锰、和等。化工级二氧化锰矿粉要求MnO2含量大于50%(表3.3.3),制硫酸锰时,Fe≤3%、Al2O3≤3%、CaO≤0.5%、MgO≤0.1%;制时,Fe≤5%、SiO2≤5%、Al2O3≤4%。天然二氧化锰是制作干电池的质料,要求MnO2含量越高越好。对Ni、Cu、CO、Pb等有害元素一般厂定标准为:Cu 表3.3.4是冶金工业部、轻工业部两体系有关厂商沿袭的标准。

滑石矿用途与技术经济指标

2019-01-04 13:39:36

滑石用途很广泛,除作为轻工业产品的原料外,还用于农业、化妆品以及医药。其主要用途及其质量要求简述于下。(一) 块滑石的用途及质量要求块滑石根据用途分为两类,即工业滑石及化妆品滑石,各有相应的质量要求。1.工业滑石据国家标准BG1534-94,工业滑石按块度长、宽、厚的任何一个最大尺寸,划分为三种规格:大块滑石:最大边的尺寸应大于200mm;中块滑石:最大边的尺寸为20~200mm;小粒滑石:最大粒径小于20mm。其中小粒滑石再划分为1号、2号及3号三个质量等级。工业滑石的物理化学性能应符合表4.15.1规定。块滑石用来制造滑石瓷、制耐火砖和电盘、雕刻工艺美术品以及填加于化妆品、食品中。2.化妆品滑石化妆品级块滑石对质量要求很高,对物理化学性能有严格要求。例如矿石中无砂性颗粒,且有润滑感。细菌总数小于或等于500个/g,霉菌小于或等于100个/g,不得检出如大肠杆菌、葡萄球菌、绿脓杆菌等致病菌。当磨成滑石粉时细度大于或等于75μm,通过率98.0%。重金属含量小于或等于40×10-4。(二) 滑石粉的用途及技术经济指标滑石粉用途十分广泛,用量最大的为造纸工业,其次是防水材料工业。1.造纸工业滑石粉在造纸工业中主要有三种用途,即用作填料、涂料和纸浆的树脂控制剂。滑石可使纸张坚固洁白,增加不透明度和亮度,增强对油墨的吸附能力。滑石对颜料有较强的固着力,使彩色印刷品获得良好的色彩效果。滑石的凹面磨耗值很低,因而对造纸设备和印刷设备磨损甚小。再者滑石密度小于二氧化钛(TiO2),因此作为填料比二氧化钛优越。而滑石粉的价格远低于二氧化钛,使之更具有竞争性。滑石粉已成功地用于废纸脱墨工艺中,可有效地使废纸在浮选和洗涤中脱墨。2.防水材料滑石既可以用作屋面制品——油毡、屋面纸、沥青瓦、屋面板等的填充料,又可以用作屋面材料的防粘粉剂。当用作填充料时,滑石在熔融的沥青组分中起稳定剂作用,增加屋面材料的稳定性和抗风化能力。当滑石粉喷洒在沥青瓦或成卷的屋面材料表面时,可以防止其在制作和存放期间发生粘连。防水材料工业可使用低等级的带色和不纯的粗磨滑石粉,其技术要求(BG15342-94 3.其他工业 滑石在塑料工业、橡胶工业、电缆工业、陶瓷工业、涂料工业及纺织工业皆有重要用途,其技术要求见BG15342-84。其他方面的用途暂未订国家标准。

铂族矿用途与技术经济指标

2019-02-13 10:12:38

铂族金属前期首要用作首饰,本世纪50年代后开端很多应用于石油、轿车、电子、化工、原子能,以致环境保护职业。它们在这些工业中用量不大,但起着要害的效果,故素有“工业维生素”之称。    铂的用处最广,可独自或与其他铂族金属联合运用。铂可作制作硝酸与的催化剂,出产高质量的航空汽油;电器与电子工业上的接触点和铂铑合金热电偶、铂铱火花塞电极;玻璃工业上用作铂坩埚;国防工业上可制作发射燃料——过氧化氢的催化剂与世界飞行器的燃料电池电极等。钯首要作低电流的接触点和化工中的催化剂;钯合金管可作提纯用的分散设备。铑对可见光谱的反射率高,故可用作反射镜面;铱、锇、钌作为铂和钯的添加剂,进步它们的硬度、抗拉强度、耐蚀性和熔点。铱的耐磨性使之可用作钢笔的笔尖。铂族金属的详细用处见下表。    现在铂族元素用得最多的是触媒剂和轿车工业,1996年全球耗费的143t铂族金属中这两大用户别离占耗费量的35.8%和28%。用于轿车尾气净化催化剂的贵金属用量增加很快。现在全球每年出产蜂窝状催化剂5 000多万个,每个需用铂族金属1.2g。1993年仅此一项就花去铂53t、钯22t、铑11t,一共86t,占当年铂、钯工业用量的50%,铑用量的90%。近年来正在研讨改用较廉价的含钯催化剂替代铂-钯-铑三元催化剂。

我国铬矿简介

2019-03-14 10:38:21

概述铬是重要的战略物资之一,因为它具有质硬、耐磨、耐高温、抗腐蚀等特性,在冶金工业、耐火材料和化学工业中得到了广泛的使用。在冶金工业上,铬铁矿首要用来出产铬铁合金和金属铬。铬铁合金作为钢的添加料出产多种高强度、抗腐蚀、耐磨、耐高温、耐氧化的特种钢,如不锈钢、耐酸钢、耐热钢、滚珠轴承钢、弹簧钢、工具钢等。金属铬首要用于与钴、镍、钨等元素冶炼特种合金。这些特种钢和特种合金是航空、宇航、轿车、造船,以及国防工业出产炮、、火箭、舰艇等不行短少的材料。在耐火材料上,铬铁矿用来制作铬砖、铬镁砖和其他特殊耐火材料。铬铁矿在化学工业上首要用来出产,进而制取其他铬化合物,用于颜料、纺织、电镀、制革等工业,还可制作催化剂和触媒剂等。铬铁矿是我国的缺少矿种,储量少,产值低,每年消费量的80%以上依托进口。   一、矿藏质料特色 铬具有亲氧性和亲铁性,以亲氧性较强,只要在复原和硫的逸度较高的情况下才显现亲硫性。在内生效果条件下铬一般呈三价。六次酸位的Cr3+和Al3+Fe3+的离子半径相挨近,故它们之间能够呈广泛的类质同象。此外,可与铬类质同象替代的元素还有Mn、Mg、Ni、Co、Zn等,所以在镁铁硅酸盐矿藏和副矿藏中有铬的广泛散布。在表生带激烈氧化条件下(碱性介质),Cr3+氧化成Cr6+方式的铬酸根离子,使不活动的铬离子变成易溶的铬阴离子发作搬迁。遇极化性很强的离子(如Cu、Pb等),则构成难溶的铬酸性矿藏。在自然界中现在已发现的含铬矿藏约有50余种,别离归于氧化物类、铬酸盐类和硅酸盐类。此外还有少数氢氧化物、盐、氮化物和硫化物。其间氮化铬和硫化铬矿藏只见于陨石中。具有工业价值的铬矿藏都归于铬尖晶石类矿藏,它们的化学通式为(Mg、Fe2+)(Cr、Al、Fe3+)2O4或(Mg、Fe2+)O(Cr、Al、Fe3+)2O3,其Cr2O3含量为18%~62%。有工业价值的铬矿藏,其Cr2O3含量一般都在30%以上,其间常见的是: 1.铬铁矿 化学成分为(Mg、Fe)Cr2O4,介于亚铁铬铁矿(FeCr2O4,含FeO32.09%、Cr2O3 67.91)与镁铬铁矿(MgCr2O4,含MgO20.96%、Cr2O3 79.04%)之间,一般有人将亚铁铬铁矿和镁铬铁矿也都称为铬铁矿。铬铁矿为等轴晶系,晶体呈细微的八面体,一般呈粒状和细密块状集合体,色彩黑色,条痕褐色,半金属光泽,硬度5.5,比重4.2~4.8,具弱磁性。铬铁矿是岩浆成因矿藏,产于超基性岩中,当含矿岩石遭受风化损坏后,铬铁矿常转入砂矿中。铬铁矿是炼铬的最首要的矿藏质料,富含铁的残次矿石可作高档耐火材料。 2.富铬类晶石 又称铬铁尖晶石或铝铬铁矿。化学成分为Fe(Cr,Al)2O4,含Cr2O3 32%~38%。其形状、物理性质、成因、产状及用处与铬铁矿相同。 3.硬铬尖晶石 化学成分为(Mg、Fe)(Cr、Al)2O4,含Cr2O3 32%~50%。其形状、物理性质、成因、产状及用处也与铬铁矿相同。   二、用处与技能经济指标 铬铁矿石按工业用处划分为冶金级、化工级、耐火级和铸石级。 1.冶金级铬矿石的工业要求 冶金级铬矿石首要用于冶炼各种铬铁合金。用来冶炼铬铁合金的铬矿石又按不同的冶炼用处分为4个等第(表3.4.1)。除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。 除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。

铬矿选矿方法

2019-01-18 09:30:20

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。 下图为甘肃大道尔吉铬矿跳汰一摇床选别流程图。

铅主要用途

2019-03-08 11:19:22

铅首要用于制作铅蓄电池;铅合金可用于铸铅字,做焊锡;铅还用来制作放射性辐射、X射线的防护设备;铅及其化合物对人体有较大毒性,并可在人体内堆集。铅被用作建筑材料,用在电池中,用作和炮弹,焊锡、奖杯和一些合金中也含铅。铅还能够做成(又叫达姆弹)。 铅在地壳中含量不大,天然界中存在很少数的天然铅。但由于含铅矿藏会萃,熔点又很低(328℃),使铅在远古时代就被人们所利用了。方铅矿(PbS)直到今日都是人们提取铅的首要来历。远古时代人们无意偶尔把方铅矿投进篝火中,它首要被烧成氧化物,然后遭到碳的复原,形成了金属铅。 铅表面在空气中能天然生成碱式碳酸铅薄膜,避免内部不再被氧化。制作铅砖或铅衣以防护X-射线及其他放射线。用于制作合金。等量之铅与锡组成的焊条可用于焊接金属。制活字金。铅与锑的合金熔点底,用于制作保险丝。可用于制作。

铅的主要用途

2017-06-06 17:49:50

铅的用途非常广泛。目前铅的主要用途是制成铅蓄电池,汽车、飞机、拖拉机、火车、电车、坦克,还有照明光源,都使用铅蓄电池。在颜料和油漆中,铅白是一种普遍使用的白色染料。在玻璃中加上铅制成的铅玻璃,有很好的光学性能,可以制造各种光学仪器。 铅的另一项重要本领是可以挡住Ф射线的照射,所以原子弹发射场以及核动力发电站,都有用铅建造的防护设施。医院里照Ф光透视的医生,穿着就是带铅的防护衣。由于铅的比重大,在军事和狩猎上具有特殊作用。为了防止风改变子弹飞行的方向,人们用铅作成子弹。狩猎用的铅弹含铅量高达95%,所以千万不要吃野生动物,它们体内往往含有大量毒素。铅球是一种体育用品,平常锻炼时用的铅球,有的是铁制的,也有的是铜制的,而正式比赛中使用的铅球,主要成分则是铅。铅的主要用途是什么呢?毫无疑问,铅的主要用途是制成铅蓄电池。 

工业纯铅的概述及用途

2018-12-19 09:49:38

工业纯铅commercially pure lead又称软铅(soft lead ) 。含铅量达99.50%~99.94%的纯铅。常含有银、铜、锑、锡、砷、铋、铁、锌等杂质。工业纯铅熔点低,比重大,耐蚀性好,X射线和γ射线不易穿透,强度、硬度低,在室温下加工也不会发生加工硬化,常制成铅板、铅管等广泛用于化工、电缆、蓄电池和放射性设备等工业部门。它的另一用途是配制铅合金和用作其他合金的添加元素。通常用碳还原氧化铅;火法制得金属铅。

使用铬矿选矿废料作耐火原料

2019-01-21 18:04:55

由于镁质原料价格昂贵,迫使寻找它的新来源,其中包括寻找工艺特性。金彼尔铬矿选矿废料就属于这种新来源。用化学分析、岩相分析、X-射线照相分析、重量变化分析研究了煅烧前后的废料,并按现有方法测定了某些性能指标。 不烧废料的化学组成列于表1。MgO与SiO2的比波动于1..03~1.37之间。值得注意的是灼减很大(13.47%~16.77%),这要求无论是在生产补炉粉料时还是在生产耐火材料时,必须进行预先煅烧。 表1  铬矿选矿废料的化学组成重量百分数%MgO/SiO2灼减SiO2Fe2O3CaOMgOCr2O3Al2O313.4730.4610.803.0333.000.938.241.0814.4630.468.071.1231.411.9812.71.0316.7729.207.863.0339.901.491.341.3716.1231.286.790.5641.601.291.141.3415.5330.007.580.2833.435.482.381.2815.5433.277.450.2840.001.00-1.2015.2033.417.501.1241.200.951.301.2714.9032.407.800.8438.603.632.051.1914.3832.04-1.1238.301.05-1.19 优质硅酸镁岩特有的高耐火度,(1730~1780℃),说明废料在耐火材料生产中使用是有前途的。 从烧成前的废料试样外观上看为浅绿、淡灰色,均质、密实。 在显微镜下研究表明,试样具有蛇纹岩或蛇纹岩化的纯橄榄岩所特有的网状结构,由形成密网的3MgO·2SiO2·2H20蛇纹石浅绿色鳞片状纤维物质(主要是纤维变体-纤维蛇纹石)组成。在网的结点上不均匀地分布有尺寸为0.06~0.24mm的2(MgO、FeO)SiO2橄榄石无色有棱角非均质颗粒。橄榄石折射指标: Ng=1.680~1.690,Np=1.640~1.650。在橄榄石颗粒周围,常看到细分散氢氧化铁(针铁矿型)不透明薄膜。不透明的磁铁石与透明的褐色含铬尖晶石(Mg,Fe2+)O(Cr,Fe3+,Al)2O3相遇时,呈少有的较粗颗粒的八面体和尺寸为0.08~0.32mm的有棱角的颗粒形式存在。 废料的大致矿物组成(体积比):蛇纹石80%~85%,橄榄石10%~15%,夹有氢氧化铁的磁铁矿3%~5%,含铬尖晶石2%~3%。 原废料总试样的x-射线相分析也表明,主要物质是蛇纹石(纤维蛇纹石,少量叶蛇纹石),有不多量的橄榄石,还发现有微量的舍铬尖晶石和针铁矿。 废料的热重量分析(图1)表明,有3个蛇纹石特有的基本热效应。70℃时的吸热效应与吸附水排出有关;620℃时:矿物结构受到破坏,同时OH-基排除,由分解产物形成x-射线非晶形的镁橄榄石和顽辉石。770℃时的放热效应是由新形成的矿物相结晶作用引起的。图1  铬矿选矿原废料的热谱图 180℃和375℃时的吸热效应与细分散针铁矿的存在有关。在180℃时,处于吸附水与结构水之间的中间位置的水被排出。在375℃时,针铁矿(α-FeOH)发生脱水和其转变为α-Fe2O3。α-Fe2O3向ρ-Fe2O3的多晶转变的第二次吸热赦商与770℃时的蛇纹岩吸热效应同时发生。 在热解重量分析曲线上有4个最大失重阶段:20~150时为3.5%,180~380℃时为3%,380~770℃时为11.75%,770-1000℃时为0.25%。 废料的某些性能指标的变化数据列于表2和表3。表中的数据表明,灼减是随烧成温度的提高而减少。 表2  铬矿选矿废料的某此性能材料粒度mm烧成温度℃重量百分数%灼减SiO2Fe2O3Al2O3Cr2O3CaOMgOFeO耐火度℃密度g/cm33~0不烧17.234.24.711.310.630.5040.9-1730-<0.06不烧19.232.74.161.582.130.8739.7---3~014000.3641.06.221.052.080.3648.01.9117503.2653~015000.1241.74.050.660.830.6549.43.3217803.289 表3  国外耐火材料指标热处理温度℃不烧65070090012001400150015801650活性MgO的重量百分数%-14.313.415.17.78未测开口气孔率%3.626.025.126.818.815.817.714.914.831.918.420.423.9体积密度g/cm32.352.102.002.112.502.582.642.642.042.542.36灼减%1722.52.661.480.660.120.100.10 在废科试样加热过程中,像普通的蛇纹岩一样,在200~300℃时开始脱水,900℃时结束。这些过程促使材料松散,而且在700~900℃时气孔率达到最大值,当温度更高时困蛇纹岩密实而使气孔率降低,在1300~1400℃时气孔率达到最小值。当温度在1500℃左右时,蛇纹岩可能会因密度增加而发生膨胀。 X-射线相分析表职,在7OO℃下烧成后,试样非晶形化强烈。在衍射图上有镁橄榄石线,这证实了热谱图的数据。反射较弱,图象模糊,结构不完整。正方晶格的参数:a=0.4760nm,b=1.0201nm,c=0.5992nm。还有微量富氏体、叶蛇纹石,β-Fe2O3、H2O、含铬尖晶石和其它相。在1400℃下烧成后的试样为浅红、淡灰色有棱角的烧结的多孔碎块。在显微镜下发现,这些碎块主要由无色有棱角等轴颗粒和尺寸为0.04~0.3mm的镁橄榄石片状晶体组成,这些晶体大部分不用玻璃胶结膜、互相贴合(表4),即直接结合。镁橄榄石折射指标是标准的。 表4  煅烧后废料试样的相组成烧成温度℃体 积 比%镁橄榄石斜顽辉石镁铁矿镁磁铁矿含铬尖晶石玻璃140075~8010~155~10-1~31~2150075~803~55~103~51~31 在细晶粒镁橄榄石物料中很不均匀地分布着被浅绿-浅褐色玻璃薄膜粘结的尺寸为0.004~0.02mm的a-MgSiO3斜顽辉石小颗柱晶体和八面体晶体;很少见到尺寸小于3~15mm的Mg Fe2O4铁矿圆形等轴颗粒。 在试样中很不均匀地分布着不多数量的尺寸为0.02~0.12mm的含铬尖晶石稍透明的角状颗粒。气孔大多数是不规则的等轴形状,尺寸为0.02~0.3mm,偶而是宽度为0.02~0.05mm的弯曲纵裂纹状。 1500℃下烧成后的试样,与1400℃下烧成的试样不同,为较黑的颜色,气孔率大。从显微镜上看,它们很象1400℃下烧成后的试样,但不同之处是镁橄榄石折射指标稍高(Ng=1.695,Np=1.660±0.003),这证明有同晶形FeO杂质存在。在普通圆形等轴的镁橄榄石晶体中常常观察有很小的闭气孔(按直径计3μm以下)。此外,不同之处是镁铁矿晶体稍大(25μm以下),在镁橄榄石颗粒表面上有不透明的镁磁铁矿(Mg,Fe)Fe2O4树技状晶体和为数不多的斜顽辉石及玻璃。 在匈牙利Πayrnt硅和Ξpnen式重量变化分析仪上,在加热速度为10/min时得到的1400℃和1500℃时烧成的试样热分析曲线(图2)很相似,表明这些试样是热惰性的。 1500℃时烧成后的废料的x-射线相分析也表明镁橄榄石晶体是主要成份。这个相的曲绒表现得强烈、尖锐、清晰。晶格参数:a=0.477nm;  b=1.020nm, c=0.5992nm。除上述相外,在试样中尚有为数不多的紫苏辉石(Mg,Fe)2Si2O6和磁铁矿,还有微量的硅酸二钙。图2  1400℃时烧成后的废料热谱图 研究结果可知铬矿选矿废料般烧时的性能如下: 正如前面提及,蛇纹石是未烧废料的主要矿物相。在蛇纹岩煅烧时,主要产生下列反应: 3MgO·2Si02·2H20→2MgO·SiO2+MgO·SiO2+H20       (1)      (镁橄榄石)   (斜顽辉石)  770℃和大于770℃时蛇纹岩的热谱图上的放热效应是其晶格改组而生成镁橄榄石的结果。正象上面提到,镁橄榄石曲线首先是在700℃时观察到的,在温度1150℃和更高时生成大量的镁橄榄石,这证实了岩相研究。 随着温度的提高,蛇纹石和橄榄石中所含的氧化铁(l)氧化(约在800℃时),此时橄榄石分解,部分生成偏硅酸盐(辉石),可能也析出为数不多的硅石(玻璃)。 在1200℃以上温度时生成的氧化铁(2)部分地转变成磁铁矿,继而与析出来的镁橄榄石反应而生或顽辉石和镁铁矿: 2Mg0·Si02+Fe2O3→MgO·SiO2+MgO·Fe2O3      (2) 橄榄石与氧化铁(3)反应,生成顽辉石和镁铁矿中的二价铁的固溶体:2(Mg,Fe)O·SiO2+Fe2O3→(Mg,Fe)O·SiO2+(Mg,Fe)O·Fe2O3       (3)镁橄榄石也与磁铁矿反应、并析出橄榄石和有镁铁矿的固溶体: 2MgO·SiO2+Fe3O4→2(Mg,Fe)O·SiO2 +(Mg,Fe)O·Fe2O    (4) 原有的含铬尖晶石与废料的硅酸镁组份反应生成固溶体。 蛇纹石脱水,氧化铁(2)氧化,固溶体生成,使选矿废料个别变体的性能不同,而且视蛇纹石化的程度和氧化铁含量而有不同的性能。 煅烧时看到的废料性能的变化涉及到,除加热时废料密实外,橄榄石颗粒中氧化铁发生再结晶、在蛇纹石区段生成微粒硅酸盐晶体(镁橄榄石),当它们互相作用时(在1450℃时)生成的镁铁矿分解出硅酸盐颗粒,这使气孔率略有增加。硅酸盐强烈再结晶(1450~1500℃),对制品烧结有不良影响。 铬矿选矿废料的最佳烧威温度应当是1400~1450℃。在此温度下,氧化铁已大大氧化和再结晶,而硅酸盐再结晶程度不大。 所进行的研究表明,金彼尔铬矿选矿废料的主要性能与优质的硅酸镁岩相似,这就决定了可能的使用范围,尤其是可用于生产补炉混合料、镁橄榄石质的耐火材料。 结论 对金彼尔铬矿选矿废料及其烧成对的性能进行了综合研究。研究表明,废料的矿物组成是蛇纹石和含量不大的含铬尖晶石。 烧成时废料的性能与蛇纹岩观察到的性能相同。根据性能指标,金彼尔铬矿选矿废料可以作为硅酸镁原料用于耐火材料工业。

铬矿冶炼工艺了解

2019-01-04 09:45:31

增产降耗是铁合金生产永恒的话题,碳素铬铁生产亦是如此,尤其是近来铬矿资源馈乏,生产使用的铬矿往往品种杂乱,配矿单一,给工艺控制造成较大难度,稍有不慎则炉况恶化,生产不能顺行,技术经济指标难以控制。重庆铁合金(集团)有限责任公司近年来使用过十余中铬矿,在应对上述不利因素方面作了较多的探索。我们发现铬矿石中MgO与Al2O3的含量能直接反映铬矿的冶炼性能,针对不同的MgO/Al2O3值采取应对措施,效果明显,是碳素铬铁生产取得良好指标的关键。 1铬矿特性大致分类 1.1铬矿中的MgO/Al2O3值 传统上将铬矿石按粒度分为块矿和粉矿,按理化性能分为难熔矿和易熔矿。在生产实践中,我们发现铬矿的冶炼性能主要与其中MgO及Al2O3含量紧密相关。众所周知,矿石的粒度过小会影响炉料透气性,但可以通过一定的措施进行改善(如增大焦炭粒度、多加回炉渣铁等),矿石的熔化性能也可以通过改变其入炉粒度在一定程度上得到改善。而铬矿中如果MgO及Al2O3含量严重失调,则会使炉况不顺,生态平衡产业指标下滑。在生产实践中我们以铬矿的MgO/Al2O3值作为衡量铬矿冶炼性能的一个重要指标。一般我们将MgO/Al2O3〈1称为低镁铝比矿,MgO/Al2O3〉1.5称为高镁铝比矿,MgO/Al2O3=1~1.5为中度镁铝比矿。 1.2MgO/Al2O3值与铬矿冶炼性能 MgO属碱性氧化物,在溶液中可电离成为Mg2+及O2-,具有较强的导电能力,因此,如果炉料中MgO含量过高,将会使炉料及所形成的炉渣比电阻减小,导电能力增强,电流急剧增大,电极上抬,刺火严重,反应区缩小,炉渣流动性差,产量下降,电耗上升;Al2O3属高熔点氧化物,当其含量过高时,炉料及炉渣比电阻增大,容易使符合使用不足,电极深埋,料面死火,炉温低,产量下降,回收率低,炉渣粘稠,炉衬易损坏.当炉料中MgO与Al2O3的含量达到一定的比例时,形成一种平衡,此时炉料的导电性能\熔化性能以及炉渣的熔点\黏度等都能达到一种良好的状态。在生产过程中我们注意到,无论何种铬矿进行配搭,当炉料MgO/Al2O3 1.5以后,则会呈现前述MgO过高的炉况,而MgO/Al2O3值越高情况越严重。根据铬矿中不同的MgO/Al2O3值,生产中应该采取相应的对策。 2参数选择 2.1二次工作电压 对高MgO/Al2O3矿,应选择较低的二次工作电压;对低MgO/Al2O3矿宜选择较高的二次工作电压。以500kvA电炉为例,当MgO/Al2O3>1.4,二次电压选择为105~110V;当MgO/Al2O3 2.2极心圆直径 高MgO/Al2O3矿及块矿,应选择较大极心圆直径;低错误!链接无效。及粉矿,则应该选择较小极心圆直径。 2.3炉膛深度 通过长期实践摸索我们感觉到,在碳素铬铁生产中,较深的炉膛有利于增加料层厚度,预热炉料,深埋电极,保持炉缸温度,减小热散失,取得较好的技术指标。中小型矿热炉参数一般是通过米库林斯基简易计算法来确定,在计算值的基础上将炉膛加深20%能取得较好的效果。 3渣型与碱度过控制 碳素铬铁生产为有渣冶炼,控制合适的渣型是生产的关键环节。渣型不应是一个固定的形态,不应该只按百分含量去调整其中的氧化物成分,调配渣型最直观的依据是MgO/Al2O3值和碱度。 3.1MgO/Al2O3 在矿种的搭配上,应努力将炉料的综合MgO/Al2O3值调至适中的范围内,我们的实际体会是:如果将MgO/Al2O3值调配在1.05~1.2范围内,再配以合适的碱度能取得较理想的效果,此种渣型导电性能适中,有利于电极深插而用足负荷,炉况稳定,料面火焰均匀,产量高,电耗低,各项指标良好。如果矿石中MgO/Al2O3 3.2炉渣碱度 除了MgO/Al2O3以外,炉渣碱度(MgO+CaO)/SiO2也是一个重要指标.碱度主要是以硅石的配入量来调节,但不能单纯强调碱度,必须要将碱度与MgO/SiO2值进行综合考虑,当MgO/SiO2较大时可适当控制较低碱度,而MgO/SiO2值小时应控制较高碱度,以使炉渣具有恰当的熔点\黏度和导电性能。一般情况,如果MgO/SiO2值在1.05~1.2范围内,碱度控制为1.1~1.25能取得较好效果。 4合金成分控制 合金成分控制主要是指合金中C\Si\S等杂质元素的控制,这些元素在合金中的含量与铬矿的性能及生产技术经济指标有较直接的关系。 4.1[C] 根据铬铁生产精炼脱碳机理,炉内降碳需要两大条件:①要具有较高而且稳定的炉内温度②必须在炉缸高温区存在有足够量的残存Cr2O3。必须同时具备这两个因素,精炼脱碳反应才能进行,产品的含碳量才能有所降低。因此,块矿\高MgO/Al2O3矿能生产出含炭较低的碳素铬铁,反之,粉矿\低MgO/Al2O3矿所生产的铬铁含炭都较高。而生产含炭低的碳素铬铁产品因需要保持较高的炉温和炉缸残存Cr2O3,需造高熔点渣,单位电耗都较高。 4.2[Si] 合金中硅含量与炉温及还原剂用量直接相关,[Si]含量高将使还原剂用量增加,单位电耗升高,但过低的[Si]含量不利于[C]\[S]控制,如果矿石中MgO/Al2O3低时,[Si]过低会导致负荷使用不足。因此合金中[Si]的控制应考虑矿石中MgO/Al2O3值,MgO/Al2O3值高时宜控制较低的[Si],反之,应将[Si]控制得稍高。 4.3[S] 合金中的硫主要是由焦炭代入,在生产过程中控制合金含[S]量的有效手段主要有两方面: 4.3.1调配合适的渣型。适当增加炉渣中CaO的含量,有利于增强炉渣的脱硫能力,增大硫在炉渣中的分配率,降低合金的含硫量。 4.3.2控制合适的合金成分。合金中的[Si]及[C]含量增加,会在一定程度上降低[S]含量。生产过程中的脱硫将增加冶炼的负担,需要控制较高的合金[Si],较高的炉渣(CaO),使焦耗\电耗增加,因此应严格限制入炉原材料中的硫含量。 5结束语  MgO/Al2O3值是铬矿的一个重要指标,在生产中应根据矿石中MgO/Al2O3值,对电炉电气参数\渣型及合金成分等方面采取相应的控制措施,方能取得良好的生产技术经济指标。

铬矿的选矿方法

2019-01-16 17:42:05

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3<20%),也用水力充分选管选别过摇床中矿。在实验室研究了干式强磁选、湿式强磁选、浮选和各种化学选矿法。但在生产技术中采用重选法,个别矿山采用强磁选,浮选法等选矿法目前技术还不成熟。1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。

无铅易切削黄铜的品种和用途

2019-05-29 20:19:08

无铅易切削黄铜棒  无铅易切削黄铜是易切削铅黄铜的替代品,因为铅对人体损害大,无铅易切削黄铜是以无毒害第三合金元从来替代铅,现在已研制出的无铅黄铜合金系统有:Cu-Zn-Te、Cu-Zn-Bi-Te,一起在Cu-Bi、Cu-Te、Cu-C以及Cu-S等高铜合金系统上也有必定研讨,可是因为产品的可制作性,易获得性及性价比等要素影响,现在有必定实践使用的主要为Cu-Zn-Bi无铅易切削黄铜。在某些特殊应用范围上,如要求高导电性的电触头号选用高铜合金系列。  Bi、Te等这些合金元素在铜中存在的特色,局势和铅类似,基本不溶于铜,以游离质点存在于晶界上,经后序制作弥散散布于铜基体,起光滑和减摩效果,使合金切屑易碎、易排,保证制品表面光洁。从制作功能方面来讲,此类合金的制作功能均不是很好,尤其是对高铜合金,其成分的操控及制作功能不易保证,而在黄铜中,锌的参加在必定程度上增大了其溶解度,并使其成分稳定性和制作功能得到改进。  铋在铜中的溶解度很小,800℃时也只要0.01%。铋在270℃与铜构成共晶体,其间铋呈薄膜散布于铜晶界,严峻下降铜的制作功能,因而,其含量不得大于0.002%。Bi对铜的热导率与电导率的影响不大,真空开关触头铜可含0.7%~1.0%Bi。因其具有较高的导电功能,并能避免开关粘结,进步其作业期限,保证工作安全。  碲在固态铜中的溶解度很小,以Cu2Te弥散质点存在,对铜的电导率及热导率的影响很小,但能明显改进铜的切削功能,含0.06%~0.07%Te的铜在工业中获得了实践使用。一般在淬火和制作状态下使用,不需回火,避免Cu2Te沿晶界沉积,是材料变脆。微量(0.003%)硒和碲(0.0005%~0.003%)明显下降铜的可焊功能。  铋、碲、硫等元素对其他铜合金极为有害,加工中有必要严格操控,避免质料、旧料、炉衬材料、辅助工具等的混用。

铬矿石的选矿方法

2019-02-13 10:12:33

我国铬矿石中常见的铬尖晶石矿藏有铬铁矿[(Mg,Fe)Cr2O4]、铝铬铁矿[(Mg,Fe)(Cr,Al)2O4]和富铬尖晶石[Fe(Cr,Al)2O4]等;脉石矿藏首要有橄榄石、蛇纹石和辉石等;有时伴生少数钒,镍、钴和铂族元素。在岩矿鉴守时应该侧重查明铬尖晶石的化学成分,由于它决议着精矿档次和铬铁比。     铬铁矿石的选矿首要选用重选办法。出产上常选用摇床和跳汰选别。有时重选精矿用弱磁选或强磁选再选,进一步进步铬精矿的档次和铬铁比。     铬尖晶石含铁较高或与磁铁矿细密共生的矿石,经选矿后得到的精矿中,铬档次和铬铁比都偏低,能够考虑作为火法出产铬铁的配料运用,或用湿法冶金处理。例如法、氢氧化铬法、复原锈蚀法、氯化焙烧酸浸或电解法等。用湿法冶金处理初级铬铁精矿已有出产实践。     铬铁矿石中伴生的铂族元素如呈硫化物、砷化物或硫砷化物状况,能够用浮选法收回。矿石中的橄榄石和蛇纹石,能够考虑归纳收回,供出产耐火材料、钙镁磷肥或辉绿岩铸石等运用。

铬矿直接还原合金化

2019-01-24 09:36:33

铬是冶炼不锈钢、内热钢、合金工具钢、合金结构钢以及多种类型铸铁的重要合金元素。随着国民经济的发展,需要更多的不锈、内热、高强度的钢材,铬合金的消耗量也迅速增加。我国铬矿资源短缺,大型富矿少,小矿品位低、贫而杂,大量开采经济上不合理,得不到充分利用。国内有些厂家曾做过铬矿还原直接合金化的工业性试验,铬矿还原率平均为90%,但所采用的铬矿粉为进口铬矿、铬精矿等。因受资源的限制,难以满足大工业生产的需要。铬矿大部分依靠进口,致使铬合金供应紧张,价格高。 为充分利用有限的铬矿资源,降低钢材的生产成本,采用内蒙古乌拉特中旗所产的低品位铬矿,进行铬矿直接还原合金化的试验研究,实验室和半工业性试验证明,铬矿直接还原合金化是可行的。它可以代替高碳铬铁用于炼钢,反应速度快,经济合理,收得率高。在3t电弧炉上冶炼35CrMo钢的工业性试验中,铬矿中的铬的收得率在89.6%~96.7%,平均为92.92%。 1、铬矿中铬的回收率为89.6%~96.77%,平均为92.92%。 2、还原铬矿入炉后25min左右,已得到较好的还原,不延长炼钢冶炼时间。 3、用还原铬合金剂炼钢,钢中增碳量与使用高碳铬铁基本相符。因此,可以代替高碳铬铁使用。 4、还原铬合金剂生产工艺简单,技术容易掌握,生产率高,能改善劳动条件,避免了冶炼铬铁造成的环境污染。 5、采用本还原铬合金剂冶炼35CrMo钢,可使吨钢成本下降,经济效益显着。 6、可提高铬的总回收率约10%,解决了矿山日益增多的廉价铬矿粉的利用问题。

加强新疆萨尔托海铬矿管理与保护

2019-01-24 09:37:11

新疆萨尔托海铬矿是我国唯一的耐火材料级铬矿生产基地。国家投入了大量勘查资金,经地质工作者三十多年的辛勤劳动,已探明储量的矿群有14个,累计探明储量上百万吨,Cr2O3含量在32%以上的富矿约占50%。 新疆有色金属工业公司铬矿于1970年投入开采.从1 989年开始,1个地方国营铬矿,4个乡镇集体铬矿相继在萨尔托海矿区建矿投产。自1970年至1991年共采出铬矿石35万t。主要销往上海、东北及洛阳耐火材料厂,为我国冶金工业的发展做出了贡献。 铬矿不仅做耐火材料,还用于冶炼不锈钢,各种合金钢,制取各种铬盐。 我国铬矿资源短缺,每年需花外汇进口大量铬矿石。铬矿价格较高,当地将开采铬矿作为脱贫致富的途径。新疆铬矿生产发展迅速,但也存在许多亟待解决的问题。 一、存在的主要问题 (一)资源浪费严重 萨尔托海铬矿赋存状态复杂,呈透镜状,土豆状、鸡窝状,矿休一般较小。有的围岩破碎,给采矿带来一定困难。 由于地方国营和乡镇集体矿技术力量薄弱,管理不善,有些小的矿体被丢弃。冒顶压矿现象时有发生,如某矿以包代管,民工在采矿过程中为了自己多收益,违章作业,使采场暴露面超过规定要求,爆破中装药过量,结果造成大冒顶,使4000多t特富矿压于地下无法回收。 (二)铬矿销售中自找门路,经济效益受到影响 铬矿销售中无统一管理,各矿山企业派人四处奔跑,自找销售门路,互相压价。据有关部门反映,如果统一管理,每吨富矿可卖800元,目前只卖500元,使各矿山企业经济效益受到影响。 (三)地方国营,乡镇集体铬矿积压粉矿急待处理 有色金属工业公司铬矿有一简陋的选矿厂,用于处理粉矿,但处理能力很低,每天只处理2~3t。五个地方国营、乡镇集体铬矿均无选矿厂,积压粉矿万余吨,他们曾想将粉矿卖给有色金属工业公司选矿厂,但因给价太低,积压粉矿至今未能进行选矿处理。 (四)采富弃贫 由于缺乏统一规划,无开采设计和计划,致富心切,某矿储量5.7万t,富矿仅1.7万t.已采出1.4万t,目前富矿已采完。由于自己无选矿厂,剩下的含Cr2O3 25%以下的贫矿,开采困难,要求闭坑。其他矿山企业丢弃低品位铬矿石现象也有存在。 二、加强铬矿资源管理与保护的措施 (一)建立铬矿区统一管理协调机构 1989年以来,萨尔托海铬矿区存在多种经济成分的矿山企业,由于技术水平和管理水平低,存在资源浪费严重、销售中互相压价等问题,固此,组建矿区统一管理协调机构势在必行。有色金属工业公司铬矿有建矿二十多年的历史,技术力量雄厚,管理水平较高,因此依托有色金属工业公司铬矿,在技术上、管理上帮助地方小矿,解决一些问题,在销售上统一组织,统一价格,协调各矿之间的关系,将更有利于铬矿的发展。 (二)建立铬矿选厂,提高铬矿资源利用率 冶炼不锈钢、各种合金钢及制取各种铬盐所用富矿(或精矿)最低工业指标Cr2O3含量≥32%,而萨尔托海铬矿在采矿过程中产生大量粉矿,且矿石Cr2O3量越高,矿石越脆,粉矿量越多,全矿区每年产生粉矿约5000t.均需选矿后方可销售。萨尔托海矿区低品位铬矿储量占50%,必须经过选矿,产品方能达到工业指标。1971年地矿局中心实验室对该矿区21号矿群钻孔样做过选矿实验,入选样品Cr2O3含量22.80%,精矿Cr2O3含量32%,选矿回收率70%。经过选矿实验,证实萨尔托海低品位铬矿是可选的,而且经济上合理。建立具有一定规模的铬矿选矿厂将有利于提高资源利用率。 (三)深入宣传贯彻《矿产资源法》,提高矿区干部、工人依法办矿,科学采矿的自觉性 深入宣传《矿产资源法》的基本精神,宣传“矿产资源属国家所有”、“矿产资源不可再生”、“我国铬矿资源短缺情况”;宣传“十分珍惜,合理开发利用和有效保护矿产资源”的基本方针。提高矿区干部和工人依法办矿,科学采矿的自觉性。 (四)加强技术培训,提高干部、工人的技术素质 鉴于地方国营、乡镇集体矿山企业没有采矿专业技术人员,第一线采矿工人绝大多数是从内地自流来疆的,对干部工人进行技术培训是非常必要的。发挥有色金属工业公司铬矿技术优势,结合萨尔托海铬矿区地质特征,矿体赋存状态,讲授采矿技术及管理方面的知识,对干部、工人分期分批进行培训,不断提高技术水平和管理能力。 (五)加强对矿山企业矿产资源开发利用监督检查 地、县两级矿管部门要经常深入矿区,对各矿山企业矿产资源开发利用进行监督检查,对严重破坏、损失浪费矿产资源者要依法惩处。坚决制止以包代管的管理办法,要求各矿山企业建立健全有关规章制度,其主要领导干部对合理开发利用和保护矿产资源负全部责任,并制定干部轮流下井值班的制度,亲自指导生产,按规章制度开采管理,发现问题及时解决。 (六)加强对萨尔托海有限的铬矿资源的保护 要统筹规划,合理划分资源,使中央、地方和乡镇矿协调发展。要体现国营骨干矿山的主体地位。新疆有色金属工业公司铬矿已建矿20多年,技术力量雄厚,采矿设施,后勤机修已具规模,开采回采率高,安全措施好,必须为该矿留有足够的后备资源,因此,对地方国营、乡镇集体矿山企业的采矿规模应维持现状,不再扩大采矿点。对有限的铬矿资源的开发利用,由自治区有色金属工业公司提出统一规划,合理布局,报自治区计委会同地矿主管部部审批,以达到合理开发利用与有效保护矿产资源的目的。 萨尔托海铬矿区,由有色金属工业公司铬矿牵头,地矿主管部门协助,使各种经济成分的矿山企业加强执作,提高技术水平,加强管理,统一销售,萨尔托海铬矿将会取得更好的经济效益、社会效益和资源效益。

南非普里蒂铬矿的生产

2019-02-20 11:03:19

普里蒂铬控股有限公司(Purity Chrome (pty)Ltd.)是联合冶金工业(Consolidated Met-allurgical Industrles,简称CMI)公司的子公司,坐落南非德兰士瓦省勒斯腾堡城外1km处,是在布什维尔德式杂岩体(Bushveld Com-plex)上新建的一个厂商,这儿已有几个地下矿山在出产。该厂商包含一座地下矿和一个铬选矿厂。 1989年6月,F.F.阿立克萨每(Alexan-der)采矿服务公司签订了完结2000m矿山开辟工程的合同。一同,戴维(Davy)南非公司(戴维世界财团的一个公司)签订了选矿厂的规划、施工和试出产合同.选矿厂的规划是由设在约翰内斯堡的戴维南非公司办事处完结的,规划还包含悉数配套工程和供电工程。 1990年5月,矿山开端挖掘;8月,普里蒂公司接收了悉数采矿出产经营,10月,约翰内斯堡联合投资公司的分公司-CMI购买了普里蒂铬及铬铁厂商。至今,该厂商已采出矿石l00多万吨。 1992年9月,普里蒂铬矿在所有铬矿中首要被列入ISO9002质量确保单位名单。这一质量体系确保保护和恪守全面质量办理体系,为了确保终究产品的质量和运用户满足,公司整体雇员都要参加体系的规划和监控、出产和办理。 一、地质和矿藏学 铬铁矿(FeO·Cr2O3)是仅有有经济价值的铬矿藏。铬首要用于出产铬铁合金,而铬铁合金是出产不锈钢和特殊钢的重要质料。别的,铬还用于出产耐火材料、制革、染色、镀铬和颜料工业。 铬铁矿在布什维尔德式杂岩体中的赋存办法为:古铜辉岩和纯橄榄岩的副产矿藏、斜长石中的包体,可是最有经济价值的是布什维尔德式杂岩体临界区中的假层状铬铁岩层。这些矿层在杂岩体中的倾角均匀为80~250。 尽管该区域现已发现有20多条矿层,可是给了编号的只要13条首要矿层,即:      上部矿层群:1号和2号;      中部矿层群:1~4号;      下部矿层群:1~7号; 其间,下部矿层群的主矿屡(LG6或Magazine矿层)被视为最有经济价值的可采矿层。 普里蒂铬矿坐落布什维尔德式杂岩体的西矿带LG6矿层上,挖掘厚度约1.8m,其间有40cm的中间废石夹层。 理论上,铬铁矿是FeO·Cr2O3,但布什维尔德式杂岩体的矿藏首要是由三种同晶型尖晶石组成的杂乱尖晶石,即由(FeMg)O·Cr2O3、(FeMg)O·Al203和FeO·Fe2O3组成,一部分是由Al203和Fe2O3代替Cr2O3,另一部分是由MgO代替了FeO。普里蒂铬矿的Cr2O3尖晶石含量约为47.2%。图1  典型钻孔断面图 二、采矿 普里蒂铬矿LG6矿层的挖掘厚度为1.8m,南北向歪斜,倾角12.50。矿层由三部分组成:30cm的铬铁矿、40cm的中间辉岩夹层和110cm的铬铁矿,矿层的挖掘厚度和倾角有利于完结机械化采矿。选用房柱法挖掘,矿柱在倾向和走向的尺度分别为13m和5m,矿房宽度一般为15m。回采率规划为75%~80%。每挖掘lOOm.留一排部分矿柱,作为辅佐支护。 掘进了两条暗斜井.一条作为铲运机的运送道,另一条装置胶带运送机运送矿石,一同作为人行道。沿歪斜每隔lOOm装置一条东西向的运送机,为了缩短铲运机的运送时刻,把卸载点设在距作业面30m处。采矿实施两班制作业,白班进行作业面凿岩和装药,凿岩选用普通的手持式风动凿岩机,为硝铵-柴油混合物粒状。夜班只进行装矿和整理采场,有7台Toro 150D铲运机整理矿岩。 现在,矿山实施每周5天作业制,日出矿量为2000t,年出矿46万t。估计矿山寿数为16年(不包含矿产权归于JCI的北部矿区),如果把北部矿区核算在内,矿山寿数还能够延伸18年。图2  普里蒂铬矿房柱采矿法示意图 矿柱:沿倾向l3m,沿走向5m;矿房宽度:15m, 为了安全,实践尺度小于15m 三、选矿厂 (一)给矿预备 矿石由原矿运送机从斜井运至1.5m×3.6m的榜首段除大块筛,筛孔为100mm。筛上物料进入颚式破碎机,破碎产品由循环运送机回来原矿运送机,-1OOmm的筛下产品由一台头部可上下升降的运送机运到容量为4000t的露天矿堆,这台运送机装有绞车,能够升高或下降,以减步损耗。厂区序号说   明质料运搬0原矿运送机1除杂磁铁2榜首段除大块筛3矿堆给矿运送机4榜首段颚式破碎机5破碎产品循环运送机6矿堆7矿堆积矿振荡给矿机8矿堆出矿歪斜运送机9分级筛10块矿缓冲仓11碎矿缓冲仓12蜗形重介质选矿体系计量给矿机13蜗形重介质选矿体系给矿运送机14动态旋涡重介质选矿体系计量给矿机15动态旋涡重介质选矿体系给矿运送机16粉矿仓17粉矿运送泵蜗开重介质选矿车间21~44蜗形重介质选矿车间37块状铬铁矿产品仓38块状铬铁矿运送机动态旋涡重介质选矿车间46~47动态旋涡重介质选矿车间56屑状铬铁矿运送机65屑状铬铁矿产品仓65屑状铬铁矿产品溢出部分螺旋选矿车间70~100螺旋选矿车间85冶金级产品堆86化工级产品堆 图3  普里蒂选矿厂流程示意图及首要设备表 露天矿堆的矿石由两台45t/h的振荡给矿机给到歪斜运送机上,运送到1.5m×3.6m的双层分级筛上,筛下有两个缓冲仓。 矿石通过湿式筛分,分红三部分;-100~+20mm(块矿)和-20~+0.8mm(碎矿),这两部分分别给入两个重介质选矿体系,-0.8mm(粉矿),送入螺旋选矿车间。 (二)蜗形重介质选矿体系 分级筛筛出的+20mm产品先在一台1.2m×3m的给矿预备筛上进行脱砂,然后进入蜗形分选机。这种分选机是一种高效设备,其产品的收回和排料办法新颖。产品和废石排至l.2m×4.8m的双层分流脱水喷洗筛上,收回硅铁介质。运用的介质是cyclone 60(旋流器60),筛分后的块状铬精矿由产品运送机送到200t容量的产品仓内,废石排至中间废石堆堆存. 在筛子脱水段收回的介质直接回来正常重介质泵池,再泵回蜗形重介质分选机前的介质分配箱,稀介质泵送至0.9m×O.9m的筒形磁选机,收回介质.收回的介质给入超浓介质泵池,通过脱磁线圈,进入离心浓缩机,再回来正常介质泵池。 浓度由核子浓度计操控,浓度计带动风动分流器作业。从磁选机中脱出的水在旋流器内脱砂,其溢流用作脱水喷洗筛的冲刷水。 (三)动态旋涡重介质选矿体系 分级筛筛出的-20~+0.8mm产品先在0.9m×2.4m给矿预备筛上脱泥,然后给入动态旋涡分选机(DWP)。 DWP的特点是给矿靠重力给入分选机,而旋流器不同,要求给矿和介质在压力效果下给入。在DWP中,重的下沉物料(一般是磨蚀性物料)简直立刻沉降,通过上边的切向排料口排出。在出口处,速度和离心力适当低,磨损极小。悬浮物料凭借旋涡向下运动,在抵达旋涡出口管之前,不再与金属触摸。因为设备内磨损率低,所以一直保持高的别离功率。图4  选矿厂总布置图 右侧:重介质选矿车间,中间:破碎筛分车间,左边:产品堆图5  蜗形重介质分选机 产品和废石被排至1.2m×4.8m的分层脱水喷洗筛上,收回硅铁介质。DWP体系运用的介质是磨细的100D硅铁,正常介质与稀介质的收回同蜗形体系类似,只要浓缩是一段完结。 从脱水喷洗筛取得的屑状铬精矿由产品运送机运到lOOt的产品仓内,废石排到中间废石堆堆存。图6  戴维动态旋涡重介质选矿体系图7  螺旋选矿机 (四)螺旋选矿车间 分级筛的筛下矿浆进入螺旋选矿车间的给料泵池内,泵入分配箱,分配给23台MET双头粗选螺旋选矿机中。粗选精矿进入精选螺旋(22台双头)的分配箱。精选精矿进入24流分配箱,分配至二次精选段。二次精选精矿通过脱水,成为化工级精矿;二次精选的中矿脱水后为冶金级精矿;二次精选的尾矿则回来精选段。精矿堆的排水流入集水池,由密封水泵收回。晾干的精矿由前装机装运。图8  螺旋选矿车间的精矿脱水和粉精矿堆 粗选螺旋选矿机的尾矿首要通过浓缩旋流器浓缩,使其浓度到达扫选螺旋选矿机所要求的浓度,然后进入扫选矿浆分配箱,扫选用5台MET双头螺旋选矿机,扫选尾矿运送至尾矿库。中矿产品(包含扫选精矿和精选尾矿)一同泵送至浓缩旋流器,然后进入精选矿浆分配箱。 三个选矿体系的悉数精矿运往坐落勒斯腾堡的联合冶金工业公司铬铁冶炼厂。三个体系的收回率分别为:蜗形选矿-78%、DWP-92%、螺旋选矿-90%。各种产品规格列于下表。 产品规格产品粒度mm产率%Cr2O3 %SiO2 %块状精矿-100~+202039.08.0屑状精矿-20~+11538.010.0冶金级精矿-0.84545.52.0化工级精矿-0.82046.40.8 蜗形体系和DWP体系处理每吨给矿的硅铁均匀损耗分别为160g和240g。

贫铬矿的选矿及加工技术

2019-02-22 16:55:15

我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr203 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。前者用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。中国科学院还研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr203产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据。

烧结铬矿冶炼高碳铬铁的探索

2019-01-24 09:37:09

一、前言 我国属于铬矿资源贫乏地区,大部分铬矿依靠国外进口。因此,研究供应充足、价格便宜的粉状铬矿生产高碳铬铁的工艺流程具有重要意义。 目前,粉状铬矿冶炼高碳铬铁的工艺流程主要有直接入炉冶炼和预处理-冶炼两种。前一种根据冶炼设备不同,有矿热炉冶炼和等离子扩冶炼两种不同工艺;后一种根据预处理方式不同,有烧结-冶炼、制球-冶炼和压块-冶炼三种不同工艺。 比较而言,烧结铬矿的热稳定性和还原性较好,烧结-冶炼流程的工艺成熟,矿耗和能耗低,经济效益好,各广家采用较多。对烧结工艺和烧结矿的物化性能进行了详细的论述;本文着重介绍不同配比方案的试验情况。并旦在此基础上。对烧结铬矿冶炼高碳铬铁的炉内状况作一分析。 二、矿热炉冶炼高碳铬铁炉内基本状况 (一)炉内物料特征区域 在正常的冶炼情况下,矿热炉冶炼高碳铬铁炉内有八大物料特征区域。从上至下分别是散料层、融熔层、残熊层、带焦渣层、炉渣层、残矿层、出炉金属层和积铁层。各区域的化学反应类型强度,炉料和炉气的组成、状态不同,并且在一个冶炼周期内其变化是时间的函数。 (二)炉内主要化学反应 矿热炉冶炼高碳铬铁所涉及的主要化学反应可概括为三种类型:它们是矿物氧化成份的还原反应、成渣反应和金属液的脱碳、脱硅反应。 1、还原反应2、成渣反应3、脱碳、脱硅反应(三)炉料和炉气运动规律 在矿热炉内炉料和炉气相向运动,互为阻力,彼此依存,互为消长。 1、炉料下降取决于如下力学关系     P=P有效-△P     式中P为决定炉料下降的力;         P有效为有效重力,由下式决定:         P有教=P料-(P摩+P液)         P料为炉料拄本身重力;         P摩为炉衬对炉料和料块内部之间的磨擦阻力;     △P为炉气通过炉料的总压差,近似表示上升炉气对炉料的阻力或支撑力,其影响因素可概括为如下通式:f为阻力系数,在矿热炉条件下,其为无因次常数; w为一定温度和压力下,炉气通过炉料层的实际流速,m/s; ρ为气体实际密度,Kg/m3; H为炉料层的高度,m; D为散料颗粒间通道的当量直径,由下式决定: D=4ε/s,(m) S为单位容积散料总表面积,即此表面积: ε为料层空隙率,即料层空隙体积与散料堆体积之比。 2、炉气上升是因为炉料柱存在着上下压差△P。由式(3)变形可知,炉气上升的影响因素有炉科的当量直径D和炉料层的高度H等。 三、试验 (一)试验条件  1、 设备主要参数 生产试验在3000KVA的矿热炉内进行 表1  电炉设备的主要参数变压器容量一次测电压二次电压电极直径极心圆直径炉膛直径炉膛高度3000KVA10KV105V600mm1400mm3070mm1552mm 2、原料化学成份和粒度 表2  试验所涉及的主要原料的化学成份和粒度原料化学成份(%)粒度(mm)名称Cr2OaFeOSiO2CaOMgOAl2O3固定碳水份矿151.1714.366.392.6311.6711.83-2.5≤50矿250.1712.366.442.8017.339.43-3.0≤30矿331.3720.8413.41.1215.649.18-3.2≤30矿451.6714.446.42.5411.5811.88-11.5粉状焦炭------83.8119.86~18 注:矿1、矿2、矿3和矿4分别为烧结铬矿、高品位块状铬矿、低品位块状铬矿和粉状铬矿。 (二)试验方案 表3  按因素转换法安排试验,方案方案精矿配比(kg)入炉铬矿综合成份(%)矿1矿2矿3矿4Cr2OaFeOSiO2MgOAl2O3CaO一3000200043.2516.959.1913.2610.772.03二3500150045.2516.308.4312.3611.042.18三300010010047.3114.067.7912.4511.312.31四010919020043.6413.199.0714.3812.652.06 注:铬矿配比以500kg为基准。 (三)试验过程参数 表4  试验过程的主要操作参数及炉渣平均成份方案平均有功功率kwh平均视在功率kwh焦矿比t/t功率因子%炉渣情况Cr2OaSiO2CaOMgO碱度一277639600.19190.146.8730.012.5327.801.01二275537870.17691.0410.3026.622.7526.101.08三264937190.19690.8213.0522.592.7323.871.16四272333810.10089.117.2524.672.1123.461.24 (四)试验结果 表5  各方案的合金平均成份和技术经济指标方案合金主要成份平均百分比技术经济指标CrSiC日产电耗回收率矿耗焦耗成本一59.943.067.8319.2863333.788.801.9090.36522582二61.262.517.8518.5203373.778.832.1010.36992282三62.861.858.2921.9242786.993.511.6530.32422282四61.761.878.2318.2533400.488.651.9020.37812362   注:1、成本指每吨铁的电耗、矿耗和焦耗的费用之和,即工艺成本。  2、日产、电耗、矿耗、焦耗和成本的单位分别为吨/天、kws/t、t/t、t/t和元/t。 四、讨论 (一)烧结铬矿冶炼高碳铬铁的特点 矿热炉冶炼高碳铬铁过程充满着矛盾。例如炉料下行与炉气上行的矛盾;炉温与反应速率的矛盾;焦矿比与电极有效工作端的矛盾;冶炼强化与顺行的矛盾等等。在一定的设备和原料条件下,这些矛盾制约着冶炼的强化、生产率和综合效益的提高。 烧结铬矿结构疏松多孔,表面积大,反应性能好,同时其具有一定的残焦含量(见表2)。因此,在烧结铬矿冶炼高碳铬铁时,焦炭的利用率高、配入量小,焦矿比低,有利于冶炼负荷的控制。 同时,烧结铬矿具有一定的高温强度且内部存在着大量的微孔隙,料层空隙率占大,由式(4)可知,其散料颗粒间通道的当量直径D大,料层透气性能好,在强化冶炼条件下,有利于炉况的稳定。 烧结铬矿的这些性能特征为提高入炉铬矿的综合品位进行强化冶炼提供了可能性。根据试验情况,由于烧结铬矿的加入冶炼,在保持较低的视在功率和较高的功率因素的情况下,与方案四比较,方案一、方案二和方案三入炉铬矿的平均综合品位和平均日产分别提高1.62%和9.08%.冶炼强化效果明显。 另外,烧结铬矿表面积大,根据传热方程: Dq=a×F×△T×d 在一定的初始温度差△T的奈件下,炉气和炉料单位时间内交换的热量Q大,排出炉外的炉气的温度低,能量利用率高,冶炼的负荷要求和电耗低(见表4、5)。 (二)烧结铬矿的配入量问题 方案一和方案二试验结果表明,在铬矿配比中烧结铬矿的比例不能过大。烧结铬矿透气性能好,颗粒间通道的当量直径D大。由式(3)可知在矿热炉冶炼条件下,D增大,则炉气的流速w提高,炉气在炉内停留时间变短。这导致炉气和炉料热交换不充分,排出炉外的炉气的温度高炉气带走的热能总量多,电耗增加。 同样,由式(3)可知,烧结铬矿的用量增加。炉气的速率W提高,炉气的密度ρ减小。加上炉气与炉料热交换不充分,上部炉料的温度过低。主要在散料层和融熔层上部进行的反应,实际分下面二步进行: 3(FeO-Cr2O3)+3CO=3Fe+3Cr2O3)+3CO2 3CO2+3C=6CO 其在温度低、炉气(主要成份为CO)密度小的情况下,反应的速率和限度大大降低。此加重了残焦层等区域的反应负担,甚至大量残矿和残焦到达炉子下部反应区,使带焦渣层、炉渣层和残矿层成为一个混合渣层。 因为大量的呈固体颗粒状的残矿和残焦的存在,混合渣溶点高,流动性差,下部反应区的反应条件恶化,矿和焦大量流失,矿耗增加。 另外,由于烧结矿具有一定的C含量且表面积大反应性能好,其配入量过大,入炉的焦矿比降低,比较而言,负荷给不足,视在功率和有功功率都有所降低(见表4)。 (三)有关搭配铬矿的问题 方案三在:方案一的基础上,使用高品位的粉状铬矿代替50%的低品位块状铬矿,日产和回收率分别提高13.68%和4.71%,电耗下降16.40%,获得好的技术经济指标。这表明方案一的透气性能指标较其炉内反应强度过剩。 与方案一比较而言,方案三入炉铬矿的综合品位提高4.06%,这有利于提高炉内反应强度,增加单位时同内的炉气流量,从而使冶炼强化透气性能指标的过剩量减少,有利于炉况的活跃和稳定。同时,入炉铬矿的综合品位提高,层渣量减少,炉渣带走的铬元素总量和热量减少,矿耗和电耗下降(见表5)。 粉状铬矿代替块状铬矿,散料颗粒间通道的当量直径D减小,炉气速率下降,炉气和炉料热交换充分,有利降低电耗。另外,低价位的粉状铬矿的加入,在保证炉况正常的情况下,亦有利降低成本,提高综合效益。 五、结论 (一)烧结铬矿冶炼高碳铬铁是可行的。 (二)烧结铬矿冶炼高碳铬铁,搭配一定量的块矿、粉矿是获得好的经济效益所必需的。

低品位钨矿用化学选矿法处理流程

2019-02-25 09:35:32

有些钨选厂出产的低档次钨精矿达不到质量标准,WO3的档次为%~30%,其他杂质含量也比较高。首要为低档次的钨细泥精矿、钨锡中矿、含钨铁砂及其他难选的含钨中间产品。此类产品经化学选矿,使钨出现钨酸钠或白钨、仲钨酸铵、钨酸或三氧化钨形状出售,并从浸渣中归纳收回其他有用组分。低档次钨矿藏质料化学选矿准则流程,处理进程可分为物料预备等。 有些钨选厂出产的低档次钨精矿达不到质量标准,WO3的档次为5%~30%,其他杂质含量也比较高。首要为低档次的钨细泥精矿、钨锡中矿、含钨铁砂及其他难选的含钨中间产品。此类产品经化学选矿,使钨出现钨酸钠或白钨、仲钨酸铵、钨酸或三氧化钨形状出售,并从浸渣中归纳收回其他有用组分。 低档次钨矿藏质料化学选矿准则流程,处理进程可分为物料预备等。 一、物料预备 为了确保化学精矿的质量,质猜中的杂质含量应低于必定值,如砷不大于0.3%~0.5%,硫不大于1.3-1.5%,杂质含量高时在物料预备时要将其降至必定值;为了进步矿藏的分化功率,对物料的细度的要求,要看后续作业的分化办法和质料的特性而定。例如苏打烧结法需磨至100-150目以下;直接浸出需磨到200-300目以下。 二、物料的烧结-浸出 工业出产上选用苏打烧结-水浸法,苏打溶液压煮法、苛性钠溶液浸出法和酸分化法。其意图是使钨矿藏分化生成水溶性的钨酸盐。分化办法的挑选首要取决于钨矿藏质料特性和出产供应商的具体情况和条件。办法可分为 (1)苏打烧结-水浸法。它适于处理含少数石英的低档次黑钨质料,如钨细泥、含钨铁砂、钨锡中矿等,也能够处理含少数石英的低档次白钨质料,烧结时使不溶于水的黑钨矿和白钨矿与苏打效果生成水溶性的钨酸钠,水浸烧结块使钨转入溶液中,固液别离可除掉不溶杂质。黑钨矿质料的烧结温度为700-850度,白钨质料约860度。 (2)苛性钠溶液浸出法。用35-40%浓度的苛性钠溶液加温至110~120度在加压条件下浸出磨细的矿藏质料,使钨呈可溶性钨酸钠的形状转入浸出液中。浸出注的处理办法有两种:一是直接稀释至密度为1.3克/立方厘米后送去净化;二是将其蒸浓至密度为1.45克/立方厘米左右分出钨酸钠晶体,结晶液回来浸出作业,结晶体水溶液送去净化。此法与苏打烧结-水浸法比较具有流程简略、出资少、能够处理含硅较高的钨细泥和钨锡中矿等钨矿藏质料。 常压下苛性钠溶液浸出白钨矿的反响为可逆反响。一般应选用苛性钠和硅酸钠的混合溶液作浸出剂才干获得满意的浸出成果。可是白钨矿质猜中含氧化硅有适当量时,用单一苛性钠即可。 (3)酸分化法。酸分化法可用于处理白钨矿和黑钨矿两种质料,用32-38%浓或硝酸作浸出剂,在100度左右的温度下使钨矿藏直接分化而生成钨酸沉积。为进步钨的浸出率须将物料磨至-300目,酸分化时适当部分杂质进入溶液中经固液别离使其与钨酸别离。为使钨酸与残渣别离,常用碱熔法使钨呈碱金属钨酸盐形状转入溶液中,得到较纯洁的钨酸钠或钨酸铵溶液。酸分化钨的浸出率高,但试剂耗量大。 (4)苏打溶液压煮法。此法可用于处理白钨和黑钨矿藏质料。浸出进程在压煮器中进行,质料磨至-300目,钨浸出率与苏打用量、浸出压力、浸出温度有关。 此法的长处是适用性较好,不只适用于处理低档次白钨矿(5%~15%),还适于处理含钨硫化精矿,如钨铋中矿、铋钼钨中矿。高硫钨中矿浸出时,锡石、辉锑矿和辉铋矿残留于残渣中,氧化物中的悉数铜、部分氧化硅、氟、磷、砷等杂质与钨一同转入浸液中,浸液送净化处理。三、浸出液的净化 上述各种办法分化低档次钨矿藏质料所得的钨酸钠溶液都不同程度的含硅、磷、砷、铜等杂质,有时还会有硫、氟等杂质。为了确保化学精矿的质量,有必要对浸出液进行净化以除掉杂质。现在常用如下办法。 (1)用铵镁盐除硅、磷、砷。浸液中SiO2/WO3分量比大于0.1%时应除硅。硅在溶液中出现硅酸钠存在,当溶液碱度下降时将水解呈硅酸形状分出。因而往浸液中参加1∶3的稀使pH值降至13,然后参加氯化铵使PH值降至8~9,硅酸钠能够彻底地被水解生成SiO2沉积,再经弄清过滤、洗刷后,液中的氧硅可降至0.25克/升。 磷砷在除硅液中别离以HPO42-和HAsO42-的形状存在,在室温下往其间参加密度为1.16~1.18克/立方厘米的氧化镁溶液,磷砷别离呈铵镁磷酸盐Mg(NH4)PO4及铵镁盐Mg(NH4)AsO4的形状分出。 (2)镁盐法除硅、磷、砷。此法先用稀(1∶3)使浸液PH值降至小于11,硅酸钠发作部分水解后,此刻浸液中的磷呈HPO42-、砷呈HAsO42-形状存在。再参加密度为1.16-1.18克/立方厘米氯化镁溶液至浸液碱度为0.2~0.3克/升NaOH时,发生MgSiO3、Mg3(PO4)2、Mg3(AsO4)2沉积物分出,因而参加氯化镁可除掉硅、磷、砷。 此法的关键是须用将浸液中和至pH11,然后参加氯化镁溶液,否则会发生氢氧化镁沉积。质猜中萤石含量较多时,也可参加氯化镁,使浸液中的F-呈MgF2沉积分出。 铵镁盐法和镁盐法只能除掉高价砷,若贱价砷存在时须先用或次等氧化剂将贱价砷氧化为高价砷,然后参加氧化镁才干到达除砷意图。 镁盐法较铵镁盐法的功率高,处理量大,出产周期短,渣含钨低(约4~5%WO3),但渣量大。铵镁盐法渣量小,但渣含钨高(约15~20%WO3),因而应根据质料特性,通过实验才干断定最佳的净化办法。 (3)碱法除钼。钼在浸液中呈钼酸钠形状存在,在除掉硅、磷、砷后的滤液中先参加溶液使钼转变为硫代钼酸盐,残留在溶液中的砷也转变为硫代盐,然后加中和至pH=8.5左右,此刻钼、砷不沉积分出。再参加氯化钙溶液,钨呈钨酸钙沉积分出,而钼、砷仍呈相应的硫代酸盐形状留在溶液中,通过滤将钼砷除掉。除钼率可达70-90%,参加量为钼砷总量的8~8.5倍,温度为80度。 当浸液中含钼量小于0.25克/升时,不必定要独自除钼工序,进步分化组成白钨酸度的办法到达钨钼别离,酸度大,温度高、除钼效果好。除钼还有其他办法,在此不作介绍。 上述均属化学沉积法除掉浸液中的硅、磷、砷、钼等杂质,还有其他办法如离子交流等办法。 三、钨化学精矿的制取 工业上一般先从净化液中分出组成白钨或仲钨酸铵,再出产钨酸或氧化钨。其进程如下。 (1)组成白钨。沉积组成白钨一般多用氯化钙作沉积剂(有时可用氢氧化钙或硫酸钙),使钨酸钙沉积,反响式为: Na2WO4 +CaCl=CaWO4+2NaCl 而氯化钙关于硅、磷、砷、钼等杂质亦生成钙盐沉积物因而没有净化效果,仅对硫有净化效果。组成白钨的质量和沉积率首要与净化液的钨含量、碱度、沉积剂的类型及添加量等要素有关,钨含量影响到组成白钨的细度及过滤、洗刷功能。 关于沉积剂的比较:氯化钙可得高档次的组成白钨:(WO3达70-76%),沉积剂对产品污染小,缺陷是氯化钙易潮解,运送包装较困难。石灰价廉,但所得组成白钨档次低,一般只达60-68%WO3,过滤洗刷困难,母液钨含量高,硫酸钙所得组成白钨档次WO3,但对产品污染大(硫酸钠、硫酸钙),且反响时间长。因而以氯化钙为好。 组成白钨作为终究产品时,通过滤枯燥,然后包装出厂;若以钨酸或氧化钨为终究产品,则将组成白钨过滤洗刷后送去制取钨酸。 (2)钨酸的制取。工业上常选用或硝酸分化组成白钨,制取钨酸。常用的组成白钨分化法,反响式为: CaWO4+2HCl=H2WO4 +CaCl2 组成白钨中的硅、磷、砷杂质对钨酸的制取影响很大,使钨酸粒度变细而成胶状,难于沉积过滤,一起还与钨生成杂多酸,添加母液中钨含量。 制取钨酸进程的首要影响要素有:(1)温度:温度高有利于制取粗粒钨酸,杂质分化较彻底,但酸损耗大,作业环境差,初温常为70-80度,加料后再煮沸10-15分钟;(2)浓度:浓度高有利于钨酸粒度粗化,杂质分化彻底,出产中一般用30%的浓度;(3)剩下酸度:分化终了的酸度低,钨酸粒度变小,纯度低,一般剩下酸度为70-80克/升。此外,酸分化时参加适量的硝石(硝酸)有利于加快分化进程及杂质的氧化。并有利于进步钨的总收回率。 过滤后的钨酸应进行洗刷。钨酸质量契合标准才干出厂或送去制氧化钨。否则要进行净化处理。钨酸的净化常用法,即把钨酸溶液溶于中使其转化为钨酸铵溶液,大部分的硅、铁、锰等杂质则留在沉积中。 (3)仲钨酸铵的制取。用浓缩结晶法从钨酸铵溶液中制取仲钨酸铵,先用溶解钨酸,且使钨与某些杂质别离,反响式为: H2WO4+2NaOH =(NH4)2WO4+2H2O 某些杂质如铁、锰、钙的氯化物一起生成氢氧化物沉积与钨别离。溶液通过沉清过滤,滤液即为钨酸铵溶液。 用强碱性或弱碱性阴离子交流树脂处理钨浸出液,用氯化铵溶液淋洗载钨树脂,所得淋洗液用于制取仲钨酸铵;此外,还可用溶剂萃取法制取钨酸铵溶液。以钨酸钠为料液,以叔胺或季胺的火油作有机相,在pH=2-4条件下萃钨,然后用2-4%的反萃可得钨酸铵溶液。 从钨酸铵溶液制取仲钨酸铵还可用中和法,此法运用10-20%的把钨酸铵溶液中和至pH=7-7.4时,钨呈针状仲钨酸铵的形状分出,结晶率达85-90%,但中和法不能收回并耗,已被蒸浓法所替代。 把钨酸铵溶液通过蒸浓时能够蒸腾部分,冷却之后(大于50度)则结晶分出片状的仲钨酸铵结晶:即: 12(NH4)2WO4 = 5(NH4)2O 12WO3 5H2O +14NH3 +2H2O 由于仲钨酸铵溶解度比仲钼酸铵小,为了避免产品被钼污染,可用分步结晶法使钨钼别离。如蒸腾60%的液体,钨结晶率为55%,而钼结晶率只12%,所以开始结晶分出的仲钨酸铵含钼甚微。后期分出的仲钨酸铵含钼较高。 蒸腾时蒸发的气经洗刷塔收回,所得回来运用;富含杂质的母液再收回钨。 (4)三氧化钨的制取。将枯燥的纯钨酸或仲钨酸铵进行煅烧可制取工业钨氧粉。反响式为: H2WO4 =WO3+H2O 5(NH4)2O12WO3 nH2O =12WO3 +10NH3+(5+n)H2O (煅烧) 煅烧温度500度时可使钨酸彻底脱水,温度高于250度可使仲钨酸铵彻底分化。用于出产钨材和碳化钨的三氧化钨除应具有必定的纯度外,还要满意必定的粒度要求,三氧化钨的粒度与钨酸如仲钨酸铵的粒度及煅烧温度有密切关系。

硬铅在化学工业上的用途

2018-12-19 09:49:16

videojs.options.flash.swf = "/plug-in/video-js/video-js.swf";    加了锑的合金,叫做“硬铅”。我们平常遇到的许多“铅”做的东西,其实大都是用硬铅做的。例如铅笛电池里的铅板,便是用硬铅做的。如果用纯铅做就太软了,放在汽车上,一受颤动,很容易变形。据试验,用硬铅制成铅板,比纯铅的使用寿命至少延长十五倍!在化学工业上,一些耐强酸的材料,如铅管、反应罐,常用硬铅来铸造或作衬垫。制硫酸的“铅室法”,那铅室也是用硬铅做的。在第一次世界大战时,人们还曾用硬铅来制造在空中爆炸的榴散弹。

铅锌矿选矿技术之铅的性质和用途

2019-02-26 16:24:38

铅是蓝灰色的金属,新的断口具有绚烂的金属光泽。固态密度为11. 35g/cm3,熔点为327.4摄氏度,沸点为1525摄氏度,纯铅在金属中是最柔软的,莫氏硬度为1.5。铅具有杰出的展性,但其延性甚小,不耐拉力。铅的导热性很差,相当于银的7.5%,.导电性也很差,’仅及银的7.77 %. 铅具有高度的化学稳定性,常温时在枯燥空气中不起化学变化。铅易溶于稀硝酸,室温下铅不溶于硫酸和。常温时和硫酸的效果仅涉.及铅的表面,因生成的PbC12及PbSO4几乎是不溶解的,附着在铅的表面上,使内部的金属不受腐蚀。铅与含碱、氮、氯的溶液和有机酸、醋均不起反响。 因为铅具有抗酸、碱腐蚀的性质,因而用处较广,如能够利用它来制作化工设备的各种构件、冶金工厂的电解槽、通讯光缆材料以及蓄电池等,还可做成巴比特合金-铅基合金轴承;因为铅能吸收放射性射线,故用于x射 线工业及原子能工业;铅的化合物用在颜料、陶瓷、玻璃、橡胶、粹等工业部门厂还可用于焊料、印刷等.

铬矿石冶炼的常见方法

2019-03-07 09:03:45

铬矿是稀有矿产,得到不易。郑州鑫海机械制造有限公司介绍,我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr203 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在,我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。 火法冶炼中的电炉法用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。中国科学院还研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr203产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据。

我国贫铬矿选矿工艺概述

2019-02-20 15:16:12

我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3<20%),也用水力分选管选别过摇床中矿。在实验室研讨了干式强磁选、湿式强磁选、浮选和各种化学选矿法。但在出产实践中首要选用重选法,单个矿山选用强磁选。 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。前者用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。中国科学院还研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr2O3产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据。

电解铅的主要用途及工艺流程

2019-01-31 11:05:59

电解铅的主要用途:制作蓄电池、铅板、电缆套、红丹铅白、汽油防爆剂、合金、头、原子反响堆、熔断保险丝、冶金和化工质料、防腐耐酸衬、原子反响堆、X射线防护层和防护屏等,应用于军工、原子能技能、冶金、化工、电子、轻工、农药、医药、石油等部分。 电解铅的冶炼工艺流程 铅冶金是白银出产的最佳载体:一般铅对金银的捕集收回率都在95%以上,因而金银的收回是与铅的出产情况直接相关的。现在世界上约有80%的原生粗铅是选用传统的烧结一鼓风炉熔炼工艺办法出产的。传统法技能老练,较完善牢靠,其不足之处在于脱硫造块的烧结进程中,烧结烟气的SO2浓度较低,硫的收回使用尚有必定难度,鼓风炉熔炼需求较贵重的冶金焦炭。为了处理上述问题,冶金工作者进行了炼铅新工艺的研讨。八十年代以来,相继呈现了QSL法、闪速熔炼法、TBRC转炉顶吹法、基夫赛特汉和艾萨熔炼法等新的炼铅办法。其间,QSL法是德国鲁奇公司七十年代开发的直接炼铅新工艺,加拿大、韩国和我国尽管先后购买了此专利建厂,但出产作用不甚抱负;闪速熔炼法没有完成工业化出产;TBRC法是瑞典波里顿公司所创,但此法作业为间断性的,且炉衬腐蚀严峻;基夫赛特法由原苏联有色金属研讨院研讨成功,现已有多个供应商完成了工业化出产,是一种各项目标先进、技能老练牢靠的炼铅新工艺,但选用该法单位出资大,只要用于较大出产规模的工厂时,才干充分发挥其效益。  艾萨炼铅技能根据由上方刺进的赛罗浸没喷将氧气喷射入熔体。发作涡动熔池,让激烈的氧化反响或许复原反响敏捷发作。在榜首段,熔炼炉产出的高铅渣通过流槽送复原炉,氧化脱硫所产的烟气经除尘后送制酸体系。在第二段复原炉中,所产粗铅和弃渣从排放口接连放出,并在传统的前床中别离,所产烟气进行除尘处理后经烟囱排放。  艾萨法熔炼流程。该工艺流程先进,对质料习惯性广、出产规模可大可小,比较灵敏、目标先进、SO2烟气浓度高,可处理出产进程中烟气污染问题;一起冶炼进程得到强化,金银捕集率高,余热使用好,能耗低。它不只习惯308厂铅银冶炼的改建要求,并且可以对我国的银铅冶金出产和技能进步起到推进作用,故引荐引入艾萨法作为本项目粗铅冶炼出产工艺的榜首计划。  传统的鼓风烧结——鼓风炉法尽管在烟气制酸方面尚有必定困难,但近年来,我国株洲冶炼厂、沈阳冶炼厂、济源冶炼厂等大型铅厂的改扩建工程依然选用此法,是因为它具有建造快、投产、达产快的长处。  粗铅精粹工艺有火法和电解法两种。一般来说,电解法对银、金、铋和锑的别离作用好,铅、银等金属的收回率高,劳动条件好,机械化自动化程度高。电解法的缺陷是基建出资较火法高。选用火法需求处理很多中间产品,能耗较高,致使其出产成本较电解法高。鉴于本项目粗铅含银、铋等金属较多。  惯例办法处理铅阳极泥是选用火法——电解法流程取得金、银,渣进行复原熔炼,精粹得精铋等,流程简略、技能老练,工人易操作,但有价金属收回率不高,锑、铅呈氧化物形状蒸发进入烟尘,不光不便于归纳收回,并且形成第2次污染。

铝土矿用作电熔刚玉原料时的质量要求

2019-01-04 09:45:23

铝土矿用作电熔刚玉原料时的质量要求项目第二砂轮厂第四砂轮厂ω(Al2O3)%≥85≥80ω(Fe2O3)%<5<6ω(SiO2)%<5.6 ω(TiO3)%3.5~6.5<5.5ω(CaO)%<0.4 ω(CaO+ MgO)% <1.2ω(烧失量)%<0.5<1铝硅比值(A/S)≥15≥12进厂块度 mm<25020~300烧失率 % <4注:l、一水硬铝石型铝土矿;2、熟料;3、供矿品位

铅厂

2017-06-06 17:49:52

世界上大多数铅厂的规模为3~10万t/a。铅厂设计规模根据原料供应、市场需求和经济效益确定。2万t/a以下粗铅冶炼厂,一般环保和经济效益差。铅厂主要产品为精铅(或电铅)、并副产硫酸和氧化锌,一般还综合回收金、银、镉、铋等金属,处理废杂铅料时产品还有铅合金。铅厂工艺流程选择炼铅主要有熔炼和精炼两过程。熔炼产出含铅95%~98%的粗铅,粗铅精炼产出含铅99.5%~99.99%的精铅(或电铅)。熔炼工艺有传统流程烧结-鼓风炉熔炼和直接炼铅流程基夫赛特炼铅法和氧气底吹炼铅法等。含锌特高的铅锌混合精矿可采用鼓风炉炼锌法(ISP)(见鼓风炉炼锌熔炼车间设计)。精炼工艺有火法精炼和电解精炼(见铅精炼车间设计)。&nbsp;铅厂车间组成一般包括备料、熔炼、精炼、收尘、制酸和综合回收车间,以及辅助和公用设施等。设计采用传统流程时,备料车间除包括原料仓库、配料、混合、制粒外,还有烧结和返粉破碎及冷却(见铅、锌精矿烧结车间设计);基夫赛特炼铅法炉料不必制粒,但需进行干燥。(见重金属冶炼厂原料准备车间设计)特殊要求铅烧结、熔炼、精炼及收尘作业过程中有铅蒸汽及铅粉尘产生,对人体会造成危害甚至铅中毒。因此,铅厂设计需重视环境保护和防治,提高机械化程度,加强设备密封和环境通风,有污染源的车间通常与主导风向垂直配置,并置于下风向,以减轻铅蒸汽及铅粉尘的有害影响。