您所在的位置: 上海有色 > 有色金属产品库 > 酵母铬片 > 酵母铬片百科

酵母铬片百科

酵母锌价格

2017-06-06 17:49:51

酵母锌价格目前还不为众人所熟知,但是由于酵母锌安全、无胃肠刺激,且营养均衡,补锌效果好等特点,使得对其的研究日益受到人们的重视,目前酵母锌价格也逐渐为人们所接受。作为第四代微量元素锌的开发形式,是目前有机锌研制与开发的主流,其主要形式是富锌酵母产品。酵母金属元素即通过选择合适的酵母菌种,在特定的培养条件下,向培养基中加入较多的某种微量元素成分,使收获的酵母细胞内富含该种微量元素。其特点有:①酵母金属微量元素具有良好的化学稳定性和生物稳定性,在胃肠道内微量元素离子不易离解出来,受饲料植酸、钙、纤维、磷酸盐等影响较小,有利于胃肠道的吸收。②酵母金属微量元素具有不同于无机盐的特殊的吸收机理,据研究认为,酵母金属微量元素通过氨基酸或小肽的途径,以“胞饮”方式被吸收,具有吸收速度快,不易饱和的特点。③酵母金属微量元素可以避免金属元素之间在吸收过程中的互相抵抗,从而提高生物学利用率。而由于动物体内不同的组织和酶系统对某种氨基酸的需要比例和数量不一样,因此通过氨基酸的运输和吸收,即可增加把相应的微量元素运输到各特定组织和酶系统中的机会。然而富锌酵母产品的制备并非仅仅是高锌条件与酵母的简单培养。科学的解决的办法是采用驯化得到耐锌的酵母菌。将这种耐锌的酵母菌作为菌体,移植到含锌量比上述还要高的麦芽汁培养基中发酵培养,锌化合物被吸收到菌体中,生成含锌量较高的酵母菌,如此循环往复得到富锌菌体,再行批量发酵即可获得有机酵母锌。酵母锌对人体生物利用度却要比葡萄糖酸锌还要来的好,这将成为左右酵母锌价格的一个重要因素.

难处理超细磨硫精矿的生物化学分解和金的浸出2

2019-02-18 10:47:01

较早就有人提出了这样的实践可能性:使用酵母生物量的碱水解产品,以及水解产品和的混合溶液来从活化精矿中分化与浸出金。经过对工业以苛性钠溶液产出饲料酵母的处理获得了下列成分的水。解产品;基酸总量达5克/升、核酸0.5~0.8克/升,脂类化合物1-2克/升和NaOH20~30克/升。有必要测定出能确保提取金最高目标的液:固最低比率。液:固=8:1和更多些是水解产品(基酸2克/升)和(0.15%)混合溶液的抱负比率,这时,溶液金的回收率为~70%(图3)。可是,在这样的稀释条件下,仅有40%Au转入不增加的水解产品溶液。金的提取率实践上直接取决于液:固之比,在矿浆稀释到液:固=16:1时,提取率也可到达70%。  用调查溶液浸出金主要是在处理的头48小时(图4)。用水解产品浸出活化精矿96小时可提取62%Au,而用增加的同-溶液则可提取76%。在虽然没有而有氧化剂的条件下,水解产品溶液的功率明显进步,可提取将近76%Au。     用AM-2B树脂从水解产品溶液中提取金。当溶液中的金属  平衡浓度为1.4毫克/升时,金的饱满树脂容量达40毫克/克。鄙人一次提取金时,再生树脂不失掉其吸附的功能。       依据实验成果,能够以为,为改善提取金的条件和提取目标而进行的吸附浸出实验到达了预期的意图。在吸附浸出实验中,树脂AM-2B的增加量为固体产品分量的5%。已查明,当液:固=6:1(见表)时,大部分金在48~50小时内提取出。在这些条件下,76.8%Au吸附于树脂上,即到达与之比较的目标一般过滤流程的目标,当液:固=10:1时,用水解产品和或水解产品与氧化剂的混合溶液浸出,当液=固16:1时,用水解产品溶液浸出)。 当液:固=(8-10):1时,吸附浸出时刻增加到72小时,能够进步金的提取率达83.4%和得到金剩下含量为5克/吨的尾矿。在不同的矿浆密度时射流磨碎精矿吸附浸出目标。吸附浸出时刻48小时,树脂增加量5%。

有机铬的合成及其产品质量评价

2019-02-14 10:39:39

摘 要 三价铬离子是构成葡萄糖耐量因子的重要组成部分,可以增强胰岛素的作用,是人和动物不行短少的微量元素之一。有机铬化合物在生物机体中具有多种极其重要的活性功用,假如人体缺铬,将导致糖尿病和其它相关疾病;动物缺铬,则会导致对应激灵敏、免疫功用受按捺、繁衍功用下降以及胴体质量下降等。本文总述了有机铬化合物的生物功用及其组成办法,介绍了产品的检测及质量点评办法,并对其发展远景做了必定的展望。    关键词 饲料添加剂;有机铬;生物功用;组成;质量点评    中图分类号 S816.72     Schwarz和Mertz在啤酒酵母中发现一种新的养分素——葡萄糖耐量因子(Glucose Tolerance Factor,简称GTF),后来又判定出GTF为含有烟酸、甘酸、谷酸、半胱酸的三价有机铬合作物。GTF作为铬的活性方式,具有增强胰岛素活性的作用。家禽集约化饲养中,动物的养分应激、环境应激、免疫应激和代谢应激等可导致动物糖代谢、矿物质代谢发作一系列改动,引起糖原降解和糖异生作用加强,葡萄糖运用的加强导致铬发动添加并终究排出体外。动物假如缺少铬,会发作葡萄糖、脂质和蛋白质代谢妨碍。对应激动物弥补铬,可添加免疫力,改善内分泌,削减发病率和进步出产功用。    铬盐一般分为三价铬盐和六价铬盐,以及有机铬盐和无机铬盐。六价铬毒性较大,三价铬毒性较小,但在现在饲料法规则条件下,在畜禽饲猜中添加无机铬是不答应的。而的三价铬盐是无毒的,可用于饲料的添加。在的三价铬盐中,2-的三价铬盐(俗称有机铬)是最常用的饲料添加剂。现在国际上作为饲料抗应激添加剂的有机铬首要为GTF组成相相似的合作物,如烟酸铬、酵母铬、铬、基酸螯合铬和蛋白质铬等。无机铬的吸收率很低,约0.4%~3%或更低(杨凤,1991),六价铬比三价铬易吸收,一般要高3~5倍(张乔,1994);有机铬的吸收率相对较高,例如畜禽对啤酒酵母中的铬-葡萄糖耐量因子(GTF)的吸收率高达10%~25%。    β-兴奋剂曾在我国的养猪业中运用,它可使生猪臀腿肌肉发达饱满,背脂厚度下降,瘦肉率进步。但是,添加β-兴奋剂后,易发作后肢腿软、肌肉震颤、心跳加速、不耐受运送应激,乃至有的宰后呈现苍白、柔软、渗水猪肉或干、硬黑猪肉。因为β-兴奋剂在猪肉中残留,人食用后可呈现不同程度的中毒现象,症状包含心悸、肌哆嗦、头昏、吐逆、出汗等。鉴于这种情况,不少西方国家已制止在动物出产中运用β-兴奋剂,现在我国农业部也已明令制止运用。有机铬是β-兴奋剂的抱负替代品。[next]    铬的首要生理作用是经过强化胰岛素功用而影响碳水化合物、脂类及蛋白质的代谢。近年来的研讨证明,在动物高强度成长时刻,铬不只可调理蛋白质代谢,并且还可作为免疫调理剂来影响动物的健康和成长功用。铬可以激活某些酶,并表现出与蛋白组成、核酸和脂类代谢有关。铬可以削减动物的发病率和抗生素的运用量。如雏鸡日粮中添加三价铬可进步成长功用和饲料功率。假如给猪弥补铬可进步或加强能量代谢,改善胴体性状,进步成长率,还可使血清胆固醇和皮质醇量下降,免疫球蛋白浓度进步。假如缺铬,动物一般会引起成长不良,生命缩短,葡萄糖、脂类和蛋白质代谢紊乱,畜产质量量下降。在我国的粮食结构中,因为精制、加工和土壤被淋洗,铬的摄取量很少。因而,不论是人类仍是动物一般都缺铬,这种作用可以从补铬后动物出产才能的有利反响中简单看出,可以说畜牧出产所用的日粮中含铬量都不行,铬的补给应该说到日程上来。假如缺少满足的GTF,胰岛素的作用会遭到按捺。借助于GTF,胰岛素可以将葡萄糖和重要基酸敏捷传输,经过细胞膜,进入细胞,发作能量和构成安排。血糖浓度因而得以保持正常水平,基酸用于蛋白质的组成,发作肌肉。除了参加蛋白质和碳水化合物的推陈出新,铬还在脂类的推陈出新中起重要作用,它似乎是动物体内血清胆固醇浓度调理剂,然后避免脂肪安排的堆积。它可以添加胰岛素的活性,参加蛋白质的组成和核酸、脂肪的代谢,下降体内脂肪含量,进步瘦肉率。铬还可以使动物体内免疫系统加强,进步机体对不良情况与应激情况的抵抗力,进步瘦肉份额,下降脂肪,进步抗应激才能和机体免疫力。改善饲料酬劳,促进动物成长。 进步母猪产仔率,下降乳猪的死亡率。近年来,跟着铬在畜禽生物学研讨方面的发展,发现铬(Ⅲ)在下降畜禽应激、促进成长、进步酮体质量、增强免疫力、改善繁衍功用等方面表现出强壮的优势,铬在未来饲养出产实践中具有极大的发展潜力和运用远景。铬(Ⅲ)作为饲料添加剂可促进成长育肥猪的增重,进步采食量并且缩短饲养周期。    1 铬的生物学功用    1.1 进步胴体质量    研讨标明,补铬下降了饲喂缺铬日粮的实验动物及畜禽血液中循环胆固醇水平,胆固醇又是组成皮质醇的前体,故弥补铬可以改善肉质。在育肥猪饲粮中补铬,进步了胴体质量和瘦肉率,下降背膘厚、脂肪率。铬改善胴体质量的原因现在以为是铬增强了外周安排对葡萄糖的有用运用,削减了蛋白质的降解,进步了成长激素的浓度。许多实验标明,在成长时刻补铬对增重和饲料功率无作用,在育肥期可进步日增重。Harper(1995)以断奶仔猪为实验目标,在玉米-豆粕-乳清粉的根底日粮中添加200μg/kg有机铬,成果仔猪出产功用得以改善,肥育期背膘厚显着下降(P<0.01)。Page等(1992)在成长育肥猪饲猜中补加200μg/kg的羧酸铬,也明显进步了胴体质量和瘦肉率,下降了第10肋背膘厚。Lindemann等(1995)证明了猪14.5~104.3kg体重阶段添加200μg/kg有机铬时,背最长肌面积进步2.0cm2,第10肋骨处背膘厚下降3.4mm,瘦肉率进步2.1%。别的还有许多学者研讨了不同来历的铬和不同饲喂周期对成长育肥猪和胴体质量的影响,成果都确认了铬的作用。其它畜禽,如鸡、鸭、牛、羊等动物中都证明铬能明显改善胴体质量。    1.2 促进成长    铬的运用可以促进畜禽增重、进步采食量和缩短饲养周期。Lindemann等(1995)在对14.5~104.3kg体重的猪进行实验时,不只研讨了铬对胴体性状的影响,还研讨了猪成长功用的改变,其成果显现,饲猜中添加200、500、1 000μg/kg的有机铬时,200、500μg/kg组日增重由0.83kg别离添加到0.84、0.86kg,1 000μg/kg组日增重没有改变。200、500μg/kg日采食量由2.43kg别离增长到2.48、2.55kg,1 000μg/kg组日采食量没有改变。添加剂量以500μg/kg作用最明显,但考虑到对胴体性状的影响,作者以为添加200μg/kg最抱负.也有人在育肥猪平分添加与不添加两个组研讨铬对日增重的影响,成果在60~90kg阶段和60~110kg阶段,添加组比不添加组的日增重别离进步22.7%和15%,证明有机铬的添加有利于促进成长.其它许多学者(Shbiyatno等,1993;Wang等,1995;Boleman等,1995)也得出相似的定论。[next]    1.3 改善繁衍功用    铬能改善母猪繁衍功用,明显进步繁衍力,在猪的日粮中添加含铬有机化合物,可进步母猪的产仔数。     Lindemann等(1994)的研讨成果标明,含铬有机化合物可以显着进步初产母猪的产仔数。很多成果显现,有机铬的运用改善了畜禽繁衍功用的很多目标,繁衍力明显进步。Lindemann等(1994)的研讨成果标明,羧酸铬可以明显进步初产母猪的窝产仔数。翟桂玉(1992)对兔的研讨标明,缺铬会添加精子变形率、下降精液质量和母兔的产活仔数。Lindemann等(1995)也研讨了有机铬对繁衍母猪及其子孙的影响,成果再次必定了有机铬在改善繁衍功用上的好处。    1.4 增强免疫力    铬可以增强免疫力,这是由加拿大Guelph大学初次报导的。后来许多学者对这一范畴进行了很多研讨,首要集中于对牛的研讨(Chang等,1992;Sartin等,1988;Bunting等,1994)。Burton等(1993)给小肉牛补加铬,成果明显进步了传染性牛鼻气管炎疫苗的效价。同年,他用泌乳牛做实验,成果发现补铬也能进步许多抗原抗体反响。Chang等(1992)也证明补铬可以进步牛血清中免疫球蛋白水平。很显着,铬在某些特殊免疫反响中充任免疫调理因子的作用,它经过对免疫反响的调理,增强机体的抗病力和适应性。    1.5 加强抗应激作用    现在发现,有机铬的添加作用是广泛的,除了能改善胴体质量和繁衍功用,促进成长和增强免疫力之外,还表现在改善内分泌、下降应激等方面。跟着集约化饲养的呈现,各种要素(如热、运送、饥饿、拥堵、病原突击等)都会引起应激。有人(Orr等,1990;Nockels等,1990)研讨证明,牛因运送、禁食等要素呈现应激时,尿中铬的排泄量添加,人和大鼠中也有相似现象(Borel等,1984;Anderson等,1988),阐明应激条件下铬的需求量添加。Chang等(1994)在应激牛的日粮中补铬,发现牛的外周淋巴细胞增殖作用加强,阐明抗应激作用加强。    2 有机铬的组成    有机铬是近年来发展起来的一类重要的饲料及食物添加剂,尤其是在饲料工业方面有着广泛的用途。据材料介绍,关于一位成年人,每日铬的摄取量至少为50μg,关于动物来说,每日有机铬的摄取量为1μg/kg。这可以看出,有机铬用量是很大的。有机铬可明显促进动物的成长,可大大进步动物的瘦肉率,鸡、鸭的产蛋率。该产品无毒无害,出产工艺基本无三废,契合环保要求。 该产品的组成工艺有多种,但依据最新材料报导,出产有机铬运用的首要质料为2-甲基,产品经两步反响而得:首先是2-甲基经氧化反响得2-,然后2-再与铬盐反响即得产品。    2.1 烟酸铬的组成    称取烟酸124g(1mol)置于1 000ml烧杯中,用100ml水湿润,用6mol/l NaOH调pH值至8.0左右,一起加热至80℃。另称取CrCl3•6H2O 88g (0.33mol)于500ml烧杯中,加300ml水,加热溶解并升温至80℃左右,在拌和下倒入上述烟酸钠盐溶液中,用少数水洗烧杯后合并入上述反响液中,在拌和下用6mol/l NaOH调pH值到6.8~7.2,加水至总体积900ml,冷却至室温。抽滤,滤饼用水洗刷,再用乙醇(95%)洗一次,抽滤干,于室温下挥发去乙醇,再用110℃充沛枯燥,得灰色烟酸铬(Ⅲ)140g。[next]    2.2 2-铬的组成    2-铬,即为铬或羧酸铬。李重生等在100ml三角瓶中参加4.3g (35mmol) 2-的乙醇溶剂(溶于20ml无水乙醇)和2.0g (35mmol),加热拌和10min,再滴加2.6g (10mmol)三氯化铬的乙醇溶液(溶于30ml无水乙醇),持续拌和回流1h,有沉积生成。过滤,真空枯燥得3.7g玫瑰红粉末,产率90.2%,熔点>300℃。用相似办法也可制得3-铬(墨绿色粉末)和4-铬(灰蓝色粉末)合作物。周保学等[5]对组成办法进行改善,用2.66g CrCl3•6H2O与3.69g酸,溶于l00ml水中,在250ml烧瓶中混合,于80℃加热拌和30min,溶液由绿变红,用浓NH3•H2O缓慢调理溶液pH值至6.0,持续拌和1h,冰箱中5℃冷却过夜,得深赤色产品Cr(C6H4NO2)3•H2O,抽滤,用水重复洗刷,55℃真空枯燥4d,产率为96%。    初文毅等选用2-甲基为质料,经氧化和络合接连反响组成了2-羧酸铬,最佳反响条件:2-甲基与及三氯化铬的最佳摩尔比为1:2.5:0.35,溶剂量为2-甲基的22倍,氧化温度为80~82℃,络合温度为40~45℃,收率为82.7%,不只使得组成工艺简化,并且出产成本下降。    2.3 蛋酸铬的组成    称取DL-蛋酸150g(1mol)置于2 000ml烧杯中,称取CrCl3•6H2O 88g (0.33mol)与蛋酸混合,参加750ml水,拌和并加热至80℃左右。在拌和状态下用6mol/l NaOH调至溶液pH值为6.8~7.2,反响液由绿变成玫瑰赤色。冷却至20℃以下抽滤,滤饼用水洗刷,抽干,再用95%乙醇洗刷后抽干,先于室温下枯燥,再于100℃充沛枯燥,得玫瑰赤色蛋酸铬(Ⅲ)152g。最佳的反响条件:pH值为7.0,温度为80℃,配体摩尔比为Met:Cr=3:1,蛋酸浓度为15%。该制备进程的蛋酸螯合铬产率为48.41%。蛋酸铬的分子式为CrC15H30N3O6S3,结构式为Cr(NH2CHCH2CH2SCH3COO)3,相对分子质量497.0。37℃时的溶解度为42mg/100ml,熔点为352~356℃。    3 有机铬产品的质量点评    有机铬是由三价铬离子和有机配体组成的化合物,因为出产办法的不同,市售产质量量良莠不齐,导致三价铬离子和有机配体的含量不符合,即产品的纯度或含量不高,产质量量欠好。因为在出产进程中一般选用调理pH值的办法来出产有机铬产品,必定会因操作工艺和条件的收支,使部分三价铬离子生成氢氧化铬沉积,使产品中的铬含量偏高。如无水的铬及烟酸铬中铬的理论含量均为12.43%,而市售产品中铬的含量一般都在14%以上,有的更高。[next]    3.1 有机铬产品中铬的含量测定与质量点评    从物质结构上分析,有机铬的分析可以经过无机和有机分析两种途径进行。无机分析可以直接检测其间铬元素,但缺陷是无法区别是人体所必需的三价铬仍是对人体有害的六价铬,且无法了解与铬相连的是何种基团。有机分析可以经过特征呼应波长对整个有机铬分子进行合理精确地分析,因而归于比较抱负的查验办法。有机铬含量较好的测定办法是选用高效液相色谱分析办法,将标准溶液及试样溶液注入色谱仪中,以保存时刻定性,以试样峰高或峰面积与标准比较定量。但这种办法需求该种有机铬的标准样品,购买比较困难。    万玉萍等选用高效液相色谱法测定保健食物中铬的含量,色谱条件:AgilentC18色谱柱(5μm,4.6mm×150mm),活动相为甲醇:乙睛:0.1mol/l NaH2PO4(H3PO4调理pH值为3)=10:5:85的溶液,检测波长为254nm,流速为1ml/min,柱温为30℃。实验成果标明,铬在0.232~1.16μg规模内色谱峰面积与进样量呈杰出的线性关系,回归方程:y=2.27+1.96×103x,r=0.999 9。    实践中一般选用测定样品中的三价铬含量来点评产质量量,测定办法比较多,有原子吸收法、ICP办法、分光光度法、滴定分析法等。如在万分之一电子天平上称取上述制备的各种铬螯合物内络盐各25mg左右(平行两份)于100ml三角瓶中,参加2.5ml浓HNO3和2ml浓HCl于电炉上小火消化,随之蒸宣布大部分酸,冷却,用水洗入100ml容量瓶中,定容并摇匀(溶液呈Cr3+的蓝色)。用等离子发射光谱仪测定Cr含量,以50μg/ml的Cr3+标准液为标准品,按上述办法平等处理后的溶液做空白校对。金婵等选用原子吸收法测定了铬的含量,取0.2~0.5g酵母干粉样品于消化瓶中,参加8ml左右的HClO4-HNO3(4:1)混合液,将消化瓶置于电炉上消化,当溶液变为无色时即可中止消化。将消化液转移到10ml的容量瓶中,用5.0%浓度的HNO3溶液定容。测验条件为:灯电流I=12mA,通带AA=1.6nm,波长λ=357.8nm,燃烧器高度=7.5mm,空气流量=9.4L/min,气流量=2.5L/min。依据标准曲线即可得出待测样中的铬含量。王晴等用ICP办法测定了烟酸铬(Ⅲ)中的铬含量,称取烟酸铬(Ⅲ)25mg于100ml三角瓶中,参加浓硝酸2.5ml和浓2ml置于电炉上小火消化,冷却后,用水定容至100ml容量瓶中(溶液呈Cr3+的蓝色),选用等离子发射光谱仪测定,以50μg/ml的Cr3+标准液对照,同法做空白试剂。    只秉文等选用了两种容量分析办法测定烟酸铬中铬的含量。①湿法氧化法。精确称取约2.000 0g样品,溶于100ml水中,参加15ml硫酸-磷酸混合液,加热至欢腾,浓缩至体积约为30ml,此刻溶液为绿色通明溶液,冷却后转入250ml容量瓶中,加水至刻度,摇匀。用移液管精确移取上述液25.00ml于锥形瓶中,加0.1mol/l溶液和10g/l硫酸锰溶液各1ml,加热至欢腾后分数次参加固体过硫酸铵直至呈现的紫赤色后再煮沸10~15min,滴加氯化钠饱和溶液至溶液的紫赤色消失,持续煮沸10min,冷却。加8ml(1+1)硫酸,3滴N-基指示剂,用0.100 0mol/l硫酸亚铁铵标准溶液滴定,溶液由樱赤色变为翠绿色即为结尾。②干法氧化法。精确称取1.500 0g样品于坩锅中,加5g和3g混匀。在电炉上炭化至无烟后,将样品放入箱式炉中,于800℃灼烧2h后,取出冷却。用4mol/l硫酸及少数水分次浸取,将浸取物完全转入250ml容量瓶中,用水定容至刻度,混匀。用移液管精确汲取上述液50.00ml于碘量瓶中,加1g碘化钾和4mol/l硫酸20ml,摇匀,于暗处放置10min,加80ml水,用0.100 0mol/l硫代硫酸钠标准溶液滴定,近结尾时参加5g/l淀粉溶液指示剂3ml,持续滴定至溶液蓝色消失,一起作空白实验。[next]    高铬酵母中的铬大部分以有机铬的方式存在,且有机铬的含量多少也是点评高铬酵母养分价值的标准之一。丁文军等对高铬酵母中有机铬和无机铬进行了别离测定,将0.2~0.3g酵母干粉参加盛有9ml蒸馏水的离心管中,每隔一段时刻进行完全的拌和,静置12h,然后以3 500r/min转速离心20min,重复进行几回,汲取上清液用原子吸收法测定无机铬含量。将基层沉积移出离心管,消化、定容,便可测得有机铬含量。    3.2 有机铬产品中配体的含量测定    有机铬产品中配体的含量一般选用高效液相色谱分析办法测定。王晴等测定了烟酸铬(Ⅲ)中的烟酸,称取烟酸铬(Ⅲ)30mg于50ml容量瓶中,参加草酸500mg,再参加水3ml,于沸水浴上加热直到溶液弄清并呈蓝色(阐明烟酸铬中的铬为Cr3+)。冷却后参加0.02mol/l乙二胺四乙酸二钠20ml,摇匀后再参加6mol/l2ml,定容、摇匀,放置30min,过滤后取滤液用高效液相色谱仪分析。分析条件如下,色谱柱:Dupont SAX(高250mm,直径4.6mm);活动相:0.1mol/l磷酸二氢钾+0.01mol/l乙二胺四乙酸二钠,pH值为4.2;检测波长:λ=261nm;流速:1.0ml/min。    3.3 有机铬产品中其它组分的测定    有机铬产品中其它组分,如氯离子、砷、铅可参阅有关饲料标准进行测定。特别是砷、铅的含量应低于国家对饲料产品答应的规模之内。因为出产有机铬产品时,一般用三氯化铬与烟酸、、基酸、柠檬酸等有机配体反响,经过用碱(烧碱或纯碱)调理pH值的办法来得到产品,因而必定会有氯化钠之类的副产品生成,要使产质量量好,应把氯化钠别离除掉,产品中的氯离子含量应较低。    因而,三价铬离子和有机配体的含量是否符合;是否与其分子结构组成共同;产品中的氯离子含量的凹凸;砷、铅等有毒元素的含量;六价铬离子含量等,这些都是点评有机铬产质量量好坏的重要标准。    总归,对含铬有机化合物的很多研讨标明,它在生物机体中具有多种极其重要的活性功用。安稳常数相对小、溶解度相对大的铬(Ⅲ)螯合物对动物养分作用将或许更好。跟着人们研讨的深化和知道的进步,信任含铬有机化合物将会在咱们日子中发挥越来越大的作用。从现在实验成果的报导来看,对有机铬的运用研讨取得了令人鼓舞的作用,有机铬由此或许成为可以给人类健康和动物出产带来重大意义的新式养分型添加剂。

难处理的超细磨硫精矿的生物化学分解和金的浸出

2019-02-13 10:12:33

以焙烧和焙砂化为根底,对含金硫精矿处理工艺进行了精密的分析。该工艺在出资和运营费用不高的状况下,能够取得较高的目标,但这与砷和硫的有毒化合物对空气的污染严密相关,所以进一步完善从含金硫精矿中提取金的一些可取的湿法冶金和制定契合现代环保要求的新工艺流程是一项很急迫的使命。    从制定无焙烧流程的观念看,把精矿超细磨的机械化学活化与下一步的用其碱水解产品处理微生物生物量相结合的办法来分化和浸出金的或许性是很重要的。    对含有30克/吨Au,8.1%As、24.3%S和25.4%Fe的浮选精矿进行了金生物化学分化和浸出工艺的研讨。依据材料的合理分析,将近?6%的Au在硫化物-黄铁矿和砷黄铁矿中为细粒浸染金。金在这两种矿藏中是细碎的,大多数是粒径不超越1微米的金粒。难处理精矿不包含其直接化,由于直接化时可提取近于8~10%Au。乃至超细磨之后,化溶液金的提取率也不超越23~28%。只要在硫化矿藏分化时,才有或许分化这种色素的金,因此选用湿法冶金法最为合理。    把含金硫化物的碱分化目标和从精矿中(在空气介质中行星齿轮磨碎反射流磨砷的)浸出金的目标进行了一下比较。在实验中运用了定时转速离心行星齿轮磨矿机。装球量超越磨碎物料数量的35~40倍,而加快相当于40~50克。精矿用3C-06型磨矿机进行射流磨碎,运用压缩空气(P=4.5~4.7大气压)  作为动力介质。射流磨碎时,所得产品粒度85%为4微米,比表面等于4.8米2/克。原始精矿粒度80%为0.074毫米(粒级含量4微米的不超越1%)。            如图1所示,无论是行星齿轮磨碎,仍是射流磨碎处理精矿,都能得到硫化矿藏(溶液中含的硫)碱分化的比照成果。    但从活化产品中提取金时,则可调查到显着的不同。乃至当运用化溶液时,在行星齿轮磨碎(在碱处理之后)的精矿上会剩有16克/吨含金的尾矿(图2)。在这种状况下,当处理原始精矿和活化(20分和更多些时刻)精矿时,NaCN的耗量从0.2增加到8千克/吨,这就要以进步矿藏成分的反响才干为条件。只要在射流磨矿机中按碱处理-化的流程才干由活化精矿中确保金65~70%的最高回收率,这时,尾矿金的剩下含量比行星磨碎时少二分之一。对行星磨碎的产品浸出时,金化的难度有所增加,大约是由于金粒的表面钝化。对这一点参考文献的作者们进行了调查。下一步实验偏重于射流磨碎。    较早就有人提出了这样的实践或许性:运用酵母生物量的碱水解产品,以及水解产品和的混合溶液来从活化精矿中分化与浸出金。经过对工业以苛性钠溶液产出饲料酵母的处理取得了下列成分的水。解产品;基酸总量达5克/升、核酸0.5~0.8克/升,脂类化合物1-2克/升和NaOH 20~30克/升。有必要测定出能确保提取金最高目标的液:固最低比率。液:固=8:1和更多些是水解产品(基酸2克/升)和(0.15%)混合溶液的抱负比率,这时,溶液金的回收率为~70%(图3)。可是,在这样的稀释条件下,仅有40%Au转入不增加的水解产品溶液。金的提取率实践上直接取决于液:固之比,在矿浆稀释到液:固=16:1时,提取率也可到达70%。    用调查溶液浸出金主要是在处理的头48小时(图4)。用水解产品浸出活化精矿96小时可提取62%Au,而用增加的同一溶液则可提取76%。在虽然没有而有氧化剂的条件下,水解产品溶液的功率显着进步,可提取将近76%Au。[next]             用AM-2B树脂从水解产品溶液中提取金。当溶液中的金属  平衡浓度为1.4毫克/升时,金的饱满树脂容量达40毫克/克。鄙人一次提取金时,再生树脂不失掉其吸附的功能。        依据实验成果,能够以为,为改善提取金的条件和提取目标而进行的吸附浸出实验到达了预期的意图。在吸附浸出实验中,树脂AM-2B的增加量为固体产品分量的5%。已查明,当液:固=6:1(见表)时,大部分金在48~50小时内提取出。在这些条件下,76.8%Au吸附于树脂上,即到达与之比较的目标---般过滤流程的目标,当液:固=10:1时,用水解产品和或水解产品与氧化剂的混合溶液浸出,当液=固16:1时,用水解产品溶液浸出)。矿浆密度(液:固)脱金溶液中的金含量,毫克/升浸出矿渣中的金含量,克/吨树脂对金的吸附率,%2:10.0113.2056.804:10.0069.1067.906:10.0057.076.808:10.0056.2078.5010:10.0046.0079.40     当液:固=(8-10):1时,吸附浸出时刻增加到72小时,能够进步金的提取率达83.4%和得到金剩下含量为5克/吨的尾矿。在不同的矿浆密度时射流磨碎精矿吸附浸出目标。吸附浸出时刻-48小时,树脂增加量-5%。    现已承认,循环运用水解产品溶液在准则上是或许的。溶液经第2次和第三次循环后,再重新参加的精矿中浸出金,这时溶剂的反响才干别离下降三分之一和二分之一。假如用新溶剂再增浓溶液,那么还能够到达较高的工艺目标。    吸附浸出滤渣的合理分析标明,与硫化物伴生的金的分化串很高,并主要用化学办法分化;金的含量从原始精矿中的25.8克/吨下降到射流磨碎产品的15.2克/吨和浸出尾矿的2.8克/吨。    对处理各阶段砷的散布状况也进行了研讨。在用碱水解产品处理精矿时,砷黄铁矿进行分化,并有70~75%的砷转入溶液。在吸附之前和吸附之后,溶液中的砷含量实践上并不改动,也就是说,砷不吸附于树脂。脱金溶液在丢掉之前能够用已知办法铲除砷。    鉴于完结的归纳研讨的成果,主张选用准则工艺流程(图5)。处理难选金砷精矿的大规模实验。按该流程,精矿用射流磨矿机磨碎,并用蛋白水解产品碱性溶液进行吸附浸出。[next]    除了有利精矿活化条件外,运用射流磨矿机还具有下列长处:这种设备已被工业所把握,并且生产率高(高达100吨/小时),结构简略,金属用量少、报价低廉。溶剂可用碱水解和随后稀释的办法从工业放出的酵母生物量(含蛋白质50%)中取得。为了解吸金和再生吸附剂,将含金树脂按标准流程再行处理,一起用洗提液电解分出产品金。鉴于分出和保存含砷沉积物的必要性和脱金溶液回来的合理性,吸附浸出矿浆要用离心机脱水。溶液经过石灰使砷沉积,之后大部分溶液被原始水解产品稀释。    该工艺的扩展技术经济评价阐明,包含获取精矿的费用,1克金的本钱是在答应本钱极限之内的。    结    论    1、假如把精矿磨碎的行星准则与射流准则比较较,那么倾向于选用后者,由于射流磨碎浸出尾矿的剩下金含量比在其他相同处理条件下的行星磨碎低一半。    2、活化精矿吸附浸出时,蛋白水解产品有用。当液:固=(6~8):1和处理时刻48~50小时,树脂提金80%,浸出时刻增至72小不时,水解溶液金的提取率可进步到83.4%。砷在脱金溶液中富集,并可用已知办法沉积,以便保存。    3、主张选用以射流磨碎和用蛋白水解产品吸附浸出为根底的处理难选的硫化精矿工艺流程的大规模实验。

难处理金矿预氧化高效嗜热菌的选育研究

2019-02-20 14:07:07

跟着金矿资源的不断挖掘,易处理矿日益减少。现在难处理金矿的金资源占国际黄金储量的近60%。所谓“难处理”是指用传统化浸出不能有用提取矿石中的金。细菌氧化法用于难浸金矿的生物预氧化是1964年法国Pares首要提出的,在今后的作业,又相继在南非、巴西、澳大利亚、美国等国家投入工业运用。从实践得知,经生物浸出预处理后金的收回率显着进步。 从动力学观念看,所得成果不太抱负。过长的停留时刻(2~5 d)导致过高的操作本钱。因而需求改善生物浸出动力学。按生物浸出直接机理,动力学改善就应依据经过发现新一类细菌或选用遗传基因操控技能改善已知细菌,以开发活性更大的细菌。 一般生物冶金中常用的菌种首要是常温菌,如氧化亚铁硫杆菌和氧化硫硫杆菌,它们的最适温度为28~30℃。近些年来对嗜热菌在冶金方面的研讨也证明嗜热菌具有从各种硫化矿中提取金属的才能,如铜矿、钼矿、镍及促进金的收回等;一些研讨的成果证明嗜热菌对矿石具有比常温菌更快的氧化速度,与常温细菌比较,嗜热菌适用于发热的反响系统,可省去运用中温菌的冷却设备;从动力学的视点讲可进步反响速度,缩短预氧化时刻。但是在国内对嗜热菌运用研讨较少。本研讨的意图是挑选高效嗜热菌,研讨其形状特性,其氧化黄铁矿单矿藏才能,尴尬处理金矿预氧化以及黄铜矿的生物浸出供给根底数据,具有重要的理论和实际意义。 一、实验材料和办法 (一)酸性矿坑水 调查地质条件、地理环境以及气候的影响,并依据嗜热菌所适合的成长环境,采纳煤矿酸性矿坑水作为别离样品。 实验用酸性煤矿矿坑水采自南边某城市,该煤矿为挖掘了几十年的老矿,煤层内搀杂脉石矿藏首要为黄铁矿,在废矿堆显着看到黄铁矿的氧化。该煤矿全年平均气温约为25℃,夏天空气温度最高40℃,地表温度最高可达50℃。因而从该矿坑水有或许别离到意图菌株。水样经膜过滤办法浓缩搜集,再在高速台式离心机进行水样别离,得到用于别离的酸性矿坑水。 (二)别离用培育基 基本培育基组成:(NH4)2SO4 3gL-1,KCl 0.1 gL-1, K2HPO4 0.5 gL-1, MgSO4 7H2O 0.5gL-1,Ca(NO3)2 0.01 gL-1。实验进程中,选用多种动力与基本培育基组合,接种入酸性矿坑水,进行意图菌株的别离。 (三)黄铁矿单矿藏 将黄铁矿单矿藏用切割机切割成15mm×10mm×5mm的长方体,将其中一个表面进行初磨、细磨、抛光使其成为镜面,用蒸馏水冲刷置于室温进行枯燥。 (四)实验办法 1、菌种别离办法。固体培育基平板划线别离法和液体培育基稀释别离法相结合。将酸性矿坑水和不同培育基按不同稀释度倒置于多孔培育板内,放置于恒温生化培育箱,温度操控在50℃进行培育。培育进程中,调查菌落成长状况,并在显微镜下用血球计数板进行核算。 2、细菌形状调查。用日立S-570扫描电镜调查菌落在矿样中成长的形状。被调查菌种样品制备流程如下进程:(1)固定:-饿酸双固定,2.5%固定4h(或过夜)磷酸缓冲液清洗3次,每次15min,1%饿酸(OsO4)固定2h,磷酸缓冲液清洗两次,每次15min; (2)脱水:乙醇系列30%,50%,70%,85%,95%乙醇各一次,每次15min,100%乙醇两次,每次15 min; (3)置换:乙酸异戊脂两次,每次15 min(或过夜);(4)二氧化碳临界点枯燥;(5)离子溅射金;(6)日立S-570扫描电子显微镜调查、照相。 3、黄铁矿预氧化程度调查办法。将黄铁矿单矿藏抛光片置于200 ml三角瓶中,培育基选用FeS2(10g L-1)+ yeast(0.02% W/V)为底物的培育基,温度52℃,接种量15%,调理溶液初始pH值为2.0,摇床转速150 r min-1,别离培育5,8,12和16 d,取出样品用扫描电镜调查黄铁矿单体矿藏被氧化的程度。 二、意图菌株形状特征 意图菌株扫描电镜图如图1所示。图1  菌株扫描电镜图 经过采样、富集、别离纯化等系列办法,建立了从自然界选育高效嗜热菌的有用办法,终究别离出一株嗜热菌。经分子生物学判定可知,该菌株为革兰氏阳性菌,无机化能养分菌,细胞呈杆状、细胞巨细在0.4~2×3~6.8μm之间,能在铁、硫、硫化矿等不同底物上成长。专性好氧,嗜酸,中等嗜热,最适成长温度50℃,在60℃能存活。以Fe2+,硫化矿为动力自养成长,以酵母为动力异养成长,以铁和酵母为动力混合养分成长;有酵母存在时,可氧化元素硫。以无机底物为动力自养成长时,细胞杰出成长需求满足CO2,在有机物存在的混合养分条件下该菌更易成长。在细胞成长进程中有球形孢子生成,细胞不具运动性。 依据伯杰氏细菌判定手册中对Sulfobacillus属的描绘:Sulfobacillus菌属存在于富含铁、硫、硫化矿的酸热环境中,属革兰氏阳性、无机化能养分菌,细胞呈杆状、棒状,最适成长温度为52℃。比照选育出的意图菌株生理和生化特征可知,其为Sulfobacillus中等嗜热菌,典型种为Sulfobacillus thermosulfidooxidans,在金属硫化矿的生物浸出进程中起重要的效果。 三、氧化黄铁矿单矿藏成果 金具有亲硫和亲铁的两层性质,在矿床构成的进程中,金常常与硫化矿藏共生;黄铁矿是金的首要载体。张世柏等在研讨了黄铁矿表面及其与Au[HS]2-溶液效果后以为,晶体表面的缺点是黄铁矿与Au[HS]2-效果后并吸附于其表面的阶梯面和扭折位的根本原因;李久岭等以为,硫化物的晶体结构中往往存在电价不平衡、缺位等,这为金替代一个硫而与另一个硫呈共用电子状况进入黄铁矿型结构供给了或许性。 难处理金矿预氧化的意图也是将包裹于金外表面的黄铁矿部分或悉数氧化,以便露出金于后续的化提金。因而,研讨选育的嗜热菌氧化黄铁矿单体矿藏的才能是十分必要。氧化完毕,用扫描电镜调查黄铁矿被氧化成果。如图2。图2  黄铁矿氧化前后描摹比照图 黄铁矿浸出前镜面润滑,颗粒完好,边际规整,结构细密[如图2(a)];经过5 d的氧化,被抛光的黄铁矿表面遭到轻度腐蚀[如图2(b)];经过8 d氧化,被抛光的黄铁矿表面遭到重度腐蚀[如图2(c)];跟着细菌氧化时刻的添加,黄铁矿的腐蚀程度在不断的加深,腐蚀12 d后构成空泛[如图2(d)],腐蚀16 d构成了空泛并伴有裂纹[如图2(e)],构成的空泛和裂纹逐步加深,黄铁矿细密结构被损坏。关于难处理金矿,一旦包裹在金单粒外的黄铁矿被细菌氧化构成空泛和裂纹后,那么包裹的颗粒金就露出出来,后续直接化提金就变得十分简单。 黄铁矿氧化进程中,发作如下反响:由反响式(1)看出,氧化进程中发生酸,导致溶液pH值不断下降,因而从产酸的程度能够调查黄铁矿被氧化的程度。如图3所示。图3  pH随黄铁矿氧化改变曲线 从图3能够看出,黄铁矿预氧化进程中,溶液pH值不断下降,经过140h的预氧化,溶液pH值到达1.2。从实验可知,经过16d的生物预氧化,单体黄铁矿被氧化掉60%以上,到达露出单体金的意图。 四、定论 (一)经过采样、富集、别离纯化等系列办法,建立了从自然界选育高效嗜热菌的有用办法,终究别离出一株嗜热菌,并判定为为Sulfobacillus中等嗜热菌,典型种为Sulfobacillus thermosulfidooxidans,在金属硫化矿的生物浸出进程中起重要的效果。 (二)经过该菌株氧化黄铁矿才能可知,选育的嗜热菌株具有预氧化难处理金矿的才能,是一株活性较高、高效的浸矿功用菌。 (三)要想将该菌株用于工业运用,还需求对其进行屡次转接驯化,一起在今后的实验进程中还需求驯化其耐受砷的才能以及耐受其他重金属的才能,以在有毒性的条件下保持其活性。

铬知识

2019-03-14 11:25:47

9月14日音讯: 简介   铬是体内的微量元素之一,其在体内的含量跟着年纪的增大而逐步削减。铬的需要量虽少,但能协助胰岛素促进葡萄糖进入细胞内的功率,是重要的血糖调理剂。在血糖调理方面,特别是对糖尿病患者而言有着重要的效果。它有助于生长发育,并对血液中的胆固醇浓度也有操控效果,缺少时可能人导致心脏疾病。   铬对人体的效果   切当地说,铬的生理功能是与其它操控代谢的物质一同合作起效果,如激素、胰岛素、各种酶类、细胞的基因物质(DNA和RNA)等。铬的生理功能首要有:   (1)防备心血管疾病 动脉硬化发作的原因是动脉血管壁堆积了首要由胆固醇组成的脂类物质,这些堆积构成许多不规则的小突起,称为斑块,然后使血管壁增厚、变硬、失掉原有的弹性,形成血液不能晓畅,引起心脑血管苎病。铬能按捺体内胆固醇和脂肪酸的组成,然后起到下降血中甘油三酯、胆固醇和脂肪酸的组成、避免动脉粥样硬化症的效果。   (2)促进胰岛素的效果 体内糖的代谢有必要依托胰岛素,饮食中长时间缺铬的人,胰岛素就失掉了效果,致使糖的氧化很缓慢。铬可激活胰岛素,然后下降血糖。弥补铬后,糖尿病患者的蛋白质能量、养分不良儿童的葡萄糖耐受性就会得到改进。   (3)促进生长发育 铬参加蛋白质、核酸的代谢,促进血红蛋白的组成,所以能促进养分不良儿童的发育,添加其体重,纠正其贫血。   我国养分学会没有铬每日需要量的引荐,但拟定了一个每日铬的“安全和适合的摄人量”目标,以供参阅。婴儿每天需10~14微克,半岁至1岁为20~60微克,1岁以上每天20~80微克,4岁每天30~120微克,7岁以上至成人每天均为50~200微克。   人体对铬的使用有以下一些特色。人体使用无机铬盐的才能随年纪而下降。菠菜等里边的草酸盐,谷物中的植酸盐会下降铬的吸收。食用很多低铬、高碳水化合物的食物,如白面和白糖,可影响铬从安排中排出,耗尽人体中贮存的铬。锌和钒可抵消铬的效应。   无机铬化合物在人体中吸收很差,铬与有机物生成的“天然复合物”中的铬较易吸收,如啤酒酵母中首要以葡萄(葡萄食物)糖耐量因子的方式存在的铬有10%~25%可吸收。铬估量是在   小肠内被吸收。铬一旦被吸收,便敏捷脱离血液散布于各个器官中,特别是有三价铬存在。   铬失调对人体的危害   铬缺少症   因膳食要素所形成的铬吸取缺少而引起的缺少症未见报导,但3名长时间承受TPN医治而未弥补铬的患者呈现了铬缺少的症状。首要体现为不明原因的体重下降,外周神经炎,血浆对葡萄糖的铲除受损,呼吸商下降。   过量体现   铬的毒性与其存在的价态有极大的联系,六价铬的毒性比三价铬高约100倍,但不同化合物毒性不同。六价铬化合物在高浓度时具有显着的部分影响效果和腐蚀效果,低浓度时为常见的致癌物质。在食物中大多为三价铬,其口服毒性很低,可能是因为其吸收十分少。   铬中毒   职业性   在工业上触摸铬及其化合物,首要是铬矿石和铬冶炼时的粉尘和烟雾,电镀时吸人铬酸雾,出产过程中发作的六价铬化合物。在临床上铬及其化合物首要危害皮肤和呼吸道,呈现皮肤黏膜的影响和腐蚀效果,如皮炎、溃疡、鼻炎、鼻中隔穿孔、咽炎等。   (1)皮肤危害。六价铬化合物对皮肤有影响和致敏效果,皮肤呈现红斑、水肿、水疤、溃疡,皮肤斑贴实验阳性。铬疮是一种小型较深的溃疡,发作在面部、手部、下肢等部位。铬溃疡多发作于电镀、铬化学工业、硝皮工业等。 日本曾报导铬引起鳞状上皮癌2例。   (2)呼吸体系危害。铬酸盐及铬酸的烟雾和粉尘对呼吸道有显着危害,可引起鼻中隔穿孔、鼻黏膜溃疡、咽炎、肺炎,患者咳嗽、头痛、气短、胸闷、发热、面色青紫、两肺广泛哮鸣音、湿性哕音,及时医治,症状可继续2周。国外报导,铬可引起肺癌。   (3)消化(消化食物)体系危害。长时间触摸铬酸盐,可呈现胃痛、胃炎、胃肠道溃疡,伴有周身酸痛、乏力等,味觉和嗅觉可减退,乃至消失。   非职业性   口服重,对胃肠黏膜有影响效果,口腔黏膜变黄,吐逆黄色或绿色物质,吞咽困难,上腹部炙烤痛,腹泻,血水样便,严重者呈现休克、面色青紫、呼吸困难。   重对肝和都有毒性,尿中呈现蛋白,严重者发作急性功能衰竭。婴幼儿(幼儿食物)可发作中枢神经体系症状,应与脑炎辨别确诊。   已有病例报导,患者发作惊厥、昏倒、瞳孔散大、尿和粪中均含铬。用铬酸医治疣或炙烤、痔疮曾引起过中毒。有一面部皮肤癌患者敷用铬酸结晶医治,发作炎,在用药后48小时呈现无尿,30日后急性功能衰竭逝世。   患者脏特别是小管有广泛病变,血液中尿素、无机磷酸盐、基酸(基酸食物)显着增高,这种患者往往肝大而有压痛,可发作黄疸。该病简单被误诊,应留意与内科有关疾病辨别确诊,避免错失抢救的杰出机遇而逝世。   铬的食物来历   铬是动物和人体必不可少的微量养分素之一。其首要效果是协助保持身体中所答应的正常葡萄糖含量。饮食中供铬缺少与葡萄糖和类脂同化效果的改动有关。肠胃中铬的吸收与食物中元素的化学结构有关。研讨标明,饮食中摄人的无机铬只要1%被吸收,铬一旦被吸收,便敏捷脱离血液散布于各个器官中,特别是,有3价铬存在。在所有细胞安排中铬的浓度都跟着年纪的添加而下降。吸收的铬首要经过脏分泌。人体的头发含铬浓度最高,约为0.2~2.0毫克/千克。   铬的最好来历是肉类,尤以和其他内脏,是生物有效性高的铬的来历。啤酒酵母、未加工的谷物、麸糠、硬果类、乳酪也供给较多的铬;软体动物、海藻、红糖、粗砂糖中的铬的含量高于白糖。家禽、鱼类和精制的谷类食物含有很少的铬。长时间食用精制食物和很多的精糖,可促进体内铬的分泌添加,因而形成铬的缺少。   铬的丰厚来历有干酪、蛋白类和肝。杰出来历有苹果皮、杳蕉、牛肉、啤酒、面包、红糖、黄油、鸡、玉米粉、面粉、土旦、植物油和全麦。一般来历有、青豆、柑橘、菠菜和草莓。微量来历有大部分的生果和蔬菜、牛奶及糖。

难处理超细磨硫精矿的生物化学分解和金的浸出3

2019-02-18 10:47:01

矿浆密度(液:固)脱金溶液中的金含量,毫克/升浸出矿渣中的金含量,克/吨树脂对金的吸附率,%2:10.0113.2056.804:10.0069.1067.906:10.0057.076.808:10.0056.2078.5010:10.0046.0079.40现已承认,循环运用水解产品溶液在准则上是或许的。溶液经第2次和第三次循环后,再重新参加的精矿中浸出金,这时溶剂的反响才能别离下降三分之一和二分之一。假如用新溶剂再增浓溶液,那么还能够到达较高的工艺目标。     吸附浸出滤渣的合理分析标明,与硫化物伴生的金的分化串很高,并主要用化学办法分化;金的含量从原始精矿中的25.8克/吨下降到射流磨碎产品的15.2克/吨和浸出尾矿的2.8克/吨。 对处理各阶段砷的散布状况也进行了研讨。在用碱水解产品处理精矿时,砷黄铁矿进行分化,并有70 ~ 75%的砷转入溶液。在吸附之前和吸附之后,溶液中的砷含量实际上并不改动,也就是说,砷不吸附于树脂。脱金溶液在丢掉之前能够用已知办法铲除砷。 鉴于完结的归纳研讨的成果,主张选用准则工艺流程(图5)。处理难选金砷精矿的大规模实验。按该流程,精矿用射流磨矿机磨碎,并用蛋白水解产品碱性溶液进行吸附浸出。    除了有利精矿活化条件外,运用射流磨矿机还具有下列长处:这种设备已被工业所把握,并且生产率高(高达100吨/小时),结构简略,金属用量少、报价低廉。溶剂可用碱水解和随后稀释的办法从工业放出的酵母生物量(含蛋白质50%)中取得。为了解吸金和再生吸附剂,将含金树脂按标准流程再行处理,一起用洗提液电解分出产品金。鉴于分出和保存含砷沉积物的必要性和脱金溶液回来的合理性,吸附浸出矿浆要用离心机脱水。溶液经过石灰使砷沉积,之后大部分溶液被原始水解产品稀释。     该工艺的扩展技术经济评价阐明,包含获取精矿的费用,1克金的本钱是在答应本钱极限之内     结    论           1、假如把精矿磨碎的行星准则与射流准则相比较,那么倾向于选用后者,由于射流磨碎浸出尾矿的剩下金含量比在其他相同处理条件下的行星磨碎低一半。           2、活化精矿吸附浸出时,蛋白水解产品有用。当液:固=(6~8):1和处理时刻48~50小时,树脂提金80%,浸出时刻增至72小不时,水解溶液金的提取率可提高到83.4%。砷在脱金溶液中富集,并可用已知办法沉积,以便保存。 3、主张选用以射流磨碎和用蛋白水解产品吸附浸出为根底的处理难选的硫化精矿工艺流程的大规模实验。

健康杀手六价铬污染缘何猛于虎

2019-03-14 11:25:47

1月6日音讯:     这是一个无所不在的健康手。在轿车外壳上,在室内装修的门窗上,在双脚蹬着的皮鞋上,乃至,当你装上一颗假牙,它就在你嘴巴里。现代生活中的每个人简直每时每刻都和一种重金属元素相生相伴。这就是铬元素。这种从前只要专业人士才熟知的金属元素,近年来的曝光率却一天天高涨,成为金属明星。     在自然界中,铬散布于岩石、土壤、大气、水及生物体中。当它以三价铬的方式呈现时,它是人体不行短少的微量元素之一。参加人和动物体内的糖与脂肪的代谢,人体和动物体的铬归于三价铬,有报导,健康成年人铬的摄入量多低于估量的安全适合饮食引荐量50~200μg/d,即大多数人均缺铬,应多吃酵母、海产品、粗粮、大豆等食物,恰当补铬,保持人体健康。     可当它以六价铬存在时,却变成了吞噬健康的狠毒手,是一种常见的致癌物质,并且让人防不胜防,成了电影里的不和派。铬中毒首要来源于六价铬。     从前有报导这样描绘铬矿冶炼的可怕景象。铬矿冶炼厂选址大多数是在人烟稀少的大山里边,冶炼厂周围因为废水、废气与废物排放,本来旺盛的大树短短数天内就干枯而死;冶炼所发生的废渣只能深埋地底,但是,六价铬却会像鬼魂相同渗漏出来,对土壤、对地下水发生污染,深埋地址周围很多年都寸草不生。     这是因为镀铬所需质料——铬酐的出产进程会发生很多的铬渣中含有致癌物铬酸钙和剧毒物六价铬,这些铬化合物一旦进入水体和土壤,完全可以随地下水的活动直至渗透到岩底层并对岩基发生腐蚀效果,其污染将无法去除,成为耐久损害地下水和农田的污染分散源。     工业出产中所发生的六价铬,可以经过水、空气和食物进入人体,特别是经过土壤被蔬菜吸收后进入人体,逐步累积,室内尘土与土壤中也发现六价铬,它们也会被摄入体内。在电镀铬的出产中,镀铬溶液因为铬雾的蒸发,铬酸浓度高,对大气和水源形成严峻的污染。镀铬作业进程的工作损害亦十分显着,铬酸、重铬酸及其盐类对人的粘模及皮肤有影响和灼烧效果,长时间触摸会呈现胃肠道溃疡,味觉和嗅觉减退乃至消失,白血球下降、相似哮喘的肺部病变,易引发各种癌症。临床上,关于急慢性铬中毒尚无特效疗法。     谁是六价铬制作的“首恶”?令人遗憾的是,铬元素被广泛应用于工业,铬矿冶炼、耐火材料、电镀、制革、颜料和化工等工业出产以及燃料焚烧排出的含铬废气、废水及废渣等都在发生六价铬污染。科学研究数据标明,这其间40%就来自于电镀铬工艺。     现在,世界各国对六价铬电镀这一高能耗、重污染工业进行制止和约束,欧盟发布了WEEE和ROHS两项指令,制止六价铬的产品和工艺;美国在全境撤销六价铬电镀工艺;日本UE委员会表明选用欧盟两项指令,全面废弃六价铬运用。为完成可持续发展方针,保护环境,我国《中华人民共和国环境保护法》和《中华人民共和国清洁出产促进法》都对铬污染做出相关规定,国家还专门拟定、公布了《关于加强含铬危险废物污染防护的告诉》、《清洁出产标准电镀职业》、《电镀污染物排放标准》-2008)等一系列法律法规严格控制铬污染。     我国环保总局2003年6月18日颁发了《关于加强含铬危险废物污染防护的告诉》,加强对铬污染的防控。依据环境保护和我国可持续发展的战略,为了削减工业污染、保护环境和进步产品的质量,完成电镀排放无污染。(Fiona)

金矿涉及的浸矿细菌

2019-01-21 10:39:02

对生物预氧化过程起作用的微生物根据其适宜的温度范围主要可分为嗜温细菌组(Mesophile)、中等嗜热细菌组(Moderate thermophile)及高温嗜热菌(Exterme thermophile)三组。目前发现可用于生物湿法冶金的微生物已报道的有20余种,工业生产中用于预氧化处理金矿石的细菌主要有4种:氧化亚 铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.f菌)、氧化硫硫杆菌(Acidithiobacillus thiooxidans,简称A.t菌)、氧化亚铁钩端螺旋菌(Leptospirillum  ferrooxidans,简称L.f茵)和耐热氧化硫杆菌(Sulfobacillum thermosul fidooxidans,以上几种细菌都是嗜酸、好氧,无机化能自养,以空气中的CO2为碳源,其中前三种均属于中温菌,最适合生长的pH值为1.5~2.0,温度为25~35℃。其中使用最多的是A.f菌和A.t菌,目前在酸性环境下氧化浸矿的主导细菌是A.f菌。A.f茵容易分离、培养,对溶液中的金属离子Cu2+、Mg2+、Fe3+等有一定的耐受性,但不耐热,使用的温度一般不能超过40℃。Brierley认为在强酸性环境中硫化矿物生物氧化体系中采用氧化铁铁杆菌和铁氧化钩端螺菌的混合菌氧化效果最佳。Schrenk等人的研究指出,L.f菌与A.f菌分布广泛,对硫化矿物的生物氧化极具工业应用前景。从浸出反应动力学来看,中高温菌在较高温度条件下不仅可以显著地加快反应速度,缩短预氧化周期,而且可以防止硫化矿物的过度钝化而阻碍浸出反应,因此目前人们越来越重视中高温菌在生物冶金领域的应用。Henry等人研究表明:高于60℃环境下生长的高度嗜热菌在硫化矿生物浸出工业中应用较为困难,而最佳生长温度在45~55℃的中度嗜热菌在工业应用中极具优势,因为高度嗜热菌多为古细菌,其大部分缺少细胞壁,通常难以耐受高矿浆浓度造成的较强剪切力,相对而言中度嗜热菌就具有较高矿浆浓度的耐受能力。澳大利亚BacTech公司培养出一种耐热温度可达45-90℃、最适宜生存温度为60℃的高温耐热菌,而且在缺氧条件下可以存活数小时,已完成该细菌的半工业试验且计划在哈萨克斯坦采用该工艺建厂生产。我国中科院兰州化学物理所分离的T-901菌株和李雅序等人花费10年分离的MP30菌株都为中度嗜热菌,能同时氧化铁和硫,氧化金属硫化物矿物最适宜温度为45-50℃。姚国成等研究者也进行了中高温细菌强化浸矿的研究工作,而为了适应北美气候,加拿大学者培育出了低温下高活性的A.f菌,其适宜的温度范围为5-35℃,并对该A.f菌对难处理硫化矿的低温氧化行为进行了研究。     细菌作为活的机体,一方面需要各种营养成分来保证自身的成长,另一方面又作为催化剂参与反应,因此优良菌种的获取是微生物技术的关键和核心。微生物赖以生存并繁殖的营养介质就是培养基,主要由氮、钾、磷及微量元素组成,培养基有液体培养基和固体培养基之分,液体培养基主要用于粗略的分离和培养某种微生物,而固体培养基主要是用于微生物的纯种分离。常用的浸矿培养基有9K和Leathen培养基。国内外学者的研究表明浸矿菌的生物量与浸出速率和浸出率有明显的正相关性,细菌的活性、浓度和生物量直接影响力生物氧化的效果,因此不少学者通过对浸矿微生物营养学的研究试图促进生物冶金效率低的问题得到有效解决。俄罗斯科学家将饲料工业废弃的胶原蛋白降解成制剂应用于冶金微生物浸矿过程中,对浸矿效果有良好的促进作用。在BIOX工艺的营养液中含有5%的酵母水解物,现阶段国内从微生物生长所需营养条件角度进行的研究较少。浸矿细菌在使用前,需要对工业环境中的各种条件进行适应性驯化,以使细菌尽快进入生长对数期,廖梦霞等人经过近10年的选育、分离、驯化,培育出了耐砷18g/L的高效浸矿工程菌株Mdl。     生物氧化预处理过程是一个复杂的反应过程,需要依靠细菌来完成,其本质是细菌的生命活动,细菌所表现出的浸出机理是直接作用还是间接作用,都是由其内在的生理、生化特性决定的,用于生物预氧化难处理金矿的菌群数量以及细菌对硫化矿的氧化能力都受环境影响。由此可见,只有选用氧化能力强、繁殖速度快的菌株作菌种并保证细胞生长、繁殖环境,才能提高氧化速率及氧化率。

难浸金矿的细菌氧化预处理

2019-02-20 11:03:19

一、国内外工业使用情况 难浸金矿的细菌氧化预处理最早是法国人于1964年提出的。法国人初次测验使用细菌浸出红土矿藏中的金,并取得了令人鼓舞的作用。1977年,苏联最早宣布了实验成果。阅历多年的理论研讨,难浸金矿生物预氧化技能开端进入工业使用阶段,并逐步开展出精矿槽浸和贫矿堆浸2个技能方向。1986年,南非金科公司的Fairview金矿建立起国际上第1座细菌氧化提金厂,完成了难浸金矿细菌氧化预处理在国际上的初次商业使用;之后,巴西、澳大利亚、美国、加纳、秘鲁等生物预处理金矿的工厂纷繁投入运营。国际上第1座大型细菌处理厂是加纳的Ashanti生物氧化体系,1995年扩建,规划规划为960t/d。这一技能的最大特点是细粒浮选金精矿的浸出进程在充气拌和浸出槽中进行,具有代表性的是选用中温细菌的BIOX工艺。在BIOX工艺产业化根底上,高温菌种的选用和根底金属的一起提取等技能快速开展,生物技能从开发到产业化进程越来越短。近年来,澳大利亚和南非又相继推出了Bactech和MINBAX工艺;1990-1995年,相继建成了San Bento, Harbour lights、Wiluna, Ashanti及Youal-i-mi等5家细菌氧化厂,取得了可观的经济效益。随后,GeoBiotics公司在总结前3种工艺(BIOX, Bactech和MIN-BAX)长处根底上,推出了Geobiotics工艺,在美国Newmont建成了生物堆浸厂,大大促进了生物浸金技能的开展。细菌冶金在美国的矿冶工程中已占有适当重要的位置,美国黄金总产量的1/3是用生物堆浸法出产的。 近十几年来,国内细菌氧化—化提金工艺开展很快,取得了一些突破性发展。陕西中矿公司于1998年建成我国第1座10 t/d规划的细菌氧化法提金实验厂;2000年,我国第1座50 t/d规划的难浸金精矿生物氧化—化浸出提金车间在烟台黄金冶炼厂正式投产,标志着我国从难处理金矿中提取金的工艺研讨已从科研阶段转向工业出产阶段;2001年,莱州黄金冶炼厂从国外引入的100 t/d规划的细菌氧化—化浸出工艺投入出产。在今后的几年中,我国已成为选用生物氧化—化浸出提金工艺最多的国家。 二、存在的首要问题及或许的处理战略 生物氧化一化浸出工艺出产周期长,浸出速率低,约束了其扩展使用。实践出产中,要到达硫化矿藏必要的氧化率(65%~95%),堆浸时刻一般都需几天、几个月乃至几年,槽浸时刻一般也要4~5d,而其他湿法冶金技能则只需数小时。长时刻反响形成的操作费用的添加使这种工艺原有的经济上的优势在适当大程度上被抵消了,因而限制了其工业化使用进展。冶金、生物科研工作者因而一向致力于生物浸出机理、工艺的研讨,旨在采纳各种办法、手法,进步金的浸出速率,缩短出产周期。 比较常温细菌,更耐热的中、高温菌(工作温度(45℃)对矿藏的浸出作用往往高出数倍。分析其原因:一是在较高温度下,化学浸出速度比较快;另一个则是中、高温菌的代谢速度快,Fe3+和硫酸生成的速度更快,然后加快了反响的进行,促进了浸矿速率的进步。因而,姚国成等投向了中、高温菌强化浸出的使用研讨中。估计中高温菌的选育及驯化研讨将为难处理金矿的开发供给更适宜的细菌资源。此外,基因重组技能已开端被用于优秀菌种的开发之中。 浸矿进程中,各种重生离子从头在矿石表面缔组成不溶性包覆层也是浸矿功率低下的重要原因之一。其间,硫层包覆可通过多菌种混养方法得以处理;黄钾铁矾可通过操控溶液酸度或改动养分液配方并采纳分段浸出方法来削减其生成。 工业出产中,金属硫化矿的生物浸出首要选用槽浸方法进行。在此条件下,高效菌种难以附着在矿石表面,或简略遭到矿石的碰击而损害。现在的处理办法研讨多集中于固定化细胞技能和反响器的改善上。 现阶段国内的研讨较少从微生物成长所需养分条件视点进行。俄罗斯科学家将饲料工业抛弃的胶原蛋白降解而成的制剂使用于细菌浸矿进程中,对冶金微生物的浸矿作用有杰出的促进作用;BIOX工艺的养分液中含有5%的酵母水解物;浸矿菌的生物量与浸出速率和浸出率有显着的正相关性。因而,浸矿微生物养分学的研讨有或许促进生物冶金功率低的问题的有用处理。 三、结束语 生物氧化预处理难浸金矿技能环境友好,成本低,处理手法简略,是现在处理大规划低档次含金矿石及一些尾矿的可行性手法之一。跟着难浸金矿及低档次矿的开发,生物氧化技能将对我国黄金职业的可持续开展和出产方法的改变发生深远影响。从现在这项技能的使用作用来看,细菌氧化技能还有较大研讨空间,有待广阔冶金工作者进一步开展工作。

农用稀土

2017-06-06 17:50:12

农用稀土(也称稀土农用),英文:Rare Earths ,是稀土化工和稀土生物分离出来的一门新的学科,包括植物应用和动物应用两个方面。一、基本概念和地壳中的含量  稀土是周期表中的一族元素,它由性质十分相似的镧、铈、镨、钕等15种元素和与镧系元素性质极为相似的钪、钇共十七种元素组成,统称为稀土元素。   其实稀土元素并不稀少,17种元素共占地壳总量的0.0153%,这比铜在地壳中的总量还多一倍。就单个元素而言,铈最多,它的克拉克值为0.0046%,与常见元素锌差不多。钇为0.0028%,镧为0.0018%比常见元素铅还多。   总之,稀土元素在地壳中的含量与铜、铅、锌不相上下,比锡、钴、银、汞等元素还多。二、我国储量和其独特的用途  我国稀土资源得天独厚,已探明储量为4300万吨,居世界首位。由于稀土元素独特的电子层结构,使其具有优异的磁、光、电等特性。因此,稀土材料被广泛应用于冶金机械、石油化工、轻工农业、电子信息、能源环保、国防军工和高新材料等13个领域的40多个 行业 。产生了显著的经济效益和社会效益,是当今世界各国改造传统 产业 ,发展高新技术和国防尖端技术不可缺少的战略物资。三、稀土农用的起源和国内外研究进展  1917年中国钱崇澍与美国Ostenhout发表了钡、锶、铈对水绵生理作用的论文,开创了稀土元素的生物活性研究的先河。20世纪30年代,前苏联对稀土的植物生理效应做了大量的试验研究,涉及作物有豌豆、萝卜、黄瓜、亚麻和橡胶草等,且明确了稀土对上述作物生长的促进作用。   我国从二十世纪70年代以来,通过深入的试验研究与反复的生产实践。于1985年获得了重大突破即在稀土农用技术、土壤学、植物生理、毒理卫生学、分析检测及农用产品生产工艺等领域取得120余项成果和1300篇研究报告,并成功地将稀土元素应用于我国农业生产,从而将时停时续进行了近60年的稀土生物活性研究,发展成一项实用技术,成为世界上第一个把稀土元素作为一种商业性产品“益植素”应用于农业生产的国家,累计产生了150亿元的经济和巨大的社会效益。目前国际上公认我国在稀土农用技术的研究和应用处于国际领先水平。高效稀土配方复合剂已出口到韩国、马来西亚。美国、以色列、澳大利亚、泰国等也与我接触要求与我国合作进行稀土农用技术的研究。中国稀土农牧业应用的现状  稀土生物应用,就是要发掘稀土特殊的化学特性,把它应用于人体,应用于其它动物,应用于植物。   实验表明,施用稀土微肥对人畜和环境均无毒害作用。所以,稀土微肥的应用前景广阔。当前,由于微量元素对农作物具有神奇微妙的“激活效应”,能产生出巨大的经济效益,因而掀起了世界性的研究高潮。其概念也已进入现代“大农业”的范畴。   稀土农用是我国独立开创的稀土应用领域。稀土农用研究在我国始于七十年代初。从八十年代中期大面积推广使用稀土至今,已有十几年时间,不仅在稀土农用技术,而且在基础理论的研究中都取得了一系列的重要突破。并产生了很大的经济效益。“八五”以来,稀土“微肥”同化肥、微量元素等相结合,开发生产了稀土——碳铵系列复混肥、稀土——尿素系列复混肥、稀土有机肥、稀土微肥、稀土饲料酵母以适应大田作物、菜果、畜牧、养殖的需要,更加拓宽了稀土在农业上的应用。   我国稀土农用受到国家10个部委的高度重视和支持,先后取得科研成果120多项,获得省部级以上科技奖励100多项,发表相关论文800余篇,专利技术90项,参加的科技人员800人,28个省、市自治区建立了推广网络。目前稀土农用产品已有60余种,生产企业180家,总生产能力已达500万吨,累计推广面积3亿亩。随着我国农业的发展和农业基础地位的加强,农民对包括稀土微肥在内的新型肥料需求迫切。这些新型肥料的应用,不仅能大幅度增中农作物 产量 ,提高质量,还可以减少污染,改良土壤,改变因施化肥产生的“瓜不香、果不甜、菜没味”的现状,将深受农民欢迎。更多有关农业稀土的内容请查阅上海 有色 网

稀土农用

2017-06-06 17:50:13

稀土农用(也称稀土农用),英文:Rare Earths ,是稀土化工和稀土生物分离出来的一门新的学科,包括植物应用和动物应用两个方面。一、基本概念和地壳中的含量  稀土是周期表中的一族元素,它由性质十分相似的镧、铈、镨、钕等15种元素和与镧系元素性质极为相似的钪、钇共十七种元素组成,统称为稀土元素。   其实稀土元素并不稀少,17种元素共占地壳总量的0.0153%,这比铜在地壳中的总量还多一倍。就单个元素而言,铈最多,它的克拉克值为0.0046%,与常见元素锌差不多。钇为0.0028%,镧为0.0018%比常见元素铅还多。   总之,稀土元素在地壳中的含量与铜、铅、锌不相上下,比锡、钴、银、汞等元素还多。二、我国储量和其独特的用途  我国稀土资源得天独厚,已探明储量为4300万吨,居世界首位。由于稀土元素独特的电子层结构,使其具有优异的磁、光、电等特性。因此,稀土材料被广泛应用于冶金机械、石油化工、轻工农业、电子信息、能源环保、国防军工和高新材料等13个领域的40多个 行业 。产生了显著的经济效益和社会效益,是当今世界各国改造传统 产业 ,发展高新技术和国防尖端技术不可缺少的战略物资。三、稀土农用的起源和国内外研究进展  1917年中国钱崇澍与美国Ostenhout发表了钡、锶、铈对水绵生理作用的论文,开创了稀土元素的生物活性研究的先河。20世纪30年代,前苏联对稀土的植物生理效应做了大量的试验研究,涉及作物有豌豆、萝卜、黄瓜、亚麻和橡胶草等,且明确了稀土对上述作物生长的促进作用。   我国从二十世纪70年代以来,通过深入的试验研究与反复的生产实践。于1985年获得了重大突破即在稀土农用技术、土壤学、植物生理、毒理卫生学、分析检测及农用产品生产工艺等领域取得120余项成果和1300篇研究报告,并成功地将稀土元素应用于我国农业生产,从而将时停时续进行了近60年的稀土生物活性研究,发展成一项实用技术,成为世界上第一个把稀土元素作为一种商业性产品“益植素”应用于农业生产的国家,累计产生了150亿元的经济和巨大的社会效益。目前国际上公认我国在稀土农用技术的研究和应用处于国际领先水平。高效稀土配方复合剂已出口到韩国、马来西亚。美国、以色列、澳大利亚、泰国等也与我接触要求与我国合作进行稀土农用技术的研究。中国稀土农牧业应用的现状  稀土生物应用,就是要发掘稀土特殊的化学特性,把它应用于人体,应用于其它动物,应用于植物。   实验表明,施用稀土微肥对人畜和环境均无毒害作用。所以,稀土微肥的应用前景广阔。当前,由于微量元素对农作物具有神奇微妙的“激活效应”,能产生出巨大的经济效益,因而掀起了世界性的研究高潮。其概念也已进入现代“大农业”的范畴。   稀土农用是我国独立开创的稀土应用领域。稀土农用研究在我国始于七十年代初。从八十年代中期大面积推广使用稀土至今,已有十几年时间,不仅在稀土农用技术,而且在基础理论的研究中都取得了一系列的重要突破。并产生了很大的经济效益。“八五”以来,稀土“微肥”同化肥、微量元素等相结合,开发生产了稀土——碳铵系列复混肥、稀土——尿素系列复混肥、稀土有机肥、稀土微肥、稀土饲料酵母以适应大田作物、菜果、畜牧、养殖的需要,更加拓宽了稀土在农业上的应用。   我国稀土农用受到国家10个部委的高度重视和支持,先后取得科研成果120多项,获得省部级以上科技奖励100多项,发表相关论文800余篇,专利技术90项,参加的科技人员800人,28个省、市自治区建立了推广网络。目前稀土农用产品已有60余种,生产企业180家,总生产能力已达500万吨,累计推广面积3亿亩。随着我国农业的发展和农业基础地位的加强,农民对包括稀土微肥在内的新型肥料需求迫切。这些新型肥料的应用,不仅能大幅度增中农作物 产量 ,提高质量,还可以减少污染,改良土壤,改变因施化肥产生的“瓜不香、果不甜、菜没味”的现状,将深受农民欢迎。更多有关稀土农用的内容请查阅上海 有色 网

电镀含铬废水的处理技术及资源利用

2019-02-14 10:39:39

跟着人民生活水平的不断提高和工业的开展,人们日益注重生存环境。众所周知,简直一切的工业部门都有电镀加工,不可防止排放废水,但是废水中的铬毒性很大,电镀含铬废水的铬存在方式有Cr3+和Cr6+两种,其间,以Cr6+的毒性最大,约是Cr3+的100倍,Cr6+可引起肺癌、肠道疾病和贫血。尽管,我国很早就对电镀废水进行处理,至今,对电镀废水的处理仍是不尽人意。因而,电镀废水有必要严格操控,妥善处理和处置。    一、国内外含铬废水处理办法的研讨进展    国内外含铬废水处理办法在工业上运用较广的有化学复原法、离子交流法、吸附法、电解处理法、逆流漂洗—蒸腾浓缩法等办法。笔者首要介绍近年来呈现的生物法、膜别离法、黄原酸酯法、光催化法、槽边循环化学漂洗等办法,其开展敏捷,成为我们重视的焦点。    (一)生物法    生物法管理含铬废水,国内外都是近年来开端的。生物法是管理电镀废水的高新生物技能,适用于大、中、小型电镀厂的废水处理,具有严重的实用价值,易于推行。国内外对SRB菌(硫酸盐复原菌)、SR系列复合功用菌、SR复合能菌、脱硫孤菌、脱色杆菌(Bac.Dechromaticans)、生枝动胶菌(Zoolocaramigera)、酵母菌、迷糊假单胞菌、荧光假单胞菌、乳链球菌、暗沟肠杆菌、铬酸盐复原菌等进行研讨,从曩昔的单一菌种到现在多菌种的联合运用,使废水的处理从此走向清洁、无污染的处理路途。将电镀废水与其它工业废弃物及人类粪便一同混合,用石灰作为凝聚剂,然后进行化学—凝聚—堆积处理。研讨标明,与活性的淤泥混合的生物处理办法,能除掉Cr6+和Cr3+,NO3氧化成NO3-。已用于埃及轻型车辆公司的含铬废水的处理。    生物法处理电镀废水技能,是依托人工培育的功用菌,它具有静电吸附效果、酶的催化转化效果、络合效果、絮凝效果、包藏共沉积效果和对pH值的缓冲效果。该法操作简略,设备安全可靠,排放水用于培菌及其它运用;并且污泥量少,污泥中金属收回运用;完成了清洁出产、无污水和废渣排放。出资少,能耗低,运转费用少。    (二)膜别离法    膜别离法以挑选性透过膜为别离介质,当膜两边存在某种推进力(如压力差、浓度差、电位差等)时,质料侧组分挑选性透过膜,以到达别离、除掉有害组分的意图。现在,工业上运用的较为老练的工艺为电渗析、反渗透、超滤、液膜。其他办法如膜生物反响器、微滤等尚处于根底理论研讨阶段,没有进行工业运用。电渗析法是在直流电场效果下,以电位差为推进力,运用离子交流膜的挑选透过性,然后使废水得到净化。反渗透法是在必定的外加压力下,经过溶剂的涣散,然后完成别离。超滤法也是在静压差推进下进行溶质别离的膜进程。液膜包含无载体液膜、有载体液膜、含浸型液膜等。液膜涣散于电镀废水时,活动载体在膜外相界面有挑选地络合重金属离子,然后在液膜内涣散,在膜内界面上解络,重金属离子进入膜内相得到富集,活动载体回来膜外相界面,如此进程不断进行,废水得到净化。膜别离法的长处:能量转化率高,设备简略,操作简略,易操控、别离效率高。但出资大,运转费用高,薄膜的寿命短。首要用于收回附加值高的物质,如金等。    电镀工业漂洗水的收回是电渗析在废液处理方面的首要运用,水和金属离子可到达悉数循环运用,整个进程可在高温文更广的pH值条件下运转,且收回液浓度可大大提高,缺陷为仅能用于收回离子组分。液处理含铬废水,离子载体为TBP(磷酸三丁酯),Span80为膜安稳剂,工艺操作便利,设备简略,质料价廉易得。也有选用非离子载体,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性剂,选用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶剂,别离进程分为:萃取、反萃等进程。近来,微滤也有用于处理含重金属废水,可去除金属电镀等工业废水中有毒的重金属如镉、铬等。[next]    (三)黄原酸酯法    70年代,美国研制成新式不溶重金属离子去除剂ISX,运用便利,水处理费用低。ISX不只能脱除多种重金属离子,并且在酸性条件下能将Cr6+复原为Cr3+,但安稳性差。不溶性淀粉黄原酸酯脱除铬的效果好,脱除率>99%,残渣安稳,不会引起二次污染。钟长庚等人用稻草代替淀粉制成稻草黄原酸酯,处理含铬废水,铬的脱除率高,很简略到达排放标准。研讨者以为稻草黄原酸酯脱除铬是黄原酸铬盐、氢氧化铬经过沉积、吸附几种进程一同起效果,但黄原酸铬盐起首要效果。此法成本低,反响敏捷,操作简略,无二次污染。    (四)光催化法    光催化法是近年来在处理水中污染物方面敏捷开展起来的新办法,特别是运用半导体作催化剂处理水中有机污染物方面已有许多报导。以半导体氧化物(Zno/TiO2)为催化剂,运用太阳光光源对电镀含铬废水加以处理,经90min太阳光照(1182.5W/m2),使六价铬复原成三价铬,再以氢氧化铬方式除掉三价铬,铬的去除率达99%以上。    (五)槽边循环化学漂洗    这一技能由美国ERG/Lancy公司和英国的EffluentTreatmentLancy公司开发,故也叫Lancy法。它是在电镀出产线后设收回槽、化学循环漂洗槽及水循环漂洗槽各一个,处理槽设在车间外面。镀件在化学循环漂洗槽中经低浓度的复原剂(亚或)漂洗,使90%的带出液被复原,然后镀件进入水漂洗槽,而化学漂洗后的溶液则接连流回处理槽,不断循环。加碱沉积系在处理槽中进行,它的排泥周期很长。广州电器科学研讨所开发了别离适用于各种电镀废水的三大类系统的槽边循环化学漂洗处理工艺,水回用率高达95%、具有投药少、污泥少且纯度高级长处。有时,用槽边循环和车间循环相结合。    (六)水泥基固化法处理中和废渣    关于暂时无法处理的有毒废物,能够选用固化技能,将有害的危险物转变为非危险物的终究处置办法。这样,可防止废渣的有毒离子在天然条件下再次进入水体或土壤中,形成二次污染。当然,这样处理后的水泥固化块中的六价铬的浸出率是很低的。    二、电镀含铬废液及污泥的综合运用    由于电镀含铬老化废液有害物质含量高,成分杂乱,在综合运用之前应对各种废液进行独自和分类处理。关于镀锌钝化液、铜钝化液及含磷酸的铝电解抛光液均用酸碱调理pH;关于阴离子交流树脂,只需将它变为Na2CrO4即可。    (一)运用铬污泥出产    在高温碱性条件介质Na2CrO4中三价铬可被空气氧化为Na2Cr2O7,一同污泥中所含的铁、锌等转化为相应的可溶盐NaFeO2、Na2ZnO2.用水浸取碱熔体时,大部分铁分解为Fe(OH)3沉积而除掉.将滤液酸化至pH<4,Na2CrO4即转变为Na2Cr2O7,运用Na2SO4与Na2Cr2O7溶解度差异,别离结晶分出。选用高温碱性氧化铬污泥制的条件是n(Na2CO3):n(Cr2O3)=3.0:1.0,温度780℃,时刻2.5h,铬的转化率在85%以上。    (二)出产铬黄    运用纯碱作沉积剂去除电镀废液中的杂质金属离子,再运用净化后的电镀废液代替部分出产铅铬黄。电镀液参加Na2CO3饱满液后,调整pH至8.5~9.5。进行过滤,滤液备用。在碱性条件下将滤渣中的Cr3+用H2O2氧化为Cr6+再经过滤,滤液与上述滤液混合。将滤液与溶液和助剂,在50~60℃反响1h,然后经过滤、水洗,洗去氯根、硫酸根以及其它部分可溶性杂质,再经枯燥破坏即得制品铅铬黄。运用电镀废液出产铅铬黄,不只处理了污染问题,并且使电镀废液中的铬得到了收回运用。据预算,按年处理电镀废液200t,年平均收回18t,可完成年创收4万余元。效益可观。    (三)出产液体铬鞣剂及皮革鞣剂碱式硫酸铬    含铬废液先用去除金属离子杂质,操控pH=5.5~6.0,然后过滤,滤液待用,污泥用铁氧体无害化处理。然后,在滤液中投加复原剂葡萄糖,使Na2Cr2O7复原为Cr(OH)SO4,在100℃条件下,进一步聚合,当碱度为40%时,分子式为4Cr(OH)3•3Cr2(SO4)3,即为铬鞣剂。河北省无极县某皮革厂就是运用电镀含铬废水出产液体铬鞣剂。按每天出产5t液体铬鞣剂,每天可得赢利为6000余元。可见运用含铬废液出产铬鞣剂的经济效益是非常明显的。别的,可将含铬的污泥与碳粉混合,在高温下煅烧,然后可制得金属铬。由于含铬污泥是电镀车间污泥的首要种类,依据电镀处理办法不同,污泥的收回运用也不同。电解法污泥:(1)做中温改换催化剂的质料;(2)做铁铬红颜料的质料。化学法的污泥:(1)收回氢氧化铬;(2)收回三氧化二铬抛光膏。铁氧体污泥做磁性材料的质料等等。    三、结束语    以上介绍的含铬废水的处理办法及其资源化运用,有的现已完成了工业化,有的尚处于实验室根底研讨阶段。在实际运用进程中并不必定限定于上述的处理办法,也可将上述的几种处理办法一同运用。从环保视点动身,人们将抛弃传统的化学法,而挑选微生物法、膜别离法等。微生物法将代表21世纪电镀含铬废水处理办法的开展趋势,能够估计在不久的将来,微生物得到更为广泛的运用。

金矿生物预氧化工艺基本流程

2019-02-22 16:55:15

细菌浸矿工艺多种多样,依据菌液与矿石触摸办法不同,大致可分为两大类:细菌堆浸和拌和浸出。细菌堆浸是指通过重力和压力效果使菌液通过矿石堆的一种浸出办法,最典型的渗滤浸出就是细菌堆浸。细菌堆浸已广泛运用于低档次铜矿、铀矿的细菌浸出,在难处理金矿预处理中也已得到了运用。关于堆浸而言,它具有工艺简略、出资少、本钱较低的特色。可是由于堆没温度过低,一般浸矿周期达数月,乃至数年。用于拌和浸出的物料一般粒度十分细,并且浸出是在比较低的浓度条件下进行,这是由于在高浓度的矿浆中,微生物关于剪切效应更为灵敏,简单呈现细胞损害,然后细菌成长状况不佳。可是拌和的效果使被浸矿石与细菌浸矿剂充沛混合,矿浆吸入更多的空气,然后使含有固、液、气的三相紊动系统充沛触摸,为细菌成长供给足够的氧气和二氧化碳,进步传质和浸出速率。相关于细菌堆浸来说,拌和浸出的出产本钱高(需求拌和、加热、冷却及通气设备、耐酸的反响罐等),因而,它只适合于用来处理那些单位报价高的矿种,比方金矿。微生物预氧化处理硫化矿浸金工艺流程如图5-5所示。难处理浮选金精矿等高档次硫化矿生物预先氧化化浸出的工业运用中,高效反响器的构建是进步出产功率的要害。可是,国外宣布的生物浸矿的论文中,有关反响器的论文缺乏6%,国内这方面的论文愈加罕见。现在难处理金精矿的生物浸出处理中,由于菌种的局限性,常温菌的反响温度最高为40~45℃,中温菌的反响温度也仅为50~60℃,要使硫化矿到达必要的氧化率(65%~95%),一般需求4~7天,而其他湿法冶金技能仅需数小时;另一方面,生物浸出时矿浆浓度也仅限于20%以下,构成设备的单位处理才干较小,因而,高档次硫化矿生物浸出技能欲在投产和出产本钱上与其他湿法冶金办法比较而获得竞赛优势,迫切需求处理进程工程问题,开宣布高效生物浸出反响器,缩短浸出周期,进步矿浆浓度,下降出产本钱。 迄今为止,有关微生物冶金生物反响器的研讨较少,一般实验室中运用最多的仍是三角摇瓶,其次是柱式反响器及带或不带拌和设备的槽式反响器,工业出产中常用带或不带拌和设备的反响器,其作业容积一般在数百立方米左右,拌和能够通过机械或空气到达。现在最常用的反响器有拌和槽式反响器(STR)和气升式反响器(ALR),此外还有泡沫柱式反响器(BCR)、巴秋卡箱、低能耗反响器、转筒式生物反响器等针对生物浸出进程规划的新式反响器。 (1)机械拌和槽式反响器(STR)。机械拌和槽式反响器是一种从化工进程套用的反响器。其螺旋桨起了最重要的效果,至少要求完结三大使命:固体颗粒的悬浮、空气与水相的混合和溶入水相、増大气相和水相的界面。在这些反响器中开始较遍及选用透平式螺旋桨,近来则运用曲形桨叶的轴向活动螺旋桨,由于到达相同拌和水平常后者所需动力较低,发生的剪切力较小。拌和槽式反响器尽管有长时刻的运用经历,但亦存在着一些显着的缺陷,比方功率耗费大,加工困难,出资高,修理费事,拌和剪切力大,对细胞成长损害大,大型化后混合不均匀,传热面积缺乏,传质功率下降等。 (2)气开式反响器。气升式反响器(ALR)原理:通过流体(气体、液体)的上升运动使固体颗粒坚持在悬浮状况进行反响。反响器升流区气体、液体和悬浮的固体颗粒一同向上运动,在降流区,液相及固体颗粒向下流到反响器底部,升、降流区不同的气相含率发生的压差迫使降流区液相和固体颗粒流入升流区,由此构成反响器内气、液、固三相的循环活动,发生流态化效果,到达紊流状况。Fang用At.tTs6和BrettanomycesB65混合菌在单级气升式反响器(见图5-6)浸出活性污泥中的铬,坚持反响温度为30℃,用3天的时刻,浸出率就超越95%,可是气升式反响器的结构本钱太大,并且处理量小,因而Mousavi等人建立了一种如图5-7所示的生物浸出工艺,用于浸出闪锌矿。详细工艺流程为:通过水浴槽坚持At.f的成长温度28℃,然后通过恒流泵将细菌培养液从储存器里输入矿藏填料柱中,在填料柱中浸出液和气体相互逆流,填料塔选用绝缘材料,避免矿藏发生的热流失,从浸矿柱中流出的溶液再通过重力的效果,从头流入储存器里,如此循环。在28℃下,浸出120天,锌的浸出率到达72%。相关于气升式反响器,该工艺尽管增加了浸出周期,可是减少了矿藏拌和的本钱耗费。可是由于没有对浸矿柱进行恰当拌和,当浸出液自上而下流过浸矿柱的时分,简单构成沟壑,约束了矿藏与浸出液的充沛触摸,下降了浸出率。(3)膜生物反响器。膜生物反响器(MBR)是20世纪末发展起来的高新技能,它将膜别离技能和生物技能有机地结合在一同,具有传统工艺不行比较的长处,成为近些年来生物技能范畴研讨的热门。膜生物反响器运用具有以下几个方面的长处:l)增大反响速率。在生物学中有许多反响是产品按捺型,即跟着反响的进行,产品浓度进步,反响速率下降。选用膜生物反响器可在反响进程中移去产品,使产品浓度坚持稳定,反响速率进步。2)进步反响转化率。膜生物反响器可使产品或副产品从反响区接连地别离出来,打理反响的平衡,然后可大大地进步反响转化率,增加产率或处理才干,进程能耗低,功率高。3)简化出产进程。膜生物反响器使反响和别离在同一个进程里完结,简化了出产进程,减少了劳动量,进步了劳动功率。4)截留生物催化剂,使细胞或酶在高浓度下进行。5)减少了能耗,节省了本钱。可是,在生物冶金范畴,膜生物浸出反响器却罕见报导,现在有报导运用膜生物浸出反响器浸出镍钼矿,镍和钼的浸出率高于相同条件下的柱浸。未来若能进一步加强这方面的研讨,MBR必将在生物浸出范畴大有作为。 对生物预氧化进程起效果的微生物依据其适合的温度规模首要可分为嗜温细菌组(Mesophile)、中等嗜热细菌组(Moderatethermophile)及高温嗜热菌(Extermethermophile)三组。现在发现可用于生物湿法冶金的微生物已报导的有20余种,工业出产中用于预氧化处理金矿石的细菌首要有4种:氧化亚 铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.f菌)、氧化硫硫杆菌(Acidithiobacillusthiooxidans,简称A.t菌)、氧化亚铁钩端螺旋菌(Leptospirillumferrooxidans,简称L.f茵)和耐热氧化硫杆菌(Sulfobacillum thermosulfidooxidans,以上几种细菌都是嗜酸、好氧,无机化能自养,以空气中的CO2为碳源,其间前三种均归于中温菌,最适合成长的pH值为1.5~2.0,温度为25~35℃。其间运用最多的是A.f菌和A.t菌,现在在酸性环境下氧化浸矿的主导细菌是A.f菌。A.f茵简单别离、培养,对溶液中的金属离子Cu2+、Mg2+、Fe3+等有必定的耐受性,但不耐热,运用的温度一般不能超越40℃。Brierley以为在强酸性环境中硫化矿藏生物氧化系统中选用氧化铁铁杆菌和铁氧化钩端螺菌的混合菌氧化效果最佳。Schrenk等人的研讨指出,L.f菌与A.f菌散布广泛,对硫化矿藏的生物氧化极具工业运用远景。从浸出反响动力学来看,中高温菌在较高温度条件下不只能够显著地加速反响速度,缩短预氧化周期,并且能够避免硫化矿藏的过度钝化而阻止浸出反响,因而现在人们越来越注重中高温菌在生物冶金范畴的运用。Henry等人研讨标明:高于60℃环境下成长的高度嗜热菌在硫化矿生物浸出工业中运用较为困难,而最佳成长温度在45~55℃的中度嗜热菌在工业运用中极具优势,由于高度嗜热菌多为古细菌,其大部分短少细胞壁,一般难以耐受高矿浆浓度构成的较强剪切力,相对而言中度嗜热菌就具有较高矿浆浓度的耐受才干。澳大利亚BacTech公司培养出一种耐热温度可达45-90℃、最适合生计温度为60℃的高温耐热菌,并且在缺氧条件下能够存活数小时,已完结该细菌的半工业实验且计划在哈萨克斯坦选用该工艺建厂出产。我国中科院兰州化学物理所别离的T-901菌株和李雅序等人花费10年别离的MP30菌株都为中度嗜热菌,能一起氧化铁和硫,氧化金属硫化物矿藏最适合温度为45-50℃。姚国成等研讨者也进行了中高温细菌强化浸矿的研讨作业,而为了习惯北美气候,加拿大学者培养出了低温下高活性的A.f菌,其适合的温度规模为5-35℃,并对该A.f菌对难处理硫化矿的低温氧化行为进行了研讨。 细菌作为活的机体,一方面需求各种养分成分来确保本身的成长,另一方面又作为催化剂参加反响,因而优秀菌种的获取是微生物技能的要害和中心。微生物赖以生计并繁衍的养分介质就是培养基,首要由氮、钾、磷及微量元素组成,培养基有液体培养基和固体培养基之分,液体培养基首要用于大略的别离和培养某种微生物,而固体培养基首要是用于微生物的纯种别离。常用的浸矿培养基有9K和Leathen培养基。国内外学者的研讨标明浸矿菌的生物量与浸出速率和浸出率有显着的正相关性,细菌的活性、浓度和生物量直接影响力生物氧化的效果,因而不少学者通过对浸矿微生物养分学的研讨企图促进生物冶金功率低的问题得到有用处理。俄罗斯科学家将饲料工业抛弃的胶原蛋白降解成制剂运用于冶金微生物浸矿进程中,对浸矿效果有杰出的促进效果。在BIOX工艺的养分液中含有5%的酵母水解物,现阶段国内从微生物成长所需养分条件视点进行的研讨较少。浸矿细菌在运用前,需求对工业环境中的各种条件进行习惯性驯化,以使细菌赶快进入成长对数期,廖梦霞等人通过近10年的选育、别离、驯化,培养出了耐砷18g/L的高效浸矿工程菌株Mdl。 生物氧化预处理进程是一个杂乱的反响进程,需求依托细菌来完结,其本质是细菌的生命活动,细菌所表现出的浸出机理是直接效果仍是直接效果,都是由其内涵的生理、生化特性决议的,用于生物预氧化难处理金矿的菌群数量以及细菌对硫化矿的氧化才干都受环境影响。由此可见,只要选用氧化才干强、繁衍速度快的菌株作菌种并确保细胞成长、繁衍环境,才干进步氧化速率及氧化率。

我是纳米碳酸钙,我为自己代言

2019-03-07 11:06:31

因为纳米碳酸钙的晶型可控、半补强和补强效果等优异的纳米材料的特性,是现在重钙不具备的,因而,尽管其报价远高于重钙,出产技能也杂乱的多,可是用作许多中高档产品的功用性填料方面是重钙所无法代替的,也是超细轻钙的研制技能方兴未已的本源地点。 1 什么是碳酸钙 碳酸钙在自然界中随处可见如以上所列钟乳石、石灰石、大理石、汉白玉、冰洲石、珍珠、贝壳、蛋壳等的首要成分都是碳酸钙。 碳酸钙是一种化学性质较为安稳的微碱性物质。在石灰岩里边,含有二氧化碳的水,进入石灰岩缝隙中,会溶解其间的碳酸钙。因而构成了钟乳石。 碳酸钙遇酸会分化,因而碳酸体在运送中应该要避免雨淋、受潮,不得与酸混运;储存于枯燥、阴凉通风的仓库内。 2 碳酸钙的分类 按制备办法不同可分为重质碳酸钙、轻质碳酸钙。 碳化法制得的碳酸钙称为轻质碳酸钙(简称轻钙,LCC)或沉积碳酸钙(简称PCC)。 轻钙的粉体特色是: (1) 粒度小,一般均匀粒径在数微米以下; (2) 粒度散布窄,可视为单涣散粉体; (3) 粒子晶型多样化,运用于不同职业需求不同的晶型。 普通轻钙粒径为1~10 μm,比表面积为5 m2/g左右,一般以为只要填充功用;微细碳酸钙的粒径为0.1~1μm,比表面积为10~20m2/g左右,具有半补强效能;超细活性碳酸钙粒径为0.01~0.1μm,比表面积为20~80 m2/g左右,具有较高的补强效能。 天然矿藏直接经由机械破坏(研磨法)所得产品,因其比重大于轻钙,故名重质碳酸钙(简称重钙,GCC )。 重钙的粉体特色是: (1)粒子形状不规则; (2)粒度散布比较宽,是多涣散体; (3)粒度比轻钙要粗,同样是超细钙,超细重钙的粒度比超细轻钙的粒度等级要相差一级,即超细重钙的粒度只相当于微细轻钙的粒度。此外,重钙还具有报价低廉、简单制取、工厂出资仅为轻钙的1/4~1/3等特色。 活性钙、胶质碳酸钙有什么不同? 活性钙:又称改性碳酸钙、表面处理碳酸钙、胶质碳酸钙。用碳酸钙的亲水性和疏水性来判别是否活化。 活性碳酸钙的特色:粒径小、吸油值低、涣散性好、能补强等。 3 什么是纳米碳酸钙 国内碳酸钙职业是以均匀粒径为根底把轻质碳酸钙产品划分为以下五个粒度等级: 微粒碳酸钙,粒径 > 5000 nm; 微粉碳酸钙,粒径规模为1000~5000 nm; 微细碳酸钙,粒径规模为100~1000 nm; 超细碳酸钙,粒径规模为20~100 nm; 超微细碳酸钙,粒径超细碳酸钙和超微细碳酸钙(合称纳米碳酸钙)的粒径在1~100 nm规模内。纳米碳酸钙(又称超细碳酸钙)粉体的特色是: (1) 粒子细:均匀粒径为10~100 nm; (2) 比表面积大:比普通轻质碳酸钙大近8倍; (3) 表面通过活化处理,活化率较高,具有不同的功用和用处; (4) 白度较高,合适作淡色制品,pH值呈弱碱性; (5) 晶型多样化,运用于不同职业需求不同的晶型。 因为纳米碳酸钙的晶型可控、半补强和补强效果等优异的纳米材料的特性,是现在重钙不具备的,因而,尽管其报价远高于重钙,出产技能也杂乱的多,可是用作许多中高档产品的功用性填料方面是重钙所无法代替的,也是超细轻钙的研制技能方兴未已的本源地点。 4 纳米碳酸钙是怎样出产出来的 出产流程如下(1) 煅烧 石灰石通过预处理,同煤按必定份额混合均匀后经混料竖窑(如左图)煅烧,发生氧化钙(石灰)、二氧化碳。 (2) 消化 煅烧得到的石灰除渣后送消化池(如右图)与水进行消化反响生成石灰乳。 (3) 碳化 石灰乳经除渣精制后的精浆液,依据碳化要求操控到必定温度、必定浓度送往碳化反响设备(碳化塔)与窑气进行碳化反响。 (4) 改性 纳米碳酸钙属无机材料,与高聚物相容性差,有必要对碳酸钙进行表面改性,改性剂有脂肪酸、树脂酸、偶联剂等类型。 (5) 压滤 改性结束的纳米碳酸钙为浆料,为了取得纳米碳酸钙产品,需用压滤机对其进行压滤进行脱水。 (6) 枯燥分级包装 压滤后的纳米碳酸钙依然含有很多水分,为了便于包装、运送、储藏和运用,需进行枯燥、分级和包装。 5 纳米碳酸钙产品的首要技能目标 碳酸钙的主含量 碳酸钙的主含量多少:普通轻钙>活性轻钙>专用纳米钙。纳米碳酸钙的主含量要求较低,而有害杂质含量要求微量。 晶型 晶型与粒径有联络,一般粒径大于200 nm时,晶型多为不对称形,如纺锤形、棒状等;当粒径在50~120nm之间时,一般为对称形,如立方体、球形等;当粒径小于30 nm时,多为立方体和颗粒状,且晶体简单连接成链状。沉降体积 沉降体积是单位质量的产品碳酸钙在100 m1水中震动并静置3h后所具有的体积(ml)。沉降体积越大,阐明产品粒度越小、比重越轻、产品层次越高。 吸油值 关于活性钙来说,随碳酸钙表面吸附的活性含量的添加,吸油值呈下降趋势。 活化与否 普通碳酸钙未经活化处理,呈亲水性,与水可以按不同份额混合,经拌和之后,静置几小时皆沉积在水中;经活化处理后的碳酸钙一般呈疏水性,一再拌和之后,碳酸钙一直漂浮在水面上。 比表面积判别是否微细 碳酸钙的均匀粒径与其比表面积有着内涵的联络,可以通过其比表面积的巨细来较精确地判别均匀粒径的巨细。 以下是经验值: 普通重质碳酸钙比表面积为1 m2/g左右。 重质微细碳酸钙比表面积为1.45~2.1 m2/g。 普通轻质碳酸钙比表面积为5 m2/g左右。 轻质微细碳酸钙比表面积为27~87 m2/g左右。 轻质超细碳酸钙比表面积为60~100 m2/g。 碳酸钙产品的体系命名办法 为了便于碳酸钙产品的开发、推行、运用和差异,碳酸钙职业制定了如下体系命名办法。命名由三项组成,第一项为汉语拼音字母;第二项由阿拉伯数字组成;第三项为拼音字母。 其含义为:第一项表明加工办法,用Z, Q表明。其间, Z——表明非化学办法加工的重质碳酸钙。 Q——表明化学办法加工过的轻质碳酸钙。 第二项表明产品的均匀粒径规模。其间: 1:d> 5μm 2:lμm 3:0.1μm 4:0.02μm5:d 第三项表明产品改性处理与否。其间: B—表明未经改性; G—表明经表面活性剂处理。6 纳米碳酸钙(NPCC)与其它碳酸钙的比较7 纳米碳酸钙的运用 纳米碳酸钙作为一种无机化工产品,经表面改性处理而成为一种功用性的填充材料,广泛运用于塑料、橡胶、油墨、涂料、造纸、胶粘剂、密封胶等工业,还运用于食物、医药、饲料、建材、化纤等职业。 (1)在橡胶中的运用碳酸钙是橡胶工业中运用最早,用量最大的填料,碳酸钙首要运用于轮胎、胶鞋、电线电缆,橡胶密封制品等,它不只可以添加产品体积,节省高价的天然橡胶和下降本钱,还可以改善橡胶的功用。纳米碳酸钙在橡胶工业中多用于内胎和外胎特殊部位,胶带、胶管、胶布等橡胶制品。添加了纳米碳酸钙的橡胶制品其硫化胶拉长率、抗撕裂功用、紧缩变形和耐屈绕功用,都显着好于添加一般碳酸钙的产品。在橡胶制品中添加立方体纳米碳酸钙可以使制品具有补强性,因为在橡胶制品中具有杰出的涣散性,可制得通明和半通明的橡胶制品。 纳米碳酸钙运用于橡胶中的几个技能要素 晶型:不同晶型中立方体部分呈链锁状的晶型合适用于橡胶。 粒径:以80~120 nm为宜,粒径太小。 水分:为了利于进步硫化速度,一般要求小于0.5%。 吸油值:橡胶用纳米碳酸钙的吸油值越大,对橡胶的浸润性和补强性越好。 pH值:橡胶运用中的pH首要是影响其硫化速度,一般纳米碳酸钙的pH值在9~10.5之间。 表面改性:挑选合适的涣散剂和改性剂(脂肪酸或偶联剂)等。 (2) 在塑猜中的运用 对塑料说来,普通碳酸钙只能起到填充剂的效果,只要改性纳米碳酸钙填充在塑料制品中才干有除填充之外的活性剂和补强剂的效果。改性纳米碳酸钙可以添加产品体积、下降本钱、进步硬度和耐热性以及刚度、改善加工功用、进步擦伤性和滑润度,还可以进步薄膜的通明性、耐性、开口性、抗老化功用等,对冲击强度有增韧效果,也对共混中的黏盛行具有效果。纳米碳酸钙还可以进步塑料制品的曲折强度、拉伸强度、热变形温度和尺度安稳性。 纳米碳酸钙已广泛运用于通用塑猜中,如聚氯乙烯(PolyVinylChloride),简称PVC,聚(Polypropylene),简称PP,聚乙烯(Polystyrene),简称PS;在工程塑猜中也有部分运用,如聚酰胺(Polyamide),简称PA,腈-丁二烯-乙烯简称ABS。 纳米碳酸钙运用于塑猜中的几个技能要素 晶型:以立方体和球形的晶型为宜。 粒径:以80~120 nm为宜。 水分:一般要求小于0.5%。 吸油值:此值以低为宜,一般在25~60 m2/g之间。 pH值:此值尽可能低一些。 涣散性:用于塑料的纳米碳酸钙需求在塑料体系中具有杰出涣散性,避免颗粒的二次凝集。 重金属的含量:此含量越低越好。 不溶物:首要是指纳米碳酸钙中的黑点和黄点等杂质,有必要严格操控。 (3)纳米碳酸钙在涂猜中的运用 纳米碳酸钙在涂猜中不只作为优质增白的颜料,下降本钱,进步涂料的光泽度,枯燥性和掩盖力,还有通明性、安稳性、补强效果、快干等特色。在汽车涂料、粉末涂料、建筑涂猜中,可以部分或悉数代替钛,完全可以到达相同的效果。粒径小于80nm的纳米碳酸钙具有杰出的触变性,可运用于汽车底盘防石击涂料和面漆。纳米碳酸钙运用于涂猜中的几个技能要素 杰出的剪切稀化效应:该效应可以确保施工喷涂中下降黏度,具有杰出的活动性不把喷口阻塞。 杰出的触变功用:粒径以30~80 nm为宜。 (4) 纳米碳酸钙在油墨中的运用 印刷油墨商场要求高功用的纳米碳酸钙。纳米碳酸钙用于油墨产品中表现出优异的涣散性、通明性、极好的光泽和优异的油墨吸收性以及枯燥性。用于油墨的纳米碳酸钙有必要通过活性处理,晶型以立方体和球形为主。纳米碳酸钙运用于油墨中的几个技能要素 晶型:立方体纳米碳酸钙具有活动性好和吸油值低以及涣散性好等长处,很合适用于油墨中的填料。 通明度:它与粒径和晶型以及涣散性有关。 细度:它是反映纳米碳酸钙及其它颜料的研墨程度和涣散情况的目标。碳酸钙应尽可能让不溶物越低越好,这样能使涣散性好。 黏度:它与纳米碳酸钙的用量和涣散性以及粒径有关。 活动度:油墨的活动度是黏度的倒数,表明油墨的稀稠程度。 光泽度:它是大多数油墨的一项首要的特性目标。 白度:白度一般大于80%,假如太高将影响其它颜料的遮盖力。 水分:油墨对水分的要求不高,小于3%即可。 (5) 纳米碳酸钙在胶黏剂中的运用 胶黏剂(adhesive) :又称粘合剂、粘接剂,简称胶。它是一种可以把两种同类或不同类材料严密地结合在一起的物质。 纳米碳酸钙运用于胶黏剂中的几个技能要素 晶型:立方体、菱形六面体、立方体部分呈链锁状的晶型比较合适用于胶黏剂。 16 粒径:以60~100 nm为宜。 水分:纳米碳酸钙的水分含量低为宜,一般小于0.5%。 pH值:此值偏低为宜。 吸油值:它是影响碳酸钙在胶中浸润性的要素。 比表面积:纳米碳酸钙的比表面积在20~25m2/g为宜。 表面改性:纳米碳酸钙表面改性效果的好坏将影响其颗粒对胶体的掺合效果,影响胶体的触变性。 (6) 纳米碳酸钙在造纸中的运用 在造纸填料方面,纳米碳酸钙现在首要用于特殊纸制品,如尿不湿、卫生巾等。其高避光性、高亮度,可进步纸品的白度和避光性;其高胀大性,能使造纸厂运用更多的填料而少用纸浆,大幅度下降原材料本钱;纳米碳酸钙粒度细微、均匀、对纸机的磨损小,并使出产的纸制品愈加均匀、平坦;其高吸油值,能进步彩色纸的颜料结实性,还赋予纸张杰出的折曲性、柔软性,以及对油墨和水杰出的吸收性。 (7) 纳米碳酸钙在化装品中的运用 碳酸钙在化装品中的运用在很早以前就有人运用,如用珍珠粉进行化装或用温泉的碳酸钙泥浆进行化装等。工业界在精研天然碳酸泉的根底上,仿照天然碳酸温泉效果和有利化学成分,辅之具有美白和保湿成效成分,现已制备出人工碳酸泉制剂。 (8) 在其他方面的运用 食物 食物专用纳米碳酸钙以其纯度高、涣散性好、抗沉降功用优越、溶解性好、简单吸收、口感好、超低杂质含量等特性广泛运用于食物范畴;作碱性剂、养分弥补剂、面团调节剂、固化剂、酵母养料、抗结块剂、疏松剂、胶姆糖助剂、改性剂,特别适应于钙养分强化保健食物、钙片、胶囊、面制品、谷物早餐、饼干、乳制品、豆粉、软饮料、藕粉等。 医药 纳米碳酸钙在药品中有着极其重要的用处。普通碳酸钙因为粒径大,不易被人体吸收,所以补钙药品大多是选用有机钙,有利于人体吸收,补钙效果好,但本钱较高,报价昂贵。纳米碳酸钙的粒径比普通碳酸钙小得多,以无机钙的方式人体极易吸收,本钱比有机钙低得多,比糖尿患者、尿毒症患者选用有机钙补钙带来的副效应少得多。 医药级碳酸钙在药品配方中作中和剂、助滤剂、缓冲剂和溶解剂以及作填料和钙源弥补剂。钙是保持人体神经、肌肉、骨骼体系、细胞膜和毛细血管通透性正常功用所必需。用于妊娠、哺乳妇女、更年期妇女、老年人等的钙弥补,也可用于防治骨质疏松症。 农业 运用纳米碳酸钙对农膜改性处理可解决本钱、功用与报价的对立。尽管无机纳米碳酸钙与普通填料相同,不能起到对农膜的直接降解效果,但因为纳米碳酸钙特有的功用,使其能大份额均匀地填充于农膜中,使产品在成型和施行二次拉伸时,表面和内部构成很多细小缝隙,协助并加快光/生物助剂对农膜的降解,制成的农膜既能确保质量和运用功用,又不添加出产本钱,还可完成快速降解。

硫化叶菌对镍钼硫化矿的浸出作用

2019-02-21 11:21:37

一、前语 生物冶金是树立环境友好型冶金形式的一个方向,但与传统湿法浸矿工艺比较,现行硫化矿细菌氧化浸出技能在处理硫化矿方面尚没有真实具有竞赛优势,首要原因是浸出速度慢、浸出周期长,然后使运营本钱偏高,运用仅局限于一些较高价值低档次硫化矿。耐温菌浸出技能的研讨与开展是进步反响速度的要害一步。 现在在生物冶金技能中大多选用氧化亚铁硫杆菌(Thiobacillus ferrooxidans)浸出有色金属,而对钼、镍等重要有色金属的生物浸出报导较少,且仅限于常温菌。一些研讨者选用常温菌浸出低档次钼矿,但浸出率均不抱负且浸出周期长,原因之一在于常温菌的抗钼才干很差。杨显万等用氧化亚铁硫杆菌处理一种含Cu和Mo 的低档次矿,在30℃条件下浸出60 d, Cu 浸出率为60%,而Mo 浸出率仅为0.34%。Donati 等发现氧化亚铁硫杆菌不被MoS3 表面吸附,原因是Mo 对细菌有毒性。Hammaini 等[8]的研讨标明,在9K 培育基顶用T.ferrooxidans 浸矿,1 mmol/L 钼对铁氧化已有按捺作用,2 mmol/L 则彻底按捺铁氧化。经过驯化能够大大进步细菌的耐钼才干,童雄等研讨标明,钼的硫化矿浸出有菌条件比无菌时浸出速度快5 倍。在细菌习惯矿藏前,只能得到15~25 mg/L 的钼浸出液,经过驯化培育,可进步到200 mg/L 以上。本作业选用金属硫叶菌(Sulfolobus metallicus)嗜热菌作为驯化浸矿菌种,对镍钼矿的浸出进行了体系研讨,并与常温菌浸矿才干作了比较。成果标明,古生嗜热菌的金属硫叶菌对镍钼矿的浸出能够战胜常温菌浸出周期长、浸出率低的缺点,尤其在耐钼安稳性上有严重改进。研讨成果有望为生物法提取镍钼等宝贵金属的工艺规划和运用供给重要依据,关于稀有金属生物浸出的菌种选育和拓宽具有重要意义。 二、试验 (一)材料、试剂及仪器 所用矿样为贵州镍钼硫化矿,其含镍矿藏首要为二硫镍矿(NiS2 )、辉镍矿(Ni3S4)和辉砷镍矿(NiAsS),少数或微量针镍矿(NiS)和紫硫镍铁矿(FeMnS4)、硫镍铁矿和含镍黄铁矿等,矿石均匀含钼达5%,其间的钼矿藏是一种胶状的集合体(胶硫钼矿,Jordisite),所以,X 衍射分析没有检测到硫化钼的存在。深化的矿藏学研讨标明,这种钼集合体除硫与钼外,碳也是首要元素,因而称为“碳硫钼矿”。由于碳的原子量较低,故光谱半定量分析未检出。矿藏的首要成分见表1 和图1。 表1  贵州镍钼硫化矿光谱半定量分析成果图1  矿藏X 射线衍射图谱 试验前矿样经烘干、细磨至需求粒径。 菌种:金属硫叶菌(Sulfolobus metallicus,购于日本菌种保藏中心)属古生菌,能够好氧成长,既能氧化S又能氧化Fe2+,最适温度为65℃,选用M174 培育基培育( 成分见表2)。氧化亚铁硫杆菌(Thiobacillus ferrooxidans)由中国科学院微生物研讨所供给,选用9K培育基(见表3)培育。 表2  金属硫叶菌的M174 培育基表3  9K 培育基试剂与仪器:硫酸铵,硼砂,钼酸钠,,酵母等;日立F-2500 型荧光分光光度计,XSP-24N-103型生物显微镜,TZL-16 高速离心机,THZ-82 恒温水浴振动器,PHS-29A 型数字pH 计,原子吸收仪。 (二)试验办法 1、细菌的驯化及无铁细胞悬浮液的制备 细菌驯化:浸出试验前,Sulfolobus metallicus 在相同的矿藏、矿浆浓度条件下进行驯化,使细菌习惯浸矿环境,并进步菌株的耐钼才干。驯化条件:在装有100mL 培育基的150 mL 三角瓶中参加粒径 终究以3000 r/min 离心除矿,以10000 r/min 离心搜集驯化后的细菌,作为浸矿菌种。若当即浸矿,则可接入浸矿液中,不然置入冰箱4℃保存。细胞计数选用血球计数板法。 无铁细胞悬浮液的制备:将培育好的菌液置于低速离心机中3000 r/min 离心10 min,以除掉菌液中的大颗粒沉积物,上清液用高速离心机进行细胞别离,10000r/min 离心30 min,细胞沉积物用pH 1.8 的无菌蒸馏水洗下,清洗数次后稀释至原体积,搜集的细胞当即运用或在4℃冰箱保存。 2、摇瓶浸出 不同条件浸样各重复3 次,取其均匀值。培育基100mL,接种量均为10%(φ),初始pH 为2(浸出进程始终坚持该值),温度65℃, 转速200 r/min,浸出时刻均为20 d.。浸前各摇瓶称重,定时取样,并弥补蒸腾的水分和取走的培育基。浸出率以浸出20 d 的渣样计。浸出20d 的矿渣经抽滤,浸渣用1%的稀洗刷数次后烘干,称重,检测其间Ni 和Mo 含量。 三、成果与分析 (一)无菌及驯化与非驯化条件下的细菌浸出成果 本试验将细菌浸出分为无菌组、以Fe2+为动力培育的驯化细菌浸出组、以Fe2+为动力培育的非驯化浸出组、以S0 为动力培育的驯化细菌浸出组、以S0 为动力培育的非驯化细菌浸出组,顺次编号为No.1~5。矿浆浓度为10 g/L,矿藏粒径 表4  不同培育条件下的浸出成果(二) Fe3+对细菌浸出作用及介质电位的影响 以有菌无铁、有菌有铁、无菌有铁和无菌无铁4 组共12 个浸出样进行摇瓶浸出,编号顺次为1~4。有铁组均参加0.5 g/L Fe3+,矿浆均为10 g/L,矿藏粒径 表5  有菌无铁、有菌有铁、无菌有铁和无菌无铁对细菌浸出的影响对加Fe3+和不加Fe3+的浸出液的总铁浓度和介质电位改动作了比较,总铁浓度成果见图2,可见未加Fe3+浸出时,前6 d 的介质总铁浓度和增加速度比参加0.5g/L Fe3+低许多,这标明加铁组在浸出开端就很快发动了对矿藏的浸出氧化,而对照组由于没有初始Fe3+的存在其浸出发动缓慢许多.图2  浸出初期加铁与不加铁介质中总铁浓度 外加0.5 g/L Fe3+也改动了浸出液的电位。依据伦斯特方程EFe3+/Fe2+=0.78+0.059lg([Fe3+]/[Fe2+]),介质电位取决于溶液中Fe3+的浓度。电位测定显现,有菌外加0.5g/L Fe3+与不加Fe3+的电位改动有差异,加Fe3+的电位比不加Fe3+高,两者在浸出进程中电位都先缓慢下降再缓慢上升(图3)。由于浸出开端一周左右,65℃下矿藏中的FeMoO4 开端水解开释Fe2+,使Fe2+浓度增大,而此刻浸出液中的细菌尚处于延滞期或习惯期,氧化Fe2+的才干极弱,因而外加Fe3+组的Fe3+/Fe2+比下降,而不加Fe3+组Fe3+/Fe2+极低,故两者的电位呈下降趋势。之后又缓慢上升是由于细菌由延滞期进入指数增加期和安稳时,氧化Fe2+的才干增强,浸出液Fe3+/Fe2+逐步增大,电位逐步上升,当至必定电位值后,Fe3+/Fe2+处于安稳状况,此刻浸出液中细菌氧化Fe2+生成Fe3+的量与矿藏中FeMoO4 水解开释的Fe2+量比安稳,浸出液电位在500mV 左右。到浸出后期,由于浸出液中的细菌数削减,氧化 Fe2+才干大大削弱,而矿藏中从FeMoO4 开释出的Fe2+浓度改动不大,且Fe3+作为氧化剂而耗费,Fe3+/Fe2+比下降(若发作铁钒沉积,Fe3+浓度会下降较多),导致浸出液电位下降,但不低于300 mV。总归,在镍钼硫化矿加铁和不加铁的细菌浸出中,浸出液中的电位上升幅度都不大,很或许是由于高温下矿藏中开释的Fe2+及细菌氧化Fe2+生成Fe3+的才干受钼浓度影响而构成Fe3+/Fe2+上升有限。这也是浸出液电位全体不高的原因之一。图 3  加Fe3+组与对照组电位改动 (三)矿浆浓度对细菌浸出的影响 矿藏粒径 表6  矿浆浓度对细菌浸出的影响(四)pH 对细菌浸出的影响 各浸样矿浆浓度均为10 g/L,矿藏粒径 表7  不同pH 条件下的浸出成果(五)矿藏粒径对细菌浸出的影响 每个浸样均参加0.5 g/L Fe3+,无菌组作对照。矿浆浓度10 g/L,接种量10%,温度65℃,浸出20 d。不同矿藏粒径的浸出成果如表8 所示。从表看出,有菌组 表8  矿藏粒径对细菌浸出的影响(六)浸出进程中无菌和有菌样浸出液的 pH 值改动从图4 看出,无菌组和有菌组在浸出进程中的pH改动趋势相反,前者pH 呈逐步上升趋势,然后者则先升高然后逐步下降。这是由于有菌组在浸出进程中开端遭到矿藏脉石的影响而使浸出液pH 上升,当浸出到第4 d 时,细菌不断将矿藏表面的S0氧化成H2SO4,使浸出液的pH 下降。图 4  有菌和无菌浸样在浸出进程中的pH 改动 (七)金属硫叶菌与氧化亚铁硫杆菌的浸出作用比较 在培育基体积(100 mL)、接种量(10%)、矿浆浓度(10g/L)、矿藏粒径(图5  金属硫叶菌与氧化亚铁硫杆菌对镍、钼浸出作用的比较 (八)浸出进程中 Cu,Zn,Fe 含量的改动 浸出进程中浸出液中的有价金属Cu, Zn, Fe 浓度改动如图6 所示。到219.5 h,浸出液中Cu, Zn 和Fe 的浓度别离到达11.07, 8.17 和267.6 mg/L。本研讨标明,当Cu2+浓度小于0.5 g/L 和Zn2+浓度小于1 g/L 时对细菌氧化Fe2+的才干没有影响。该浸矿菌能氧化30 g/L 乃至更高浓度的Fe2+,因而,浸出进程中这3 种金属离子对细菌的浸出不会构成影响。矿藏中其他金属离子对细菌浸矿的影响有待进一步研讨。图 6  浸出进程中Cu, Zn, Fe 浓度改动 (九)金属硫叶菌在浸出液中的增加与钼浓度的联系 挑选10 g/L 矿浆浓度,10%的接种量(接种浓度为4.4×107 mL−1),全程盯梢浸样中的细菌增加和被浸出钼浓度的改动,成果如表9。从表能够看出,经过驯化的金属硫叶菌有很强的耐钼才干。浸出14 d 浸出液中钼浓度达173.74 mg/L,游离细菌为2.54×107 mL−1;浸出20 d 浸出液中钼浓度达283.37 mg/L,游离细菌浓度为0.83×107 mL−1。经过盯梢记数和比较发现,浸出10~12 d时,浸出液中的游离细菌最多,之后逐步削减。因而,在10~12 d 时刻段镍和钼的浸出速率也应是最快的。 表9  浸出时刻、浸出钼浓度与浸出液中S.m 菌浓度的联系图7  浸出16 d 无菌和有菌浸出样的矿粒表面描摹 (十)浸出进程中矿粒表面描摹 浸出进程中矿粒表面的改动能够反映细菌与矿藏的作用方法。在浸出16 d 时,将有菌和无菌浸样中的矿粒别离进行电镜扫描调查,发现无菌样的矿粒表面很润滑,没有细菌与矿藏作用的任何迹象,而有菌样的矿藏表面则呈现很多的腐蚀坑,这显然是细菌附在矿粒表面不断氧化掩盖在矿藏表面的S0 发作硫酸留下的腐蚀痕迹,如图7 所示。(十一)细菌浸矿作用的机理分析 金属硫叶菌以直接作用方法分化二硫镍矿(NiS2)、辉镍矿(Ni3S4)、针镍矿(NiS)。硫化矿细菌浸出的作用机理一向存在着两种观念,即直接作用和直接作用。直接作用就是细菌与硫化矿直接触摸,经过排泄酶来分化矿藏,以浸出矿藏中的金属离子。而直接作用则是细菌经过溶液中的Fe3+和H+与矿藏作用,浸出金属离子。金属硫叶菌浸出NiS2的作用方法是直接作用,这能够从电镜调查及表4 和5 的试验成果得以证明。无菌组和增加Fe3+的浸出试验标明,在无菌无铁的浸出样中,Ni 浸出率达77.64%,这应该是酸性条件下H+与矿藏反响所造成的。有菌无铁和无菌有铁浸出的Ni 浸出率相差不大,标明浸出进程中有菌组经过细菌氧化Fe2+(矿藏中分化)发作Fe3+及细菌经过附在矿粒表面不断氧化浸出进程中发作的S0而发作硫酸,使浸出液坚持必定酸性环境,并在矿藏表面构成许多酸腐蚀坑。无菌有铁组则是经过Fe3+和H+的化学作用浸出,首要反响如下:金属硫叶菌对MoS2 的浸出作用也是直接作用,Fe3+是仅有的氧化剂。李宏煦等以为FeS2, MoS2, WS2氧化硫时是以S2O32−为中间进程而完结的,S2O32−终究氧化为SO42−,伴有部分S7 则被细菌进一步氧化为硫酸,其反响式为:Huang 等以为,在低pH 下,Fe3+经过σ键与黄铁矿表面键合,所构成的化学键有利于电子从黄铁矿中的硫转移到Fe3+,电子并非直接从硫的价带而是从黄铁矿与铁离子构成的t2g 轨迹转移到Fe3+。而Fowler 等以为,氧化进程中Fe3+等氧化剂向t2g 轨迹注入空穴,这些空穴可劈开水分子而构成OH−,而OH−具有强氧化性,可与硫反响,使黄铁矿中的S2−氧化。Silverman 等提出,黄铁矿表面构成的铁氢氧化物或氧化态物质经过从t2g 轨迹得电子而积累电荷,积累的电荷发作电子态改变发作正电位,然后使S2−氧化。同归于细菌直接氧化作用机理的辉钼矿,其氧化进程与黄铁矿相同。在无菌条件下钼的浸出为O2 氧化MoS2所造成的。由于在O2存在的条件下,一切安稳的硫化矿在任何pH 值下都是不安稳的,可被氧化成S, HSO4−, SO42−。而在高温条件下,从体系的热力学和动力学分析可知,高温有利于矿石浸出进程的进行,因而嗜热菌比常温菌的生物浸矿更具热力学和动力学优势。 四、定论 (一)比无菌组高许多,标明细菌浸出比简略的酸浸出作用更好,速度更快。 (二)驯化组比非驯化组的浸出率高。因而,在选用细菌浸出钼矿前,应对细菌进行驯化,使其习惯浸出进程中的物理和化学环境,如钼浓度和机械剪切力等。嗜热金属硫叶菌对矿中镍和钼的浸出率显着高于常温菌氧化亚铁硫杆菌。 (三)以S0培育的细菌浸出率略低于以Fe2+培育的细菌。尽管金属硫叶菌既能氧化S0又能氧化Fe2+,但以Fe2+培育的细菌在浸出时不只具有氧化S0的才干,并且氧化Fe2+的才干更强。 (四)5 g/L 的矿浆浓度比别的几组浓度浸出样的钼浸出率高许多。标明较高矿浆浓度的镍钼硫化矿不只具有较大的剪切力,还具有相对高的钼浓度,对金属硫叶菌的成长代谢有影响,对细菌的浸矿才干发作了必定的按捺作用。必定矿浆浓度对镍浸出率影响不显着。

铀矿石冶金菌优势菌株的研究

2019-01-31 11:05:59

目    录 序言 (1)国内外研讨现状 (2)生物冶金开展趋势及远景 (3)冶金微生物 (4)浸矿系统中的微生物 (5)冶金微生物的多样性 (6)环境微生物多样性的研讨办法 (7)双层固体平板法 (8)本文的研讨意图和含义 1实验材料与仪器  1.1菌株来历 1.2首要仪器 1.3培育基 1.3.1液体培育基 1.3.2固体培育基 2 实验办法 2.1活性培育 2.1.1富集办法 2.1.2 Fe分析办法 2.2 菌株的挑选和纯化 2.2.1 稀释涂布法 2.3 菌株的判定 2.4.1  菌株的判定 2.4.2单菌落的富集培育 2.4.2.1氧化亚铁硫杆菌属 2.4.2.2氧化硫硫杆菌属 2.4.2.3异养菌类 2.4.3基因组DNA的提取 2.4.3.1蛋白酶K法 2.5 最佳成长条件评论 2.5.1铁杆菌 2.5.1.1初始pH值的影响 2.5.1.2接种量的影响 2.5.1.3温度的影响 2.5.2硫杆菌 2.5.2.1不同底物对成长的影响 3 实验成果分析与评论 3.1 活性培育成果分析 3.1.2 铁氧化速率 3.2 菌株挑选成果 3.2.1铁杆菌 3.2.2硫杆菌 3.2.3异养菌 3.3菌株判定成果 3.3.1菌体形状特征 3.3.2显微调查 3.3.2.1普通染色法调查成果 3.3.2.2革兰氏染色成果 3.3.3基因组DNA提取 3.3.3.1 蛋白酶K提取DNA电泳成果 4.3.3.2 16Sr PCR成果 3.4铁氧化曲线 3.4.1 :总铁的改变状况 3.4.1.1细菌氧化Fe2+的机理 3.5成长因子 3.5.1铁杆菌A6 3.5.1.1初始pH 3.5.1.2温度 3.5.1.3接种量的影响 3.5.2硫杆菌B1 3.5.2.1 B1对单质S的运用 3.5.2.2硫杆菌B1对Na2S2O3的运用 3.5.2.3硫杆菌B1对Na2SO3的运用 结  论 参考文献 序言     当今国际金属矿产资源日益干涸,跟着富矿、易挖掘矿不断发掘,低档次、鸿沟档次矿及尾矿许多堆积,惯例冶炼办法本钱过高,使这部分矿产资源不能够运用。生物冶金因具有本钱低、生态环境友好而成为近年来各国争相研讨的热门,并已完结工业化。生物冶金是近代学科穿插开展生物工程技能和矿藏加工技能相结合的工业上的一种新工艺[1]。按微生物在冶金进程中的效果,生物冶金可分为生物浸出、生物氧化、生物吸赞同生物堆集[2]现在生物冶金技能现已在提取低档次难处理矿石中的金属方 面得到大规划的运用,提取的金属包含铜、金、镍、锌、钴、铀等。生物冶金出产的铜、金、铀别离占国际总产量的15%、25%、13%[3],因而生物冶金具有宽广的远景。 (1)国内外研讨现状难浸金矿的细菌氧化预处理,最早1946年在法国提出,但一向到20世纪80年代中期1986年第非金科公司投产时,生物湿法冶金才开端推行到其它金属的提取[4]。自1980年以来,智利、美国、澳大利亚等国相继建成了大规划铜矿藏堆浸厂,锌、镍、钻、铀等金属的生物提取技能亦得到研讨。加拿大用细菌浸铀规划最大、前史最久,安大略州伊利埃特湖区三铀矿公司1986年产铀360t。智利北部的Qubeard Balanac矿山是现在生物浸出实践中十分好的典范,并展现了生物湿法冶金在矿业中的成功开展。我国史书记载“禹收九牧之金,铸九鼎,象神州。”阐明早在原始社会就具有冶金才能了,公元11世纪记载有“胆水浸铜”,可见古人很早就会运用生物冶金技能。在国内,微生物浸矿的研讨始于20世 纪60年代,中科院微生物研讨所对铜官山铜矿进行 实验研讨,后因种种原因而一度中止。20世纪70年代初,在湖南711铀矿进行了处理量为700t贫铀矿石的细菌堆浸扩展实验[5]。核工业北京化工冶 金研讨院在抚州铀矿厂进行半工业细菌堆浸实验收回铀1142.14kg[6]。2000年我国榜首座年产50t规划的难浸金精矿生物氧化—化提金车间在烟台市 黄金冶炼厂正式投产,标志着我国细菌氧化技能在难处理金矿提金工艺中现已从科研阶段转向正式工 业出产[7]。在铜矿挖掘中,1997年5月,德兴铜 选用细菌堆浸技能处理含铜0. 09%~0. 25%的废石,建成了出产才能2000t/a的湿法铜厂[8]。福建紫金铜矿已探明的铜金属储量253万t,属低档次含砷铜矿,铜的均匀档次0.45%,含As2037%。该矿选用生物堆浸技能浸出铜,并建成了年产300t阴极铜的实验厂,现在正在进行建造年产20000t阴极铜的微生物堆浸厂的前期工作。此外,紫金山铜矿还将运用这一新工艺着手进行出产有色金属纳米材料和其它新式粉体材料及复合粉体材料的研讨,逐步完结传统矿业经济向新式经济工业跨进,力求在五年内把紫金矿业建造成为国内闻名的高科技效益型矿业厂商集团,并完结紫金山铜矿的全面开发。(2) 生物冶金开展趋势及远景生物冶金因其有利于环境保护、基建投资少、在某些状况下运作本钱低一级优越性,将取得进一步的开展。现在研讨热门集中于菌种选育,微生物—矿藏界面相互效果实质及其反响速度操控进程,对原生硫化矿提取高效冶金细菌,加强细菌对重金属离子及有毒离子的习惯性,浸矿微生物生态规矩、遗传及代谢调控机制。工艺及工程方面开展趋势为:习惯气候改变的高效细菌,堆浸和就地浸出的水文地质及矿藏学研讨,浸矿工艺流程的优化以及生物冶金规划化,微生物运用于矿山废水以便从水溶液提取贵金属,对其它非金属矿进行生物浸矿探究。   (3) 冶金微生物1947年,Colmer和Hinckle[9]首先从酸性矿坑水中别离出能氧化硫化矿的氧化亚铁硫杆菌,这今后Temple[10]和Leathen[11]对这种自养细菌的特性进行了研讨,发现这种细菌能将Fe2+氧化成Fe3+,并能把矿藏中的硫化物氧化为硫酸。经过半个多世纪的研讨,能够运用生物冶金的细菌有几十种,按它们成长的最佳温度能够分为三类:中温菌(20~40℃)、中等嗜热菌(40~60℃)与高温菌(大于60℃)。它们能够一起把铁和硫作为动力,而一些原核生物只能氧化其间之一作为动力[12]。冶金环境中的微生物是多样的,至今现已报导有13个属类的细菌能够氧化浸出金属硫化物,即Acidianus、Acidimicrobium、Acidiphilium、Acidithioba- cillus、Ferrimicrobium、Ferromicrobium, Ferroplasma, Leptospirillum、Sulfobacillus、Sulfolobus、Sulfurispha- era、Thermoplasma和Thiobacillus。还有一些属的细 菌能够在酸性条件下成长,现在还没有发现它们的 效果,可是不能够扫除这种或许性。这些属包含 Acidisphaera、Acidiobacterium、Alicyclobacillus、Acidi- omonas、Acidiothermus、Picrophilus、Frateuria, Halo- thiobacillus、Propionibacterium和Thiomonas[13]。常用的浸矿细菌首要有:嗜酸性氧化硫硫杆菌 (Acidithiobacillus thiooxidans)、嗜酸性氧化亚铁铁 杆菌(Acidiferrobacillus ferrooxidans)、嗜酸性氧化亚 铁硫杆菌(Acidithiobacillus ferrooxidans)、硫化叶菌属(Sulpolobus)。其间运用最多的是A.t ferrooxi- dans和A.t thiooxidans,尤以前者的生物氧化研讨最为深化[14]。(4) 浸矿系统中的微生物 生物浸出中运用的首要是化能自养微生物,此类微生物可从无机物的氧化进程中取得能量,并以CO2为首要碳源和以无机含氮化合物作为氮源组成细胞物质;又可进一步细分为硫化细菌、氢细菌、铁细菌和硝化细菌等4种生理亚群[15,16]。在硫化矿生物浸出中运用最多的为硫化细菌,在有空气(含有电子受体和少量CO2)、必定的pH、温度及必定的含氮无机物状况下,硫化细菌就能成长繁衍,并将元素S和某些复原态的硫化物氧化成S042-从中取得能量。其间嗜酸氧化亚铁硫杆菌还能氧化金属硫化物,将Fe2+离子氧化成Fe3+离子,三价铁盐是湿法冶金中常用的氧化剂。因而有色冶金中运用嗜酸氧化亚铁硫杆菌在常温酸性溶液中,进行硫化矿石或精矿浸出,使金属硫化物转变为可溶性硫酸盐[17]。按效果的温度这些菌种可分为:中温菌种(msophiles,20-40℃)、中等嗜高温菌种(moderatethermophiles,40-60℃)、嗜高温菌种(thermoples,>60℃)[15-16]。特别是近年来从含硫丰厚的酸性热泉流中别离出的酸热硫化叶片菌、嗜酸热硫球菌以及嗜热嗜酸酸杆菌乃至可在更高的温度下用于硫化矿的酸性浸出[16-18]。矿藏浸出系统中所涉及到的微生物品种是多种多样的,首要有化能自养菌、异养菌和真菌[19,20],此外也有原生动物存在[21]。其间己用于硫化矿生物浸出的菌种首要有嗜酸氧化亚铁硫杆菌(Acidithiobacillusferrooxidans,简称A.f)、嗜酸氧化硫硫杆菌(Acidithiobacillusthiooxidans,简称At)和氧化亚铁微螺菌(Leptospirillum ferrooxidans,简称L.f)。其间嗜酸氧化亚铁硫杆菌(Af能够氧化Fe2+离子、元素硫和复原态硫化物,嗜酸氧化硫硫杆菌(A.t)能氧化元素硫,不能氧化Fe2+离子;氧化亚铁微螺菌(Lf能氧化Fe2+离子,但不能氧化元素硫[18]。除以上几种首要浸矿细菌外,现在许多研讨发现,在硫化矿堆浸系统、硫化矿酸性废水以及酸性温泉中存在其它多种微生物[19,22].在一些堆浸系统和矿山废水中,因为地热或硫化物氧化发作热量,使这些系统中存在着温度梯度,不同温度生态习惯性的细菌生活在不同的温度环境中。在40℃以下的环境中,首要的微生物是嗜酸氧化亚铁硫杆菌和氧化硫硫杆菌。在温度为40-50℃的环境下,首要是硫叶菌属等中等嗜高温菌细菌。在温度超越50℃的极点环境下,只要硫化叶菌等少量几种嗜高温的微生物存在[23]。这些高与此一起,HerbertL等人还从浸矿系统中发现许多异养细菌,包含中温细菌、嗜热细菌和嗜热古细菌[23] 多项研讨标明混合微生物群落存在协同浸矿效果,混合种群细菌间的协同效果能够优化环境中群落活性,相互扬长避短,使互相更好地得到成长,进而促进矿藏的氧化,其浸矿效果比单菌种更好。研讨标明异养菌(如AcidiPhilium spp.)能消化浸矿系统中自养菌的有机代谢产品及残体,下降有机物对自养菌的毒害效果,并能发作维生素、辅因子、鳌合物和表面活性剂,促进自养浸矿细菌的成长及其对金属硫化物的浸出效果。硫氧化细菌(如AL.aldus)能够代谢硫化矿氧化溶解时表面掩盖的单质硫,确保Fe3+能够接连地氧化,硫化矿表面的含硫基团发作Fe2+供铁氧化细菌成长一起阻挠或推迟矿石表面硫膜的构成而促进对金属硫化物的浸出[23,24,25]。 共培育的铁氧化菌L.ferrooxidans和硫氧化菌A.thtoox或ALca比单一菌种对黄铜矿具有更高的溶解功率[26]。Fcihilus和A.thtooxidans的混合培育物能够氧化黄铁矿,可是单菌种不具备此才能。铁氧化菌属如bacillussPp.和A.ferrooxidans的共生可使混合种群在无有机物存在的状况下快速氧化亚铁离子[27]。尽管A.ferrooxidans的铁氧化速率比sthermosu dooxidans低,可是其二氧化碳固定才能却比sthermosu dooxidans强,因而两者共培育能够快速氧化亚铁离子。 (5)冶金微生物的多样性  跟着微生物对硫化矿的不断氧化,其周围环境条件如pH、温度和溶液中可溶性金属离子的浓度也不断发作改变,这些特殊的环境条件必定约束了生命方式的多样性,因而,在生物出槽或堆或反响器中存在的生命方式比较简略,往往归于单细胞生物,并且其优势菌群首要是细菌和古生菌。它们大多数生活在pH[28],它包含嗜酸氧化亚铁硫杆菌、嗜酸氧化硫硫杆菌和嗜酸喜温硫杆菌。这些细菌遍及存在于国际各地的硫化温泉、酸性矿坑水和其他适合的环境。本属细菌归于小杆状细胞,借助于鞭毛运动。革兰氏阴性。从一种或多种复原态的或部分复原的含硫化合物,包含各种硫化物、无机硫、硫代硫酸盐、连多硫酸盐和盐。终究氧化产品为硫酸盐。最适合温度因种而异。 (6)环境微生物多样性的研讨办法环境微生物多样性的研讨办法许多,从国内外现在选用的办法来看,大致上包含以下四类:(1)传统的微生物平板纯培育办法; (2) Biolog微平板分析办法;(3)磷脂脂肪酸法(PLFA);(4)分子生物学技能办法等。 (7) 双层固体平板法 双层固体平板法是本实验的关键技能,经过对传统单层平板培育 技能的改善,把单层改为上下两层,并在基层平板 参加SJH(Acidiphilium sp. ) 菌株。SJH 菌来自英 Bangor大学嗜酸性研讨室,是一种异养性嗜酸性细 菌(Acidiphilium sp. ) ,在静置条件下,能将Fe3 +复原为Fe2 + ,从中取得能量成长。其根本原理是处于饥饿状况的SJH菌株能够运用任何游离的单糖分子和化能无机自养细菌代谢发作的废物,然后使无机自养细菌取得抱负的成长环境。 (8) 研讨意图和含义     生物湿法冶金的开展己稀有十年的前史,因为本钱低、无污染、操作简略而日益遭到人们的注重,特别适用于我国矿产资源档次低、成分杂乱的显现状况。菌种研讨是湿法冶金的研讨要点,而嗜酸性菌在浸出矿藏的运用中,因为削减了工业反响器的冷却设备,供给了更多的优越性,具有极大的运用远景。     本文旨在经过对中温反响器傍边微生物群落组成结构研讨,别离挑选出其间的部分优势菌株,对其最适成长环境进行评论,进一步加深对中温嗜酸微生物浸矿的了解,为今后的大规划工业运用供给可资学习的数据和经历。     研讨内容包含:    (1) 山南矿区堆浸实验六个采样点活性分析    (2) 对活性最佳的群落进行别离挑选得到单菌落    (3) 对得到的单菌落进行判定和最佳成长环境的研讨 1实验材料与仪器     1.1 菌株来历: 721矿山5000吨堆浸实验采纳酸化处理后矿样S1,S2,S3,S4,S5,S6。 采样用镐头挖去表层15cm的矿石后用小铲子搜集矿石装与废矿泉流瓶内,做好符号贴上标签。取样方位见图1.  图1 取样方位示意图     1.2 首要仪器           BT 224S电子天平                      北京赛多利斯仪器系统有限公司     SHZ-82A气浴恒温振动器                江苏荣华仪器制作有限公司     雷磁PHS—3C精细pH计                  上海精细仪器有限公司     UV-1600紫外、可见分光光度计          北京瑞利分析仪器有限公司     SW-CJ-1FD型单人单面净化工作台        姑苏净化设备有限公司     DNP-9082BS-Ⅲ电子恒温培育箱          上海新苗医疗器械制作有限公司     手提式不锈钢蒸汽消毒器               上海三申医疗器械制作有限公司     TGL-16C高速离心机                    上海安亭科学仪器厂     GL-21M型高速冷冻离心机               湖南湘仪离心机仪器有限公司      XSD-01光学显微镜                     重庆奥特光学仪器有限公司     PCR仪                                德国艾本德公司     M70型制冰机                     美国格兰特我国制冷设备制作有限公司     凝胶电泳和紫外成像系统 1.3培育基1.3.1液体培育基 9K(A液) :(NH4)2 SO4 3.0g/L, KCl 0.11 g/L, K2HPO4 0.15 g/L,MgSO4·7H2O 0.15g/L, Ca (NO3)2 0.101 g/L, pH 1.8; 9k (B 液) : FeSO4·7H2O 25 g/ l, pH 1.8。 Waksman: (NH4 ) 2 SO4 0.12 g/L,K2HPO4 3.100 g/L, MgSO4·7H2O 015 g/L CaCl2 0.1126 g/L,硫粉5g/L,pH4.0。HBS (50倍异养根底盐溶液) : Na2 SO4· 10H2O 7.15 g/L, ( NH4 ) 2 SO4 2.215 g/L,       KCl 2.15 g/L,MgSO4 ·7H2O 2.5 g/L, KH2PO4 2.15 g/L, Ca (NO3 ) 2 ·4H2O 0.17 g/L。YF: 50 倍HBS 20 mL,酵母提取物0.12 g/L, Fructose 0.13 g/L, TE 1mL, pH 3.0。上述选择性培育基选用高压蒸汽灭菌锅121℃灭菌20 min,冷却至室温备用; FeSO4 ·7H2O 选用滤除菌。 1.3.2 固体培育基 FeO: A液: 50倍HBS 8 mL, tryptone soya broth 0.11g, 0.14 ml TE, H2O 276 mL,pH 2.5;B 液: agarose 2.18 g, H2O 100 mL;C液: FeSO4 ·7H2O 1M /L。iFeO:去掉FeO中的tryptone soya broth即可。FeSO: A液:50倍HBS 8mL, tryptone soya broth 0.11 g, 0.12 mL TE, H2O276 mL;B 液: agarose 2.18 g, H2O 100 ml;C液: FeSO4·7H2O 1mol/L。YF : A液: 50倍HBS 8 mL,酵母提取物0.108 g, Fructose 0.112 g, TE 0.14 mL, H2O 292 mL, pH 310;B液: agarose 2.18 g, H2O 100 mL;C液: FeSO4 ·7H2O 1mol /L 。四种选择性固体培育基FeO,iFeO,FeSO,YF前三种为双层固体平板,分上、下两层,除基层培育基中添加SJH菌外,其它成分相同。双层固体平板法是本实验的关键技能,经过对传统单层平板培育技能的改善,把单层改为上下两层,并在基层平板 参加SJH (Acidiphiliumsp ) 菌株。SJH菌来自英Bangor大学嗜酸性研讨室,是一种异养性嗜酸性细菌(Acid iphiliumsp ) ,在静置条件下,能将Fe3+复原为Fe2+ ,从中取得能量成长。其根本原理是处于饥饿状况的SJH菌株能够运用任何游离的单糖分子和化能无机自养细菌代谢发作的废物,然后免除有机物对无机自养细菌的成长按捺。 FeO平板用于别离铁氧化兼性或异养菌; iFeO平板用于别离铁氧化自养菌; FeSO平板用于别离硫氧化或铁硫氧化兼性菌; YF平板为单层,用于别离以有机物为动力的嗜酸性异养细菌或真菌(Johnson, 1995)。各种培育基与琼脂糖别离经高压蒸汽灭菌后冷却至50℃左右(琼脂糖温度可稍高至65℃)混合,别离参加所需量的经滤灭菌的FeSO4·7HO2、连四硫酸钾。基层培育基在45℃时接种入5% SJH,充沛混匀,敏捷倒入平板,待凝结后倒入上层。一般平板制备好后需室温放置2~3d,置4℃冰箱冷藏。 2 实验办法 2.1活性培育 2.1.1富集办法 别离取矿样10g在无菌条件下接种到已灭菌的9K+S+Fe液体培育基中, 35℃,130r/min条件下气浴振动培育。每隔必定的时刻测定Fe2+的转化状况,当Fe2+转化率到达95%-98%时停止,保存。 2.1.2 Fe分析办法液体培育以Fe2+转化为Fe3+的转化速率反映铁氧化细菌的活性;硫氧化细菌活性以pH值的改变为根据。Fe2+、Fe3+选用EDTA滴定法;精确量取1ml待测液,参加1滴1mol/L HCl、1滴显色剂结晶紫、5滴10%磺基水杨酸,此刻溶液色彩为红褐色,用标定好的1mol/L的EDTA滴定,色彩变为浅黄色时为滴定结尾,此刻测定的数值为Fe3+含量。参加氧化剂过硫酸铵能够将溶液中的Fe2+氧化为Fe3+,持续滴定,滴定结尾刻度为总Fe含量。Fe2+含量为总Fe含量减Fe3+含量。 2.2 菌株的挑选和纯化      2.2.1 稀释涂布法    取1mL富集培育菌液按无菌操作梯度稀释到10ˉ8,别离取10ˉ6、10ˉ7、10ˉ8稀释度的菌液0.1mL涂布于固体iFeo,FeSO,YF培育基平板上,置35℃恒温培育箱培育。2.3 菌株的判定2.3.1 菌株的判定      经过对细菌菌落形状特征、显微镜下细菌形状调查、细菌的生理生化特性;DNA提取,16S rPCR ,将细菌进行分类判定[微软我国1] 。 [微软我国2] [微软我国3] 2.3.2单菌落的富集培育 2.3.2.1氧化亚铁硫杆菌属: 先用接种环挑取单菌落,接种到1ml iFeo培育基的离心管中,做好符号。该离心管在35℃恒温培育箱内培育,直到色彩变成棕赤色。在超净工作台内转接到含5mL iFeo培育基的试管中,35℃气浴摇床内培育到色彩至棕赤色。再将该试管转接到50ml 9K+Fe培育基中扩展培育。 2.3.2.2氧化硫硫杆菌属: 先用接种环挑取单菌落,接种到1ml FeSO培育基离心管中,做好符号。该离心管在35℃恒温培育箱内培育,直到色彩变成蛋黄色。在超净工作台内转接到含5ml FeSo培育基的试管中,35℃气浴摇床内培育到色彩至黄色。再将该试管转接到50ml 9K+S培育基中扩展培育,将扩展培育得到的菌液离心得到菌体。 2.3.2.3异养菌类: 挑取但菌落接种在5ml 5倍固体YF平板浓度培育基中,扩展培育后接种到50ml pH值为2.0的 LB培育基内。 LB培育基先高压蒸汽灭菌,在超净工作台内用已灭菌的pH为0.5的硫酸调理pH。 2.3.3基因组DNA的提取 2.3.3.1蛋白酶K法 离心搜集的细胞用TE缓冲液洗刷3-4次以去掉高价铁离子沉积。细胞破壁之前,上述细菌细胞从头悬浮于400ul  pH8.0的TE缓冲液中,并于70℃温育10min,以损坏或许存在的DNA酶的活性。稍冷却后,在上述悬浮液中参加4ul20%(w/v)的SDS和5ul 20mg/ml的蛋白酶K,55℃温育15min。然后,参加等体积的/戊醇(24/l,v/v)混匀后,  12000rp/min  10min,将上清液小心肠吸入到新的EP管中,重复一次;在上清液中参加2倍体积的无水乙醇,并置于-20℃ 20min或过夜。5000rpm离心5min搜集DNA沉积,沉积用70%的乙醇洗刷三次后,天然枯燥并将沉积溶于适量的pH8.0的TE缓冲液中。在溶有DNA的缓冲液中参加终究浓度为 20µg/ml的RNase A, 37℃90min。最终,顺次用等体积的酚//戊醇(25/24/l,v/v)和/戊醇(24/1,v/v)各抽提一次,无水乙醇沉积,70%的乙醇洗刷三次。纯化后的DNA别离用5µl的pH8.0的TE缓冲液和去离子水溶解,4℃保存备用。 2.3.4 16sr DNA PCR扩增 所用的引物序列如下所示: 16SP1:5'-AGAGTTTGATCCTGGCTCAG-3' 16SP2:5'-GGTTACCTTGTTACGACTT-3' 扩增反响系统如下:           ddH2O                     4.3μL           2×GC buffer                12.5μL           dNTPs                        2μL           16SP1                      0.5μL           16SP2                      0.5μL           LA Taq(5U/μL)             0.2μL           模板DNA                    5μL           总体积                      25μL       PCR扩增反响条件为:94℃变性3min;94℃,1min, 48℃,30s; 72℃,1min,30个循环;72℃延伸10min。0.68%的琼脂糖电泳检测(上样量:3μL DNA+3μL的2×buffer)。-20℃保存。     2.4 最佳成长条件     2.4.1铁杆菌:     在35℃气浴摇床,转速为130r/min,接种量为10%,pH=2.0的条件[微软我国4] 下,研讨微生物成长状况,以Fe3+为目标,制作微生物的铁氧化曲线。 2.4.1.1初始pH值的影响 在9K+Fe培育基,35℃气浴摇床,转速为130r/min,接种量为10mL的条件下,研讨培育基不同初始pH对微生物成长状况(以氧化率到达98%所需求的时刻计)的影响。调理初始pH为 1.0、1.5 、2.0 、2.3、2.5 、3.0。 2.4.1.2接种量的影响 在9K+Fe培育基,35℃水浴摇床,转速为130r/min,pH=2.3的条件下,研讨培育基不同接种量对微生物成长状况(单位时刻铁的转化量计)的影响,接种量别离为5%、10%、20%、25%、30%、50%。 2.4.1.3温度的影响 在9K+Fe培育基,转速为130r/min的气浴摇床,接种量10%,pH=2.3的条件下,研讨培育基不同温度对微生物成长状况(铁的转化状况计)的影响,调理温度为25℃、28℃、30℃、35℃、40℃、45℃、. 2.4.2硫杆菌: 2.4.2.1不同底物对成长的影响: 办法 制造不含Fe2+的9K培育基,别离参加单质S、Na2S2O3和Na2SO3,以S计,参加S的浓度为1g/L,即0.03mol/L,于35℃,130r/min条件下培育。因为硫化合物的氧化生成硫酸,是一个产酸进程,可用溶液pH值的下降程度标明硫化合物被细菌氧化量的多少,因而,按必定时刻距离测定溶液中pH值调查硫杆菌对硫化合物的运用状况。pH值由pH计测定。3 实验成果分析与评论 3.1 活性培育成果分析: 3.1.1 pH改变状况:图2  S1-S6在9K+S+Fe培育基pH改变状况 同图2可见,S2,S3,S5,S6  pH出现先上升后下降的趋势,培育0-18h时段氧化亚铁硫杆菌占优势,Fe2+氧化为Fe3+很活泼pH出现上升趋势,此刻氧化硫硫杆菌遭到按捺,培育到20h后,氧化亚铁硫杆菌因为底物缺乏遭到按捺,氧化硫硫杆菌为优势菌株,单质S氧化为SO42-发作H+  pH下降。 S1先下降后上升,标明在培育初始阶段,硫杆菌推迟期比较短,先进入对数成长阶段。中后期铁杆菌进入快速成长阶段,硫杆菌成长遭到按捺。 S4,pH值整个阶段改变不大,标明成长进程中两类细菌平衡且呈必定份额。 3.1.2 铁氧化速率:图3  S1-S6在9K+S+Fe培育基培育进程Fe氧化状况由图能够看出,S1-S6成长曲线呈S型,接种0-10h为延滞期10-20h 为对数成长期,Fe2+敏捷氧化为Fe3+,25h之后因为产品的堆集,铁氧化速率变缓,转入衰亡期。纵向比较发现S3成长速率较快,单位时刻内氧化Fe2+的量最多,最早Fe2+氧化率到达98%。 3.2 菌株挑选成果: 经过划线法,涂布倒平板法,极限稀释法得到多个单菌落。要点研讨了活性最佳的S3菌群。从S3挑选得到6种菌落形状不同的铁杆菌,1种硫杆菌和3种异养菌。 3.2.1铁杆菌:图4 S3在 iFeo平板上别离得到的A1菌株[微软我国5]  培育时刻10天 表1  A1菌落形状特征菌株形状直径(mm)边际通明色彩中心有无Fe沉积Fe沉积圈直径 A1圆形0.5-0.8规矩不通明红褐色有细小可见图5 S3在 iFeo平板上别离得到的A2菌株 培育时刻8天 表2 别离株A2形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A2圆形2-3不规矩不通明红褐色有0.5mm-1.5mm图6  S3在 iFeo平板上别离得到的A3菌株 培育时刻8天 表3 别离株A3形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A3圆形3-8不规矩不通明红褐色有2mm-5mm图7  S3在 iFeo平板上别离得到的A4菌株 培育时刻7天 表4 别离株A4形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形10规矩不通明红褐色有6mm图8  S3在 iFeo平板上别离得到的A5菌株 培育时刻8天 表5  别离株A5形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形3-6规矩不通明红褐色有2mm-4mm图9  S3在 iFeo平板上别离得到的A4菌株 培育时刻7天 表6  别离株A6形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形1-3规矩不通明红褐色有0.5mm-1mm     3.2.2硫杆菌:图10 S3 在FeSO平板别离得到的B1菌株 培育时刻5天 表7 别离株B1形状特征表菌株形状巨细d(mm)边际通明色彩B1椭圆形12规矩不通明中心蛋黄色外围白色    3.2.3异养菌图11 S3 在YF平板别离得到的C1菌株 培育时刻4天 表8 别离株C1形状特征表菌株形状巨细d(mm)边际通明色彩C1圆形50规矩不通明中心棕褐色外围白色图12  S3 在YF平板别离得到的C2菌株  培育时刻3天 表9 别离株C2形状特征表菌株形状巨细(mm)边际通明色彩B1圆形3-5不规矩不通明中心白色外围白灰色图13  S3 在YF平板别离得到的C3菌株  培育时刻3天 表10 别离株C3形状特征表菌株形状巨细(mm)边际通明色彩B1圆形5规矩不通明外层通明中层白色内层褐色 因为A6平板形状比较特殊,本实验室比较罕见,所以本文对A6进行要点研讨 3.3菌株判定成果 3.3.1菌体形状特征 该菌在固体培育基上培育时,培育基的色彩由开端的浅绿色变为黄绿色,约5天左右在培育皿上长出小菌落,该菌落为黄褐色、圆形,直径约0. 5—0. 中部突起,被水合高铁包裹,质地坚固,较难挑起。在显微镜下该菌为短杆状,两头钝圆,以单个、双个或几个呈短链状存在,能运动,革兰氏染色阴性,用测微尺量得菌体直径约0.5-0.7um,长度约1.2-1.8um。 3.3.2显微调查: 3.3.2.1番红染色调查成果: 菌株A6: 形状: 短杆状,两头钝圆,以单个、双个或几个呈短链状存在图14  A6在光学显微镜下400倍 染色液为番红染液 3.3.2.2革兰氏染色成果:革兰氏染色:阴性图15  A6革兰氏染色状况:光学显微镜1000倍下调查     3.3.3基因组DNA提取 3.3.3.1蛋白酶K提取DNA电泳成果 如图所示   图16  为A6  蛋白酶K法提取DNA 琼脂糖凝胶电泳图   (上样量: 3μL DNA+3μL 2×buffer ) D 箭头所指W1为意图DNA 3.3.3.2 16Sr PCR成果图17  为A6 16s rDNA PCR成果图 (P1为Marker,P2,P3,P4为PCR产品电泳图,p5为阴性对照,上样量:3μL DNA+3μL 2×buffer) 如图(17)所得电泳条带成果显现:所得PCR产品片段为1500bp,与估计成果相吻[微软我国6] 合。[微软我国7]  3.4铁氧化曲线s图18  为A6在9K+Fe培育基中35℃  130r/min 制作的铁氧化曲线 由图(18)能够看出,在接种后的初始阶段,因为生存环境的改变,细菌处于推迟期,活性很低,细胞根本不割裂或割裂很少,细菌数量根本保持安稳,所以接种后前5h内培育液的Fe3+改变较小,细菌对铁的氧化速率相对较低.10h后开端出现对数成长,20h 左右到达安稳时. 3.4.1 :总铁的改变状况:图19  为A6在9K+Fe培育基中35℃  130r/min 制作的总铁改变曲线 由图(19)可见,在细菌培育进程中,溶液的总铁含量随时刻改变呈下降趋势,这是因为Fe2+被细菌氧化为Fe3+后,Fe3+又发作水解反响: 4Fe2++2H++O2→2Fe3++2H2O    (1) Fe3++H2O→FeOH2+H+              (2) Fe3++2H2O→Fe(OH)2+2H+      (3)Fe3++3H2O→Fe(OH)3+3H+      (4)3Fe (OH)3+4SO2-4+3Fe3++3H2O+2NH+4→2[NH4Fe3(SO4)2(OH)6]+3H+  (5) 实验中发现,在细菌培育进程中,三角瓶内壁和瓶底逐步生成一层黄色的沉积物———黄铵铁矾[NH4Fe3(SO4)2(OH)6][4]。在生物脱硫和细菌浸矿中,该沉积可占据载体表面,影响底物与代谢产品的传递,导致养分直销缺乏,下降细菌氧化速率 3.4.1.1细菌氧化Fe2+的机理 从反响式(1)能够看出,在Fe2+被细菌氧化为Fe3+进程中, Fe2+为电子供体,O2为电子受体。电子由Fe2+传送至O2的进程中,菌体起着传导电子的效果[29],并将细胞色素c向分子氧投递进程中所 开释的能量贮存在ATP中供成长需求[30]。所以,Fe2+的氧化速率是电子传导速率的直接反映,能够描绘细菌的成长活性 3.5成长因子 3.5.1铁杆菌A6 3.5.1.1初始pH 在35℃气浴摇床,转速为130r/min,接种量为10mL的条件下,研讨培育基不同初始pH对微生物成长状况(培育24h不同出始pH铁氧化百分率计)的影响,实验果如图所示。从图能够看出,跟着培育液的初始pH值的不断增大,氧化率逐步增大,当培育液初始pH值到达2.30后氧化率最高到达98%,当到达2.5后,氧化率敏捷下降.因而,氧化亚铁硫杆菌成长的最佳初始pH值约为2.30.当pH超越3.0时成长遭到按捺.图20 为A6在9K+Fe培育基中35℃  130r/min 不同初始pH,培育24h二价铁氧化率图21 为A6在9K+Fe培育基中35℃  130r/min 不同初始pH,培育进程铁氧化状况 由图(20-21)能够看出当pH 为2.3时单位时刻铁氧化速率最快。 本实验存在的缺乏与改善: 因为在不同的pH,空气也能将Fe2+氧化为Fe3+,所以应该做一组空白实验。 实验进程中发现9K培育基在pH>3时分不安稳,会出现沉积现象。 3.5.1.2温度 温度的影响 从图(22)中能够看出,当温度适合即为30℃~35℃左右时,迟延期为10小时左右,阐明细菌在这一温度规模内,能够十分敏捷地习惯培育液条件,吸收养分物质,转化Fe2+为Fe3+。而当温度超出或低于这一温度规模时,迟延期都会有显着延伸,阐明细菌成长被按捺。   图22 为A6在9K+Fe培育基中pH 2.3  130r/min 不同温度,培育进程铁氧化状况 由图(22)标明温度在35℃时,成长最佳。 本实验存在的缺乏:本实验应该考虑到空气对Fe2+的氧化,也应该做一组空白对照。 3.5.1.3接种量的影响 接种量为1%-10%时争加接种量迟延期的缩短呈线形联系,当接种量到达10%今后持续增大接种量迟延期的缩短仅有细小改变,当到达50%时持续增大接种量反而会 增大迟延期。分析以为这首要是因为,当接种适量添加时,进入培育液中的初始菌数添加,相应的在培育液中能够习惯环境,具有较强活性的菌数也会添加,有利于氧化亚铁硫杆菌的快速繁衍。但因为培育液中的养分物质有限,参加过多的菌液也会影响细菌的成长繁衍。所以养分物质满足充沛,其它条件适宜的状况下应尽量加大细菌的接种量来对其进行培育。图23 为A6在9K+Fe培育基中35℃  130r/min 不同温度,培育进程铁氧化状况 由图(23)能够看出在1%-10%之间,单位时刻内铁氧化速率随接种量的添加呈线性联系,接种量在10%-30%之间单位时刻内铁氧化速率不再呈线性联系,接种量超越30%接种量添加,单位时刻内铁氧化速率反而下降。 3.5.2硫杆菌B1 3.5.2.1 B1对单质S的运用   图24  为B1对单质硫氧化进程中PH改变状况 以单质S为底物时,B1成长进程中pH值的改变状况如图(24)可知,溶液中pH一向呈下降趋势,但在培育的前两10h溶液的pH值下降较缓慢,在第10h后,才有较大起伏下降,或许因为替换动力物质,细菌开端有一段延滞期,活性较差,需求经过本身生理机能的调理以习惯新环境。细菌直接氧化单质硫,与它和单质硫的 直触摸摸有密切联系,涉及到菌体在固体颗粒表面吸附,一起细菌能发作一些表面活性物质,如磷脂酰甘油,能下降介质的表面张力,促进细菌与硫的直触摸摸。Kovaleva等[31].经过电镜调查发现,硫杆菌在元素硫培育基中成长时,有硫被细菌吸收并散布在细胞表面、细胞壁、细胞周质以及细胞色素中。Karavaiko等[32]发现吸收的元素硫构成直径为20~40nm的圆球,且细菌在安稳成长期对元素硫的吸收率最高。     单质硫被氧化硫硫杆菌氧化为硫酸或许经过下列进程[33]:单质硫经过细胞壁进入细胞内部,与复原型胱苷肽(GSH)构成多硫化合物。谷胱苷肽多硫化合是硫氧化系统的活性物质。盐是硫氧化进程中的榜首级产品。或许的反响如下: S8+GSH→GS8SH(1) GS8SH+O2→硫氧化酶→GS8SO2H(2) GS8SO2H+H2O→GS7SH+H2SO3(3) (2)SO32-经过硫磷酸腺苷(APS)效果进一步氧化成SO42-: 2SO32-+2AMP→硫磷酸腺苷复原酶→2APS+4e-(4) 2APS+2Pi→二磷酸腺苷复原酶→2ADP+2SO42-(5) 2ADP→AMP+ATP(6) SO32-氧化进程中,能量以ATP方式贮存。一旦硫被氧化成SO32-时,菌体对动力的运用变得较快。当硫杆菌B1以单质S为底物成长时,整个进程涉及到硫杆菌在固体颗粒表面的吸附及产品透过细胞壁分散等一系列杂乱的传质进程,因为硫杆菌B1在单质S颗粒表面的吸附速度较慢,使得该固相界面传质进程成为单质S运用进程的限速进程[34]。跟着细菌对新环境的习惯以及氧化硫的酶系统的发动,硫杆菌B1就以单质S为基质进行成长繁衍。 3.5.2.2硫杆菌B1对Na2S2O3的运用图25 为B1对Na2S2O3氧化进程中PH改变状况 如图(25)可看出,溶液中pH值改变趋势与以单质S为底物时略有不同。因为Na2S2O3是弱碱性盐,溶液中有微量OH-解离,因而,参加Na2S2O3后,会导致溶液pH值升高,而此刻细菌在新的环境中有一个习惯进程,其活性也较低。经过两天的延滞期,细菌进入快速成长阶段,第30h时,溶液中pH值降至1.49。在培育的进程中可显着看到单质硫的小颗粒。这是因为NaS2O32一方面是强配体,又具有必定复原性,易被细菌的氧化酶氧化,另一方面Na2S2O3在酸性条件下不安稳,易发作歧化反响:Na2S2O3→Na2SO3+S↓,分化发作的硫没能被细菌及时运用则集合沉积[35]。 3.5.2.3硫杆菌B1对Na2SO3的运用图26 为B1对Na2SO3氧化进程中PH改变状况 在以Na2SO3为底物时,B1成长进程中pH值的改变状况如图26所示。因为Na2SO3为弱酸强碱盐,其投加后直接导致溶液pH值的升高。当细菌经过时间短的习惯后,随同菌体的成长,溶液pH值开端下降。前5h的时刻内,pH值下降较快,之后,跟着SO32-的削减,pH值的下降趋势减缓。 经过以上三张图比照咱们能够判别,硫杆菌B1对硫的运用率是Na2S2O3﹥S﹥Na2SO3结  论经过完本钱次实验,总结出以下定论: (1):活性培育发现S2,S3,S5,S6  pH出现先上升后下降的趋势,培育0-18h时段氧化亚铁硫杆菌占优势,Fe2+氧化为Fe3+很活泼pH出现上升趋势,此刻氧化硫硫杆菌遭到按捺,培育到20h后,氧化亚铁硫杆菌因为底物缺乏遭到按捺,氧化硫硫杆菌为优势菌株,单质S氧化为SO42-发作H+  pH下降。 S1先下降后上升,标明在培育初始阶段,硫杆菌推迟期比较短,先进入对数成长阶段。中后期铁杆菌进入快速成长阶段,硫杆菌成长遭到按捺。 S4,pH值整个阶段改变不大,标明成长进程中两类细菌平衡且呈必定份额。 S1-S6成长曲线呈S型,接种0-10h为延滞期10-20h 为对数成长期,Fe2+敏捷氧化为Fe3+,25h之后因为产品的堆集,铁氧化速率变缓,转入衰亡期。纵向比较发现S3成长速率较快,单位时刻内氧化Fe2+的量最多,最早Fe2+氧化率到达98%。 (2):S3经过平板别离,极限稀释法别离得到铁杆菌6株、硫杆菌1株、异养菌3株。 (3):经过 平板菌落调查、显微调查、革兰氏染色、DNA 提取和16 sr DNA PCR 开始 对铁杆菌A6进行判定 (4):对铁杆菌A6的成长因子:温度、初始pH、接种量进行研讨发现最佳成长温度为35℃ 最佳pH为2.3   最合理的接种量为10% (5):对硫杆菌B1不同底物的氧化状况进行分析,发现最适合B1的底物为Na2S2O3其次为单质S。 参考文献 [1]李学亚,叶茜.微生物冶金技能及其运用[J].矿业工程2006 4(2): 49-51. [2]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].2003:4-9. [3]AkeilA.Potential bioleaching developments towards commercial reality:Turkish metalminings' future[J].Minerals Engineering,2004,17: 477-480. [4]杨显万,郭玉霞.生物湿法冶金的回忆与展望[J].云南冶金,2002,31(3): 85-88. [5]肖芳欢.三二○铀矿床改用留矿淋浸采矿法可行性初探[J] .铀矿采,1990 (1) : 7-11. [6]刘健,樊保团,张传敬.抚州铀矿细菌堆浸半工业实验研讨[J].铀矿冶,2001,20(1): 15-27. [7]谢,刘青廷,朱打败.烟台市黄金冶炼厂金精矿生物氧化--化提金工艺[J].黄金,2003,24(9): 31-32. [8]孙业志,吴爱祥,黎建华.微生物在铜矿溶浸挖掘中的运用[J] .金属矿山,2001 (1) : 3-5. [9]ColmerA R andHinckleM E.The Role ofMicroorganisms in AcidMine Drainage: A PreliminaryReport[J]. Science, 1947,106(2751): 253-256. [10]TempleK L and DelchampsEW. Autotrophic Bacteria and the Formation ofAcid in Bituminous CoalMines[J].AppliedMicrobiology,1953,1(5): 255-258. [11] LeathenW W,KinselN A and Braley SA. FerrobacillusFerrooxiands: A ChemosyntheticAutotrophic Bacterium[J]. JBacteria,l 1956, 72(5):700-704. [12]DouglasRawlings,David Barrie Johnson. Biomining [13]陈勃伟,温建康.生物冶金中混合菌的效果[J].金属矿山, 2008, 382(4): 13-14. [14]廖梦霞,邓天龙.难处理硫化矿生物湿法冶金研讨进展(Ⅰ):微生物氧化工艺技能研讨[J].稀有金属, 28(4): 767-768.[15]RawlingsDE.ThemoleeulargenetiesofThtobaeilh ferrooxl dansandothermesoPhilie,aeidoPhilie,ehethotroPhie,iron-orsulfur-oxidizingbaeteria[J].Hydrometallurgy,2001,59:187-201. [16]姜成林,徐丽华.微生物资源学【M].上海:科学出版社,1997. [17]RawlingsDE.Charaeteristiesandadaptabilityofiron-andsulfur-oxidizingmicroorganismsusedforthereeoveryofmetalsfrommineralsandtheir [M]. 2007: 263-278. [18]钟慧芳,陈秀珠,李雅芹,等一个嗜热嗜酸细菌的新属一硫球菌属[J],微生物学报,1982,22(l):l一7. [19]DoPsonM,LindstromEB.AnalysisofeomrnunitycomPositionduringmoderatelythennoPhiliebioleachingofPyrite,arseniealPyrite,andehaleoPyrite[Jl.MierobiologyEeology,2004,48(l):19-28. [20]RomeroJnezCVasquezMetal.CharaeterizationandidentifieationofanironoxidizingLePtosPirillumlikebaeteriumPresentinthehighsulfateleaehinsolutionofacornlnereialbioleaehingPlant[J].ResearehMicrobiolog 2003,154(5):353--359.[21]童雄.微生物浸矿的理论与实践[M〕.北京:冶金工业出版社,1997. [22]RobbinsE1.BacteriaandarehaeainaeidicenVironmentsandakeytoMorphologiealidentifieation[J].Hrobiologia,2000,433:61-89. [23]FowlerTAHolmesPR.MechanismofPyritedissolutioninthePreseneesofthiobacillusferrooxidans[J].Appliedandenvironmentalmierobiology,1999 65(6):2987~2993. [24]DoPsonMLindstromEB.PotentialroleofThiobae“5inarsenoPtebioleaehing[J].APPliedandenvironmentalmierobiology,1999,65(l):36-40. [25]SemenzaMVieraMCurutehetqetal.TheroleofAeldlthiobaeilh5callusinthebioleaehingofmetalsulfides[J].LatinAmerieanAppliedReseareh,2002,32(4):303-306. [26]Ehrlich-HLBrierleyCL.Aeidophiliebaeteriaandtheiraetivityinmineralsulfideoxidation.Microbialogymineralreeovery,1990:3-27. [27]ClarkDANotrisPR.Aeidimicrobiumferrooxidansgen.novsP.nov.:mixedcultureferrousironoxidationwithSulfobaeillussPeeies[J].Mierobiology,1996,141:785一790. [28]KellyWoodAP.ReelassifieationofsomespeeiesofThiobaeillustothenewlydesignatedgeneraAeidithiobaeillusgen.nov.thiobacillusgennov.andThermithiobaeillusgen.nov[J].hitemationaljoumalofsystematieandevolutionarymierobiology200050:511--516. [29]刘清.徐伟昌.张宇.重金属离子对氧化亚铁硫杆菌活性的影.铀矿冶.2004 23 ( 31: 155-157 .) [30]谢海石,刘华.高铁离子浓度下氧化亚铁硫杆菌的成长行为I JI.进程工程学报.2004  4( 1): 43-46 [31]Kovaleva T V,Karavaiko G I,Piskunov V P.Identification and distribution of sulfur in Thiobacillus ferrooxidans cells[J].Mikrobiologiya,1983,52(3)455-460 [32]Karavaiko G I,Gromova L A,Pereverzev N A.Nature of asulfur containing component and its function in Thiobacillusferrooxidans cells[J].Mikrobiologiya,1983,52(4):559-562. [33]柳建造,邱冠周,王淀佐.硫化矿藏细菌浸出机理评论[J].湿法冶金,1997,16(3):1-3.Liu Jian-she,Qiu Guan-zhou,Wang Dian-zuo.Discus-sion on the bacterial leaching mechanism of sulfide mineral[J].Hydrometallurgy,1997,16(3):1-3(.in Chinese)(1) [34]宫磊.生物催化氧化法处理H2S废气的工艺及理论研讨[D].昆明:昆明理工大学,2005:87-101.Gong Lei.Study on the Technology and Theory of Treat-ment of Hydrogen Sulphide by Bio-catalytic OxidationProcess[D].Kunming:Kunming University of Science andTechnology,2005:87-101(.in Chinese) [35]张俊,范伟平,方苹,等.底物对亚铁硫杆菌生物氧化进程的影响[J].南京化工大学学报,2001,23(6):37-41.Zhang Jun,Fan Wei-ping,Fang Ping,et al.Effect of sub-strates on bio-oxidation catalyzed by Thiobacillus ferrooxi-dans[J].Journal of Nanjing University of, Ch, emical Tech-nology,2001-23(6):37-41(.in Chinese).