您所在的位置: 上海有色 > 有色金属产品库 > 铬矿块价格

铬矿块价格

抱歉!您想要的信息未找到。

铬矿块价格百科

更多

废铝压块机

2017-06-06 17:50:03

废铝压块机属于 金属 压块机的一种。是一种 金属 压块机用来压废铝的。 金属 压块机:包括 金属 屑压块机和 金属 打包机两种机型,是通过大压力将各种 金属 废料直接冷压成型,便于储藏、运输及回收再利用。金属 屑压块机能将粉粒状的铸铁屑、钢屑、铜屑、铝屑、优质矿粉等直接冷压成饼块,以便于储藏、运输及投炉回收再利用。压制成块后投炉回收使用损耗极低 。整个生产过程不需加温、加添加剂或其他工艺,直接冷压成型,成型的同时也确保了原有材质的不变。例如铸铁屑成型后代替铸造生铁使用。对于特别材质的铸件,回收意义更大。金属 屑压块机.jpg" />金属 打包机可将各种比较大的 金属 边角料、废钢、废铁、废铜、废铝,解体汽车壳,废油桶等挤压成长方体、圆柱体、八角形体等各种形状的合格炉料。以便于储藏、运输及投炉回收再利用。金属 打包机.jpg" />废铝压块机的主要特点:1、所有机型均采用液压驱动,可选择手动或PLC自动控制操作; 2、机体出料形式可选择翻包,推包或人工取包等不同方式; 3、安装简便,无需底脚固定,在无电源的地方,可采用柴油机作动力; 4、挤压力从63吨至400吨有十个等级,供用户选择,生产效率从5吨/班至50吨/班;5、压缩室尺寸和包块形状尺寸及机型尺寸可根据用户要求设计定制。 

我国铬矿简介

2019-03-14 10:38:21

概述铬是重要的战略物资之一,因为它具有质硬、耐磨、耐高温、抗腐蚀等特性,在冶金工业、耐火材料和化学工业中得到了广泛的使用。在冶金工业上,铬铁矿首要用来出产铬铁合金和金属铬。铬铁合金作为钢的添加料出产多种高强度、抗腐蚀、耐磨、耐高温、耐氧化的特种钢,如不锈钢、耐酸钢、耐热钢、滚珠轴承钢、弹簧钢、工具钢等。金属铬首要用于与钴、镍、钨等元素冶炼特种合金。这些特种钢和特种合金是航空、宇航、轿车、造船,以及国防工业出产炮、、火箭、舰艇等不行短少的材料。在耐火材料上,铬铁矿用来制作铬砖、铬镁砖和其他特殊耐火材料。铬铁矿在化学工业上首要用来出产,进而制取其他铬化合物,用于颜料、纺织、电镀、制革等工业,还可制作催化剂和触媒剂等。铬铁矿是我国的缺少矿种,储量少,产值低,每年消费量的80%以上依托进口。   一、矿藏质料特色 铬具有亲氧性和亲铁性,以亲氧性较强,只要在复原和硫的逸度较高的情况下才显现亲硫性。在内生效果条件下铬一般呈三价。六次酸位的Cr3+和Al3+Fe3+的离子半径相挨近,故它们之间能够呈广泛的类质同象。此外,可与铬类质同象替代的元素还有Mn、Mg、Ni、Co、Zn等,所以在镁铁硅酸盐矿藏和副矿藏中有铬的广泛散布。在表生带激烈氧化条件下(碱性介质),Cr3+氧化成Cr6+方式的铬酸根离子,使不活动的铬离子变成易溶的铬阴离子发作搬迁。遇极化性很强的离子(如Cu、Pb等),则构成难溶的铬酸性矿藏。在自然界中现在已发现的含铬矿藏约有50余种,别离归于氧化物类、铬酸盐类和硅酸盐类。此外还有少数氢氧化物、盐、氮化物和硫化物。其间氮化铬和硫化铬矿藏只见于陨石中。具有工业价值的铬矿藏都归于铬尖晶石类矿藏,它们的化学通式为(Mg、Fe2+)(Cr、Al、Fe3+)2O4或(Mg、Fe2+)O(Cr、Al、Fe3+)2O3,其Cr2O3含量为18%~62%。有工业价值的铬矿藏,其Cr2O3含量一般都在30%以上,其间常见的是: 1.铬铁矿 化学成分为(Mg、Fe)Cr2O4,介于亚铁铬铁矿(FeCr2O4,含FeO32.09%、Cr2O3 67.91)与镁铬铁矿(MgCr2O4,含MgO20.96%、Cr2O3 79.04%)之间,一般有人将亚铁铬铁矿和镁铬铁矿也都称为铬铁矿。铬铁矿为等轴晶系,晶体呈细微的八面体,一般呈粒状和细密块状集合体,色彩黑色,条痕褐色,半金属光泽,硬度5.5,比重4.2~4.8,具弱磁性。铬铁矿是岩浆成因矿藏,产于超基性岩中,当含矿岩石遭受风化损坏后,铬铁矿常转入砂矿中。铬铁矿是炼铬的最首要的矿藏质料,富含铁的残次矿石可作高档耐火材料。 2.富铬类晶石 又称铬铁尖晶石或铝铬铁矿。化学成分为Fe(Cr,Al)2O4,含Cr2O3 32%~38%。其形状、物理性质、成因、产状及用处与铬铁矿相同。 3.硬铬尖晶石 化学成分为(Mg、Fe)(Cr、Al)2O4,含Cr2O3 32%~50%。其形状、物理性质、成因、产状及用处也与铬铁矿相同。   二、用处与技能经济指标 铬铁矿石按工业用处划分为冶金级、化工级、耐火级和铸石级。 1.冶金级铬矿石的工业要求 冶金级铬矿石首要用于冶炼各种铬铁合金。用来冶炼铬铁合金的铬矿石又按不同的冶炼用处分为4个等第(表3.4.1)。除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。 除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。

铬矿选矿方法

2019-01-18 09:30:20

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。 下图为甘肃大道尔吉铬矿跳汰一摇床选别流程图。

氧化钼块

2019-02-12 10:08:00

同钼铁相同,氧化钼块常被用作钢铁的钼合金添加剂.它用钼焙砂作质料,只需成型加工即可用之出产,比钼铁的钼回收率高、加工费低。在西方国家,它已逐步替代钼铁,比钼铁使用更广泛,所占份额也更大。见表1。   表1  美国氧化钼和钼铁产值及份额  年份(年) 类别19801981198219831984氧化钼产值(t)1636616393806979187361钼铁产值(t)36083304170115431169氧化钼产值/钼铁产值(倍)4.55.04.75.16.3        钼铁与氧化钼在各种使用领域内份额见表2及表3。   表2  1974年美国氧化钼与钼铁分配状况  名 称 耗费(%) 品 名合金钢低合金高强度钢不锈钢工具钢铸铁高温特殊合金其他合金产品金属钼化学品其他工业氧化钼90.785.479.373.323.736.96.0 66.071.2钼  铁8.513.719.625.273.818.976.2  17.0其  它0.80.91.11.52.544.217.8100.034.011.8合  计100.1100.0100.0100.0100.0100.0100.0100.0100.0100.0   表3  日本10个厂商出产钼和氧化钼的状况  年度工厂 品名日重化学工业太阳矿工日本钢管炒中矿业电工日本新金属票村金属工业日本电工钢峙产品华夏工业算计钼铁(%)氧化钼(%)1973钼铁566..0465.0307831379 557211  331020.41氧化钼2129300513902021446210324497613902741291379.591974钼铁4875331371047373 675218  348922.71氧化钼1893300611442131114490112056964112841187577.29       我国却仍以钼铁为主,氧化钼用量很少(表4)。     作为钢铁添加剂的氧化钼往往被制作成钼压块后使用。其产品标准见表5。     我国从1983年到1985年出产钼压块约2500t,首要出产供应商有锦州铁合金厂和上海铁合金厂,还有栾川钼业公司。   表4  我国氧化钼与钼铁产值与份额  年份(年) 品种19831984氧化钼产值(t)738762钼铁产值(t)47085585氧化钼与钼铁产值比(倍)0.160.14 [next]                               表5  氧化钼合金添加剂标准  国家与标准等级Mo含量(%)①≥杂质含量(%)<或≤②包装CuSPCFeOPbAsSnH2O美国ASTMA146A55.01.00.25   0.05   桶装或压块,10或1kg/块B57.01.00.10       英国55.0~60.00.30.10  1~3    压块日本低碳55.0~61.00.10.05 0.05     压块0.5kg/块25kg/箱高碳53.0~54.00.10.05 8~10     前西德60.0~62.00.20.03~0.090.2~0.04      桶装前苏联KMo-1550.60.150.070.08     桶装10~40kgKMo-2531.20.180.070.10  0.070.07 KMo-3502.40.200.070.12     瑞典57~630.50.010.05      罐装10kg我国YMo-48481.00.100.040.20 0.04 0.050.5压块,桶装。5kg/块30kg/桶YMo-45451.00.150.040.20 0.06 0.070.5YMo-40402.00.800.040.20 0.10 0.100.5   ①前苏联为“≥”,其他为“>”;②我国为“≤”,其他为“<”。       从钼焙砂到钼压块是一个单纯压力成型的进程。其出产工艺见下图。 粘结剂一般为沥青,用量很少,不少工艺在选用高压力成型机后只加水甚至不添粘结剂。加水量切忌过大,以焙砂略发潮为限,拌和均匀后成型。   图  钼压块出产流程       压块可大可小,0.5~5kg均有。形状有方有圆,常见多为圆柱体,如日本为¢65 ×60mm圆柱体,重0.5kg,密度2.7g/cm3。国内栾川为lkg重的圆锥台体。

锰矿粉造块

2019-01-04 11:57:12

造块方法包括烧结、球团和压球3种工艺。目前,我国造块多采用烧结法。只是在锰精矿或粉矿很细,-200目在80%以上又不允许产品中含残碳时,则采用球团或压团。 50年代初期,我国锰矿粉多采用烧结锅烧结和土法烧结。随着钢铁生产的发展,土法烧结不能适应要求,因而纷纷着手建设烧结机或其他高效的造块设备。1970年,我国第一台粉锰矿烧结机(18m2)在湘潭锰矿建成投产,1972年江西新余钢铁厂又建成2台24m2烧结机,1977年,我国第一台锰精矿球团设备80m2带式焙烧机在遵义锰矿建成投产。进入80年代,湘潭锰矿、八一锰矿、湘乡铁合金厂相继建成18~24m2烧结机多台,上海铁合金厂引进压球设备作为粉矿造块使用。造块技术的发展,给锰系合金的冶炼带来更大的经济效益。以江西新余钢铁厂为例,增加入炉熟料比和用冷烧矿取代热烧结矿,可使高炉冶炼技术指标大为改善(表3.3.12)。(三)锰矿石冶炼 锰矿石冶炼产品主要有高碳锰铁、中低碳锰铁、锰硅合金以及金属锰等,通称为锰质合金或锰系合金。 高碳锰铁。我国主要采用高炉生产。50年代尚未形成专门厂家生产高炉锰铁(高碳锰铁),而是一些钢铁厂自炼自销,生产量很小。从1958年后,湘潭锰矿先后建起6.5m3、33m3高炉专炼锰铁,60年代以后,新余、阳泉、马钢三厂、重钢四厂等转产高炉锰铁,进入80年代,高炉锰铁发展更快。高炉锰铁产量由1981年的20万t增至1995年40万t。 电炉生产的产品包括碳素锰铁、中低碳锰铁、锰硅合金、金属锰四类。我国电炉生产最早的是吉林铁合金厂,于1956年建成投产,最大电炉容量为12500kVA;60年代初,湖南、遵义、上海等铁合金厂相继建成投产,这些厂都可生产碳素锰铁、中低碳锰铁和锰硅合金;遵义铁合金厂还用电硅热法生产金属锰。据冶金工业部1995年《全国铁合金主要技术经济指标》记载,1994年全国15家重点铁合金厂中有11家生产锰系合金产品。这些重点铁合金厂经过不断发展、扩大,为满足钢铁工业生产作出了重要贡献。 80年代以来,地方中小型铁合金企业发展迅速。据资料统计,地方中小企业铁合金产量占全国比重由1980年的32.39%,上升到1989年的54.01%,到1996年已达69.85%,企业数已达1000家以上。这些中小企业大多数是采用1800kVA的小电炉,设备落后,产品质量比较差。 电炉锰铁与锰硅合金生产所用设备基本相同,都是采用矿热电炉,电炉变压器容量一般为1800~12500kVA。湖南、遵义铁合金厂分别从德国引进3000kVA和31500kVA锰硅电炉,现已投产。 我国电炉高碳锰铁的生产,一般多采用熔剂法生产工艺。锰硅合金的生产,一般都采用有渣法生产工艺。 中低碳锰铁的生产,主要有电炉法、吹氧法和摇包法3种。摇包法包括在摇包中直接生产中低碳锰铁和摇包-电炉法生产中低碳锰铁。摇包-电炉法工艺比较先进、生产稳定可靠、技术经济效果好,目前上海、遵义等铁合金厂都采用此法。 金属锰生产方法有火法冶炼和湿法冶炼。火法冶炼金属锰,我国始于1959年,由遵义铁合金厂首次用电硅热法试制成功,一直独家生产至今。生产工艺采用三步法,第一步用锰矿石炼成富锰渣;第二步用富锰渣炼制高硅硅锰合金,第三步用富锰渣为原料,高硅硅锰作还原剂及石灰作熔剂,即电硅热法制成金属锰。湿法冶炼主要是电解法,常称电解金属锰。我国于1956年由上海901厂建成第一家电解锰生产厂,到90年代初已有大小电解金属锰厂50余家,年总生产能力达4万余t。生产工艺流程大致分硫酸锰溶液制备、电解、后处理3个生产工序。后处理是电解完成后包括产品纯化、水洗、烘干、剥离、包装等系列操作。最终获得合格电解金属锰产品,含Mn99.70%~99.95%。

使用铬矿选矿废料作耐火原料

2019-01-21 18:04:55

由于镁质原料价格昂贵,迫使寻找它的新来源,其中包括寻找工艺特性。金彼尔铬矿选矿废料就属于这种新来源。用化学分析、岩相分析、X-射线照相分析、重量变化分析研究了煅烧前后的废料,并按现有方法测定了某些性能指标。 不烧废料的化学组成列于表1。MgO与SiO2的比波动于1..03~1.37之间。值得注意的是灼减很大(13.47%~16.77%),这要求无论是在生产补炉粉料时还是在生产耐火材料时,必须进行预先煅烧。 表1  铬矿选矿废料的化学组成重量百分数%MgO/SiO2灼减SiO2Fe2O3CaOMgOCr2O3Al2O313.4730.4610.803.0333.000.938.241.0814.4630.468.071.1231.411.9812.71.0316.7729.207.863.0339.901.491.341.3716.1231.286.790.5641.601.291.141.3415.5330.007.580.2833.435.482.381.2815.5433.277.450.2840.001.00-1.2015.2033.417.501.1241.200.951.301.2714.9032.407.800.8438.603.632.051.1914.3832.04-1.1238.301.05-1.19 优质硅酸镁岩特有的高耐火度,(1730~1780℃),说明废料在耐火材料生产中使用是有前途的。 从烧成前的废料试样外观上看为浅绿、淡灰色,均质、密实。 在显微镜下研究表明,试样具有蛇纹岩或蛇纹岩化的纯橄榄岩所特有的网状结构,由形成密网的3MgO·2SiO2·2H20蛇纹石浅绿色鳞片状纤维物质(主要是纤维变体-纤维蛇纹石)组成。在网的结点上不均匀地分布有尺寸为0.06~0.24mm的2(MgO、FeO)SiO2橄榄石无色有棱角非均质颗粒。橄榄石折射指标: Ng=1.680~1.690,Np=1.640~1.650。在橄榄石颗粒周围,常看到细分散氢氧化铁(针铁矿型)不透明薄膜。不透明的磁铁石与透明的褐色含铬尖晶石(Mg,Fe2+)O(Cr,Fe3+,Al)2O3相遇时,呈少有的较粗颗粒的八面体和尺寸为0.08~0.32mm的有棱角的颗粒形式存在。 废料的大致矿物组成(体积比):蛇纹石80%~85%,橄榄石10%~15%,夹有氢氧化铁的磁铁矿3%~5%,含铬尖晶石2%~3%。 原废料总试样的x-射线相分析也表明,主要物质是蛇纹石(纤维蛇纹石,少量叶蛇纹石),有不多量的橄榄石,还发现有微量的舍铬尖晶石和针铁矿。 废料的热重量分析(图1)表明,有3个蛇纹石特有的基本热效应。70℃时的吸热效应与吸附水排出有关;620℃时:矿物结构受到破坏,同时OH-基排除,由分解产物形成x-射线非晶形的镁橄榄石和顽辉石。770℃时的放热效应是由新形成的矿物相结晶作用引起的。图1  铬矿选矿原废料的热谱图 180℃和375℃时的吸热效应与细分散针铁矿的存在有关。在180℃时,处于吸附水与结构水之间的中间位置的水被排出。在375℃时,针铁矿(α-FeOH)发生脱水和其转变为α-Fe2O3。α-Fe2O3向ρ-Fe2O3的多晶转变的第二次吸热赦商与770℃时的蛇纹岩吸热效应同时发生。 在热解重量分析曲线上有4个最大失重阶段:20~150时为3.5%,180~380℃时为3%,380~770℃时为11.75%,770-1000℃时为0.25%。 废料的某些性能指标的变化数据列于表2和表3。表中的数据表明,灼减是随烧成温度的提高而减少。 表2  铬矿选矿废料的某此性能材料粒度mm烧成温度℃重量百分数%灼减SiO2Fe2O3Al2O3Cr2O3CaOMgOFeO耐火度℃密度g/cm33~0不烧17.234.24.711.310.630.5040.9-1730-<0.06不烧19.232.74.161.582.130.8739.7---3~014000.3641.06.221.052.080.3648.01.9117503.2653~015000.1241.74.050.660.830.6549.43.3217803.289 表3  国外耐火材料指标热处理温度℃不烧65070090012001400150015801650活性MgO的重量百分数%-14.313.415.17.78未测开口气孔率%3.626.025.126.818.815.817.714.914.831.918.420.423.9体积密度g/cm32.352.102.002.112.502.582.642.642.042.542.36灼减%1722.52.661.480.660.120.100.10 在废科试样加热过程中,像普通的蛇纹岩一样,在200~300℃时开始脱水,900℃时结束。这些过程促使材料松散,而且在700~900℃时气孔率达到最大值,当温度更高时困蛇纹岩密实而使气孔率降低,在1300~1400℃时气孔率达到最小值。当温度在1500℃左右时,蛇纹岩可能会因密度增加而发生膨胀。 X-射线相分析表职,在7OO℃下烧成后,试样非晶形化强烈。在衍射图上有镁橄榄石线,这证实了热谱图的数据。反射较弱,图象模糊,结构不完整。正方晶格的参数:a=0.4760nm,b=1.0201nm,c=0.5992nm。还有微量富氏体、叶蛇纹石,β-Fe2O3、H2O、含铬尖晶石和其它相。在1400℃下烧成后的试样为浅红、淡灰色有棱角的烧结的多孔碎块。在显微镜下发现,这些碎块主要由无色有棱角等轴颗粒和尺寸为0.04~0.3mm的镁橄榄石片状晶体组成,这些晶体大部分不用玻璃胶结膜、互相贴合(表4),即直接结合。镁橄榄石折射指标是标准的。 表4  煅烧后废料试样的相组成烧成温度℃体 积 比%镁橄榄石斜顽辉石镁铁矿镁磁铁矿含铬尖晶石玻璃140075~8010~155~10-1~31~2150075~803~55~103~51~31 在细晶粒镁橄榄石物料中很不均匀地分布着被浅绿-浅褐色玻璃薄膜粘结的尺寸为0.004~0.02mm的a-MgSiO3斜顽辉石小颗柱晶体和八面体晶体;很少见到尺寸小于3~15mm的Mg Fe2O4铁矿圆形等轴颗粒。 在试样中很不均匀地分布着不多数量的尺寸为0.02~0.12mm的含铬尖晶石稍透明的角状颗粒。气孔大多数是不规则的等轴形状,尺寸为0.02~0.3mm,偶而是宽度为0.02~0.05mm的弯曲纵裂纹状。 1500℃下烧成后的试样,与1400℃下烧成的试样不同,为较黑的颜色,气孔率大。从显微镜上看,它们很象1400℃下烧成后的试样,但不同之处是镁橄榄石折射指标稍高(Ng=1.695,Np=1.660±0.003),这证明有同晶形FeO杂质存在。在普通圆形等轴的镁橄榄石晶体中常常观察有很小的闭气孔(按直径计3μm以下)。此外,不同之处是镁铁矿晶体稍大(25μm以下),在镁橄榄石颗粒表面上有不透明的镁磁铁矿(Mg,Fe)Fe2O4树技状晶体和为数不多的斜顽辉石及玻璃。 在匈牙利Πayrnt硅和Ξpnen式重量变化分析仪上,在加热速度为10/min时得到的1400℃和1500℃时烧成的试样热分析曲线(图2)很相似,表明这些试样是热惰性的。 1500℃时烧成后的废料的x-射线相分析也表明镁橄榄石晶体是主要成份。这个相的曲绒表现得强烈、尖锐、清晰。晶格参数:a=0.477nm;  b=1.020nm, c=0.5992nm。除上述相外,在试样中尚有为数不多的紫苏辉石(Mg,Fe)2Si2O6和磁铁矿,还有微量的硅酸二钙。图2  1400℃时烧成后的废料热谱图 研究结果可知铬矿选矿废料般烧时的性能如下: 正如前面提及,蛇纹石是未烧废料的主要矿物相。在蛇纹岩煅烧时,主要产生下列反应: 3MgO·2Si02·2H20→2MgO·SiO2+MgO·SiO2+H20       (1)      (镁橄榄石)   (斜顽辉石)  770℃和大于770℃时蛇纹岩的热谱图上的放热效应是其晶格改组而生成镁橄榄石的结果。正象上面提到,镁橄榄石曲线首先是在700℃时观察到的,在温度1150℃和更高时生成大量的镁橄榄石,这证实了岩相研究。 随着温度的提高,蛇纹石和橄榄石中所含的氧化铁(l)氧化(约在800℃时),此时橄榄石分解,部分生成偏硅酸盐(辉石),可能也析出为数不多的硅石(玻璃)。 在1200℃以上温度时生成的氧化铁(2)部分地转变成磁铁矿,继而与析出来的镁橄榄石反应而生或顽辉石和镁铁矿: 2Mg0·Si02+Fe2O3→MgO·SiO2+MgO·Fe2O3      (2) 橄榄石与氧化铁(3)反应,生成顽辉石和镁铁矿中的二价铁的固溶体:2(Mg,Fe)O·SiO2+Fe2O3→(Mg,Fe)O·SiO2+(Mg,Fe)O·Fe2O3       (3)镁橄榄石也与磁铁矿反应、并析出橄榄石和有镁铁矿的固溶体: 2MgO·SiO2+Fe3O4→2(Mg,Fe)O·SiO2 +(Mg,Fe)O·Fe2O    (4) 原有的含铬尖晶石与废料的硅酸镁组份反应生成固溶体。 蛇纹石脱水,氧化铁(2)氧化,固溶体生成,使选矿废料个别变体的性能不同,而且视蛇纹石化的程度和氧化铁含量而有不同的性能。 煅烧时看到的废料性能的变化涉及到,除加热时废料密实外,橄榄石颗粒中氧化铁发生再结晶、在蛇纹石区段生成微粒硅酸盐晶体(镁橄榄石),当它们互相作用时(在1450℃时)生成的镁铁矿分解出硅酸盐颗粒,这使气孔率略有增加。硅酸盐强烈再结晶(1450~1500℃),对制品烧结有不良影响。 铬矿选矿废料的最佳烧威温度应当是1400~1450℃。在此温度下,氧化铁已大大氧化和再结晶,而硅酸盐再结晶程度不大。 所进行的研究表明,金彼尔铬矿选矿废料的主要性能与优质的硅酸镁岩相似,这就决定了可能的使用范围,尤其是可用于生产补炉混合料、镁橄榄石质的耐火材料。 结论 对金彼尔铬矿选矿废料及其烧成对的性能进行了综合研究。研究表明,废料的矿物组成是蛇纹石和含量不大的含铬尖晶石。 烧成时废料的性能与蛇纹岩观察到的性能相同。根据性能指标,金彼尔铬矿选矿废料可以作为硅酸镁原料用于耐火材料工业。

铬矿冶炼工艺了解

2019-01-04 09:45:31

增产降耗是铁合金生产永恒的话题,碳素铬铁生产亦是如此,尤其是近来铬矿资源馈乏,生产使用的铬矿往往品种杂乱,配矿单一,给工艺控制造成较大难度,稍有不慎则炉况恶化,生产不能顺行,技术经济指标难以控制。重庆铁合金(集团)有限责任公司近年来使用过十余中铬矿,在应对上述不利因素方面作了较多的探索。我们发现铬矿石中MgO与Al2O3的含量能直接反映铬矿的冶炼性能,针对不同的MgO/Al2O3值采取应对措施,效果明显,是碳素铬铁生产取得良好指标的关键。 1铬矿特性大致分类 1.1铬矿中的MgO/Al2O3值 传统上将铬矿石按粒度分为块矿和粉矿,按理化性能分为难熔矿和易熔矿。在生产实践中,我们发现铬矿的冶炼性能主要与其中MgO及Al2O3含量紧密相关。众所周知,矿石的粒度过小会影响炉料透气性,但可以通过一定的措施进行改善(如增大焦炭粒度、多加回炉渣铁等),矿石的熔化性能也可以通过改变其入炉粒度在一定程度上得到改善。而铬矿中如果MgO及Al2O3含量严重失调,则会使炉况不顺,生态平衡产业指标下滑。在生产实践中我们以铬矿的MgO/Al2O3值作为衡量铬矿冶炼性能的一个重要指标。一般我们将MgO/Al2O3〈1称为低镁铝比矿,MgO/Al2O3〉1.5称为高镁铝比矿,MgO/Al2O3=1~1.5为中度镁铝比矿。 1.2MgO/Al2O3值与铬矿冶炼性能 MgO属碱性氧化物,在溶液中可电离成为Mg2+及O2-,具有较强的导电能力,因此,如果炉料中MgO含量过高,将会使炉料及所形成的炉渣比电阻减小,导电能力增强,电流急剧增大,电极上抬,刺火严重,反应区缩小,炉渣流动性差,产量下降,电耗上升;Al2O3属高熔点氧化物,当其含量过高时,炉料及炉渣比电阻增大,容易使符合使用不足,电极深埋,料面死火,炉温低,产量下降,回收率低,炉渣粘稠,炉衬易损坏.当炉料中MgO与Al2O3的含量达到一定的比例时,形成一种平衡,此时炉料的导电性能\熔化性能以及炉渣的熔点\黏度等都能达到一种良好的状态。在生产过程中我们注意到,无论何种铬矿进行配搭,当炉料MgO/Al2O3 1.5以后,则会呈现前述MgO过高的炉况,而MgO/Al2O3值越高情况越严重。根据铬矿中不同的MgO/Al2O3值,生产中应该采取相应的对策。 2参数选择 2.1二次工作电压 对高MgO/Al2O3矿,应选择较低的二次工作电压;对低MgO/Al2O3矿宜选择较高的二次工作电压。以500kvA电炉为例,当MgO/Al2O3>1.4,二次电压选择为105~110V;当MgO/Al2O3 2.2极心圆直径 高MgO/Al2O3矿及块矿,应选择较大极心圆直径;低错误!链接无效。及粉矿,则应该选择较小极心圆直径。 2.3炉膛深度 通过长期实践摸索我们感觉到,在碳素铬铁生产中,较深的炉膛有利于增加料层厚度,预热炉料,深埋电极,保持炉缸温度,减小热散失,取得较好的技术指标。中小型矿热炉参数一般是通过米库林斯基简易计算法来确定,在计算值的基础上将炉膛加深20%能取得较好的效果。 3渣型与碱度过控制 碳素铬铁生产为有渣冶炼,控制合适的渣型是生产的关键环节。渣型不应是一个固定的形态,不应该只按百分含量去调整其中的氧化物成分,调配渣型最直观的依据是MgO/Al2O3值和碱度。 3.1MgO/Al2O3 在矿种的搭配上,应努力将炉料的综合MgO/Al2O3值调至适中的范围内,我们的实际体会是:如果将MgO/Al2O3值调配在1.05~1.2范围内,再配以合适的碱度能取得较理想的效果,此种渣型导电性能适中,有利于电极深插而用足负荷,炉况稳定,料面火焰均匀,产量高,电耗低,各项指标良好。如果矿石中MgO/Al2O3 3.2炉渣碱度 除了MgO/Al2O3以外,炉渣碱度(MgO+CaO)/SiO2也是一个重要指标.碱度主要是以硅石的配入量来调节,但不能单纯强调碱度,必须要将碱度与MgO/SiO2值进行综合考虑,当MgO/SiO2较大时可适当控制较低碱度,而MgO/SiO2值小时应控制较高碱度,以使炉渣具有恰当的熔点\黏度和导电性能。一般情况,如果MgO/SiO2值在1.05~1.2范围内,碱度控制为1.1~1.25能取得较好效果。 4合金成分控制 合金成分控制主要是指合金中C\Si\S等杂质元素的控制,这些元素在合金中的含量与铬矿的性能及生产技术经济指标有较直接的关系。 4.1[C] 根据铬铁生产精炼脱碳机理,炉内降碳需要两大条件:①要具有较高而且稳定的炉内温度②必须在炉缸高温区存在有足够量的残存Cr2O3。必须同时具备这两个因素,精炼脱碳反应才能进行,产品的含碳量才能有所降低。因此,块矿\高MgO/Al2O3矿能生产出含炭较低的碳素铬铁,反之,粉矿\低MgO/Al2O3矿所生产的铬铁含炭都较高。而生产含炭低的碳素铬铁产品因需要保持较高的炉温和炉缸残存Cr2O3,需造高熔点渣,单位电耗都较高。 4.2[Si] 合金中硅含量与炉温及还原剂用量直接相关,[Si]含量高将使还原剂用量增加,单位电耗升高,但过低的[Si]含量不利于[C]\[S]控制,如果矿石中MgO/Al2O3低时,[Si]过低会导致负荷使用不足。因此合金中[Si]的控制应考虑矿石中MgO/Al2O3值,MgO/Al2O3值高时宜控制较低的[Si],反之,应将[Si]控制得稍高。 4.3[S] 合金中的硫主要是由焦炭代入,在生产过程中控制合金含[S]量的有效手段主要有两方面: 4.3.1调配合适的渣型。适当增加炉渣中CaO的含量,有利于增强炉渣的脱硫能力,增大硫在炉渣中的分配率,降低合金的含硫量。 4.3.2控制合适的合金成分。合金中的[Si]及[C]含量增加,会在一定程度上降低[S]含量。生产过程中的脱硫将增加冶炼的负担,需要控制较高的合金[Si],较高的炉渣(CaO),使焦耗\电耗增加,因此应严格限制入炉原材料中的硫含量。 5结束语  MgO/Al2O3值是铬矿的一个重要指标,在生产中应根据矿石中MgO/Al2O3值,对电炉电气参数\渣型及合金成分等方面采取相应的控制措施,方能取得良好的生产技术经济指标。

铬矿的选矿方法

2019-01-16 17:42:05

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3<20%),也用水力充分选管选别过摇床中矿。在实验室研究了干式强磁选、湿式强磁选、浮选和各种化学选矿法。但在生产技术中采用重选法,个别矿山采用强磁选,浮选法等选矿法目前技术还不成熟。1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。

现一块铜合金

2017-06-06 17:50:09

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 现一块铜合金,是由磷和铜组成.磷铜合金的来源:1954年,美国对铜阳极在硫酸盐光亮镀铜工艺的发展研究中,发现在铜阳极中添加少量的磷,在电镀过程中铜阳极的表面生成一层黑色的&ldquo;磷膜&rdquo;,这层&ldquo;磷膜&rdquo;具有 金属 导电性,控制电镀的速度,使镀层均匀,无铜粉产生,大大减少阳极泥的生成,提高镀层的质量,从而出现&ldquo;磷铜阳极&rdquo;这种磷铜合金品。磷铜合金的用途:磷铜合金主要应用于印制电路板、五金、塑料和电铸电镀用磷铜阳极;电气接点和插接件用铜带;引线框架用铜带;用于电机、空调、冷冻机 行业 的代银钎料;铜及铜合金材料的脱氧剂和铝合金铸造物的晶粒细化剂。&nbsp;&nbsp;&nbsp;&nbsp; 铜合金(copper alloy )以纯铜为基体加入一种或几种其他元素所构成的合金。纯铜呈紫红色﹐又称紫铜。纯铜密度为8.96﹐熔点为1083℃﹐具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。常用的铜合金分为黄铜﹑青铜﹑白铜3大类。&nbsp;

铬矿石的选矿方法

2019-02-13 10:12:33

我国铬矿石中常见的铬尖晶石矿藏有铬铁矿[(Mg,Fe)Cr2O4]、铝铬铁矿[(Mg,Fe)(Cr,Al)2O4]和富铬尖晶石[Fe(Cr,Al)2O4]等;脉石矿藏首要有橄榄石、蛇纹石和辉石等;有时伴生少数钒,镍、钴和铂族元素。在岩矿鉴守时应该侧重查明铬尖晶石的化学成分,由于它决议着精矿档次和铬铁比。     铬铁矿石的选矿首要选用重选办法。出产上常选用摇床和跳汰选别。有时重选精矿用弱磁选或强磁选再选,进一步进步铬精矿的档次和铬铁比。     铬尖晶石含铁较高或与磁铁矿细密共生的矿石,经选矿后得到的精矿中,铬档次和铬铁比都偏低,能够考虑作为火法出产铬铁的配料运用,或用湿法冶金处理。例如法、氢氧化铬法、复原锈蚀法、氯化焙烧酸浸或电解法等。用湿法冶金处理初级铬铁精矿已有出产实践。     铬铁矿石中伴生的铂族元素如呈硫化物、砷化物或硫砷化物状况,能够用浮选法收回。矿石中的橄榄石和蛇纹石,能够考虑归纳收回,供出产耐火材料、钙镁磷肥或辉绿岩铸石等运用。