您所在的位置: 上海有色 > 有色金属产品库 > 粗铋除铅的方法

粗铋除铅的方法

抱歉!您想要的信息未找到。

粗铋除铅的方法专区

更多
抱歉!您想要的信息未找到。

粗铋除铅的方法百科

更多

铋的氯化精炼除锌、铅

2019-03-04 11:11:26

一、氯化精粹机理 加锌除银后的铋液中,还溶解有约2%的锌,有必要在精粹中除掉。而铅是粗铋中的首要杂质,其分量比约为Bi∶Pb=4∶1。 图1为Pb-Bi系状态图。图1  Pb-Bi系状态图 从图1可见,当温度高于液相线时,铅与铋能溶组成一个液相,阐明粗铋中能溶解很多铅。只有当反响温度低于液相线时才能够构成有限固溶体,具有Pb、β、Bi、L四相。图中q为共晶点,p为包晶点,β为铋与铅构成的化合物,只在固态存在,加热到184℃时就发作使其分化的包晶反响。 从铋液中别离铅与锌的有用办法是实施氯化别离,各种金属的氯化次第,能够参看图2,依据其氯化物的自由焓与温度的联系来判别。图2  氯化物自由焓与温度的联系 从图可见,坐落图下方的氯化锌和氯化铅的直线,比图上方的氯化铋的直线更安稳。当向熔融铋液通入,能够有用地除掉锌与铅:                            在氯化除锌、铅过程中,生成的氯化铋又会被锌与铅复原:氯化铅也会被锌复原:从图2还能够看到,银的氯化物与铋的氯化物的自由焓非常挨近,这也是当选用先氧化除铅后加锌除银工序时,在氯化精粹后期,贵金属银被氯化而很多进入氯化铅渣的原因。 氯化精粹由氯化除锌与氯化除铅两部分组成。当向熔融铋液通入时,首要锌被氯化,生成灰白色氯化锌渣,当大部分锌氯化入渣后,捞去氯化锌渣,持续通氯脱铅,产出深灰色的氯化铅渣。 某厂测定氯化精粹时锌与铅的氯化程度如图3所示。图3  锌、铅的氯化程度 氯化精粹首要受动力学条件分配。为了加速氯化速度,有必要增大与铋液中锌与铅的接触面,并使生成的氯化锌与氯化铅敏捷与铋液别离。依据质量效果定律,通入之首要生成BiCl3,饱满后氯化铋再将锌与铅氯化。 二、氯化精粹实践 将除银后铋液用泵转入4号锅进行氯化精粹。降温至320~340℃通入,每锅刺进通氯管4~8根,刺进深度为300~400毫米。插管太浅,易逸出蒸发,基层含铅高的液体难以氯化,插管太深,则通氯阻力大,钢锅易被腐蚀。 氯化锌熔点283℃,因为密度小(2.9克/厘米3),上浮至液面而有掩盖效果,锅面构成灰白色薄膜,当开端呈现深灰色渣时,则为除锌结尾,此刻将液态的氯化锌渣舀出,作为出产ZnCl2的质料。 然后氯化除铅。因为铅是铋液中首要杂质,为了加速氯化除铅的速度和进步利用率,操作温度一般控制在350~400℃。PhCl2的密度5.9克/厘米3,熔点498℃,较铋液轻而上浮,呈固态浮渣掩盖铋液表面,避免的蒸发丢失和污染环境。除铅过程中要抓取氯化铅渣数次,捞渣时先停氯,升温至500℃以上,使呈液态舀出,以削减渣中夹藏金属铋丢失。半途捞渣不用捞净,每次捞完后仍降温至350~400℃,持续通氯,直至除铅结尾。氯化锌渣量约为料重的3%~5%,氯化铅渣量约为料重的13%~20%,其成分于下表。 表  氯化精粹渣成分(%)氯化除铅结尾的判别极为重要。判别过早,因除铅不完全而添加出锅前弥补脱铅工序,判别过晚,就会添加铋被氯化入渣丢失量。判别结尾可依据粗铋中杂质铅含量概算氯化铅渣产出量,而大略估量除铅结尾。在出产实践中首要经过取试样目测判别:当试样表面发黑,不冒金属小珠,试祥断面贯穿细密的笔直条纹状结晶,呈金属光泽,无灰色斑驳,则为除铅结尾,此刻之铋液含铅小于0.01%,然后持续通氯一小时左右,取样分析铅,此刻之含铅量动摇在0.0005%~0.001%之间。 剧毒,激烈影响人的呼吸系统,吸入过量会引起肺水肿,乃至引起逝世。

铅的冶炼方法

2018-12-19 09:49:16

冶炼方法:炼铅原料主要为硫化铅精矿和少量块矿.铅的冶炼方法有火法和湿法两种,目前世界上以火法为主,湿法炼铅尚处于试验研究阶段.火法炼铅基本上采用烧结焙烧——鼓风炉熔炼流程,占铅总产量的85—90%;其次为反应熔炼法,其设备可用膛式炉,短窑,电炉或旋涡炉;沉淀熔炼很少采用.铅的精炼主要采用火法精炼,其次为电解精炼,但我国由于习惯原因未广泛采    用电解法.炼锌的原料主要是硫化锌精矿和少量氧化锌产品.火法炼锌采用竖罐蒸馏,平罐蒸馏或电炉;湿法炼锌在近20年以来得到迅速发展,现时锌总产量的70—80%为湿法所生产.火法炼锌所得粗锌采用蒸馏法精炼或直接应用;而湿法炼锌所得电解锌,质量较高,无需精炼.对难于分选的硫化铅锌混合精矿,一般采用同时产出铅和锌的密闭鼓风炉熔炼法处理.对于极难分选的氧化铅锌混合矿,经长期研究形成了我国独特的处理方法,即用氧化铅锌混合矿原矿或其富集产物,经烧结或制团后在鼓风炉熔化,以便获得粗铅和含铅锌的熔融炉渣,炉渣进一步在烟化炉烟化,得到氧化锌产物,并用湿法炼锌得到电解锌.此外,也可以用回转窑直接烟化获得氧化锌产物.

铅的提炼方法

1970-01-01 08:00:00

一,冶炼方法:    炼铅原料主要为硫化铅精矿和少量块矿.铅的冶炼方法有火法和湿法两种,目前世界上以火法为主,湿法炼铅尚处于试验研究阶段.火法炼铅基本上采用烧结焙烧——鼓风炉熔炼流程,占铅总产量的85—90%;其次为反应熔炼法,其设备可用膛式炉,短窑,电炉或旋涡炉;沉淀熔炼很少采用.铅的精炼主要采用火法精炼,其次为电解精炼,但我国由于习惯原因未广泛采用电解法.    炼锌的原料主要是硫化锌精矿和少量氧化锌产品.火法炼锌采用竖罐蒸馏,平罐蒸馏或电炉;湿法炼锌在近20年以来得到迅速发展,现时锌总产量的70—80%为湿法所生产.火法炼锌所得粗锌采用蒸馏法精炼或直接应用;而湿法炼锌所得电解锌,质量较高,无需精炼.    对难于分选的硫化铅锌混合精矿,一般采用同时产出铅和锌的密闭鼓风炉熔炼法处理.    对于极难分选的氧化铅锌混合矿,经长期研究形成了我国独特的处理方法,即用氧化铅锌混合矿原矿或其富集产物,经烧结或制团后在鼓风炉熔化,以便获得粗铅和含铅锌的熔融炉渣,炉渣进一步在烟化炉烟化,得到氧化锌产物,并用湿法炼锌得到电解锌.此外,也可以用回转窑直接烟化获得氧化锌产物.    二,精矿杂质对铅锌冶炼的影响:    1.铅精矿中的杂质:    铜:在精矿中呈含铜硫化物存在.在烧结焙烧温度下,反应为氧化铜,熔炼时还原为金属铜,进入粗铅,如粗铅含铜高(>2%)时,则需造冰铜,对铜进行回收,否则,熔炼时,铅,渣分离困难,且易堵塞虹吸道,造成处理困难,影响工人健康和铅的挥发损失大.铅产品中合铜量较高时易使铅变硬.故要求铅精矿中含铜量<3%,混合精矿含铜<1%.  锌:在铅精矿中以硫化锌状态存在,焙烧时变成ZnO.在熔炼过程中不起化学变化,大部分进入炉渣,增加炉渣粘度,缩小铅液与炉渣比重差,而使二者分离困难,影响铅的回收率.部分ZnO可能凝结在炉壁上形成炉结,使操作困难.原料中含锌高时,会造成高铁炉渣,增加铅在渣中的损失.锌易使铅金属变硬不能压成薄片,并促使硫酸对铅的腐蚀性.因此要求铅精矿含锌不大于10%.    砷:在精矿中以毒砂(FeAsS)及雄黄(As2S3)的状态存在,熔炼时,部分还原成As2O3而挥发进入烟气,形成极有害的大气环境污染.部分As进入粗铅和炉渣;粗铅中含As高时,需采用碱性精炼法除As,产出的浮渣中所含的Na3AsO4极易溶于水而污染水源,致使人畜中毒.砷易与铅形成合金,使铅硬化,故要求铅精矿中含砷不大于0.6%.  氧化镁(MgO):熔点2800℃,增加炉渣熔点,且易使铁的氧化物在渣中溶解度降低,炉渣变粘,一般含MgO达3.5%,则故障频繁,因此希望铅精矿含MgO不大于2%.    氧化铝(Al2O3):熔点2050℃,使炉渣熔点增高,粘度增大,特别是与ZnO结合成锌尖晶石(ZnO·Al2O3),在鼓风炉中系不熔物质,使炉渣熔点与粘度显著升高,故要求精矿中Al2O3不大于4%.    2.锌精矿的杂质:    铜:在精矿中常呈铜的硫化物状态存在,焙烧时,主要形成不同形式的氧化亚铜,残余的硫化铜易形成冰铜,降低炉料的熔点.湿法炼锌时,溶液中的Cu++腐蚀管道,阀门,在竖罐蒸馏时,往往有少量进入粗锌,影响商品锌质量.因此要求锌精矿含Cu不大于2%.    铅:锌精矿中含硫化铅较高时,形成易熔的铅硫,铅硫首先促使结块甚至使焙烧料熔化,阻止硫的脱除.氧化铅易与许多金属氧化物形成低熔点共晶,在800℃时开始熔化,引起炉料在沸腾炉和烟道中结块.湿法炼铅中,焙砂浸出时,转化为硫酸铅,消耗硫酸.火法炼铅中,铅的氧化物在蒸馏罐中还原所得的铅,部分气化,冷凝成为锌锭中的杂质,影响商品锌质量,焙烧矿中硫酸铅在蒸馏罐中被还原为硫化铅,与其它金属硫化物可形成冰铜,造成罐壁的腐蚀.因此要求锌精矿中含铅不大于3%.    铁:铁在锌精矿中呈铁闪锌矿存在时,焙烧时形成铁酸锌.在湿法炼锌过程中,铁酸锌用稀酸浸出不溶解,影响锌的浸出率,增加浸出渣的处理费.精矿中游离的FeS焙烧时转化为Fe2O3,硫酸浸出时呈FeSO4进入溶液,在氧化中和时,生成絮状Fe(OH)3,影响浓密机澄清速度.在火法竖罐蒸馏时,焙烧矿中的Fe2O3还原成FeO与金属铁,其中金属铁在竖罐中形成积铁,影响竖罐温度升高,使锌蒸发不充分,致使渣中含锌高;矿石中存在SiO2时,易与FeO形成硅酸盐侵蚀罐壁;当粗锌进入蒸馏塔时,粗锌含铁量直接影响塔的寿命.因此希望锌精矿含铁一般不大于16%,湿法炼锌不大于10%.    砷:精矿中含砷,在沸腾焙烧时,砷进入烟气,造成制硫酸时V2O5触煤中毒.焙烧矿中的砷绝大部分在浸出时被除掉,但溶液含As高,则消耗FeSO4量大(铁量为砷量20倍),铁多渣多,带走的锌也多.As能在阴极上放电析出,产生烧板现象(阴极反熔).因此要求精矿混合料中As不大于0.5%.    二氧化硅:精矿中往往含有游离的SiO2和各种结合状态硅酸盐,在高温下与氧化锌形成硅酸锌.湿法浸出时,硅酸以胶体状进入溶液中,使产品浓缩,过滤工序极为困难.在蒸馏过程的高温条件下,SiO2与CaO,FeO等形成硅酸盐,腐蚀罐壁有碍蒸馏.要求精矿中SiO2不大于7%.    氟:在沸腾焙烧烟气中的氟,易使制酸系统瓷砖腐蚀,损坏设备.电解液中含氟高时,阴极锌不易剥离.要求锌精矿中F不大于0.2%.    三,铅锌冶炼对伴生组份的综合回收:  1.铅冶炼时的综合回收:    硫:在烧结机烟气中予以回收制硫酸.    铜:在鼓风炉熔炼时,以冰铜形式回收或在火法精炼时以含铜浮渣形式回收.    在烧结烟尘中予以回收.    金,银,铂族金属,硒,碲和铋:在电解精炼阳极泥中回收,或在火法精炼的浮渣中回收.    锌:在鼓风炉渣中用烟化法回收.    镉:在烟尘中予以回收.   2.锌冶炼时的综合回收:    硫:在沸腾焙烧烟气中回收.    铅:在氧化锌浸出渣中回收.    金,银:在浸出渣中用浮选法回收为精矿.    镉:在铜镉渣中予以回收.    铜:在铜镉渣中予以回收.    铟,镓,锗:在铟锗渣中回收.    钴:在净液时以钴渣形式回收.    在除氟氯过程中(多膛炉或回转窑)的烟尘中回收.     四、矿区工业品位指标的计算方法    根据普查评价阶段所能获得的地质资料和国内铅锌矿山一般生产技术经济指标,计算矿区工业品位(指矿区平均品位)可采用简单易行的"价格法".    "价格法"公式如下:    ① 一吨矿石完全成本:为每吨原矿所分摊的采矿,选矿,原矿运输成本及企业管理费和精矿销售费的总和:  采矿成本:即出矿成本,不同开拓方式(平硐,竖井),不同采矿方法,排水量大小等,均影响采矿成本.目前,我国地下开采小型矿山采矿成本约12—23元/吨,大中型矿山10—28元/吨.    选矿成本:铅锌矿石一般为浮选,其选矿成本受矿石含泥程度,矿物粒度,药剂消耗量,尾矿输送距离等因素影响.目前,浮选的选矿成本一般为10—16元/吨.    原矿运输成本:指采出矿石由坑口至选厂的运输费,受运输距离远近和运输方式(电机车,索道等)的影响.目前,我国坑采矿山一般为1—1.5元/吨.    企业管理费:企业管理费受企业规模大小和管理水平的影响.目前,我国大中型企业2—4元/吨,小型企业3—5元/吨.    精矿销售费:铅锌精矿由矿山选厂运至冶炼厂交货地点的一切费用(运输费,装卸费,管理费等)为精矿销售费.运输费可按公路,铁路,水运的距离和有关部门规定的运价计算.但参与上述公式计算时,应将精矿销售费折算分摊成原矿销售费.    ② 采矿贫化率:因地质条件不同,采矿方法不同和管理水平不同,采矿贫化率而有差异.目前,我国坑内采矿的贫化率一般为10—25%.    ③ 选矿回收率:根据具体矿区的矿石可选性试验结果选取指标.    ④ 精矿含每吨金属价格:为国家规定的现行价格,其计价单位为精矿中所含每吨金属.    由于在公式中,精矿销售费需折算分摊成原矿销售费,而在品位尚未确定的条件下,精矿量难以确定,因此折算分摊存在困难,为避免这一问题,可改用下列公式.在下列公式中,一吨矿石完全成本不包括精矿销售费所分摊折算的费用.    公式中精矿价格需进行折算,如锌精矿含Zn 55%时,每吨金属含量的价格为1010元,则每吨精矿价格为1010元×55%=555.5元.    公式中精矿销售费,系每吨精矿的销售费,不分摊折算成原矿费用.    每一具体矿区在地质评价时,可将具体矿区的各项参数代入上述公式中,求出矿区工业品位,从而对矿区的经济意义作出评价.    根据我国当前铅锌矿生产一般技术经济指标的计算,以及有些矿山生产实际资料,矿区工业品位一般要求,硫化矿Pb+Zn 4—5%,混合矿Pb+Zn 6—8%,氧化矿Pb+Zn 8—10%,这个数据也可供矿床经济评价和考虑矿区是否转入详细勘探的参考.对易采易选,交通方便的矿区,以及生产矿山外围的矿区,这个数据可酌情降低.今后,考虑到矿山管理及采选技术水平的不断提高,上述矿区工业品位的参考数据,也必然会逐步降低.    计算矿区工业品位,除"价格法"外,尚有其它一些方法,但多较上述方法繁杂,考虑到普查阶段所能获得的资料有限,故不一一列举,必要时可向工业设计部门了解.

铅阳极泥的除硒、碲

2019-03-05 09:04:34

大都工厂在火法熔炼前经预先焙烧除硒、碲,但有些工厂则于贵铅氧化熔炼中造渣收回。后者与铜阳极泥分银炉氧化熔炼造碲渣的操作类似。阳极泥预先除硒、碲的办法,一般经回转窑或马弗炉焙烧除硒,再从焙烧渣中浸出碲。 一、回转窑焙烧除硒碲。 该作业进程是将铅阳极泥与浓硫酸混合均匀,于回转窑中进行硫酸盐化焙烧。开端温度300℃,最终逐渐升至500~550℃,使硒呈二氧化硒蒸发遇水生成亚。焙烧除硒和亚的复原与处理铜阳极泥相同。 焙烧渣经破碎,用稀硫酸浸出,可使70%左右的碲进入溶液,然后加锌粉置换取得碲泥。碲泥再经硫酸盐化焙烧使碲氧化,然后用浸出。并用电解法从浸出液中出产电解碲,碲的总收回率约50%。 二、马弗炉焙烧除硒碲。 阳极泥与浓硫酸混合均匀,置于焙烧炉内涵150~230℃下进行预先焙烧。然后将焙烧物料转入马弗炉内,在420~480℃温度下进行焙烧除硒。硒的蒸发率可达87%~93%。焙烧渣破碎后用热水浸出,并用锌粉置换取得碲泥,然后再进行提纯。

粗铋回收锡

2019-01-31 11:06:04

关于含锡1.5%左右的粗铋,可选用碱性精粹出产锡酸钠。粗铋熔化后,首要氧化脱砷,脱砷后粗铋降温至420℃左右,参加NaOH,待NaOH熔化后,拌和中缓慢参加NaNO3,待碱渣变干后捞出,再加NaOH与NaNO3,重复数次,待铋样表面呈现叶状斑纹为结尾。固体碱与参加量为:Sn∶NaOH∶NaNO3=1∶3∶0.5。 出产锡酸钠的粗铋及渣料成分列于下表。 表  粗铋及碱性锡渣的成分(%)一、工艺流程 如图1所示。用锡渣出产锡酸钠,包含浸出、净化、浓缩结晶,枯燥等工序。图1  出产锡酸钠工艺流程图 二、首要技能条件 (一)水淬。水淬的意图是别离碱液中的铋珠,并使碱渣细碎。在90℃拌和浸出水淬渣,直至溶液清亮。加热水淬可带走一半的砷,但也形成部分锡的丢失;也可选用常温水淬。结尾控制在水淬滤液密度1.35~1.4克/厘米3之间。 (二)浸出。浸出的意图是使锡酸钠溶于水溶液中以利于净化。浸出液固比(3~4)∶1;浸出时刻4~6小时,因为锡酸钠在水中的溶解度随温度上升而下降,而锑酸钠在水中的溶解度随温度上升而增高,所以宜选用常温浸出,浸出率可在85%~90%之间。 (三)净化。浸出液含Sn40~50克/升,Pb1~1.5克/升,Sb0.1克/升左右,应除掉其间的铅与锑: 除铅:加Na2S除铅,温度90~95℃,配成10%的Na2S溶液,拌和中参加,至无黑色沉积发生即结尾,Na2S参加需过量。 除锑:在浓缩蒸煮进程进行加Na2S除锑,可除掉溶液中大部分锑,再挂锡片置换除锑,在除铅一起进行,在欢腾时参加精锡片进行置换反响,结尾时溶液黄色消失,清亮通明。 (四)结晶过滤。使溶液中锡酸钠结晶分出的办法有二:一是浓缩结晶分出;一是使用锡酸钠在碱性水溶液中溶解度随NaOH浓度的升高而下降,通过往溶液中参加NaOH而使锡酸钠分出,前一办法节省NaOH,母液体积小,但耗费时刻和蒸汽;后一办法节省时刻和蒸汽,但耗费了NaOH,母液体积大,常将两种办法结合进行。先加热浓缩,到达饱满浓度后锡酸钠逐步分出,经离心过滤后枯燥,即为产品锡酸钠。 三、首要设备 碱性精粹选用5吨铸钢锅一口;离心过滤机选用φ600×350毫米,过滤面积F=0.66米2;浓缩罐二台,选用1500升夹套珐琅反响釜,枯燥箱一台。 四、产品用处 锡酸钠在电镀工业中用于碱性镀锡和镀铜锡合金;纺织工业用作防火剂,增重剂;染料工业用作媒染剂,还用于珐琅工业和玻璃工业。 五、产品质量 锡酸钠成分为(%)Sn37~42,游离碱(NaOH)3~5,Pb<0.001,As<0.01,Sb<0.005,Cu<0.03,Fe<0.02,水不溶物低于0.2,硝酸根低于0.2,至锡(Sn2+)契合实验。

粗铋和火法精炼

2019-01-04 09:45:43

表1列举几种不同成分的粗铋。 表1  粗铋成分(%)分析表1列举的几种粗铋,可以发现存在如下规律: 火法生产的粗铋中,砷与锑含量均较高。因为在用碳还原铋的过程中,部分砷、锑也还原进入粗铋,精炼中必须将其分离除去; 火法生产的粗铋中银含量较高,所以在精炼过程中,必须优先回收银,以防银的分散与损失; 火法生产的粗铋中铅含量较高,铅是粗铋中的主要杂质,必须采取有效措施分离铅、铋,并应考虑回收大量铅渣; 湿法生产的粗铋中杂质含量较少,这是因为在湿法处理过程中已分离出铅、银、铜、砷等杂质,为精炼创造了有利条件; Pb-Bi合金中铋含量太低,在火法精炼前必须经过预处理富集铋。 铋的火法精炼在精炼锅内进行。火法精炼一般包括以下工序:熔析及加硫除铜;氧化精炼除砷、锑;碱性精炼除锡、碲;加锌除银;氯化精炼除铅、锌;最终精炼。 各工序的确定以及工序次序的安排,因各厂粗铋原料成分的不同和操作习惯的不同而有差异,但一般有如下规律: 当粗铋含碲高时,为了回收碲,常将除碲工序安排在除砷、锑工序之后,使碲富集存碲渣中以利于回收;当粗铋含碲低时,常省略除碲工序,粗铋中微量的碲经最终碱性精炼除去,此时最终精炼时间将较常规延长2小时左右。 当粗铋含砷、锑低时,常省去除砷、锑工序,粗铋中微量的砷、锑,将在最终碱性精炼中除去;当砷、锑含量高时,必须首先氧化挥发除砷、锑。 当粗铋含银高时,为了回收贵金属银,应将除银工序安排在除铅工序之前,以免银分散入氯化铅渣中;当粗铋含银低含铅高时,也可考虑将除银工序安排在除铅工序之后。有些工厂由于操作上的习惯,或因产出的氯化铅渣可返回铅系统处理,贵金属银仍可回收等原因,而将除铅工序安排在除银工序之前。但从有利于回收富集银着想,为了防止银的分散,先除银是合理的。 当处理铅高铋低的Pb-Bi合金时,常将氯化除铅分两次进行:一次氯化除铅是为了提高铋的含量;二次氯化才是为了除去剩余的杂质铅与锌。 下面介绍几个火法精炼工艺流程实例: 流程一,如图1,这种流程的特点是由于粗铋含铅高(Pb 20~25%),并且由于产出的氯化铅渣返回铅系统回收铅、银,而将除铅工序放在除银工序之前。从回收银的角度考虑,这种安排是不合理的。图1  铋火法精炼工艺流程图(一) 流程二,如图2。此流程的特点是将除银工序放在前面,以利于回收银;并且粗铋含砷、锑,碲低,因而省略了除砷、除锑、除碲工序。图2  铋火法精炼工艺流程图(二) 流程三,如图3,为直接火法精炼处理Pb-Bi合金,这个流程有三十特点:一是由于合金含砷低,含锑高,所以采用碱性除砷与氧化挥锑,锑以Sb2O3烟尘状态回收;二是氯化除铅产出的大量氯化铅渣,用湿法制取黄丹;二是精铋在铸型前加入NH4Cl作表面,使铋锭呈银白色。图3  Pb-Bi合金火法精炼工艺流程 流程四,图4介绍了国外一些厂炼铋的工艺流程,如日本住友金属矿山公司国富冶炼厂铋火法精炼工艺流程,秘鲁中部矿业公司奥罗亚冶炼厂铋火法精炼工艺流程。这种流程的安排是比较合理的。目前国内一些厂也在改革流程,以利于综合回收。图4  国外铋火法精炼工艺流程图

高岭土除铁的几种方法

2019-02-22 12:01:55

高岭土广泛地运用于陶瓷工业、造纸工业、橡胶塑料工业、建材工业、化学工业、油漆工业等许多部分。依据其用处的不同,对高岭土的白度有着不同的要求,比如在造纸工业中,对涂布级高岭土要求白度> 83 % ,在陶瓷工业中,制造高级瓷质料要求含Fe2O3土中杂质铁,增高其白度的几种办法。        1) 吸附浮选法 在细碎高岭土( 细度为-43μm ,含Fe2O3 0.172 %) 矿浆中参加载体石灰石粉,石灰石粉作为吸附剂,把Fe2O3 从矿浆溶液中吸附到石灰石粉载体上,载体既可依托本身的疏水性,又牢靠捕收剂构成的疏水性附着于气泡,得到含铁的载体泡沫产品与含高岭土精矿的槽内产品,然后使Fe2O3 与高岭土别离。吸附浮选所用设备即为惯例的机械拌和式浮选机,所用捕收剂为塔尔油,硫酸铵 用于按捺高岭土,pH 调整用碳酸钠,水玻璃作为矿浆涣散剂。因为载体吸附为吸附、吸收、混晶、威胁、凝集等多种效果行为,因而,介质的pH、载体的增加 时刻、地址等对吸附浮选影响较大。工艺流程如图1 所示。用吸附浮选法可使高岭土中的Fe2O3 由0.172 %降至0.15 %以下。         2) 双液浮选法 将高岭土矿调成必定浓度的水溶液矿浆,参加pH 调整剂调至所需的pH 值,拌和必定时刻后参加捕收剂,持续调浆必定时刻后,然后参加有机溶液,再充沛拌和适宜的时刻后,静置分层、别离,得到有机相产品(含Fe2O3 ) 和水相产品(含高岭土) 。本办法所用设备类似于萃取别离设备。工艺流程如图2 。       拌和强度对双液浮选的别离目标影响很大,拌和强度缺乏不利于有机相的充沛涣散,然后使铁质矿藏与有机液滴磕碰触摸的时机削减;但拌和过强简略构成中间相(乳状混浊液) ,使分选效果变差,适宜的拌和强度是必要的。此法除铁效果不错,尤其在参加某种增加剂溶液时除铁效果更佳,能使- 2μm 高岭土Fe2O3 的脱除率和高岭土精矿产品的收回率到达抱负成果。一起,此法还能使有机溶液收回再生,循环运用效果甚佳。          3) 固体除铁法 除铁的根本反响如下: Fe2O3 + Na2S2O4 + 2H2SO4W2NaHSO3+ 2FeSO4 + H2O 此反响使三价铁复原成可溶的二价铁,经过滤洗刷去除铁。反响为可逆反响,工艺上要求当即过滤洗刷除掉,以避免二价铁在空气中氧化变成Fe2O3 ,这给工业生产带来很大难度,难以完成预期的去铁目标。可是,在用Na2S2O4 除铁过程中增加适量的螯合剂,螯合剂的成螯官能团与Fe2 + 生成安稳的螯合物,而螯合剂的水溶性官能团则促进其螯合物亲水性,故而生成安稳的水溶性螯合物,该含铁螯合物 在高岭土漂白后随滤液扫除,然后到达除铁意图。运用固体药剂Na2S2O4 合作增加剂螯合物进行除铁,产品白度安稳,质量牢靠,漂白产品不必洗刷,而且削减了对周围环境的污染。但固体Na2S2O4 报价贵重,且遇潮有氧存在的情况下,易分化和氧化,而下降药效,因而在运送和保管环节都须非常当心。         4) 电化学合成除铁法 在弱酸性条件下电解盐水溶液,在电解池阴极上生成连二根离子: 2HSO3- + 2H+ + 2e = S2O2 -4 + H2O 连二根离子有激烈的复原效果,能使三价铁 复原成二价Fe2 + :Fe2O3 + S2O42 - + 4H+ = 2Fe2 + + 2HSO3- + H2O 然后使固态的Fe2O3 转变成Fe2 + 水合离子进入溶液,到达与高岭土别离的意图。此法能使含铁1.115 % ( 以Fe2O3 为主) 的高岭土降至含铁0.137 %。此电解法就地发作的重生态S2O42 - ,比固体Na2S2O4 的漂白效果更为有用,无需运用贵重的固体Na2S2O4 ,药品费用低。别的,在整个反响过程中, 氢根离子按HSO3- 电解S2O42 - 漂白HSO3- 的办法循环,含有HSO3- 的滤液经处理后能够回用,既削减了氢盐的增加量,又减轻了排放含硫废液对水体的污染。但此法的电解设备一次       5) 挑选性絮凝与高梯度磁选除铁法 在高岭土矿浆中加进絮凝剂,使矿浆中微细矿粒受高分子絮凝剂效果,相互串联成松懈的絮凝团,单一的絮凝产品铁含量由Fe2O3 1.118 %降至0.169 % ,再将絮凝产品经过高梯度磁选机分选,得终究产品含Fe2O3 降至0.149 %。而单一的高梯度磁选,一次分选产品含Fe2O3 为0.161 % ,二次分选后Fe2O3 为0.152 % ,达不到高质量高岭土产品Fe2O3       6) 磁种磁选法 把细碎煤系高岭土(细度为- 20μm) 矿浆放入可调整转速的拌和器中拌和。增加定量溶解好的涣散剂(如焦磷酸钠) ,调整矿浆浓度为40 %~50 %。加pH 调整剂,调理pH 为515- 710 ,拌和10 min ,待拌和均匀后,增加事前涣散调理好的磁种( - 6μm 的磁铁矿微细粒或- 1μm 的人工铁氧体微粒) ,使磁种挑选性地与铁、钛矿藏颗粒凝集,进步这些弱磁性意图矿藏的磁性。磁种聚会的关键是调理好微细粒矿浆悬浮液的pH 值,使其介于意图矿藏和磁种等电点之间或为意图矿藏的等电点,此刻磁种和意图矿藏表面荷电性正好相反,有利于相互凝集。待高强度调整3 min 后,给入4 ×10 型高梯度磁选机中磁选(场强114~115 T) 。磁 选时调理好矿浆流量及磁选浓度(10 % - 15 %) ,使矿浆在磁介质中动态停留时刻为30~60 s ,待矿浆悉数通往后,加脉动水冲刷,退磁后排洗磁性产品。工艺流程如图3 。选用磁种别离工艺,可使原矿含Fe2O3 1.138 % ,含TiO2 0.197 %的煤系高岭土,铁、钛去除率别离达52.12 %和49.15 %。           7) 加氯高温焙烧法 煤系高岭土中固定炭含量一般为2 %左右,碳存在于高岭石结晶体空隙中,使煤系高岭土出现灰黑或灰白色,这种高岭土常选用高温氧化焙烧法除炭,来进步高岭土的白度。可是,高岭土中的含Fe 矿藏, 如黄铁矿( FeS) 、菱铁矿(FeCO3) 及褐铁矿( Fe2O3·3H2O) ,在高温焙烧时均会转变成Fe2O3 ,构成质料发黄或呈砖赤色,因而,必须在焙烧前或焙烧过程中采纳除铁、钛办法,才能将产品白度提至90 %以上。选用加氯高温焙烧法,在除炭的一起,能够去除铁、钛致色因子,到达高岭土增白的意图。加氯高温焙烧高岭土,在高岭土中C 的参加下,将铁钛的氧化物转化为低熔点高挥发性的FeCl3 (沸点315 ℃) 及TiCl4 (沸点136 ℃) ,碳则转化为CO、CO2 ,然后使C、Fe 、Ti 与高岭土别离。其化学反响式如下: 2MeO + C + 2Cl2 = 2MeCl2 + CO2   MeO + C + Cl2 = MeCl2 + CO     在相同条件下,经热力学核算,依据反响的自由焓ΔG°巨细来摆放,各种氧化物与氯反响的才能有如下的次序: K2O > Na2O > CaO > MgO > Fe2O3 > TiO2> Al2O3 > SiO2 。明显,摆放在Al2O3 之前的那些MeO ,在加碳高温氯化时,经过温度及气氛操控,均能转化为气态氯化物而除掉,而Al2O3 及SiO2 则得以保存,使高岭土到达除Fe 和Ti 等杂质的意图。加氯高温焙烧工艺,温度以800~900 ℃为宜, 适宜的质料粒度为325 目- 400 目,加氯量一般为高岭土分量的3 %左右,选用动态焙烧优于静态焙烧,以流态化焙烧技能最佳,能够取得高白度的优质高岭土。            8) 化学合成重生液态连二盐漂白法 有关高岭土增白的办法报导虽然较多,但现在绝大多数供应商仍脱离不了(俗称保险粉) 复原法。如前所述,保险粉报价贵重,且遇潮易分化氧化而下降药效。因而,寻觅一种有用的而比保险粉远为廉价的漂白药剂来代替贵重的保险粉,确是一件有意义的事。笔者用化学法发作重生液态连二盐对高岭土漂白的办法是:在高岭土矿浆中参加NaHSO3 溶液,用H2SO4 调整矿浆的pH 至必定数值,将矿浆引进一装有金属锌粒的反响器中,反响至必定时刻后,流出矿浆参加Na2CO3 溶液,调理矿浆的pH 至中性后进行过滤,所得滤饼即为漂白产品。此化学法的漂白原理为:在酸性介质中,药剂在矿浆中发作如下首要化学反响:                NaHSO3 + H2SO4 = Na2SO4 + 2H2SO3                                    H2SO3 = SO2 + H2O          2NaHSO3 + SO2 + Zn = Na2S2O4 + ZnSO3 + H2O                   ZnSO3 + H2SO4 = ZnSO4 + H2SO3                                   H2SO3 = SO2 + H2O                        Zn + 2H2SO3 = ZnS2O4 + H2O      反响生成的重生液态连二盐(Na2S2O4 和ZnS2O4) 具有很强的复原性,它们与高岭土矿浆中的固态铁的氧化物发作如下反响:       Fe2O3 + Na2S2O4 + 2H2SO4 = 2NaHSO3 +2FeSO4 + H2O          Fe2O3 + ZnS2O4 + 2H2SO4 = Zn ( HSO3 ) 2 +2FeSO4 + H2O    反响生成的FeSO4 溶于水而在后续过滤作业中被除掉,然后使高岭土去铁增白。此法可使高岭土的白度由72 %增加到83 %以上(在常温下反响漂白的情况下) ,漂白药剂总费用比用固体大幅度下降(平等目标下比较) ,只需保险粉法的1/ 3~1/ 2 。此法无需报价昂扬的设备,一次性出资少,且工艺简略,操作易行。一起, 在漂白复原过程中, 不断有NaHSO3 和Zn (HSO3) 2 生成, 它们作为再生药剂又参加到Na2S2O4 和ZnS2O4的生成反响中去,实验证明,合理循环使用反响液,能够下降NaHSO3 用量,然后进一步下降药剂本钱。因为各地高岭土的矿床成因和类型不同,高岭土中所含上色杂质的品种、数量和赋存状况等都有较大的差异,在挑选高岭土除铁办法时必需从实际出发,经过实验,挑选最佳计划和工艺条件。 来历:选矿圈

氰化金泥冶炼前除铜的方法

2019-03-04 16:12:50

假如金泥含铜高时,在除锌之后还要除铜。由于金泥含铜高时,不光冶炼时为了使铜造渣要耗费许多熔剂,并且往往构成冰铜而构成金的回收率下降。一般冶炼时金泥中铜含量应小于5%。    预先脱铜的办法许多,优先运用的有硝酸铵法、硫酸高铁法、空气氧化法,除此之外还有法和二氧化锰法。一切办法中都是将铜氧化构成可溶性盐而除掉。当用硝酸铵法脱铜时,化学反响为:          3Cu+12NH4NO3 △ 3Cu(NH3)4(NO3)2+4H2O+4HNO3+2NO↑    此法反响敏捷,除铜比较完全。但硝酸铵用量不能太高,不然金泥中银会丢失。    有些矿山在金泥冶炼前进行氧化焙烧,焙烧温度为850℃左右,在焙烧时,一部分锌、铅蒸发除掉,其他铅、锌和铜则生成相应的氧化物。金泥中大部分硫被氧化成二氧化硫而除掉。因而焙烧后的金泥除金以外其它金属全部是氧化态,给熔炼发明了杰出的条件。

氰化金泥炼金前除锌的方法

2019-03-04 16:12:50

因金泥中含锌较高(尤其是用锌丝置换得到的金泥),一般需预先用酸处理,以除掉大部分锌,一起使金进一步富集。酸处理常用硫酸,也有运用的。用硫酸时,化学反响为:                                                Zn+H2SO4 = ZnSO4+H2↑     酸处理要在耐酸的机械拌和槽中进行。金泥装入槽内,用清水调成30%左右的浓度。装入的矿浆体积不要超越槽容积的一半。充沛拌和后,往槽中缓缓参加硫酸,加酸时操作要细心,加酸速度不要太快,不然易形成泡沫外溢,泡沫过多时,可洒清水消泡。当反响减慢后,可往槽中加水,一起剧烈拌和,恰当补加酸,使液体pH值保持在2~3。这个进程需3~4小时。尔后可将槽中水加满,让其充沛反响4小时,反响终究pH值以4~5为好。    酸处理进程中不只会放出,并且酸也会同金泥中和硫化物反响,生成氢酸和有毒气体。因而拌和槽应密封,并配有强壮抽风机,将抽出空气充沛用碱溶液洗刷。排气口应该远离火源,避免引起爆破。    酸处理后的矿浆应静置,使料液弄清。然后将上部清液用虹吸法移出,再加上70~90℃的热水,用倾析法充沛洗刷金泥,以便除掉金泥中硫酸锌。洗刷次数一般不少于5次。在洗刷进程中要避免金泥颗粒丢失。处理后金泥过滤脱水、烘干或直接去冶炼。    硫酸处理金泥时,硫酸用量1.5公斤/公斤金泥。处理后金泥含锌量小于5%。

提高除铁器除铁效果的方法

2019-01-24 09:36:27

除铁器是一种能产生强大磁场吸引力的设备,它的用途是将原料中混杂的铁质和其他磁性物料去除,以保证输送系统中的破碎机、球磨机等机械设备能安全正常的工作。 我国除铁器的除铁效率普遍不高,有些选厂为了能提高除铁效率,通常都采用2级或3级除铁方法,但仍然不能达到选厂所需要求,其主要原因是处在煤层底部的铁物质受到的电磁力较小,同时还受上层煤的压力作用,所以除铁效果不好。 近几年,研发了一种提高除铁效率的方法,对电磁铁实施“短时强励”,即在电磁铁极靴的前边、输送带的下边安装一个传感器,其目的是利用传感器检测离极靴最远、吸引效果最弱之处的磁性物质,然后通过传感器将检测到的信号传递给强励整流器,使磁性物质再通过极靴下方时,给磁铁圈短暂的施加高的供电电压,从而产生强大的磁力流,让电磁吸力短时间剧增,这样便能将埋在深处的磁性物质吸出,之后电压便重新恢复到平时的供电状态。 传感器安装在极靴前方的目的,是为了避开电磁铁磁场的干扰,一般情况下,铁物质在煤层上部或中部的时候,不让传感器发送有效信号,只有铁质埋在煤层底部的时候,才可发送有效信号。 传感器具备以下几个环节: 正常励磁触发控制环节 主要是对电磁铁进行正常的励磁控制,需具有触发脉冲移相调节功能,控制主同路的可控硅KP1、KP2,来实现正常励磁电流调节。 强励延时控制环节 它是提供从检测到有铁物质信号时起,到铁物质正好运行到电磁铁极靴前端这段时间进行延时,然后启动强励控制信号,启动强励触发环节,在最佳时刻进行强励,且尽可能减少强励时间,不错过捕捉良机的目的。 强励时间控制环节 主要是控制施加强励时间的长短,将强励时间控制在运行前极靴的前端,到运行后极靴的后端这一段时间,可将强励时间控制在最佳范围内。 强励触发控制环节 它主要是在强励延时、强励时间的控制下,向强励主回路的可控硅KP3和KP4适时的发出强励触发脉冲,进行强励。另外,不需要对触发脉冲进行移相控制,只需将触发角控制到最小值即可,这样能够获得更大的强励电流。 在目前电磁除铁器的除铁效果不尽如人意的情况下,“短时强励”这一方法极大改善了这一状况,十分具有应用潜力。