您所在的位置: 上海有色 > 有色金属产品库 > 铬酸铁

铬酸铁

抱歉!您想要的信息未找到。

铬酸铁价格

更多
抱歉!您想要的信息未找到。

铬酸铁厂家

更多

大连瑞源动力有限公司

天津市佰瑞得商贸有限公司

益阳市久通冶炼有限公司

优锦化工(上海)有限公司

铬酸铁百科

更多

湿法炼锌酸浸液除铁-赤铁矿法除铁

2019-02-14 10:39:49

A  赤铁矿法除铁原理    a  赤铁矿的结构及热力学稳定性    天然赤铁矿(Fe203)含铁70%,有时含钛和镁,呈类质同象,在隐晶质的成分中常存在Si02和Al203的机械混合物。三方晶系,晶格常数为a=0.504nm, c=1.377nm。结构属刚玉型。赤铁矿晶体常呈菱面体和板状。因为以菱面体构成聚片双晶,在其底轴上见三角形条纹,集合体常见有鳞片状、鲕状、具有放射状结构的状块体、赤色粉末状。结晶的赤铁矿呈铁黑至钢灰色,隐晶质或土状、赤色粉末状。    赤铁矿有两种结晶形状,即,γ-Fe203和α-Fe203。天然赤铁矿在结构上归于α-Fe203,它是无磁性的,而γ-Fe203则具有很强的铁磁性。γ型赤铁矿的改动温度大致为400℃,加热到400℃时,它就会向α型改动,一起磁性消失。    加热从低温水溶液中分出氢氧化铁时,首要得到的是针铁矿(Fe203·H20),继而是水赤铁矿(Fe203·0.5H20)。而γ型赤铁矿则是加热进程的第三级产品。针铁矿与γ-Fe203的改动温度是160℃。假如选用高温水解法,能够得到过滤功能杰出的赤铁矿。Fe203-S03-H20系在200℃高温下的等温线如下图所示。在200℃时即便溶液酸度较高Fe203也能大部分沉积分出。 [next]     b  三价铁的高温水解    赤铁矿Fe3+是高温水解的产品。为澄清赤铁矿构成的条件,前人进行了广泛研讨。下图左示出25~200℃时三价铁离子对数值与pH值的联系,明显温度愈高,愈有利于在较高酸度条件下沉铁。下图右表明,在200℃高温下,即便硫酸浓度高达100g/dm3,溶液中的残留铁仍可降到5~6g/dm3。      湿法冶金处理的溶液常含有多种金属硫酸盐。为了从浸出液顶用赤铁矿法除铁,应了解其他硫酸盐的影响。温度高于150`C,Fe3+硫酸盐水解随酸度改动具有不同的反响进程。低酸度时:                              Fe2(S04)3+3H20 ==== Fe203+3H2S04高酸度时:                             Fe2(S04)3+2H20 ==== 2FeOHSO4+H2S04    三价铁氧化物沉积所需的酸度随铜、锌、镁硫酸盐的参加而增高。这是因为硫酸根作为系统硫酸的缓冲剂,即SO42-可与溶液中的H+结合,而降低了硫酸的活度。[next]    硫酸锌是Fe3+沉积时最重要的共存硫酸盐。 硫酸锌的存在, 使得沉积酸度增高,如在200℃时当存在100g/dm3锌时,单纯硫酸铁的酸度由上限63.7g/dm3移向106g/dm3。镁盐和铜盐与锌盐的影响规则相同。    B  赤铁矿在锌湿法冶金中的使用    赤铁矿法与黄铁矾法、针铁矿法相同,是锌冶炼热酸浸出渣处理办法之一。现在据报道选用赤铁矿法处理锌渣的工厂有:日本秋田锌公司的饭岛厂和德国鲁尔锌公司的达特伦厂。    日本秋田冶炼公司饭岛厂建于1971年,榜首期工程于1972年1月投产,1985年已扩建成年产电锌156kt规划。综合利用收回有价金属关于日本这个资源比较匮乏的国家来说具有重要意义。浸出渣处理的最大意图在于进步锌的实收率。但关于饭岛来说,因为日本国内“黑矿”中金、银、铜的含量高,为此还要高效地收回这些金属并综合利用稼、锢等稀有金属以及锌精矿中的铁和铅。赤铁矿法恰具有有价金属收回率高的特色,乃至产出的赤铁矿渣有或许直接作为炼铁质料,而废弃物可降到最低量。 [next]     饭岛冶炼厂工艺流程如上图示,分4步处理:    (1)用废电解液和二氧化硫浸出;    (2)用沉积别离铜和其他杂质;    (3)用碳酸钙中和游离硫酸和除稼、锗、砷等杂质;    (4)用氧气氧化二价铁离子成为Fe203。    锌渣中所含的锌简直悉数以铁酸锌状况存在,用废电解液浆化,在高压釜中(温度100~110℃,压力2MPa)用SO2浸出,在釜内逗留3h,Fe,Zn,Cd,Cu的浸出率在90%以上。Fe,Zn的总浸出率高于95%。高压釜出来的浆液在解吸塔内除掉溶液的SO2后,送至脱铜槽,H2S的用量可按氧化复原电位计算出来。脱铜后液含游离酸约20g/dm3,用碳酸钙两段中和。榜首段中和到pH=2,用离心机脱水,产出石膏;第二段中和至pH=4.5,使Ga,Ge,In,As,Sb等有害杂质沉积。为了促进Ga, As沉积,鼓入空气,把部分Fe2+氧化成Fe3+,使其沉积。中和后液中含Zn2+、Fe2+、Cd2+等用高压釜除铁,选用蒸汽加热至200℃,再鼓入纯氧,坚持压力2MPa,在这种条件下Fe2+氧化成赤铁矿沉积。除铁选用3个串联高压釜。进入榜首号釜溶液含铁40~50g/dm3,从末段釜出来的溶液含铁仅1g/dm3。因为在冲刷和稠密进程中会有返溶现象,从稠密机出来的逆流液终究含铁3~4g/dm3,铁的沉积率高于90% ,Fe203中含硫3%,含Fe58% -60%,含H20 12%,是较易于处理的铁质料。赤铁矿沉积时,溶液中的锌、锡简直没有沉积,将溶液送到主流程收回锌、锡。    饭岛赤铁矿法处理锌渣流程尚在不断改善中。沉铜工序已由彻底用改为在浸出高压釜中增加粉,由此而降低了耗量,所产出的硫化铜晶粒变大,使沉降、过滤和浮选功能均得到改善。    早在1972年西德达特伦电锌厂就面对浸出渣的处理问题,因为鲁尔锌公司在达特伦区域没有堆积浸出渣的当地,并会给环境带来损害,所以期望经过处理后的浸出渣能在商场出售。考虑到这种特殊条件,该厂不能选用饭岛SO2复原浸出的流程,而是经过增加锌精矿进行复原浸出,然后再加压处理。在200℃和2MPa压力下吹入氧气,铁被氧化成Fe3+并以赤铁矿沉积。沉积物含铁高于64%,充沛洗刷后,铁可作为副产品出售。    加拿大电锌公司研讨拟定了改善的赤铁矿处理锌浸出渣流程,该工艺的特色是将浸出和沉积在一段完结,关键技术是在200℃和1MPa高压处理铁矾渣,使锌溶解,一起铁以赤铁矿方式沉积,故称为高温转化法,也叫黄钾铁矾法和赤铁矿法联合工艺。

湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(三)

2019-01-25 15:49:24

低污染的黄铁矾法基本原理是在“沉矾”之前,先通过低温预中和调整溶液的组成,在沉矾过程中不需添加中和剂就能满意地除铁。主要流程可由下两图表示。上图左示出低沮预中和流程。预中和既可采用焙砂,也可采用中性浸出后的浓密底流。如果热浸出液中铁含盆较高,则铁矾沉淀后对浓密上清液的返回可能有益处;下图右表示用中性浸出液作稀释剂的流程。   [next]     因为在低污染黄铁矾法中所产生的铁矾只含少量的有价金属。减少了铅、锌、银、金、锡、铜等有价金属的损失。下表一示出低污染黄铁矾法及常规铁矾法金属回收率对比;下表二示出两种沉淀法铁矾渣组成。这些数据显示出新方法的优越性。该法是由世界第二大炼锌厂,年产200kt锌的澳大利亚电锌有限公司发展的处理锌渣的方法,并在日产500t锌的中间工厂进行了试验。生产流程如下图所示。澳大利亚电锌公司已决定在生产厂改造中引人低污染黄铁矾法。表一 不同铁矾法金属回收率元素金属回收率/%常规黄铁矾法低污染黄铁矾法Zn94~9798~99Cd94~9798~99Pb~75>95Ag~75>95Au~75>95Cu~90>95表二 不同铁矾渣组成元素常规黄铁矾法低污染黄铁矾法Fe25%~30%32.40%Zn2~60.25Cd0.05~0.20.001Pb0.2~2.00.05Ag10~15g/t4g/tAu0.6g/tCo0.01%0.00%Cu0.1~0.30.016[next]    我国长沙矿冶研究院马荣骏等于20世纪80年代开展了低污染黄钾铁矾法的研究,也得到了较好的结果。我国赤峰冶炼厂已采用低污染黄钾铁矾法进行工业性生产,取得了良好的经济效益和社会效益。

湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(四)

2019-02-14 10:39:49

c  转化法除铁及其使用    奥托昆普转化法是奥托昆普公司拟定的。办法的特点是铁酸锌的浸出及铁沉积进程合并在一个阶段完成。自1973年2月以来,已经在科科拉电锌厂付诸实践。    在浸出和沉铁一起进行,所构成的铁矾称为混合型黄铁矾,上图所示出H2S04-Fe2(S04) 3-(NH4)2SO4-H20-(NH4)x(H30)(1-x)-[Fe3(S04)2(OH)6〕系生成混合型黄铁矾的安稳曲线。假如代表溶液成分的点坐落曲线的上方,溶液内的Fe3+将生成混合型黄铁矾沉积。沉积速度决定于Fe3+浓度间隔相应平衡值的远近。当代表液相成分点坐落平衡曲线(固体物料的安稳区域)以上时,有可能在大气压下浸出铁酸锌并一起沉铁,对铁酸锌物猜中的有价金属一起将以硫酸盐形状提取出来,反响可表示如下: [next]     从理论上看,铁酸锌的浸出及铁的沉积可在下图平衡线以上的条件进行。但因为当溶液含酸量减少时铁酸锌的浸出速度将下降;又当溶液含酸量添加时,残留铁量将添加。因而实践中有必要挑选在最佳酸度范围内操作。如图所示在科科拉厂转化法使锌的浸出收率由早年的92%上升到96%。    d  铁矾渣的处理及使用    黄铁矾法在锌冶炼厂一般选用焙砂做中和剂,构成有价金属的丢失。因为铅、银、锢等在除铁进程中也能生成黄铁矾型复盐,因而怎么从矾渣中收回有价金属、硫酸盐、铁制品以及渣的固化,引起各国学者的注重。    有人用化学和矿藏办法调查了银在湿法炼锌中的行为。焙烧时,精矿中的银矿藏转变成硫酸银、和金属银。浸出时,银首要先以硫酸银(Ag2SO4)方式溶解,然后当即转成不溶性Ag2S沉积并环包着细的或粗的闪锌矿颗粒。在热酸浸出时,构成元素硫一黄铁矾粒群,其中有细微的Ag2S或Ag2S的夹杂物和替代黄铁矾中的一价阳离子的银存在。溶解后的银对黄铁矾型化合物具有很强的亲和力。大于90%的可溶性银与Na+、NH4+、Pb2+等型黄铁矾共沉积。    在黄铁矾沉积中,银黄铁矾比钠或铵型黄铁矾更安稳。在银、钠共存系统中,黄铁矾中含银量随溶液中银浓度添加而添加。但钾型黄铁矾比银型更安稳。因而假如以K+作沉积剂,对捕集溶液中的微量银是晦气的。    我国会东炼锌厂做了热酸浸出-铁矾沉铁一段转化法处理锌渣的工业实验。产出的铅银铁矾渣经选矿产出产品含银1.5%。    沈阳冶炼厂和辽宁冶金研讨所从前研讨从黄铁矾渣中归纳收回有价金属的工艺流程。

湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(二)

2019-02-14 10:39:49

e  参加晶种对沉积影响    黄铁矾晶核的生成比较缓慢。从含硫酸lOg/dm3,Fe3+10.98g/dm3的热酸浸液中除铁,大约1h后溶液中才有结晶分出。加人晶种后半小时便有晶体分出。在整个沉矾进程中拌和也是必要的。    向热力学稳定相搬运的相变都将下降整个系统的自由能。新相的生成,使系统的相数由一相变为两相。一方面部分原子由高的自由能(旧相)向低的自由能(新相)改变,下降系统内部自由能;但另一方面,新相表面的构成,又需求能量,然后添加系统的自由能。因而新相(如黄铁矾结晶)构成时自由能的改变可用下式标明:                                     △F = -V△fvSσ 式中    V——结晶新相的体积;      △fv——单位体积中旧相、新相间自由能之差,△fv = F液-F固;        S——新相的表面积;        σ——单位相界面上,新旧两相间的表面张力,即两相间比表面能。    假定新相为球形,上式可改写成:                                            4                                   △F = - ——  πr3n△fv + 4πr2nσ                                                                   3式中   r——球形晶粒的半径;       n——新相生成的颗粒数。    从下图左能够看出,△F的改变取决于新相颗粒的巨细。当晶粒的半径小于临界颗粒半径rk时,系统总自由能增高;当半径大于rk时,状况相反;半径等于r0时,△F的添加等于零,标明因为新相的生成,构成的相界面表面能抵消了部分原子由液相向自由能较低的固相改变带来的自由能下降;当半径大于r0时,自由能的添加为负值,标明整个系统内的自由能趋于下降。由此可知,在结晶开端后,能够有许多晶粒,可是遭到必定约束,只要那些因为涨落现象等原因使粒径增大到引起系统自由能减小的晶粒得以生长,即半径大于rk的晶粒,才或许成为晶核。下图右标明外加晶种能够大大加速沉矾速度。   [next]     f  黄铁矾沉积进程中其他离子的行为    黄铁矾法除铁首要用于湿法炼锌,因而锌对沉积的影响是首先要考虑的要素。调查锌的影响时发现,即便溶液中含有100g/dm3的Zn2+,沉积由结晶向无定形改变的临界pH值也简直不变,即不加Zn2+,临界pHJA为:                               pHJA = 0.211lg[Fe3+]+1.84而参加100g/dm3的Zn2+(ZnSO4参加)后:                             pHJA = 0.21log[ Fe3+]+1.80    标明在沉矾进程中,锌能够看作是一种慵懒物质。但工业上,要考虑的是假如锌浓度过高,溶液黏度增高,对操作晦气。    B  黄铁矾法在锌冶炼中的运用    a  黄钾铁矾除铁法    在湿法炼锌中黄钾铁矾除铁法运用最多,今罗列几个厂的运用状况如下。    澳大利亚雷斯顿电锌厂将残渣处理放到浸出车间(如下图所示)。由锌电解系统来的浸出渣(800~1000g/dm3浓度)和堆积的浸渣浆化后(用预热到75`C的废电解液)一同进入浸出槽,在85~95℃下浸出7h。浸出后的残渣用水力旋流器分级,富锌渣(ZnS 80%)与富铅渣分隔。此外,浸出液中和至pH =0.90 (15g( H2S04 )/dm3),随后将25%的参加溶液。在加焙砂一起,在pH=1.3~1.7中坚持4.5h,生成黄铁矾,以除掉大部分铁。 [next]     挪威锌公司把浸出渣处理进程合并到浸出系统中,如下图左所示。整个系统中包含中性浸出,将焙砂中80%的可溶性锌溶解,一起少数铁和其他杂质沉积而发生一种中性溶液。别离后的残渣进行热酸浸出,温度为90~95℃,酸度40~80g(H2S04)/dm3,使残渣锌溶解。不同焙砂的溶解度有所不同,因而有必要参加浓硫酸操控恰当的酸度以到达最高的提取率。不溶的铅、银残渣为中性,浸出进程中参加焙砂量的10%~12%,别离后剩余的含锌、铁溶液中的铁以黄铁矾方式沉积。      长沙矿冶研讨院马荣骏等针对我国的高锢高铁锌矿资源,研讨出一个有用收回锌、锢的湿法联合流程。流程中的要害工序为焙烧料的热酸浸出-黄铁矾除铁。在低酸浸出液用黄铁矾法沉铁时,锢先富集于铁矾渣,再从渣中收回铟,一起收回一部分锌及钠,然后提高了锌的总收回率,并下降了钠试剂的耗费。研讨了在铟、铁共存的多元系统中,铟、铁进入黄铁矾的规则。铁以黄铁矾沉积时,生成的是钠(或铵)铟铁矾晶体,它的热力学性质与黄铁矾类似。在530~590℃焙烧时大部分铁成三氧化二铁而铟仍为硫酸复盐,铟易被稀酸浸出。1983年在柳州有色金属冶炼厂对此流程进行了工业实验,1985年9月完成了锌流程工业实验。工业实验选用的准则流程如上图右所示。    柳州有色金属冶炼厂用此流程进行了工业出产多年,获得了很好的效益,填补了我国铁矾法的空白。目前我国已稀有家湿法炼锌厂运用热酸浸出铁矾法进行湿法出产锌,均学习了这一效果的经历,而在我国炼锌工业中占有了重要位置。    b  低污染黄钾铁矾法    现有的湿法炼锌厂,广泛选用惯例黄铁矾法除铁,但铁矾渣中仍丢失了一些有价金属。

铁-铬电池”高效价廉“长寿”无污染

2018-12-10 09:42:47

7月5日消息:虑到环境保护、能源效率和安全因素,近年来世界主要发达国家和我国都提出了新一代智能电网的研发,以改变目前依赖于化石燃料的电力系统。记者昨日在海创周上获悉,留日博士马志启带来的“铁-铬系液相流体储能电池”这个能量储存技术,不仅可以提高传统电网的效率,而且可以改善太阳能和风能电力的输出稳定性,同时实现供需双方的管理智能化。   “在所有液流储能电池类型中,铁-铬体系将比当前全钒储能电池成本降低50%以上,而且其效率达80%,同时利用特制的电解质隔膜,既可以延长电池的使用寿命,又可以极大地降低电池的制造和维护成本。”马志启告诉记者。   据介绍,目前“铁-铬电池”的显著优点就是高效率、成本低、寿命长、响应速度快、卓越的大电流快速放电能力,宽广的适应温度范围和安全性好以及无污染物排放,而且设计规模可大可小,不仅可以缓冲和储存太阳能和风能的输出;而且可以用于电网的削峰填谷,提高电网效率和降低用户成本。小规模产品也可以直接应用于备用电源。   “保守地估计,中国的储能市场规模在万亿元以上。”对于“铁-铬系液相流体储能电池”的未来,马志启充满憧憬。

湿法炼锌酸浸液除铁-黄钾铁矾法沉淀除铁(一)

2019-01-25 15:49:24

A  黄铁矾法除铁原理    a  黄铁矾沉淀组成及热力学稳定性    黄铁矾的分子式通常可以写成A20·3Fe203·4S03·6H20或AFe3(S04)2(OH)6,或A2[ Fe6( SO4)4(OH)12,式中A代表一价阳离子,即可以是K+、Na+、NH4+、Rb+、Ag+、—Pb2+或H3+O等,例如:    黄钾铁矾:KFe3(S04)2(OH)6,其化学组成:K20 9.41%,Fe203 47.83%,S03 31.97%,H20 10.79%。黄钠铁矾:NaFe3(S04)2(OH)6,其化学组成:Na20 6.4%;Fe203 49.42%;S03 33.04%,H20 11.14%。黄铵铁矾:NH4 Fe3(S04)2(OH)6,其化学组成:(NH4)2O 5.43%,Fe203 49.93%,S03 33.37%,H20 11.27%。    这些化合物通常称黄钾铁矾或黄铁矾。在自然界里,有些矿物具有类似的组成,相同的结构和结晶形态,即所谓类质同晶。所谓矾,是一系列类质同晶矿物的总称,而黄钾铁矾是矾中的一种。    波北兹涅克和麦尔文研究了Fe203-S03-H20三元系在某些温度下的平衡情况,如下图所示。所有碱式盐、酸式盐及正盐都位于三元系相图内部,这是由于它们都含有结晶水的缘故。无水硫酸高铁位于Fe203-S03二元系线上,但它在50℃和75℃的条件下不是平衡相,即不会从溶液中以这种成分析出,因而没有在图上出现。按照平衡固相来分类,图大致可分成以下三类区域:    平衡固相是氧化铁的水化物。这是一个非常狭小的区域,位于图中最左端的三角形1中。在这个区域内,从液相析出的固相是一水氧化铁或三水氧化铁。由于后者是介稳相而不是平衡相,因而未在图上标出。液相线基本上不和Fe203-S03二元系边线相交,因而氧化铁的水化物在水中的洛解度非常小。三角形1远离组分S03,表示系统酸度非常低,高铁以氢氧化铁和针铁矿的形态从铸旅由析出需要符合这种条件。黄铁矾除铁必须偏离这个区域,即必须使溶液保持一定酸度。[next]    平衡固相是碱式盐或碱式盐和氧化铁水合物的混合物。三角形2-7都属于这样的区域,它们由液相和固相很合组成。可以看出,三角形2的平衡固相是氧化铁的水合物和含结晶水的硫酸高铁碱式盐(3Fe203·4S03·9H20),在3-7中,平衡固相则为一种或两种不同的碱式盐。    平衡固相是正盐、酸式盐或它们的混合物。三角区域9-13就属于这样的区域,体系中S03%的增加将使平衡液相线即母液的含铁量急剧下降。这些区域的特点是平衡液相线含有很高的S03%。与黄铁矾沉铁直接有关的是区域2-3,与它们相应的稳定平衡固相是碱式盐草黄铁矾3 Fe203·4S03·9H20,也可以写成[H(H20)]20·3 Fe203·4S03·6H20,不论在成分或物理化学性质方面都和黄钾铁矾非常相近。所以当溶液中存在K+、Na+、NH4+时,平衡固相将由更为稳定的黄铁矾所代替。随溶液酸度减小,黄铁矾趋于不稳定,并将转变为含水氧化铁。为使高铁以铁矾析出,必须使溶液保持一定酸度。    从硫酸铁溶液中沉淀铁矾的反应如下:    3Fe2(S04)3+6H2O ==== 6Fe(OH)S04+3H2S04    4Fe(OH)S04+4H20 ==== 2Fe2(OH) 4 S04+2H2S04    2Fe(OH)S04+2Fe2(OH)4S04+2NH40H ====(NH4)2 Fe6(S04)4(OH)12    2Fe(OH)S04+2Fe2(OH)4S04+Na2S04+2H20 ==== Na2Fe6(S04)4(OH)12+H2SO4    2Fe(OH)S04+2Fe2(OH)4S04+4H20 ====(H30)2 Fe6(S04)4(OH)12    黄铁矾形成时,有硫酸产生。必须将酸中和,反应才能继续进行。在锌冶炼中通常采用焙砂作中和剂。在其他情况下可用Fe203 、Na2C03等作中和剂。    黄铁矾结晶的形成需要的是Fe3+,在实际的工业滤液中均含有比例不等的Fe2+,因此氧化Fe2+成为Fe3+是结晶前的首要步骤。氧化剂有KMn04, Mn02 , C12 , NaC1O3和过氧硫化物等。在湿法炼锌工业实践中,多用02或空气为氧化剂。沉矾速度是人们关注的重要问题,长沙矿冶研究院马荣骏等做出了系统的动力学方面的工作。    b  一价阳离子对结晶的影响    黄铁矾的生成条件是,溶液中必须有Na+,K+或NH4+等离子。通常使用的化合物有NH40H,(NH4)2S04,NH4HC03,Na0H,Na2S04及KC1等。一价离子加入量必须满足化学式AFe3(OH)6所规定的原子比,即Fe/A必须等于或大于3方能取得好的除铁效果。不同种类和数量的一价阳离子除铁效果如下图。由图可知,钾离子效果最好,钠和铵离子效果接近。[next]       c  溶液酸度对沉淀的影响    溶液pH值对黄铁矾的稳定性和沉淀率有重要影响。黄铁矾在形成过程中产生大量酸,酸度增高将降低铁的沉淀量和速率。沉淀母液中Fe3+浓度与硫酸浓度的关系,理论上为CFe3+ /CH2SO4=0.004,但工厂操作时上述比值常取0.01。有人研究了温度-pH值关系,如上图右所示。图中阴影部分是黄铁矾稳定存在的区域。表明在低pH值下,必须在较高温度下黄铁矾才能稳定存在:20℃时,pH值范围是2~3;100℃时,pH值范围是1~2.3 ;而在200℃时,pH值则为0~1.2。实际上,pH<2.5,溶液电位大于0.60V和Fe3+浓度大于0.001 mol/dm3,黄铁矾即可以稳定存在。下图示出了电位与pH值关系图。表明黄铁矾在pH =0.5 ~2.5范围内是稳定的。[next]        d  反应温度对沉淀的影响    黄铁矾在室温下形成的速度非常缓慢。如在25℃时由K2S04-Fe2(S04)3溶液中沉淀钾铁矾,在水相pH值为0.82~1.72范围内,需要1~6个月。如将温度升到100℃,数小时后沉淀则已近于完全;温度若达到180~200℃,黄钾铁矾则开始破坏。    沉矾的操作温度要求高于85℃,温度对沉淀结果的影响如上图右所示。温度低不仅沉淀缓慢而且过滤困难。黄铁矾在酸性介质中的溶解度随温度升高而急剧下降。

湿法炼锌酸浸液除铁-针铁矿法沉淀除铁

2019-02-14 10:39:49

A  针铁矿法除铁原理    a  针铁矿的结构及热力学安稳性    针铁矿是含水氧化铁的首要矿藏之一,常称为α型-水氧化铁,它的组成为α - Fe203·H20或Fe00H,与纤铁矿(γ-Fe00H)是同质多象变体。    从近代化学观念看,针铁矿归于无机高聚物领域。用分子式Fe00H标明的单位并不独立存在。针铁矿分子式的写法应为[α-Fe00H]n,其间n是一个比较大的数字,坐落八面体中心的高铁离子具有很强的极化才能,它能使周围配位离子的外层电子云发作违背。导致正负离子外层电子云彼此堆叠,并构成共价键。    氧化-复原电位和pH是操控铁在水溶液中行为的两个重要因素。氧化环境促进铁沉积,复原环境促进铁溶解。酸性条件一般有利于铁溶解,碱性条件则促进铁沉积。针铁矿在水溶液中的化学反响通式为:                      Fe00H+(3-n) H+ ==== Fe(OH)n(3-n)++(2-n) H20    假定固相和水的活度都等于1,则平衡常数K0=αFe(OH)n(3-n)+ /αH+(3-n),(其间n=0,1,2,3,4)。所以:                              lgαFe(OH)n(3-n)+  = lgK0 - (3 - n)pH    下表列出了针铁矿有关反响的平衡常数值。可见随水溶液酸度下降,溶液中Fe3+离子含量明显下降,即1gK0值减小。针铁矿溶解反响的有关参数反响Lg αFe(III)Lg αFe(III)LgK0298LgK0368LgK0413PHFeOOH+3H+ === Fe3++2H2OLgK0-3pH-33.961.15-0.63FeOOH+2H+ === FeOH2++H2OLgK0-2pH-20.94-0.51-1.44FeOOH+H+ === Fe(OH)2+LgK0-pH-1-2.38-2.9-3.24FeOOH+H2O === Fe(OH)3LgK00-6.53-5.36-4.61FeOOH+ 2H2O === Fe(OH)4-+H+LgK0-pH1-18.72-18.556-18.45FeOOH+4H+ == Fe2(OH)24++2H2O1 LgK0-2pH -15.581.21-1.6  2[next]     依据上表所列平衡常数的核算值绘出的针铁矿溶解度曲线图如下图所示。图中虚线标明有关络离子的首要存在区间,实线则标明固相线。在固相线以下,溶液是安稳的,不会有针铁矿沉积;而在固相线以上,溶液是不安稳的,针铁矿将趋于分出。络离子的改变是突变的。在虚线上相邻两种离子的浓度持平,而且当pH3时,[SO42-]<0.1 mol/dm3时,对针铁矿溶解度的影响不大。    b  高价铁离子复原    从含铁水溶液中除掉Fe3+的多少视沉积物的溶解度而定。沉积物存在形状及转化进程可暗示如下:    新沉积的氢氧化物由一些化合物组成,其溶解度受混合物中最易溶解的化合物分配。“生动”标明固体发作改变,新沉积的生动非晶形Fe(OH) 3渐渐地转化为针铁矿结晶和较安稳的非晶型氢氧化物,在100℃下完结转化约需一天。这对一般工业操作是不易完成的,而且转化后的终究产品仍然是一种含很多Fe(OH)3的混合物。因而挑选杰出的针铁矿沉积条件,取得纯洁的易于过滤的沉积物是十分重要的。从热力学视点对单一铁化合物的沉积条件进行的深入研讨可用Fe203-S03-H20系下图标明,一起标明,只有当硫酸盐溶液中Fe3+浓度很低时,才或许构成针铁矿沉积。[next]    B  针铁矿法在湿法炼锌中的运用    比利时巴比伦厂湿法处理浸渣运用了针铁矿法,其流程图如下图所示。该图标明,它是浮法和老法相结合的工艺流程,新法是酸浸中浸出渣,用针铁矿法处理酸浸液除铁。 [next]     中性浸出渣运用50g/dm3硫酸浸出,各金属提取率分别为Zn 80%,Cu 85 %,Fe 80 %,Cd 90%在85 ℃下浸出6h,所得浸液含Zn60g/dm3,Fe3+25g/dm3,H2SO4 50g/dm3及Cu,Cd,As,Ga,Ni,Co等。选用针铁矿法除铁,为使沉积液中Fe3+始终保持小于1 g/dm3,巴伦厂选用闪锌矿为复原剂。操作温度90~95℃,时刻6~8h。一般复原剂参加量需求过量15%~20%。选用焙砂为中和剂,中和反响约需1h,使酸度从50g/dm3降到2~3 g/dm3。低铁氧化运用空气或氧气。假如溶液PH值从2.2增至3.5,则针铁矿沉积速度增加一倍。碱离子对沉铁影响如下图所示。标明钠离子含量小于2g/dm3,假如沉积pH>2,对针铁矿沉积无影响;假如pH=4.0,将会有部分α -Fe203构成。对含锌57%,含铁8%的焙烧矿,随针铁矿渣丢失的锌约1.4%~2.8%,所得针铁矿渣组成为:Fe 41.35%,Zn 8.5%,Pb 2.2%,Ag 0.0119%,Cd 0.05%,Cu 0.5%,As 0.54%,Sb 0. 067%,Sn0.06%,Co 0.0118%,Ni 0.0101%,K 0.17%,Na 0.07%。    比利时霍博肯一奥维尔佩特冶金公司奥维尔佩特厂是1974年5月投产的年产100 kt锌的湿法炼锌厂(1985年达120 kt)。残渣用针铁矿法处理,流程如下图所示。中性浸出除了溶解锌外,其意图还在于用水解法沉积铁以及除掉一系列有害杂质。因而溶液中本来存在的以及从针铁矿作业回来的溶液中带来的二价铁离子在拌和浸出槽底部被鼓入空气氧化,固体物在稠密槽中别离后选用PH值为3的弱酸浸出以溶解更多的锌、铜、锡。浸出渣含有铁酸锌、铅、银和慵懒物质,选用热酸和过热酸浸出的两段逆流体系,在过热酸浸出终酸浓度达120g/dm3时,锌、铁简直悉数溶解。终究渣含铅、银和大部分二氧化硅和氧化钙。经两次浸出后得到的溶液含有大约锌l00g/dm3、铁25~30g/dm3、硫酸50~60g,/dm3。运用ZnS作复原剂,复原后液仍含有硫酸50 ~60g/dm3,用焙砂中和至含酸3~5 g/dm3。针铁矿沉积是在90℃和pH值为3下进行,空气作氧化剂,针铁矿渣成分见下表。[next]浸出残渣的典型分析元素Pb/Ag残渣S残渣针铁矿渣Zn1.5~3.08~55~9Fe3~57~840~42Pb25~30  Ag0.1~0.15  SiO210~14 2CaO2~6 0.7总S15~20504元素S 0~35      因为老山公司拟定的“V. M”法存在着复原、氧化两道工序,操作上较费事。为简化工艺,国内外均在研讨和运用由澳大利亚电锌公司发展起来的部分水解法(即E. Z )法。“E. Z"法生产上的关醉是喷淋办法与铁渣含锌量的操控,即怎么进步喷淋速度及下降铁渣含锌率。选用“E. Z”法,能够快速而有效地除铁,铁渣的沉降及过滤以及除铁后液的除杂功能均杰出。    我国中南大学的钟竹前,梅光贵等提出了锌复原的针铁矿法,在小试、中试、工业实验基础上曾由水口山四厂进行试生产。现在,我国除温州冶炼厂及水口山四厂有过运用外,在湿法炼锌上还未得到更多的推广运用,但在其他金属湿法工艺除铁中得到了运用,应该认识到该工艺是一个先进的办法,尤其是在该工艺顶用萃取法收回铟,更具优越性[1],估量在我国将来会得到进一步的推广运用。    参考文献:    1 马荣骏,《湿法冶金》1997年,No.1:59~61。

铁矿石烧结的铁酸钙生成特性研究

2019-01-25 10:19:13

1 前言  近年来,对烧结矿还原性的研究受到了广泛的重视,高炉炉料还原性的提高,可使焦比大幅度降低,生产率提高。在保证烧结矿其它性能(如冷强度、还原粉化和软化温度等)的同时,应尽量提高烧结矿的还原性,而铁酸钙是影响烧结矿还原性十分重要的因素,因此,有必要对铁矿石在烧结过程中铁酸钙的生成特性进行研究。 关于铁酸钙的成分与结构,国内外已有许多研究。最早认为是二元系铁酸钙,其成分为CaO.Fe2O3、2CaO.Fe2O3、CaO.2Fe2O3。随着研究的深入,发现烧结矿中铁酸钙主要是三元系、四元系及其固溶体,这是由于原料中存在的SiO2及Al2O3在烧结过程中溶入铁酸钙。因此,人们称其为复合铁酸钙或硅铝铁酸钙,简称SFCA。 道森(Dawson)等人认为SFCA的形成是以下几个反应的结果:  CaO.Fe2O3形成(1050~1150℃);  Al2O3与CaO反应生成铝酸钙(1100~1150℃);  铝酸钙熔于CaO.Fe2O3中(1100~1150℃),形成铁铝酸一钙;  铁铝酸一钙熔化并与Fe2O3反应生成铁铝酸半钙(1200~1250℃);  随后与SiO2反应形成SFCA(1200~1250℃)。 影响铁矿石的铁酸钙生成特性的因素较多,主要包括以下两个方面:(1)烧结工艺参数的影响,包括烧结温度、烧结气氛和配碳量等。较低的烧结温度、较强的氧化性气氛,能够促进铁酸钙的生成。(2)铁矿石的性质,即自身特性,是决定烧结矿中不同矿物组成的内在因素。铁矿粉的种类、粒度组成、致密性、碱度、化学成分(包括CaO、MgO、SiO2和Al2O3)等又直接影响到烧结矿的矿相组成及分布的均匀性。铁矿粉的自身特性是影响SFCA生成能力的重要因素。[next]    2 试验原料与方法    2.1 试样制备  试验用的铁矿粉一部分来自济南钢铁集团总公司(简称济钢)原料厂和第一烧结厂,一部分由铁矿石经销商提供;CaO 为化学纯试剂。铁矿粉的取样采取“四分选取法”,以保证试样的代表性。将试验所用的铁矿粉在 110 ℃的烘箱内干燥2h,冷却后及时放入干燥皿保存。将干燥后的铁矿粉磨制成小于0.15mm的粉状,放入干燥皿保存。将 CaO 试剂磨制成小于0.15mm 的粉状,放入干燥皿保存。小饼试样的秤重采用精度为万分之一的电子天平。采用“干粉压制法”压制,压力为10MPa,保压2min。    2.2 试验设备  试验采用的主要设备有称量装置、压溃强度装置、压样试验装置和微型烧结法试验装置。微型烧结试验装置主要包括RHL-410P型红外线快速高温试验炉(主要由石英保护管和红外线灯管发热元件组成)、TPC-1000型温度程序控制仪、冷却水控制器、试样台自动升降装置、炉体支架及控制系统、试验气体控制系统、温度测定及控制系统。    2.3 试验方法  试验采用微型烧结法、显微矿相试验法。采用微型烧结法将各矿粉制成的小饼试样在一定的烧结制度下焙烧;对烧结后的小饼试样磨样,在显微镜下观察各试样中SFCA的生成情况以及矿相结构等。矿相组成的定量分析采用目测法。 具体方案采用碱度为2.0、试验温度1280℃,试验用原料的化学成分见表1。试验用小饼试样以高度为基准,高5mm,直径8mm。试验温度和气氛控制见表2。[next]表1 试验用原料的化学成分%矿石代号TFeFeOSiO2CaOMgOAl2O3SP烧损A67.720.220.580.0180.020.740.0030.0481.61B68.70.261.050.110.060.340.0030.0180.44C670.261.40.320.0731.30.0180.0461.18D66.020.293.360.310.0430.710.010.0261.18E63.460.153.030.0310.041.970.0050.0783.79F64.90.773.150.040.061.830.0080.072.55G57.950.94.150.0110.081.120.0080.0411.61H56.91.165.340.410.192.360.0060.03910.32I56.91.165.340.410.192.360.0060.03910.32J62.460.222.440.0310.0341.70.0020.0725.51[next]表2 试验温度和气氛控制温度/℃时间/min气氛室温→6004空气600→10001氮气1000→11501.5氮气1150→试验温度1氮气试验温度4氮气试验温度→11502空气1150→10001.5空气1000→室温断电自然降温空气注:氮气和空气流量均为3L/min。  列顺序依次为:G、H、E、F、D、J、I、B、C、A矿。    3 试验结果及分析  10种铁矿石的矿物组成及显微结构特征见表3及图1~10。矿石试样中铁酸钙含量由高到低的排:[next] [next] [next]     3.1 G、H矿中SFCA含量最高  在10种铁矿石中,G和H两种矿试样中的SFCA含量最高,分别达到40%和35%。主要原因:(1)这两种铁矿石皆为褐铁矿,烧损比较高,在一定的温度下,结晶水受热蒸发后,在褐铁矿中留下残余气孔,使铁矿石结构疏松,加快了Ca2+向铁矿石中的扩散,同时铁矿物离子也易于扩散,使反应更易进行,有利于大量低熔点化合物的生成,因而有利于提高SFCA的生成量。(2)这两种铁矿石的Al2O3/SiO2的比值较为适宜,有利于铁酸钙的生成。(3)这两种铁矿石的Al2O3和SiO2含量都比较高,结构比较疏松,非常有利于SFCA的生成。    3.2 E、F、D矿中SFCA含量较高  在10种铁矿石中,E、F、D三种矿试样中SFCA含量都比较高(在29%~31%之间)。主要原因:(1)这三种矿的SiO2含量都比较高,在相同碱度条件下,配入的CaO量较高,而这三种矿皆为赤铁矿,这样CaO与Fe2O3接触的几率增大,SFCA生成量也随之增大。(2)这三种矿结构都比较疏松,利于扩散反应的进行,从而有利于铁酸钙的生成。另外,D矿Al2O3/SiO2比值比较适宜,利于铁酸钙的生成,也是D矿SFCA生成量较高的重要原因。    3.3 J、I、B、C矿中SFCA含量较低  在10种铁矿石中,J、I、B和C矿铁酸钙生成量较低的主要原因为:(1)I矿的品位低、SiO2含量高,达5.34%。烧结料中含有较高的SiO2时,会发生:2Fe3O4+3SiO2=3(2FeO.SiO2)+O2的反应,从而会加速磁铁矿和赤铁矿的分解,不利于铁酸钙的生成。另外,烧结料中含有较高的SiO2,会生成较多的2CaO.SiO2,而大量2CaO.SiO2的生成,也就意味Fe2O3与CaO结合的机会相对减少,不利于铁酸钙的生成。(2)J、B和C三种矿SiO-2含量比较低,在相同碱度的条件下,配入的CaO量也比较少,因而生成SFCA的几率降低。[next]    3.4 A矿中SFCA含量最低  在10种铁矿石中A矿的SFCA含量最低,只有5%。其原因为:该矿的SiO2含量最低,只有0.58%,这样在相同碱度的条件下,配入的CaO量也最少,因而生成的铁酸钙含量最少。另外该矿结构比较致密,既不利于Fe2O3和CaO的扩散,也不利于低价氧化物氧化过程的进行,从而在一定程度上影响了铁酸钙的生成。    4 结论    4.1 铁矿石的铁酸钙生成特性是多种因素共同作用的结果。除受焙烧温度、焙烧气氛、碱度等因素影响外,还受铁矿石的自身性质,如Fe2O3含量、CaO含量、SiO2含量、MgO含量、Al2O3/SiO2的比值,和致密性等因素的影响,这些影响因素之间是互相影响、互相作用的。    4.2 不同的铁矿石,铁酸钙的生成特性不同。在碱度为2.0及其它条件相同的情况下,结构松散的褐铁矿、赤铁矿及较高含量的Al2O3和SiO2均有利于SFCA的生成。    4.3 铁矿石的铁酸钙生成特性是烧结配矿必须考虑的因素,对优化配矿具有重要的指导作用。在烧结料中适当配加一定比例的G矿和H矿以及结构松散的赤铁矿粉,可以提高烧结矿强度和还原度。

煅烧酸浸铁矿石制备硫酸铁的技术

2019-01-30 10:26:27

硫酸铁是一种重要的化工原料,是水净化和湿法冶金的重要药剂。目前,硫酸铁的工业制造方法,主要是直接氧化或催化氧化硫酸水溶液中的硫酸亚铁,有的是用细菌加臭氧或氧气氧化,如加拿大专利CA-1018774公开了一种用于制造硫酸铁的连续细菌氧化工艺和设备,可将硫酸亚铁在细菌作用下,与硫酸和氧气反应转变为硫酸铁。另外,还有用硫酸水溶液浸出铁矿石或其与金属铁的混合物,所用氧化剂有H2O2、KC1O3、KMnO4、O2等,如日本专利J61-286228、286229是用硫酸与铁的氧化物反应,将得到的浸出液中的Fe2+用O2或空气、H2O2、MnO2、NaC1O3氧化剂氧化,或以硝基氧化物催化氧化成Fe3+。上述己有技术,由于是将硫酸与亚铁反应,需要的设备要求耐腐蚀性好,因此设备投资、维修费用高,同时氧化剂、催化剂消耗很多,工艺也比较复杂,从而限制了硫酸铁的生产和应用。本实验采用铁矿石为原料制备硫酸铁,由于铁矿石中含有许多有机杂质,如果直接酸浸,将影响硫酸铁的质量。故将铁矿石先进行缎烧然后再酸浸,同时考察了锻烧温度、锻烧时间、硫酸浓度、酸浸时间和液固比(硫酸与铁矿石质量比)对铁浸出率的影响,并确定了合理的生产工艺和操作条件。该法具有工艺简单、投资少、成本低的特点,可有效地综合利用铁矿石,治理环境污染。     一、实验部分     铁矿石取自湘潭某钢铁厂,经分析,其化学组成为:TFe 63.3%,FeO 0.25%,Fe2O389.94%,Al2O3 2.08%,SiO2 4.16%,CaO0.4%,其它3.17%。     主要仪器。DBJ一621型六联定时变速搅拌器;CS-501SP型超级数量恒温器;马弗炉。     实验方法。将研磨为-200目的铁矿粉放入马弗炉中,分别在600℃、700℃、800℃和900℃温度下煅烧一定时间,冷却后,取出备用。在常温常压下,将一定比例的铁矿粉和被稀释过的浓硫酸置于一个带有搅拌装置的500ml烧瓶中,然后在100℃条件下反应一段时间,冷却,过滤,即得含有Fe2(SO4)3的溶液。以H3PO4作掩蔽剂,用KMnO4滴定,测定Fe2+浓度;以磺基水杨酸为指示剂,EDTA络合滴定法测出Fe3+浓度。     二、结果与讨论     (一)煅烧温度对铁浸出率的影响 控制锻烧时间为2h,硫酸浓度为5mol/L,液固比为6∶1,酸浸时间为3h,考察不同锻烧温度对铁浸出率的影响,结果见表1。由表1知,当锻烧温度低于800℃时,铁浸出率随温度升高而增大;但当锻烧温度超过800℃时,铁浸出率随温度升高变化不明显。故较佳煅烧温度为800℃。 表1  煅烧温度对铁浸出率的影响煅烧温度/℃600700800900铁浸出率/%53.169.279.580.3     (二)锻烧时间对铁浸出率的影响     控制煅烧温度为800℃,硫酸浓度为5mol/L,液固比为6∶1,酸浸时间为3h,考察不同煅烧时间对铁浸出率的影响,结果如表2所示。由表2可知,随着煅烧时间的延长,铁的浸出率提高;但煅烧时间超过2h后,铁浸出率增大不明显。所以煅烧时间以2h为宜。 表2  煅烧时间对铁浸出率的影响煅烧时间/h0.5123铁浸出率/%35.362.578.780.4     (三)硫酸浓度对铁浸出率的影响     控制煅烧温度为800℃,煅烧时间为2h,液固比为6∶1,酸浸时间为3h,考察不同硫酸浓度对铁浸出率的影响,结果见表3。由表3可知,随着硫酸浓度的升高,铁的浸出率提高,当硫酸浓度超过5mo1/L时,铁的浸出率反而下降。这是因为硫酸的浓度过高,则反应系统的水分越少,反应就会不充分,铁的浸出率反而下降。因此,硫酸浓度控制在5mol/L为宜。 表3  硫酸浓度对铁浸出率的影响硫酸浓度/(mol/L)3456铁浸出率/%44.870.679.578.2     (四)酸浸时间对铁浸出率的影响     控制煅烧温度为800℃,煅烧时间为2h,硫酸浓度为5mol/L,液固比为6∶1,考察不同酸浸时间对铁浸出率的影响,结果见表4。由表4可知,随着酸浸时间的延长,铁的浸出率提高;但酸浸时间超过3h后,铁浸出率增大不明显。所以酸浸时间以3h为宜。 表4  酸浸时间对铁浸出率的影响酸浸时间/h1234铁浸出率/%51.570.378.779.1     (五)液固比(硫酸与铁矿石质量比)对铁浸出率的影响     控制煅烧温度为800℃,煅烧时间为2h,硫酸浓度为5mo1/L,酸浸时间为3h,考察不同液固比(硫酸与铁矿石质量比)对铁浸出率的影响,结果见表5。由表5可知,铁浸出率随液固比的增大而提高,因为液固比增大,液固接触机会增多,反而速率提高,因而铁浸出率提高,但液固比超过6∶1后,铁浸出率增大不明显。因此,液固比(硫酸与铁矿石质量比)控制在6∶1为宜。 表5  液固比对铁浸出率的影响液固比(硫酸与铁矿石质量比)4567铁浸出率/%58.375.179.179.7     三、结论     (一)由于铁矿石中含有许多有机杂质,如果直接酸浸,将影响硫酸铁的质量。故将铁矿石先进行煅烧然后再酸浸,其铁浸出效果会更好。     (二)当煅烧温度为800℃,锻烧时间是2h,硫酸浓度为5mo1/L,酸浸时间3h以及液固比(硫酸与铁矿石质量比)为6∶1时,铁的浸出率最高。     (三)以铁矿石为原料,按上述方法制备硫酸铁,具有工艺简单、投资少、成本低的特点,可有效地综合利用铁矿石,治理环境污染。

铬青铜

2017-06-06 17:50:12

铬青铜是指含有铬的青铜产品。青铜原指铜锡合金﹐后除黄铜﹑白铜以外的铜合金均称青铜﹐并常在青铜名字前冠以第一主要添加元素的名。锡青铜的铸造性能﹑减摩性能好和机械性能好﹐适合於制造轴承﹑蜗轮﹑齿轮等。铅青铜是现代发动机和磨床广泛使用的轴承材料。铝青铜强度高﹐耐磨性和耐蚀性好﹐用於铸造高载荷的齿轮﹑轴套﹑船用螺旋桨等。铍青铜和磷青铜的弹性极限高﹐导电性好﹐适於制造精密弹簧和电接触元件﹐铍青铜还用来制造煤矿﹑油库等使用的无火花工具。铬青铜产品中,最为主要的是QCr0.5铬青铜 QCr0.5铬青铜  牌号:QCr0.5   标准:GB/T 13808-1992   铬青铜特性及适用范围:铬青铜在常温及高温下(400℃)具有较高的强度及硬度,导电性和导热性好,耐磨性和减摩性也很好,经时效硬化处理后,强度、硬度、导电性和导热性均显著提高;易于焊接和钎焊,在大气和淡水中具有良好的抗蚀性,高温抗氧化性好,能很好地在冷态和热态中承受压力加工;但其缺点是对缺口的敏感性较强,在缺口和尖角处造成应力集中,容易引起机械损伤,故不宜作整流子片。   铬青铜应用举例:制作工作温度350℃以下的电焊机电极、电机整流子片以及其他各种在高温下工作的、要求有高的强、硬度、导电性和导性的零件,还可以双 金属 的形式应用于刹车盘和圆盘。  铬青铜化学成份:铜 Cu :余量   镍 Ni:≤0.05   铁 Fe:≤0.1   铬 Cr:0.4~1.1   注:≤0.5(杂质)   铬青铜力学性能: 棒材的纵向室温拉伸力学性能   铬青铜热处理规范:热加工温度900~950℃;淬火温度950~1000℃水冷;l回火温度400~450℃。想要了解更多关于铬青铜的资讯,请继续浏览上海 有色 网( www.smm.cn ) 有色金属 频道。