您所在的位置: 上海有色 > 有色金属产品库 > 碳酸钠沉淀氯化稀土 > 碳酸钠沉淀氯化稀土百科

碳酸钠沉淀氯化稀土百科

钨矿物原料的分解—碳酸钠高压浸取法

2019-02-13 10:12:38

A  基本原理    a 首要反响及其热力学条件    白钨矿白钨矿碳酸钠浸出的反响为:                       CaW04(s)+Na2C03(aq) ==== Na2W04(aq)+CaC03(s)            (1)    依据测定,反响式(1)的浓度平衡常数Kc和活度平衡常数Ka见表1,从表可知,反响的Kc值随苏打用量的增加而减小。黑钨矿黑钨矿碳酸钠浸取的反响为: 表1        反响式(1)的浓度平衡常数和活度平衡常数温度/℃90175200225250275300碳酸钠用量(理论量的倍数)1.01.01.01.52.02.50.751.01.52.01.01.52.01.01.0Kc(п.M.佩尔洛夫)(1958)0.461.211.451.190.960.671.561.521.490.991.851.610.97  T.щ.阿格诺夫(1986)  0.97    1.46  1.521.370.991.631.57Ka(阿格诺夫)   1.151.341.511.66              (Fe,Mn)W04(s)+Na2C03(aq)Na2W04(aq)+FeC03(s)(或MnC03(s))                      或FeW04(s)+Na2C03(aq)Na2W04(aq)+FeC03(s)                        MnW04(s)+Na2C03(aq)Na2W04(aq)+MnC03(s)                         FeC03(s)+2H20 Fe(OH)2(s)+H2 C03(aq)                            He(OH)2(s)Fe3 04(s)+2H20+H2                        MnC03(s)+2H20 Mn(OH)2(s)+H2C03(aq)    T. III.阿格诺夫测定了人工合成的FeW04、MnW04与Na2C03的反响,发现在200~275℃下,反响生成的FeC03简直悉数水解,渣中含很多Fe304,而生成的MnC03只要3%~11%水解成Mn(OH)2。一起测定了FeW04及MnW04与Na2C03反响的浓度平衡常数Kc(见表2)。 表2     FeWO4、MnWO4、(Fe,Mn)WO4与Na2CO3反响的Kc值(T.щ.阿格诺夫)物料碳酸钠用量:理论量1倍碳酸钠用量为理论量2倍200℃225℃250℃275℃225℃FeWO41.101.512.253.000.80MnWO41.391.511.561.530.94人工合成(Fe,Mn)WO4,Fe:Mn=1:1(摩尔比) 约1.3   天然黑钨矿 1.1   [next]     b  进程的动力学及影响浸取率的要素    反响的机理许多作者都倾向于以为在155℃以上且拌和速度足够快时,进程为化学反响操控,因此升高温度可大大加速反响速度,缩短反响时刻。T.班.阿格诺夫指出天然钨锰矿的浸出速度显着低于天然钨铁矿,对钨铁矿(含16.14% FeO和6.49% MnO)而言,其开始浸出速度与温度的联系在225~250℃范围内契合反响操控的规则,表观活化能为100kJ/mol,温度高于250℃则契合扩散操控规则,表观活化能为25 kJ/mol。对钨锰矿(含13.75%MnO、4. 89 % FeO)而言,在225~ 300℃范围内均为反响操控,表观活化能为100kJ/mol。对上述两种矿而言,在必定温度下跟着反响的进行,因为生成物膜增厚,逐渐过渡到扩散操控。    影响浸取率的要素:    (1)温度II. M.佩尔洛夫在处理含25.1% W03的白钨精矿时,当温度为280℃,即便碳酸钠用量仅为理论量的2.25倍,则15 min内渣含W03亦可降至0.048%。因此佩尔洛夫等以为进步温度以下降碳酸钠用量、进步浸出率是当时碳酸钠高压浸出尽力方向之一。但与此一起,杂质的浸出率亦进步。P. B.奎缪亦得出相似成果。    (2)碳酸钠用量及碳酸钠开始浓度当开始浓度必守时,碳酸钠用量增加浸出率增加;当碳酸钠用量必守时,开始浓度下降浸出率增加。因此一般以为Na2C03开始浓度以70~200g/L为宜。残渣的显微镜调查和化学分析标明,当Na2C03浓度超越230g/L时,残渣中还存在成分近似为Na2C03·CaC03的复盐和微量Na2C03·2CaC03。    碳酸钠高压浸取进程的强化:    (I)机械活化A. H.泽里克曼等进行了很多研讨,标明钨矿预先进行机械活化后,浸取率显着进步。例如,含7.4% W03的白钨精矿,在相同的条件下,当预先在离心式磨机中活化,则浸取率达96.9%,而不予活化则浸取率仅84.9%。    实验也标明,机械活化使白钨矿与Na2C03反响的表观活化能由54.78kJ/mol降为12.71 kJ/mol,浸出钨锰矿时表观活化能由46kJ/mol降为20kJ/mol。    (2)热活化将矿在高温下锻烧,并进行淬火,在急冷急热的情况下,矿藏中存在热应力或坚持其高温相,因此处于较高的能位状况,一起淬火进程中因为热应力而在矿藏中发作裂纹,这些都有利于进步浸出速度。T. ILK.阿格诺夫将含33.32% W03、2.3% Mo、30.35% Ca0、3.75% Si02、0.5%有机物的白钨矿进行热活化处理,然后在225℃、碳酸钠用量为理论量2.5倍的条件下进行浸出,则W03浸出率可进步1~2个百分点。    (3)超声波活化H. H.哈伏斯基(XaBCKHri )等在容量为210L的设备中的实验标明,在5-lOkHz的超声波效果下,当碳酸钠用量为理论量的3倍,工作压力为0.7MPa,固/液比为1/4的条件下,白钨矿的浸出率较无超声波效果高3%~7%,A. A.别尔欣茨基等亦指出,在有超声波效果下,即便碳酸钠用量仅理论量的1.6~1.8倍,在2.5 h内,浸出率达86%~88%,比没有超声波效果时成倍增加。    c 碳酸钠高压浸取进程中杂质的行为及杂质的按捺    碳酸钠高压浸取进程华夏猜中的磷灰石、砷黄铁矿、臭葱石、萤石、磷灰石、硅酸盐、铝酸钙矿等都能部分与碳酸钠反响生成磷酸氢钠、氢钠、等进入溶液,但除钼酸钙矿的浸取率达80%~90%以外,其他杂质的浸出率都很低,一般磷、砷、硅的浸取率都为5%以下,在没有氧化剂存在的条件下,硫化矿如辉钼矿、辉锑矿等基本上都不发作浸取反响。    实验证明碳酸钠高压浸取进程中增加A12 03或镁化合物都有利于按捺Si02及部分磷、砷的浸取,例如含12.75%W03、13.7% Si02、0.407% P、O. 019% As的白钨中矿的浸取进程中,当不增加A12 03,则终究浸出液中含Si,P及As别离为0.86g/L、O.013g/L及0.O11g/L,参加A1203时,终究浸出液中含Si、P和As别离降为0. 0092g/L、O.006g/L和0.0065g/L,对含31.7% WO3、1.08% SiO2的白钨中矿进行高压浸出时,参加矿量5.2%的镁盐,则浸出液中Si02含量降至(1~5)、10-4 g/L。    B  工业实践    a  设备    高压釜有立式及卧式两种。立式釜容积一般为3~5m3。卧式釜的釜体由低合金钢焊成,直径约1.5~1.8m,长10~15m,壁厚25~30mm,一般转速为2~3 r/min,釜内装球,在旋转进程中能铲除釜壁上的结垢,蒸汽及料浆别离经过蒸汽管及料浆管通人釜内。    b  工艺进程    工艺进程分接连作业和接连作业两种。澳大利亚金岛白钨公司化学处理厂用立式釜接连高压浸出的设备流程见下图。接连作业便于机械化和自动化,一起蒸汽用量均匀,能耗低,设备生产能力高。前苏联某厂将接连作业改成直接蒸汽加热接连操作后,生产能力进步1倍。[next]    c  技能条件及技能经济目标    某些工厂的技能条件及技能经济目标见表3。 碳酸钠高压浸取法处理钨质料的技能条件及目标质料工艺条件浸出成果补白Na2CO3用量(理论量的倍数)液/固温度/℃时刻/h浸出率/%渣含WO3/%低档次白钨中矿,含10%~25%WO3约5 190~2001.5~2980.2~0.6由中矿至APT的收回率为95%低档次白钨矿中含8%~15%WO34~5,另加理论量0.5倍的NaOH矿浆密度1.7g/cm380497.5~98.7约0.1浸出母液成分/(g·L-1):45WO3,2F,1Si钨中矿含45%~50%WO3,5%~6%Mo3.5~4,当用两段浸出时刻为2.5~3~3  99 浸出母液成分/(g·L-1):100~130WO3,5~8Mo,80~90Na2CO3,1.5~2SiO2,3~4F钨细泥含12.6%WO3其间白钨与黑钨各占50%左右:0.019%As,0.14%Mo,0.49%P,13.7%SiO23.85,另加矿量3%的NaOH1.3~1.52102~398.060.3两段错流浸出3.85,另加矿量5%的Al2O3   97.610.35两段错流浸出钨细泥含:28.86%WO3,其间黑钨占总钨的39.2%4.5,另加矿重5%的NaOH2.8210~2202~396~980.6~0.8浸出液成分/(g·L-1):86WO3;0.135SiO2;0.1P;0.05As是非钨混合钨精矿2.2,另加理论量0.2倍NaOH 230299  钨细泥含16.5%WO3,21%SiO23.0,另加2%NaOH,3%Al2O3 185~195298~990.15~0.2浸出液成分/(g·L-1):0~80WO3,0.005As,0.01P,0.02Si,1~2F     d  碳酸钠收回    因为压煮中碳酸钠用量达理论量2.5~5倍,故母液中残留很多Na2CO3,其间Na2CO3/WO3达0.8~1.6(质量比)。从母液中收回碳酸钠的办法繁复,但都未见其工业化的报导,具体见参考文献[1]的72~77页。    参考文献:    1.李洪桂主编.有色金属提取冶金手册:稀有高熔点金属卷(上).北京:冶金工业出版社,1999

钨矿物碳酸钠高压浸取法的工业实践

2019-01-07 07:51:26

一、设备 高压釜有立式及卧式两种。立式釜容积通常为3~5m3。卧式釜的釜体由低合金钢焊成,直径约1.5~1.8m,长10~15m,壁厚25~30mm,一般转速为2~3r∕min,釜内装球,在旋转过程中能清除釜壁上的结垢,蒸汽及料浆分别通过蒸汽管及料浆管通入釜内。 二、工艺过程 工艺过程分连续作业和间断作业两种。澳大利亚金岛白钨公司化学处理厂用立式釜连续高压浸出的设备流程见图1。连续作业便于机械化和自动化,同时蒸汽用量均匀,能耗低,设备生产能力高。前苏联某厂将间断作业改成直接蒸汽加热连续操作后,生产能力提高1倍。图1  金岛白钨公司化学处理厂的设备流程图 三、技术条件及技术经济指标 某些工厂的技术条件及技术经济指标见表1。 表1  碳酸钠高压浸取法处理钨原料的技术条件及指标原料工艺条件浸出结果备注Na2CO3用量(理论量的倍数)液∕固温度 ∕℃时间 ∕h浸出率 ∕%渣含WO3 ∕%低品位白钨中矿,含10%~25%WO3约5190~2001.5~2980.2~0.6由中矿至APT的回收率为95%低品位白钨中矿含8%~15%WO34~5,另加理论量0.5倍的NaOH矿浆密度1.7g∕cm3180497.5~98.7约0.1浸出母液成分∕(g·L-1);45WO3,2F,1Si钨中矿含45%~50%WO3,5%~6%Mo3.5~4,当用两段浸出时为2.5~3~399浸出母液成分∕(g·L-1);100~130WO3,5~8Mo,80~90Na2CO3,1.5~2SiO2,3~4F钨细泥含12.6%WO3其中白钨与黑钨各占50%左右;0.019% As,0.14% Mo,0.49% P,13.7% SiO23.85另加矿量3%的NaOH1.3~1.52102~398.060.3两段错流浸出3.85另加矿量5%的Al2O397.610.35两段错流浸出钨细泥含:28.86%WO3,其中黑钨占总钨的39.2%4.5另加矿重5%的NaOH2.8210~2202~396~980.6~0.8浸出液成分∕(g·L-1):86WO3;0.135SiO2;0.4P;0.05As黑白钨混合钨矿2.2,另加理论量0.2倍NaOH230299钨细泥含16.5%WO3,21%SiO23.0,另加2%NaOH,3%Al2O3185~195298~990.15~0.2浸出液成分∕(g·L-1);70~80WO3,0.005~8As,0.01P,0.02Si,1~2F 四、碳酸钠回收 由于压煮中碳酸钠用量达理论量2.5~5倍,故母液中残留大量Na2CO3,其中Na2CO3∕WO3达0.8~1.6(质量比)。从母液中回收碳酸钠的方法繁多,但都来见其工业化的报道。

钨矿物碳酸钠高压浸取法的基本原理

2019-02-21 15:27:24

一、首要反响及其热力学条件 (一)白钨矿 白铸矿碳酸钠浸出的反响为:    (1) 依据测定,反响式(1)的浓度平衡常数Kc和活度平衡常数Ka,见表1,从表可知,反响的Kc值随苏打用量的增加而减小。 表1  反响式(1)的浓度平衡常数和活度平衡常数(二)黑钨矿 黑钨矿碳酸钠浸取的反响为:Т.Щ.阿格诺夫测定了人工合成的FeWO4、MnWO4与Na2CO3的反响,发现在200~275℃下反响生成的FeCO3简直悉数水解,渣中含很多Fe3O4,而生成的MnCO3只要3%~11%水解成        Mn(OH)2。一起测定了FeWO4及MnWO4与Na2CO3反响的浓度平衡常数Kc(见表2)。 表2  FeWO4、MnWO4、(Fe,Mn)WO4与Na2CO3反响的Kc值(Т.Щ.阿格诺夫)二、进程的动力学及影响浸取率的要素 反响的机理。许多作者都倾向于以为在155℃以上且拌和速度足够快时,进程为化学反响操控,因此升高温度可大大加速反响速度,缩短反响时间。Т.Щ.阿格诺夫指出天然钨锰矿的浸出速度显着低于天然钨铁矿,对钨铁矿(含16.14%,FeO和6.49% MnO)而言,其开始浸出速度与温度的联系在225~250℃范围内契合反响操控的规则,表观活化能为100kJ∕mol,温度高于250℃则契合扩散操控规则,表观活化能为25kJ/mol。对钨锰矿(含13.75% MnO,4.89% FeO)而言,在225~300℃范围内均为反响操控,表观活化能为100kJ∕mol。对上述两种矿而言,在必定温度下跟着反响的进行,因为生成物膜增厚,逐渐过渡到扩散操控。 (一)影响浸取率的要素: 1、温度。П.М.佩尔洛夫在处理含25.1% WO3的白钨精矿时,当温度为280℃,即便碳酸钠用量仅为理论量的2.25倍,则15min内渣含WO3亦可降至0.048%。因此佩尔洛夫等以为进步温度以下降碳酸钠用量、进步浸出率是当时碳酸钠高压浸出尽力方向之一。但与此一起,杂质的浸出率亦进步。P.B.奎缨亦得出相似成果。 2、碳酸钠用量及碳酸钠开始浓度。当开始浓度必守时,碳酸钠用量增加浸出率增加;当碳酸钠用量必守时,开始浓度下降浸出率增加。因此一般以为Na02CO3开始浓度以70~200g∕L为宜。残渣的显微镜调查和化学分析标明,当Na2CO3浓度超越230g∕L时,残渣中还存在成分近似为Na2CO3·CaCO3的复盐和微量Na2CO3·2CaCO3。 (二)碳酸钠高压浸取进程的强化: 1、机械活化。A.H.泽里克曼等进行了很多研讨,标明钨矿预先进行机械活化后,浸取率显着进步。例如,含47.4% WO3的白钨精矿,在相同的条件下,当预先在离心式磨机中活化,则浸取率达96.9%,而不予活化则浸取率仅84.9%。 实验也标明,机械活化使白钨矿与Na2CO3反响的表观活化能由54.78kJ∕mol降为12.71kJ∕mol,浸出钨锰矿时表观活化能由46kJ∕mol降为20kJ∕mol。 2、热活化。将矿在高温下煅烧,并进行淬火,在急冷急热的情况下,矿藏中存在热应力或坚持其高温相,因此处于较高的能位状况,一起淬火进程中因为热应力而在矿藏中发作裂纹,这些都有利干进步浸出速度。Т.Щ.阿格诺夫将含33.32%WO3、2.3%Mo、30.35%CaO、3.75% SiO2、0.5%有机物的白钨矿进行热活化处理,然后在225℃、碳酸钠用量为理论量2.5倍的条件下进行浸出,则WO3提出率可进步1~2个百分点。 3、超声波活化。H.H.哈伏斯基(Хавский)等在容量为210L的设备中的实验标明,在5~10kHz的超声波效果下,当碳酸钠用量为理论量的3倍,工作压力为0.7MPa,固/液比为1/4的条件下,白钨矿的浸出率较无超声波效果高3%~7%,A.A.别尔欣获基等亦指出,在有超声波效果下,即便碳酸钠用量仅理论量的1.6~1.8倍,在2.5h内,浸出率达86%~88%,比没有超声波效果时成倍增加。 三、碳酸钠高压浸取进程中杂质的行为及杂质的按捺 碳酸钠高压浸取进程华夏猜中的磷灰石、砷黄铁矿、臭葱石、萤石、磷灰石、硅酸盐、钼酸钙矿等都能部分与碳酸钠反响生成磷酸氢钠、氧钠、等进入溶液,但除钼酸钙矿的浸取率达80%~90%以外,其他杂质的浸出率都很低,一般磷、砷、硅的浸取率都为5%以下,在没有氧化剂存在的条件下,硫化矿如辉钼矿、辉锑矿等基本上都不发作浸取反响。 实验证明碳酸钠高压浸取进程中增加Al2O3或镁化合物都有利于按捺SiO2及部分磷、砷的浸取,例如含12.75% WO3、13.7% SiO2、0.407%P、0.019% As的白钨中矿的浸取进程中,当不增加Al2O3,则终究浸出液中含Si、P及As别离为0.86g/L、0.013g∕L及0.011g∕L,参加Al2O3时,终究浸出液中含Si、P和Ag别离降为0.0092g∕L、0.006g∕L和0.0065g∕L,对含31.7% WO3、1.08% SiO2的白钨中矿进行高压浸出时,参加矿量5.2%的镁盐,则浸出液中SiO2含量降至(1~5)×10-4g∕L。

钨酸钠溶液沉淀净化法

2019-03-04 16:12:50

用沉积(含结晶)法除掉钨酸钠溶液中杂质的钨溶液净化办法。一般可分为杂质元素别离及制取纯钨酸铵溶液两个阶段。 杂质元素别离 从粗钨酸钠溶液中别离杂质元素的办法有沉积杂质元素法及结晶钨酸钠法两类。 沉积杂质元素法 在工业上使用的首要有水解沉积法、镁(铝)盐沉积法及硫化钼沉积法。 (1)水解沉积法。用无机酸中和水解的办法除掉粗钨酸钠溶液中硅和锡的进程。硅和锡别离以Na2SiO3和Na2SnO2或Na2SnO3方式存在于粗钨酸钠溶液中。为确保除锡作用,一般先用次或将两价锡氧化成四价,结尾pH一般操控在9.5。而中和水免除硅的结尾pH则操控在8~9为宜。硅和锡的水解沉积反响别离为: Na2SiO3+2HCl=H2SiO3↓+2NaClNaSnO3+2HCl=H2SnO3↓+2NaCl 为防止部分过酸而构成杂钨酸,无机酸有必要缓慢地参加到拌和的粗钨酸钠溶液中。部分过酸构成的杂钨酸不但会影响除杂质的作用,还会下降后续作业的钨收回率。选用替代无机酸进行均相中和,可解决部分过酸问题。为防止水解发作胶体沉积,除硅、锡作业须在煮沸的粗钨钠溶液中进行。中和水解生成的H2SiO3和H2SnO3通过滤除掉。 (2)镁(铝)盐沉积法。往粗钨酸钠溶液中增加氯化镁或硫酸镁使磷、砷及部分硅生成难溶的镁盐沉积除掉的进程。如有氟离子存在,则大部分氟离子生成氟化镁共沉积除掉。如往粗钨酸钠溶液中增加硫酸铝则可使硅生成难溶的铝硅酸复盐沉积除掉。镁(铝)盐沉积法又可分为磷(砷)酸镁盐法、磷(砷)酸铵镁盐法及铝硅酸复盐法。 a.磷(砷)酸镁盐法。用无机酸将钨酸钠溶液中和至含游离碱达1g/L±0.2g/L时,煮沸约0.5h后,缓缓参加密度1160~1180kg/m3的MgCl2溶液,此刻发作生成Mg3(PO4)2和Mg3(AsO4)2沉积的反响: 2Na2HPO4+3MgCl2=Mg3(PO4)2↓+4NaCl+2HCl 2Na2HAs4+3MgCl2=Mg3(AsO4)2↓+4NaCl+2HCl 因为Mg3(AsO4)2的溶度积(298K时为2.04×10-20)大于Mg3(PO4)2的溶度积(298K时为1.02×10-25),故MgCl2的参加量一般视溶液中砷含量而定。为使除砷符合要求,一般先用次或将AsO3-3氧化成AsO3-4。溶液中的硅酸根一起生成硅酸及硅酸镁沉积而被除掉: Na2SiO3+2HCl=H2SiO3↓+2NaCI Na2SiO3+MgCI2=MgSiO3↓+2NaCl 因而,在粗钨酸钠溶液中的含硅量不太高的情况下,能够免除独自的除硅作业。由上述反响式可见,跟着MgCl2的参加,粗钨酸钠溶液的pH逐步下降,即酸度逐步升高,因而操控粗钨酸钠溶液的开始及结尾pH便成为影响磷(砷)酸镁盐法净化作用的最重要因素。pH过高,氯化镁很多水解成氢氧化镁沉积,一方面使渣量增大,钨丢失随之增加;另一方面因为Mg。’离子削减而使净化作用变差。pH过低,磷(砷)酸镁溶解度增加,除杂质作用下降。加完MgCl2后,再煮沸0.5h,弄清通过滤除掉渣后,滤液一般含SiO2≤0.02g/L,As≤0.015g/L。产出的磷、砷渣经NaOH煮洗收回WO3后,其成分(%,干基)大致为:WO34~5,As1~1.2,MgO40~45,SiO24~10。 b.磷(砷)酸铵镁盐法。当粗钨酸钠溶液含有一定量的NH+4时,参加MgCl2并将pH操控在8~9,此刻磷(砷)便生成磷(砷)酸铵镁盐沉积而被除掉: Na2HPo+MgCl2+NH4OH=MgNH4PO4↓+2NaCl+H2O Na2HAsO4+MgCl2+NH4OH=MgNH4AsO4↓+2NaCI+H2O 此法的特点是将除硅与除磷、砷别离在不同的两个阶段中完结,中和水免除硅后期改用NH4Cl调整溶液pH,以防止部分过酸。过滤除硅渣后,加将溶液回调至pH10~11,再按计量参加MgCl2溶液,拌和0.5~1h,沉清过滤。与磷(砷)酸镁盐法相同,操控溶液的开始及停止pH同样是影响磷(砷)酸铵镁盐法净化作用及钨丢失的最重要因素。 c.铝硅酸复盐法。往热的钨酸钠溶液中参加硫酸铝溶液使硅生成铝硅酸复盐沉积,国际上一些工厂用此法除掉钨酸钠溶液中的硅。 (3)硫化沉积法。首要用于从钨酸钠溶液中沉积除钼。往含有钼的粗钨酸钠溶液中参加沉积剂Na2S或NaHS时,便发作生成:Na2MoS4的反响: Na2MoO4+4NaHS=Na2MoS4+4NaOH 随后用将粗钨酸钠溶液酸化到pH2.5~3,使Na2MoS4分化发作MoS3沉积: Na2MoS4+2HCl=MoS3↓+2NaCl+H2S 因为发作生成Na2MoS4的反响趋势大于发作生成Na2WS4的反响,因而不会生成很多WS3沉积,净化进程中的钨丢失一般小于0.5%。硫化沉积法可将钨酸钠溶液中钼含量降至0.01~0.05g/L因为氟离子可与钼生成安稳的[MoO3F]-和(MoO2F4]2-,故需增加沉积剂用量才能将钼除至所需程度,这又会导致钨丢失的增加。 结晶钨酸钠法      使用钨与磷、砷、硅等元素的钠盐的溶解度不同,操控恰当结晶率,使大部分杂质留在苛性钠碱母液中,而分出较纯Na2WO4晶体的进程。含杂质的苛性碱母液回来黑钨精矿苛性钠液分化作业,在精矿分化进程中杂质与增加的铝、镁盐等构成复盐沉积而进入浸出残渣。 制取纯钨酸铵溶液 首要通过人工白钨、钨酸制取和钨酸溶等过程。 人工白钨 往加热至沸的含游离碱0.3~0.7g/L的净化除杂后的钨酸钠溶液中,注入密度为1200~1250kg/m。的氯化钙溶液,便分出钨酸钙沉积。称这种钨酸钙为人工白钨。沉积后母液含WO30.03~0.1g/L。钨酸钠溶液中残留的磷、砷、硅、钼杂质可与钨共沉积。如注入氯化钙之前加Na2S将钼酸根转变成硫代钼酸根,则可使绝大部分钼留存于母液中而与人工白钨别离。因而,在粗钨酸钠溶液含钼量不太高的情况下,结合沉积人工白钨一起除钼,便可免除独自的除钼作业。 钨酸制取 将人工白钨料浆或钨酸钠晶体注入343~353K温度、浓度在30%以上的浓中即可得到黄色的钨酸。前者的分化产品颗粒较粗,较易洗刷。磷、砷及部分钼杂质留在酸母液中,为进步除钼率,可增加钨粉使H2MoO4转变成MoOCl3 H2MoO4+W+3HCl=WO2+MoOCl3+H2O+3/2H2 所生成的MoOCl3易溶于溶液而与钨酸别离。得到的钨酸经充沛洗刷完全除掉钨离子或钠离子,酸母液含WO30.3~0.5g/L,可用石灰沉积成CaWO4而收回。 钨酸溶将加热至353~358K温度的钨酸浆液注入浓度为25%~28%的中即得到纯钨酸铵溶液,而硅、铁、锰等杂质及酸溶时未分化的钨、磷、砷的钙盐则留在不溶渣中,但钨酸中的钼酸、磷酸、均构成相应之铵盐进入溶液,为进步净化作用,在溶时增加氧化镁,就可使磷砷沉积成铵镁盐而除掉。

氯化稀土

2017-06-06 17:50:03

氯化稀土中文名 氯化稀土   英文名 Rare earth chloride   分子式 RCl3·6H2O物化性质  微红色或灰色结晶或块状物,能溶于水,易潮解。遇碱生成氢氧化物或氯氧化物沉淀。水溶液与草酸反应生成草酸稀土沉淀,与硫酸钠或硫酸铵反应生成稀土硫酸钠复盐或稀土硫酸铵复盐沉淀。编辑本段主要用途  主要用于制取混合稀土 金属 和提取单一稀土,大量用于制备石油裂化催化剂,还用作玻璃研磨剂。用作电解混合稀土 金属 ,稀土合金和提取单一稀土元素的原料,也可作石油化工催化剂,助催化剂和稀土抛光粉原料。段运输防护  包装储运用内衬聚乙烯塑料袋的编织袋包装,每袋净重25kg;或用双层聚乙烯塑料袋密封、外套铁桶包装,每桶净重50kg或200kg。应贮存在通风、干燥的库房中。本品易吸水潮解,贮运中应防止包装破损,保持干燥。   物化性质微红色或灰色结晶或块状物,能溶于水,易潮解。遇碱生成氢氧化物或氯氧化物沉淀。水溶液与草酸反应生成草酸稀土沉淀,与硫酸钠或硫酸铵反应生成稀土硫酸钠复盐或稀土硫酸铵复盐沉淀。   毒性防护参见氧化铈。制备方法  由独居石经碱熔、除杂、沉淀后与盐酸反应而得;或由氟碳铈矿精矿经浓盐酸溶解、用碱转化,再经盐酸溶解而得;也可由氟碳铈矿经焙烧后用盐酸溶解而得。从而可以得到氯化稀土了。                                                                                               以上是氯化稀土的介绍,更多信息请详见上海 有色金属 网。

碳酸稀土

2017-06-06 17:50:13

碳酸稀土英文名称: Rare Earth Carbonate相关说明:  白色或微黄色粉末; 不易溶于水,易溶于酸,高温分解。分子式: RE2(CO3)3性能指标:牌号   稀土总量 >%    非稀土杂质含量 <%                          三氧化二铁   氧化钙+镁 二氧化硅   氯根RECO-1    50             0.01           1.0       0.05      0.1 RECO-2    50             0.01           1.0       0.05      0.1 RECO-3    50             0.01           1.0       0.05      0.1 牌号    稀土含量 %       氧化镧  氧化铈 氧化镨 氧化钕 氧化钐 其他稀土 RECO-1 34-36   46-48   3-5   10-12   0.5-1  0.1 RECO-2  >68     <5     4-6   18-20    <1    <1 RECO-3 36-39   59-61    <1    <0.5    <0.1  <0.1应 用:·主要加工其他稀土化合物的原料。·用于加工稀土 金属 的原料。·用于加工稀土合金的原料。更多有关碳酸稀土的内容请查阅上海 有色 网 

碳酸稀土

2017-06-06 17:50:12

碳酸稀土英文名称: Rare Earth Carbonate相关说明:  白色或微黄色粉末; 不易溶于水,易溶于酸,高温分解。分子式: RE2(CO3)3性能指标:牌号   稀土总量 >%    非稀土杂质含量 <%                          三氧化二铁   氧化钙+镁 二氧化硅   氯根RECO-1    50             0.01           1.0       0.05      0.1 RECO-2    50             0.01           1.0       0.05      0.1 RECO-3    50             0.01           1.0       0.05      0.1 牌号    稀土含量 %       氧化镧  氧化铈 氧化镨 氧化钕 氧化钐 其他稀土 RECO-1 34-36   46-48   3-5   10-12   0.5-1  0.1 RECO-2  >68     <5     4-6   18-20    <1    <1 RECO-3 36-39   59-61    <1    <0.5    <0.1  <0.1应 用:·主要加工其他稀土化合物的原料。·用于加工稀土 金属 的原料。·用于加工稀土合金的原料。更多有关碳酸稀土的内容请查阅上海 有色 网 

氢氧化钠或碳酸钠烧结分解锆英砂制备二氧化锆

2019-03-05 10:21:23

一、工艺流程     工艺流程见图1。各过程中首要反响举例如下:图1  碱分化锆英砂工艺流程     二、烧结     首要反响: ZrSiO4+2NaOH=Na2ZrSiO5+H2O ZrSiO4+4NaOH=Na2ZrO3+Na2SiO3+2H2O ZrSiO4+6NaOH=Na2ZrO3+Na4SiO4+3H2O ZrSiO4+2Na2ZrSiO5=Na4Zr2Si3O12+ZrO2 ZrSiO4+Na2ZrO3=Na2Zr2SiO5+ZrO2 2ZrSiO4+3Na2SiO3=Na4Zr2Si3O12+Na2SiO5     反响过程中ZrSiO4与各反响物的反响速度为: ZrSiO4/Na2ZrO3>ZrSiO4/Na4SiO4> ZrSiO4/Na2SiO3>ZrSiO4/Na2ZrSiO5>     三、碳酸钠烧结     首要反响: ZrSiO4+Na2CO3=Na2ZrSiO5+CO2 ZrSiO4+2Na2CO3=Na2ZrO3+Na2SiO3+2CO2     四、水浸     假如碱度不行,则部分发作下列水解反响: Na2ZrO3+2H2O=ZrO(OH)2+2NaOH Na2SiO3+2H2O=SiO2·H2O+2NaOH     五、浸出 Na2ZrO3+4HCl=ZrOCl2+2NaCl+2H2O Na2ZrSiO3+4HCl=ZrOCl2+SiO2·2H2O+2NaCl ZrO(OH)2+2HCl=ZrOCl2+2H2O     六、煅烧 ZrOCl2·8H2O=ZrO2+2HCl+7H2O ZrO(OH)2·nH2O=ZrO2+(n+1)H2O     七、首要工艺条件     碱分化锆英砂制备锆、铪化合物的首要工艺条件见表1。 表1  碱分化锆英砂制备锆、铪化合物的工艺条件工艺过程工  艺  条  件备    注烧结ZrSiO4∶NaOH=1∶1.3(质量比);700~800℃,1.5h 分化率95% ZrSiO4∶NaOH=1∶1.1(质量比);650℃,1~2h 分化率90% ZrSiO4∶NaOH=1∶(3~4)(摩尔比);600~700℃,2~3h 分化率95% ZrSiO4∶Na2CO3=1∶1.1(摩尔比);1050℃,2h水浸 1%~3% NaOH;60~80℃;20min;固液比(质量比)1∶5 水浸沉积物Na2ZrO3,Na2ZrSiO5,ZrO(OH)2,Fe2O3,NaTiO3,H2SiO3;浸洗三次,除硅率大于98%酸浸 5~5.5mol/L HCl;100℃;ZrO2∶HCl=1∶5(摩尔比);0.5h 锆转化率大于98%碱式硫酸锆水解分出① Zr4+=40~60g/L;70~80℃;HCl=1~1.5g/L;SO42-∶Zr4+=0.55∶0.6∶1(摩尔比) 碱式硫酸锆组成为:2ZrO2·SO3·5H2O硫酸锆结晶分出② Zr4+=120~130g/L(对硫酸锆溶液);  Zr4+=200~220g/L(对氧氯化锆溶液);  VH2SO4浓∶VZr液=1∶2(体积比);洗液H2O∶H2SO4∶HCl=75∶40∶5(体积比) 沉积率94%~95%,沉积物H2[ZrO(SO4)2]·3H2O煅烧 800~900℃ ZrO(OH)2·nH2O煅烧 800~900℃ ZrOCl2·8H2O煅烧 850~900℃ 2ZrO2·SO3·5H2O850~900℃ H2[ZrO(SO4)2]·3H2O煅烧     ① ② 用硫酸浸出的成果。     八、碱分化锆英砂的相关物化数据     图2~图5给出了HCl、H2SO4系中锆、铪的相关数据。图2  ZrO2-HCl-H2O系中锆的溶解度 1-0℃;2-30℃;3-50℃;4-75℃;5~80℃;6~90℃图3  ZrOCl2·8H2O热分化产品中氯含量与温度的联系 (287℃时[Cl]=2%;305℃时[Cl]≈0) 1-晶体结构不变;2-晶体结构发作小改变;3-晶体结构简直不变; 4-非晶氧化锆;5-四方结构氧化锆图4  Zr(OH)2Cl2·7H2O溶解度与HCl浓度的联系(20℃)图5  ZrOCl2·8H2O脱水曲线 1-55℃;2-65℃     九、氧氯化锆的脱水机理     氧氯化锆ZrOCl2·8H2O脱水机理为:         十、碱式硫酸锆的分化机理     碱式硫酸锆(2ZrO2·SO3·5H2O)的热分化机理为:         <600℃脱水,产品呈无定形;≈600℃产品组成约为ZrO2·0.57 SO3;>600℃开端分化出SO3,呈现四方晶二氧化锆(T-ZrO2);1000~1050℃,SO3彻底分化,产品呈单斜晶系;1150℃,单斜二氧化锆(M-ZrO2)从头转变为四方二氧化锆(T-ZrO2);由1150℃冷却至室温,样品又转化为M-ZrO2。

锡酸钠

2017-06-06 17:50:01

锡酸钠是一种投资者想知道,因为了解它可以帮助操作。【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。化学性质无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。熔点  140°C如果你想更多的了解关于锡酸钠的信息,你可以登陆上海 有色 网进行查询和关注。

钨酸钠

2017-06-06 17:50:12

什么是钨酸钠?钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水呈微碱性(PH8.5-9),不溶于乙醇, 微溶于氨。在空中风化。加热到100℃失去结晶水而成无水物。与强酸(氢氟酸除外)反应生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反应生成磷钨杂多酸络合物, 与酒石酸、柠檬酸、草酸等有机酸反应生成相应有机酸络合物。英文名称: Sodium tungstate dihydrate中文名称: 钨酸钠MF: H4Na2O6WMW: 329.85CAS: 10213-10-2【英文名】Sodium Tungstate【分子式】有二水物和无水物二种,二水物分子式为Na2WO4·2H2O ,无水物分子式为Na2WO4【分子量】二水物为329.86 ,无水物为293.86钨酸钠的化学性质,质量标准及用途化学性质白色晶体,易溶于水,不溶于醇,在干燥空气中风化。熔点         698 °C(lit.)密度         4.18 溶解度     H2O: 1 M at 20 °C, clear, colorless水溶解性  730 g/L (20 oC)Merck     14,8698质量标准 AR /  CP / 4N / SP化学成分 化学纯 一级品 二级品Na2WO4.2H2O 99 98 97Mo 0.001 0.02 --AS 0.001 0.001 0.001Cu 0.0005 0.001 0.001Fe 0.001 0.001 0.005Si 0.004 0.04 0.04水不溶物 0.005 0.05 0.05PH 8.5-9 8.5-9 8.5-9用途1 生产钨材料的中间产品,也可用于媒染剂、催化剂颜料和分析试剂,纺织工用作织物加重剂、水处理药剂,制造防火、防水材料, 以及磷钨酸盐、硼钨酸盐。2 用于制造 金属 钨、钨酸、钨酸盐、染料、油墨、催化剂等3 用于 金属 钨、钨酸及钨酸盐类的制造。用做媒染剂、颜料和催化剂。还可做织物防火剂以及分析化学试剂。4 本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于织物加重,皮革鞣制,电镀镀层防腐。本品作助溶剂引入瓷釉色料能起降低烧成温度和补色作用。更多有关钨酸钠请详见于上海 有色 网

稀土选矿氯化稀土在水中的溶解度

2019-01-18 13:27:13

氯化稀土在水中的溶解度(25摄氏度)

锑酸钠

2017-06-06 17:50:12

锑酸钠  英文名称:sodiumantimonate;sodiummetantimonate详细说明:   NaSbO3又称偏锑酸钠。有粒状结晶与等轴结晶的白色粉末。耐高温,在1000℃仍不分解。溶于酒石酸、硫化钠溶液、浓硫酸,微溶于醇、铵盐,不溶于乙酸、稀碱和稀无机酸。冷水中不溶,热水中发生水解形成胶体。有毒。用作显像管、光学玻璃和各种高级玻璃的澄清剂,纺织品、塑料制品的阻燃剂,搪瓷乳白剂,制造铸件用漆的不透明填料及铁皮、钢板抗酸漆的成分;化学分析中用于鉴定纳离子。由锑块粉碎后与硝酸钠混合加热,通空气进行反应,再经硝酸浸取而得。也可由粗三氧化二锑与盐酸混合,再经氯气氯化、水解、用过量碱中和而得。   锑酸钠用途:   1.用作不透明填料、搪瓷的乳白剂及铁皮、钢板的抗酸漆;   2.用作显像管、光学玻璃等高档玻璃澄清剂、裉色剂。能抗暴晒,灯工性能极好;   3.用于塑料、橡胶等工业阻燃剂:   4.用于工程塑料待业着色力低,节约颜料;   用于搪次和耐酸陶瓷、高档陶瓷。

氯化稀土化合物质量指标

2019-01-03 14:43:37

氯化稀土化合物质量指标产品名称牌号ω(主要成分) 不小于%ω(非稀土杂质)不大于%技术指标氯化稀土RECl 3-48REO  48SO4-20.1,Fe2O30.07,BeO+SrO<0.8,CaO+MgO<3,P2O5<0.01GB4149—84RECl 3-45REO  45RECl 3-48REO48;CeO2配分45SO4-20.03NHCl<1.3~4GB4148—84

低品位稀土矿浸出液萃取生产氯化稀土研究

2019-02-25 14:01:58

用某有机磷酸作萃取剂,从某类型稀土矿浸出液直接出产氯化稀土的萃取工艺,在φ20离心萃取器上连动实验,标明工艺可行。浸出液先用-调控pH=5,除掉重金属离子和90%的铝离子,得到除杂液在比较O/A为1/5~1/10,2级逆流萃取,稀土萃取率大于95%。稀土有机相,用6mol/L,比较O/A为10/1~15/1,3级逆流反萃,稀土反萃率97%。反萃液稀土浓度在150g/LRE2O3以上,经蒸腾后得到固体氯化稀土,纯度为含RE2O345%~46%。 萃余液不经处理就可回来浸矿,消除了废水的污染,具有推广应用价值。稀土,浸取,溶剂萃取风化型稀土矿浸出液稀土浓度大多在RE2O2l~5g/L规模,从中收回稀土多年来首要选用的工艺是草酸沉积生成草酸稀土,再的烧成氧化稀土作为产品供应。能否直接将浸出液稀硫酸稀土母液转化为氯化稀土产品,这是一种有利于稀土矿山和稀土别离厂的新工艺,它不仅可不必贵重草酸,改动矿山产品结构,出产氯化稀土.....

铁水解沉淀

2019-02-18 15:19:33

铁是湿法冶金中最常遇见的杂质元素。它在天然界的丰度以及它与周期表中许多元素(如第二类主族元素中的Ca和Mg及榜首过渡系元素Ti,V,Cr,Mn,Co,Ni,Cu)化学性质上的相似性,使之常常发作元素替代,致使这些元素的矿藏假如不是悉数,至少也是大部分含有铁。作为固溶体结合在矿藏中的铁含量从微量(<0.5wt%)到多量(>10wt%)不等,闪锌矿中替代锌的铁量可多达17.4%,镍黄铁矿(Fe,Ni)9S8含铁最多乃至可达43%。因此,湿法冶金中各种浸出液和工艺溶液中都程度不同地含有铁。下表列出了几种首要金属出产进程中由酸浸或酸洗作业发作的可溶性铁的预算数量。因此,含铁溶液的水解天然成了湿法冶金中堆积别离铁最重要最常见的反响,并且大都是为了从浸出液和各种工艺溶液中,首要是从硫酸盐介质中,除掉铁杂质。用堆积法除铁的一个额定的长处是能够通过与铁的共堆积一同除掉其他有害元素如砷。 表  某些冶金业中发作的可溶性铁预算量金属出工业金属产值∕(t·a-1)发作的可溶性铁∕(t·a-1)铜100000003000000锌60000001000000镍5000002500000钢7000000002000000 在湿法冶金所遇到的氧化电位和pH条件下,溶液中的铁只需二价和三价两种价态。由图1看,Fe3+与Zn2+,Cu2+,Co2+,Ni2+等的堆积线相距甚远,标明能够通过水解挑选性堆积铁化合物,在3.5~5的低pH值下从这些金属的溶液中除掉铁。Fe2+则即便在中性条件下也不发作堆积,因此湿法冶金中的堆积除铁问题都是根据Fe3+的水解,Fe2+需先氧化成Fe3+后才干有用除掉。 铁的水解是一个十分复杂的进程,溶液的性质和水解的条件都对水解的成果有着重要影响,发作不同的水解产品和不同的晶型结构。也正因为如此,天然界才会有多种铁的氧化物存在。现在现已知道的铁氧化物、羟基氧化物和氢氧化物有13种,包含水铁矿(Fe5HO8·4H2O)、赤铁矿(α-Fe2O3)、赤磁铁矿(γ-Fe2O3)、磁铁矿(Fe3O4)、针铁矿(α-FeOOH)、四方纤铁矿(β-FeOOH)、纤铁矿(γ-FeOOH)和六方纤铁矿(δ'-FeOOH)。除针铁矿和六方纤铁矿外,其他铁氧化矿藏都或许为杰出的晶体。图2描绘了常见铁氧化物的构成条件和它们间改变的道路和大致的改变条件。图1  金属氢氧化物堆积图25℃图2  常见铁氧化物构成和转化道路及其条件 除氧化物、羟基氧化物和氢氧化物外,铁水解时还或许结合溶液中某些阴离子而构成复盐,最典型的比如是黄铁矾。其间的一些水解产品或许发展为湿法冶金中从溶液中除铁的化合物。挑选作为除铁的水解产品应具有下列性质: (1)应具有较小的溶解度,然后可把溶液中残留的铁降到最低; (2)应能在较低的pH值下堆积分出,避免在除铁时引起主金属堆积丢失; (3)应易于结晶,晶粒较大尤好,便于过滤洗刷; (4)应有较大水解速度,使除铁进程能在短时刻内完结; (5)最好能与溶液中的其他有害杂质发作共堆积作用,简化溶液净化进程; (6)水解堆积进程应尽或许经济、简洁。 现已开发并工业运用的沉铁办法有4种,都是运用中和水解办法堆积的。其间3种用于除铁,都是从锌的湿法冶金工业发展起来并首要工业化的,依其堆积的铁化合物别离称为黄铁矾法、针铁矿法和赤铁矿法。第4种首要用于磁铁组成。下面别离介绍3种水免除铁的办法。 氧化复原电位和pH值是操控铁在水溶液中行为的两个重要要素。氧化环境有利铁堆积,复原环境促进铁溶解;酸性条件有利铁溶解,碱性条件有利铁堆积。高铁离子平衡浓度受溶液pH值改变的影响很激烈,在pH<3时,pH值每添加1个单位,高铁离子的平衡浓度就下降2~3个数量级。因此简略地进步高铁溶液的pH值进行水解会发作巨大的过饱和度,引起很大的成核速度而构成胶体分出。溶液中的铁大于5kg∕m3时,中和水解发作的胶状Fe(OH)3堆积就难于乃至无法过滤或沉降。这样的堆积夹藏许多溶液,构成有价组分的严重丢失,无法在工业出产顶用来除铁。 温度对铁的行为也有重要影响。高温会促进铁堆积,使堆积在更低的pH值下发作。因此,操控溶液中Fe3+堆积程度和堆积物安稳性的最重要的要素是温度和pH值。诱发水解反响相应地有两种首要办法:加热溶液或加碱中和。巴布坎在20~200℃规模内用0.5mol∕L         Fe2(SO4)3-KOH水解组成黄钾铁矾阐明晰其构成的温度-pH联系,如图3所示。图中斜线暗影部分为黄钾铁矾的安稳区,跟着温度的升高,安稳区向pH值下降的方向歪斜。在20℃下黄钾铁矾构成的pH值规模从2延伸到3,而在100℃下pH值规模从1延伸到2.3,200℃下pH值从0到1.2。低于此安稳区的pH值时无堆积生成,pH值高过此区则因温度的不同而构成各种其他铁化合物。特别值得注意的是,在100℃以上会构成赤铁矿,而在较低温度下构成针铁矿。看来pH在1.5~1.6之间是100℃下黄钾铁矾构成的抱负酸度。黄钾铁矾堆积的程度随溶液初始pH值的上升而进步,初始pH值再高则会构成别种铁化合物。图3  黄钾铁矾构成的安稳区与温度与pH值的联系 (20~200℃下从0.5mol∕LFe2(SO4)3溶液中堆积) 高铁浓度液对铁的堆积也有重要影响。测定Fe2O3-H2SO4-H2O三元件系的等温线标明,在110℃下,硫酸铁酸性溶液中,在最低的铁和酸浓度下堆积的是针铁矿α-FeO(OH),中等铁浓度时呈现草黄铁矾H3OFe3(SO4)2(OH)6,在黄铁矾与针铁矿之间还有另一个化合物    Fe4(SO4)(OH)10,它在较低的铁浓度下构成,或许在黄铁矾构成后期铁浓度只需几g∕L时生成,只需在很高的硫酸铁浓度下才有Fe3(SO4)(OH)生成。 关于铁水解堆积的物理化学更深化的评论可参阅有关文献。 一、黄铁矾的水解堆积 黄铁矾习惯上也统称为黄钾铁矾,在酸性溶液中具有很小的溶解度。矾是指两种或两种以上金属的硫酸盐所组成的复盐,它比其对应的单盐更易从溶液中结晶分出,还能构成较大的晶粒,有利于固液别离。黄铁矾是一组Fe(Ⅲ)的碱式硫酸盐的复盐,其分子式一般可写成M2O·3Fe2O3·4SO3·6H2O或MFe3(SO)2(OH)6,式中M+为下列一价阳离子(或称矾离子)之一:H3O+、Na+、K+、NH4+、Ag+、Rb+和 Pb2+等。在黄铁矾的化学组成中,高铁离子与硫酸根离子的比值(Fe3+∶SO42-=1.5)远大于1∕2,因此归于碱式盐而不是正盐。与正盐比较,它是在溶液酸度较低和SO3百分含量较小的条件下构成的,并可看成是氢氧化物向正盐过渡的中间产品。在正盐中,高铁离子的键合物是SO42-离子中的O2-离子,在氢氧化物中则为OH-离子。溶液酸度增大就会向正盐改变,酸度下降则分出氢氧化物。 天然界巳知有6种黄铁矾,别离为:黄钾铁矾,草黄铁矾,黄铵铁矾,银铁矾,黄钠铁矾和铅铁矾。它们都是在酸性环境中构成的,多为黄铁矿氧化成褐铁矿的中间产品,多发作在硫化矿氧化带发育的开始阶段。一价阳离子M+的品种对黄铁矾的堆积有影响。在160~200℃规模内别离参加Na2SO4,Na2CO3,NH4OH或K2SO4作为堆积黄铁矾的一价阳离子源进行比较,发现堆积后溶液中残留的铁浓度很不相同,残留铁浓度按此次序递减,但到180℃以上这种不同变小。几种黄铁矾中草黄铁矾最不安稳,尽管没有碱金属存在时能够见到草黄铁矾H3OFe3(SO4)2(OH)6生成,但即便少数碱金属的参加便会使之转化为碱金属黄铁矾,水合质子    H3O+被碱金属离子替代的程度随温度上升而添加。钾的铁矾安稳性最高,NH4+离子半径比K+大,Na+、Li+等离子的半径尽管比K+小,但它们的水合分子数多,其水合离子的半径大,因此它们的铁矾的安稳性都不及钾的铁矾。不过考虑到钾盐较贵,工业上铵一般是堆积黄铁矾首选的一价阳离子源。 黄铁矾一旦构成,就很安稳,不溶于酸,因此黄铁矾的堆积反响可用于从硫酸盐溶液中除铁,然后下降给定酸度下铁的溶解度。堆积反响可用下式标明:   (1) 如上式所见,黄铁矾堆积进程中有游离酸发作,需求随反响进程处以中和以坚持堆积要求的溶液pH值。因此,堆积黄铁矾运用的中和剂不只用以中和初始酸,也用以中和高铁水解发作的酸。不过如前所述,中和不宜运用强碱如,即便很稀的强碱液也很难操控pH值。在电解锌厂的实践中是用锌焙砂(首要含ZnO)作中和剂。 文献汇集了各种黄铁矾的自由能数据,从黄铁矾离解成它的组成成分的平衡常数能够核算在给定条件下铁的溶解度。黄钾铁矾堆积构成的速度随温度而异。在25℃下黄铁矾的构成速度缓慢,从pH值0.82~1.72规模的溶液中堆积彻底或许需耗时6个月。进步温度可改善堆积速度,80℃以上时堆积速度变得较快,100℃时可在数小时内堆积彻底。温度100℃以上堆积速度明显加速,不过就黄铁矾的安稳性而言,堆积温度有一个上限。尽管此温度上限会因溶液的组成而异,但180~200℃似为黄铁矾安稳性的上限。 诚如上述,除pH值和温度外,黄铁矾的构成及其安稳性还与一价阳离子浓度、铁浓度以及有无晶种或杂质存在等许多要素密切相关。假如把黄铁矾看作一种难溶电解质,其离解反响式可写为:    (2) 相应地,溶度积写为    (3) 能够看出,参加碱金属硫酸盐可促进黄铁矾的构成。不过上式中以一价阳离子M+的浓度方次最低,对溶液中铁的堆积影响最小,黄铁矾能够从含K+低至0.02mol∕L的溶液中堆积,但一般来说,铁堆积的程度随一价阳离子M+对Fe3+之浓度比添加而进步,且试验证明,抱负状况的M+浓度应满足分子式MFe3(SO4)2(OH)6所规则的原子比。从含Fe3+0.025至3mol∕L的溶液都彻底能够堆积黄铁矾,堆积的下限是10-3mol∕L。只需溶液中有过量的M+离子存在,堆积的黄铁矾的数量和成分与初始溶液中的Fe3+浓度无关。另一方面,OH-离子的浓度方次最高,因此溶液酸度对铁矾分出影响最大。在工厂实践操作条件(堆积温度~100℃)下,黄铵铁矾堆积时溶液中残留的Fe3+浓度与初始H2SO4浓度存在以下联系: [Fe3+]/[H2SO4]=0.01 上式标明,初始H2SO4浓度越高,黄铁矾堆积残留的Fe3+浓度也越高。并且到达平衡所需求的时刻也越长。 黄铁矾堆积根本上是一个成核与成长的进程,其堆积数量和速度与晶种的运用很有联系。在均相系统中发作堆积反响发作固体表面或许需求一个诱导期,晶种的存在可望消除这种诱导期并加速铁矾堆积的速度。尽管因为反响设备的尺度然后壁效应、所用试剂的纯度等许多要素都或许影响新相成核进程,因此文献对晶种的作用的报导颇有收支,有的乃至以为晶种作用不大,但一般的观念都必定晶种对黄铁矾构成的促进作用。晶种的参加可大大添加黄铁矾的堆积速度并按捺诱导期,堆积的初始速度随晶种参加量呈线性添加。参加晶种还可使黄铁矾在更低的pH值及温度下堆积。 铅、银及其他二价金属如Cu、Ni、Co等在黄铁矾堆积中的行为也不容忽视。在酸度不高的条件下铅可按下式构成铅铁矾:    (4) 铅铁矾的生成量与铁浓度及酸度有关。铁浓度越高,能构成铅铁矾的酸度也越高。这类铁矾还会与其他黄铁矾如草黄铁矾和碱金属的黄铁矾构成固溶体。假如溶液中的铅浓度本来有收回价值,则铅铁矾的生成会构成铅的丢失。为避免铅铁矾的生成,提出过3种办法,(1)将酸度进步到能阻挠铅铁矾能构成的浓度,在95℃下铅铁矾能溶于1mol∕L硫酸;(2)在180~190℃规模内堆积铁,在此温度规模内铅铁矾不安稳;(3)在有满足高的碱金属离子浓度下有用地堆积铁,这样会构成比铅铁矾更安稳的碱金属黄铁矾。例如,在Fe3+为0.1mol∕L,H2SO4为0.1mol∕L、PhS为4.5kg/m3的矿浆中,在150℃、K2SO4或Na2SO4或(NH4)2SO4为0.3mol∕L下就能够有用避免铅铁矾的构成。而碱金属离子浓度较低时则会发作碱金属与铅的混合黄铁矾。 贵金属如银也易堆积为银铁矾或含银铅铁矾    (5) 当从含100×10-4%以下Ag的溶液中堆积黄钠铁矾时,有95%以上的银被结合到铁矾中。而二价金属如Zn2+,Cu2+,Ni2+则只在很小程度上结合到碱金属黄铁矾中,这使得黄铁矾法能够很方便地用于从这些金属的溶液(尤其是硫酸盐溶液)中除铁而不构成金属丢失。金属结合到碱金属黄铁矾中的次序是:Fe3+>Cu2+>Zn2+>Co2+>Ni2+。但这些金属结合到铅铁矾中的量要大得多。三价金属如Ga和In比较简单结合到黄铁矾类化合物中。 还有一种观念以为,二价金属离子替代的是黄铁矾结构中的Fe3+而不是碱金属离子。二价金属结合到黄铁矾中的总的趋势是随其离子浓度、pH及碱金属离子浓度添加而加强,并随Fe3+浓度削减而下降。 二、针铁矿的水解堆积 针铁矿是羟基氧化铁的一种,称为α型羟基氧化铁α-FeO(OH)。天然界有4种羟基氧化铁同质异象体,其他3种别离是:四方纤铁矿β-FeO(OH),纤铁矿γ-FeO(OH)和六方纤铁矿δ-FeO(OH)。针铁矿是天然界中最常见的羟基氧化铁矿藏,反映了它在风化条件下最安稳。事实上占一般是天然界中含铁的硫化矿、氧化矿、碳酸盐和硅酸盐风化的产品。研讨指出,在常压的沸点下pH1.5~3.5规模内及硫酸根总浓度3mol∕L以内针铁矿是高铁水解最或许的产品。大大都针铁矿都以固溶体办法含有其他元素。 针铁矿也可看为α型-水氧化铁α-Fe2O3·H2O,其结构上与一水硬铝矿相同,属斜方晶系。在针铁矿的晶体结构中,只需Fe3+,O2-和OH-3种离子,三者的合作比为1∶1∶1。其间O2-坐落八面体的极点,而Fe3+处于八面体的中心,并为O2-所围住。O2-离子与4个Fe3+离子相联合,即共用于4个八面体之间,其间每一个价键仅为1/2价。OH-离子则共用于2个八面体之间,每一个价键也是1/2所。坐落八面体中心的高铁离子具有很强的极化才能,使四周配位离子的外层电子云发作偏移,导致正负离子外层电子云的彼此堆叠,并构成共价键。因为  O2-较OH-更易于发作变形,因此配位氧离子将具有较配位氢氧离子为强的共价键,即键的极性较弱。 热力学核算指出,针铁矿较三水氧化铁具有更大的晶格能,标明针铁矿比后者更安稳。因此,在一般状况下(酸度不大和温度不高于140℃),高铁水解产品在热力学上的安稳结构应是针铁矿而不是胶态氢氧化铁。但在实践上,当用中和法使高铁从水溶液中分出时,得到的堆积物都是三水氧化铁胶体而不是结晶态的针铁矿。呈现这种状况的首要原因在于pH对溶液中高铁的过饱和程度影响很大,因此中和水解时,跟着溶液pH的升高构成巨大的高铁过饱和度,构成很大的成核速度,使得水解产品呈肢体分出。鉴于高铁溶液中和水解很难操控系统的过饱和度,欲避免胶件氢氧化铁分出,关键是水解时要将溶液中的高铁离子浓度操控在很低的水平,一般低于1kg·m-3。针铁矿法正是针对这一问题而提出来的。它选用的水解条件是运用空气氧化、低过饱和度及较高温度,既有利于水合物的脱水和缩合,也有利于有关质点有序摆放,然后使水解产品呈晶体而不是肢体。针铁矿法有两种办法来操控高铁浓度。其一是先将溶液中的高铁离子复原成贱价,再中和至pH值为4.5~5,这时因高铁浓度很低,不会分出胶态氢氧化铁,而亚铁离子在此pH值下也不会构成Fe(OH)2堆积。然后通空气在90℃左右的温度下再将亚铁从头氧化成高铁,小量发作的高铁离子一经呈现即水解构成少数晶核,并缓慢发育成针铁矿晶体而堆积,相关的反响方程式为:    (7) 高铁的复原剂能够有许多挑选,但出产中运用的复原剂应报价低廉,操作简洁,并且氧化后不引进任何损害。从这种实践的视点考虑,硫化锌精矿是硫酸锌电解液针铁矿法净化的最佳复原剂。用硫化锌复原高铁的成果,ZnS中的锌即以Zn2+离子办法进入溶液,硫则以元素硫的固体办法留在渣中,对这以后的作业无任何损害。硫化锌复原高铁的总反响式为:    (8) 热力学核算得到该氧化复原反响的标准电动势为0.506V,具有满足的热力学推动力。实践标明反响的速度也比较高,在90℃温度下一般只需3~4h就可到达恰当的复原深度。例如,由反响式(8)的标准电动势求得的平衡常数为Kc=[Fe2+]2[Zn2+]∕[Fe3+]2=1017.09,若取锌离子的活度为0.1mol∕L,则求得[Fa2+]∕[Fe3+]≈109,阐明硫化锌使高铁的复原进行得比较彻底。 针铁矿法中亚铁的再氧化选用空气中的氧作氧化剂,其氧化反响方程为:    (9) 在25℃温度下空气的标准氧化电位E=1.22-0.059pH。在pH=4时,氧的标准电位为0.984V,仅此Fe3+∕Fe2+电对的标准电位(0.771V)高0.213V。可是,因为在此刻Fe3+已预复原成Fe2+,此电对的实践电位E 大为下降。例如当Fe3+/Fe2+=10-4时,     E 降至0.538V,然后氧化反响(9)的电位进步到0.316V。一同,在水解沉铁系统中,氧化发作的高铁高子即时水解堆积,因此能一直坚持系统中[Fe3+]/[Fe2+]为一个较低的值。 亚铁氧化堆积包含亚铁氧化和高铁水解这两个接连的环节。氧气氧化亚铁的进程又包含氧气的溶解、氧分子由相界面向溶液内部的分散、亚铁离子对氧分子的吸附、氧分子裂解为氧原子、亚铁离子与氧原子之间的电子交流等多个过程。其间氧分子裂解为氧原子为操控速度的关键过程。进步氧分子裂解反响的速度能够采纳3种办法:进步氧分压,如运用富氧鼓风和运用压缩空气并保持整个反响进程在较高的压力下进行,进步温度;选用催化,一般以Cu2+作为催化剂。 被吸附的氧分子改变为被吸附的氧原子后,即发作氧原子与亚铁离子之间的电子搬运,其成果是亚铁离子被氧化成高铁离子,而氧原子则复原为O2-离子:另一个氧原子也将以相同办法被复原成离子O2-,所构成的O2-会和高铁离于激烈结合,构成(Fe-O-Fe)4+这样的合作物离子。它再与OH-离子结合,并进一步脱水归纳,就生成了针铁矿:针铁矿法另一种操控高铁浓度的办法是澳大利亚电解锌公司开发的,它不通过先复原,而是直接将热的高铁溶液连同中和剂以操控的速度参加堆积槽中,使高铁的浓度保持在1kg·m-3以下。在70~90℃温度下并保持pH在2.8左右,针铁矿跟着高铁的参加接连分出。相关的反响为:    (10) 三、赤铁矿的水解堆积 赤铁矿系Fe2O3三方晶系,结构属刚玉型,有两种结晶形状,即α-Fe2O3(赤铁矿)和α-Fe2O3(磁赤铁矿)。这两种不同晶型的改变温度大致在400℃左右,γ-Fe2O3在热力学上是不安稳的,处于介稳状况,在400℃左右会向α-Fe2O3改变。天然赤铁矿α-Fe2O3首要是含铁的硅酸盐、硫化物和碳酸盐风化的产品,是天然环境中最安稳的铁化合物。从低温溶液水解分出的氢氧化铁加热时首要得到的产品是一水氧化铁即针铁矿,继而是半水氧化铁即水赤铁矿,进一步加热则得到α型Fe2O3。针铁矿和γ型Fe2O3的改变温度大致在160℃邻近。假如选用高温水解的办法,跟着不断进步水解温度,也能够顺次得到一水、半水和无水三氧化二铁。工业上用以堆积除铁的赤铁矿法系高温水解办法。温度愈高水解速度愈快,愈有利于在较高酸度下堆积铁。在200℃高温下,即便硫酸浓度高达100kg∕m3,溶液中残留的铁浓度仍可下降到5~6kg∕m3。 四、铁水解堆积在湿法冶金中的运用 运用水解堆积除铁的最典型的实却是锌的焙烧-浸出-电积法出产实践。尽管焙烧是为了将硫化锌改变为氧化锌,但原猜中的铁在焙烧进程中简直悉数与锌结组成铁酸锌。稀硫酸溶解焙砂中的氧化锌只能到达85%~93%的总浸出率,而用热酸浸出铁酸锌中的锌则导致许多铁进入溶液,净化除铁因此曾一度成为电解锌出产的瓶颈问题。通过艰苦而行之有用的尽力,到20世纪60年代中后期开发了几个能发作易于过滤的铁化合物的除铁办法,并首要工业运用于电解锌工业,焙烧-浸出-电积法自此得到长足发展,成为出产电解锌的首要办法,现在国际80%的电解锌系由此法出产。这些除铁办法在很大程度上也可运用于其他溶液的除铁实践。 (一)黄铁矾法 黄铁矾法作为有用的除铁办法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,其时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独登时开发了这项技能并简直一同申请了专利。尔后黄铁矾法敏捷得到广泛运用,成为电解锌出产中首要的除铁技能,现在国际上至少有16家大型电解锌厂选用了此技能。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且保持这一pH值,并在95℃左右参加一价阳离子从酸性硫酸盐溶液中堆积黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾堆积后,溶液中铁的浓度一般降到1~5kg∕m3。 湿法炼锌中黄铁矾法典型的操作分3个根本过程:中性浸出、热酸浸出和黄铁矾堆积。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解堆积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液构成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾堆积段处理,先用锌焙砂调整酸度,再参加硫酸铵或硫酸钠堆积碱金属黄铁矾。沉铁后液回来中性浸出,黄铁矾渣则弃去。需求指出,堆积黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,避免丢失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸恰当安稳,实践上黄铁矾渣弃去前可在相似热酸浸出的条件下进行酸洗,溶解收回渣中残存的铁酸锌,而黄铁矾本身不致溶解。 黄铁矾法的3个根本过程的详细操作条件及次序在不同供应商不尽相同,但意图是相同的;最大极限地收回锌而不考虑少数的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的堆积能够合而为一,即所谓转化法,其总反响如下:    (11) 该兼并过程的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣回来循环。若精矿中含有较许多的Pb和Ag,则选用其他的流程,得到含Pb∕Ag的渣、黄铁矾堆积和中性Zn电解液。这类流程中包含有一个预中和作业。在一般的黄铁矾流程中是用焙砂下降热酸浸出液的酸度,然后敏捷而有用地堆积黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而丢失。在热酸浸出和黄铁矾堆积作业之间引进一个预中和作业能够下降黄铁矾中的金属丢失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣回来热酸浸出段溶解其间的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后参加所需求的中和剂进行黄铁矾堆积。 图4为集成的黄铁矾法流程示意图。它的规划中结合了各种黄铁矾法计划中的大大都改善环节。图4  集成黄铁矾法 除运用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取顶用作除铁工艺,尤其是在硫酸盐系统中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是选用黄钾铁矾沉铁。因为硫酸化焙烧本身供给了K+离子,堆积黄钾铁矾时无需外加高本钱的硫酸钾。 黄铁矾法的长处是堆积简单过滤,Zn,Cd和Cu在堆积中的丢失最少,能够一同操控硫酸根和碱金属离子,简单与各种湿法冶金流程结合。但它也有其本身的缺陷,例如:1)所用试剂本钱较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需求充沛洗刷以除掉吸附的有害环境或可供运用的金属;4)需求在操控条件下寄存避免分化放出有害组分污染环境。通过热分化或水热分化将黄铁矾转化为赤铁矿供出产铁并将硫酸钠/硫酸铵循环至黄铁矾堆积作业,可望战胜这些缺陷。 (二)针铁矿法 运用堆积针铁矿除铁的技能是由比利时老山公司巴伦厂(Vieille Montagne)首要开发和工业化的,称为VM法。成功地堆积针铁矿的关键在于保持溶液中Fe3+的低浓度,例如<1kg∕m3,否则在堆积针铁矿的pH规模(2~3.5)内将得到胶状的Fe(OH)3或碱式硫酸铁Fe4SO4(OH)10。VM法处理此问题选用的是复原-堆积法,流程如图5所示,从热酸浸出得到的含100kg∕m3Zn,25~30kg∕m3Fe3+及50~60kg∕m3H2SO4的硫酸锌溶被先通过复原作业,即在堆积针铁矿前在一个独自的作业中先用锌精矿(ZnS)将溶液中的Fe3+都复原成Fe2+,复原后未反响的ZnS与反响生成的元素硫一同别离出来送回焙烧炉。复原后液再用焙砂ZnO预中和至3~5kg∕m3H2SO4,得到的铁渣回来热酸浸出作业,溶液则送入堆积反响器。向堆积器通空气将Fe2+氧化成Fe3+而使之水解堆积出针铁矿晶体。图5  VM针铁矿法 堆积针铁矿时需不断在参加焙砂以中和水解反响发作的酸,将pH值操控在恰当的规模内,如pH=2~3.5。VM法需求特别注意操控Fe2+的氧化速度,使得溶液中Fe3+的浓度在水解堆积针铁矿的进程中一直坚持在1kg∕m3以内。与黄铁矾法不同的是,针铁矿堆积时无需供给一价阳离子,而得到的针铁矿渣也不能进行酸洗收回其间由焙砂中和带入的未溶解的锌。为避免这部分锌的丢失,一个对策是运用低铁的闪锌矿焙砂作中和剂。 澳大利亚电解锌公司开发的EZ法直接将含Fe3+的待水解液慢慢参加水解堆积器中,操控水解液Fe3+浓度不超越1kg∕m3然后操控水解,因此EZ法亦称部分分化法。在70~90℃下接连水解堆积针铁矿,一同不断参加锌焙砂中和因水解发作的酸,保持溶液pH值在2.8以适于水解。 两种针铁矿法比较,堆积相同数量的铁,VM法水解发作的酸此EZ法少,因此为中和水解的酸需求耗费的锌焙砂也少,随锌焙砂丢失的锌电少,除铁的作用也好于EZ法。但VM法触及先复原后氧化两道工序,比较繁琐。此外,VM法用空气氧化Fe2+的速度较慢,而用其他氧化剂则本钱高。 与黄铁矾法比较,针铁矿法不需求硫酸根和碱金属,可运用于任何酸浸系统,包含氯化物系统和硝酸盐系统,除铁的作用也更好(从30kg∕m3到小于1kg·kg∕m3),但针铁矿对酸的安稳性较差,堆积中未溶解的铁酸锌不能如黄铁矾法那样用酸洗来收回。 (三)赤铁矿法 日本秋田公司饭岛锌冶炼厂和德国鲁尔锌公司达特伦电锌厂均选用赤铁矿法处理锌厂中性浸出的浸渣收回其间以铁酸锌存在的锌及其他有价组分。用赤铁矿法处理湿法炼锌的铁渣源于环境保护的压力。赤铁矿法准则流程见图6。来自浸出主流程的高铁渣在村耐酸砖和铅的高压釜顶用电解贫液补加酸再提出,反响温度95~100℃。浸出在SO2(分压0.15~0.25MPa)气氛下进行,所以也称为SO2浸出。在此条件下渣中的铁酸盐很简单溶解,高铁复原成二价伴随铁酸盐中的锌和铜进入溶液:    (12)    (13)图6  赤铁矿法准则流程图 从溶液中排去过量的SO2和用H2S堆积除掉铜后,对含大约Zn90kg∕m3,Fe60kg∕m3,H2SO4 20kg∕m3的溶液用石灰百分两段中和。榜首段中和到pH=2以发作可供应的高等第石膏,然后再中和到pH=4.5,堆积分出含有价金属如Ca和In的石膏,一同有碍赤铁矿堆积的元素如Al等也在此阶段随石膏堆积除掉。第二段中和发作的浆料经重力沉降得到的固体回来榜首段中和槽,沉降后液高压过滤得到氧化物-氢氧化物的混合堆积,送熔炼厂收回镓和铟。一同用空气氧化堆积部分铁和其他杂质。堆积石膏有助于除掉SO2氧化发作的硫酸根以保持硫酸根平衡。两段中和后的溶液(含Fe 40~45kg∕m3)用赤铁矿法堆积除铁。沉铁在衬钛高压釜中进行,通入新鲜蒸汽和氧气,温度从95℃升高到200℃,压力进步到1.8MPa(氧分压0.15~0.25MPa),溶液中的硫酸亚铁被氧化成硫酸铁并发作水解:    (14) 高压釜中停留时刻约3h,首要水解产品为赤铁矿,含有w(Fe)=59%和w(S)=3%,固液别离后赤铁矿也首要供应给水泥厂。别离出赤铁矿的溶液含Fe5~7kg∕m3和H2SO460~70kg∕m3,回来焙砂的中性浸出段。 选用赤铁矿法的饭岛锌冶炼厂自1972年投产以来,至今已成功运行了26年,经1997年扩产,电锌产值巳达190000t∕a。因为锌精矿铁含量添加,出产功率进步和工厂扩产,赤铁矿法处理的铁量逐年添加,并在技能上作了若干改善。例如,锌焙砂弱酸浸出的渣与元素硫混合用电解贫液补加硫酸后在衬铅和耐酸砖的高压釜中再浸出。参加元素硫使溶液中大部分铜作为硫化铜堆积。热酸浸出的排料除掉过量的SO2后,在拌和槽中通入H2S堆积其他的铜。沉铜槽的排料稠密、压滤,得到的滤渣含铜、铅和贵金属,送熔炼厂收回。沉铜稠密机溢流含30kg∕m3游离酸,用细磨的石灰石两段中和。榜首段中和游离酸(至pH=1)得到纯的石膏,离心过滤后供应给水泥厂。 近些年来,跟着锌精矿中铁含量的添加,焙砂中进入铁酸盐中的铜添加,焙砂弱酸浸出的铜削减而进入浸渣的铜添加,因此浸渣赤铁矿法处理厂中需求堆积的铜大为添加,然后使渣处理厂堆积铜的本钱进步。1992年曾经,渣处理厂中溶液中的铜用元素硫和硫化氧堆积:    (15)    (16) 饭岛锌冶炼厂1992年用于堆积铜的硫化氧气体耗费本钱占总的耗费性本钱的25%。这无疑太高,需求开发一个不必堆积铜的新办法。后来发现硫化锌精矿能够替代气体,它堆积除铜的反响如下    (17)    (18)当出产上用硫化锌精矿沉铜时,铜的堆积并不彻底。后来运用更细的精矿添加SO2分压处理了这一问题。现在这种办法有用地脱除了铜。 高铁水解成赤铁矿和铝水解堆积铝矾都发作酸,因此下降赤铁矿堆积釜的料液中游离硫酸的浓度和铝的浓度对促进高铁的水解很有用:本来第二段中和的溶液有30%回来榜首段,从1997年3月以来,第二段溶液回来的量逐步添加,赤铁矿水解高压釜的料液中游离硫酸浓度从7kg∕m3降到4kg∕m3,铝的浓度降到2kg∕m3以下,除铁功率进步到88%以上,使操作本钱要素如氧气或蒸汽的本钱下降。 尽管赤铁矿法在环保方面比黄铁矾法和针铁矿法更有利,它依然遭到环境方面的压力。为了使堆积的赤铁矿能悉数售出给水泥厂,有必要处理赤铁矿中的含砷和含硫问题。因为火法冶金不只本钱高,并且很难满足脱除砷,所以饭岛炼锌厂研讨在堆积赤铁矿前从溶液中脱砷,提出了图7所示的改善赤铁矿法新流程。图7  改善的赤铁矿法新流程 在改善的赤铁矿法中,弱酸提出的渣在105℃下SO2气氛中浸出而不加锌精矿或元素硫,发作的含银和铅的渣过滤别离。滤液用石灰榜首段中和到pH=1,发作纯石膏。然后在该中和段的溶液中参加锌灰,堆积砷化铜,铜和砷的脱除率到达99%。脱砷后液榜首段加石灰石中和到pH=4,堆积出含Ga,In和Al的石膏。该段的溶液大部分送赤铁矿堆积高压釜,其他溶液用于浸出砷化铜。浸除在独自的高压釜中氧气氛下进行,铜被浸出而砷堆积为铁。浸液中的铜用锌灰置换,然后将溶液回来焙砂中性浸段。改善的赤铁矿法进行了中试和可行性研讨,得到的赤铁矿质量及本钱都令人满足。 德国鲁尔公司(Ruhr-Zink GmbH)的赤铁矿法首要包含以下过程: (1)中性浸出渣两段热酸浸出。榜首段为热酸浸出,中性提出渣用第二段超热酸浸出的滤液在95℃下浸出,浸出的终酸浓度50kg∕m3。渣中的大部分有价金属如锌、铜和镉伴随铁一同溶解。浸出的排料稠密后溢流泵送至复原段,底流在过热酸浸段中沸点以上浸出,酸浓度140kg∕m3。过热酸浸中铁酸盐都溶解,残留的低铁富铅的Pb-Ag渣经稠密和高压膜压滤机过滤,滤液回来热酸浸出。 (2)高铁复原。为了在堆积赤铁矿前净化溶液并能在最尽或许低的温度下堆积铁,需求将离解的高铁先复原成亚铁。硫化锌精矿可用作复原剂,它的本钱低,但需大大过量,反响温度在90℃左右。未反响的含元素硫的渣过滤后回来焙烧。 (3)溶液的净化与中和。复原后液用焙砂在中和槽和稠密机中两段中和,使一切影响赤铁矿质量的元素大部分堆积分出,特别是砷和锑。铜则部分共堆积。这些元素富集在中和渣中,再在终浸作业中彻底溶解。终浸用废酸进行,终酸浓度为40kg∕m3。在稠密机中固液别离后,底流送去热酸浸出作业,溢流送去用海绵铁置换沉铜,将铜的浓度降至500g∕m3以下,再返至前面的中和作业。置换的铜用废酸洗刷后出售。 (4)赤铁矿堆积。这是最重要的部分。中和净化的浸液(含Fe2+25~30kg∕m3,Zn120~130kg∕m3)用蒸汽加热到180℃以上,其间的亚铁在氧压1.8MPa下氧化并水解成含w(Fe)=60%左右的细粒赤铁矿,铁的堆积率达90%~95%。详细流程如图8所示。 赤铁矿法出资和操作费用远高于黄铁矾法和针铁矿法,但它或许收回锌精矿的悉数成分,发作的满是可供应的产品,一切作为中间产品的渣帮可进一步加工而无需堆存。图8  鲁尔公司电解锌厂赤铁矿法准则流程

硅酸钠的性质

2017-12-29 11:05:01

(1)强度高水玻璃硬化后具有较高的粘结强度、抗拉强度和抗压强度。水玻璃硬化后的强度与水玻璃模数、密度、固化剂用量及细度,以及填料、砂和石的用量及配合比等因素有关,同时还与配制、养护、酸化处理等施工质量有关。(2)耐酸性高硬化后的水玻璃,其主要成分为二氧化硅,所以它的耐酸性能很高。尢其是在强氧化性酸中具有较高的化学稳定性,但水玻璃类材料不耐碱性介质的侵蚀。(3)耐热性好水玻璃硬化形成SiO2空间网状骨架,因此具有良好的耐热性能。若以镁质耐火材料为骨料配制水玻璃混凝土,其使用温度可达1100℃。

铁的水解沉淀

2019-01-24 17:45:48

铁是湿法冶金中最常遇见的杂质元素。它在自然界的丰度以及它与周期表中许多元素(如第二类主族元素中的Ca和Mg及第一过渡系元素Ti,V,Cr,Mn,Co,Ni,Cu)化学性质上的相似性,使之经常发生元素取代,以致这些元素的矿物如果不是全部,至少也是大部分含有铁。作为固溶体结合在矿物中的铁含量从微量(<0.5wt%)到多量(>10wt%)不等,闪锌矿中取代锌的铁量可多达17.4%,镍黄铁矿(Fe,Ni)9S8含铁最多甚至可达43%。因此,湿法冶金中各种浸出液和工艺溶液中都程度不同地含有铁。下表列出了几种主要金属生产过程中由酸浸或酸洗作业产生的可溶性铁的估算数量。因此,含铁溶液的水解自然成了湿法冶金中沉淀分离铁最重要最常见的反应,而且多数是为了从浸出液和各种工艺溶液中,主要是从硫酸盐介质中,除去铁杂质。用沉淀法除铁的一个额外的好处是可以通过与铁的共沉淀同时除去其他有害元素如砷。 表  某些冶金业中产生的可溶性铁估算量金属生产业金属产量∕(t·a-1)产生的可溶性铁∕(t·a-1)铜100000003000000锌60000001000000镍5000002500000钢7000000002000000 在湿法冶金所遇到的氧化电位和pH条件下,溶液中的铁只有二价和三价两种价态。由图1看,Fe3+与Zn2+,Cu2+,Co2+,Ni2+等的沉淀线相距甚远,表明可以通过水解选择性沉淀铁化合物,在3.5~5的低pH值下从这些金属的溶液中除去铁。Fe2+则即使在中性条件下也不发生沉淀,因此湿法冶金中的沉淀除铁问题都是基于Fe3+的水解,Fe2+需先氧化成Fe3+后才能有效除去。 铁的水解是一个十分复杂的过程,溶液的性质和水解的条件都对水解的结果有着重要影响,产生不同的水解产品和不同的晶型结构。也正因为如此,自然界才会有多种铁的氧化物存在。现在已经知道的铁氧化物、羟基氧化物和氢氧化物有13种,包括水铁矿(Fe5HO8·4H2O)、赤铁矿(α-Fe2O3)、赤磁铁矿(γ-Fe2O3)、磁铁矿(Fe3O4)、针铁矿(α-FeOOH)、四方纤铁矿(β-FeOOH)、纤铁矿(γ-FeOOH)和六方纤铁矿(δ'-FeOOH)。除针铁矿和六方纤铁矿外,其余铁氧化矿物都可能为良好的晶体。图2描述了常见铁氧化物的形成条件和它们间转变的路线和大致的转变条件。图1  金属氢氧化物沉淀图25℃图2  常见铁氧化物形成和转换路线及其条件 除氧化物、羟基氧化物和氢氧化物外,铁水解时还可能结合溶液中某些阴离子而形成复盐,最典型的例子是黄铁矾。其中的一些水解产物可能发展为湿法冶金中从溶液中除铁的化合物。选择作为除铁的水解产物应具备下列性质: (1)应具有较小的溶解度,从而可把溶液中残留的铁降到最低; (2)应能在较低的pH值下沉淀析出,以免在除铁时引起主金属沉淀损失; (3)应易于结晶,晶粒较大尤好,便于过滤洗涤; (4)应有较大水解速度,使除铁过程能在短时间内完成; (5)最好能与溶液中的其他有害杂质发生共沉淀作用,简化溶液净化过程; (6)水解沉淀过程应尽可能经济、简便。 现已开发并工业应用的沉铁方法有4种,都是利用中和水解方法沉淀的。其中3种用于除铁,都是从锌的湿法冶金工业发展起来并首先工业化的,依其沉淀的铁化合物分别称为黄铁矾法、针铁矿法和赤铁矿法。第4种主要用于磁铁合成。下面分别介绍3种水解除铁的方法。 氧化还原电位和pH值是控制铁在水溶液中行为的两个重要因素。氧化环境有利铁沉淀,还原环境促使铁溶解;酸性条件有利铁溶解,碱性条件有利铁沉淀。高铁离子平衡浓度受溶液pH值变化的影响很强烈,在pH<3时,pH值每增加1个单位,高铁离子的平衡浓度就降低2~3个数量级。因此简单地提高高铁溶液的pH值进行水解会产生巨大的过饱和度,引起很大的成核速度而造成胶体析出。溶液中的铁大于5kg∕m3时,中和水解产生的胶状Fe(OH)3沉淀就难于甚至无法过滤或沉降。这样的沉淀夹带大量溶液,造成有价组分的严重损失,无法在工业生产中用来除铁。 温度对铁的行为也有重要影响。高温会促使铁沉淀,使沉淀在更低的pH值下发生。因此,控制溶液中Fe3+沉淀程度和沉淀物稳定性的最重要的因素是温度和pH值。诱发水解反应相应地有两种主要方法:加热溶液或加碱中和。巴布坎在20~200℃范围内用0.5mol∕L Fe2(SO4)3-KOH水解合成黄钾铁矾阐明了其形成的温度-pH关系,如图3所示。图中斜线阴影部分为黄钾铁矾的稳定区,随着温度的升高,稳定区向pH值降低的方向倾斜。在20℃下黄钾铁矾形成的pH值范围从2延伸到3,而在100℃下pH值范围从1延伸到2.3,200℃下pH值从0到1.2。低于此稳定区的pH值时无沉淀生成,pH值高过此区则因温度的不同而形成各种其他铁化合物。特别值得注意的是,在100℃以上会形成赤铁矿,而在较低温度下形成针铁矿。看来pH在1.5~1.6之间是100℃下黄钾铁矾形成的理想酸度。黄钾铁矾沉淀的程度随溶液初始pH值的上升而提高,初始pH值再高则会形成别种铁化合物。图3  黄钾铁矾形成的稳定区与温度与pH值的关系 (20~200℃下从0.5mol∕LFe2(SO4)3溶液中沉淀) 高铁浓度液对铁的沉淀也有重要影响。测定Fe2O3-H2SO4-H2O三元件系的等温线表明,在110℃下,硫酸铁酸性溶液中,在最低的铁和酸浓度下沉淀的是针铁矿α-FeO(OH),中等铁浓度时出现草黄铁矾H3OFe3(SO4)2(OH)6,在黄铁矾与针铁矿之间还有另一个化合物    Fe4(SO4)(OH)10,它在较低的铁浓度下形成,可能在黄铁矾形成后期铁浓度只有几g∕L时生成,只有在很高的硫酸铁浓度下才有Fe3(SO4)(OH)生成。 关于铁水解沉淀的物理化学更深入的讨论可参考有关文献。

戊基黄原酸钠(钾)

2019-02-27 08:59:29

品名:戊基黄原酸钠(钾) 英文名称: SODIUM (POTASSIUM) AMYL XANTHATE(SAX,PAX) 牌 号:B1-06分子式:C5H11OCSSNa(K) 性状:淡黄色或灰白色有刺激性气味的粉末(或颗粒),能溶于水。首要用途:戊基黄原酸钠(钾)是一种强捕收剂,首要应用于需求捕收力强而不需求选择性的有色金属矿藏的浮选。例如,它是浮选氧化了的硫化矿或氧化铜矿和氧化铅矿(通过或进行硫化)的杰出捕收剂。该品对铜-镍硫化矿及含金黄铁矿等的浮选也能获得较好的选别作用。规格: 项 目 指 标 粒 状 粉 状 戊基黄原酸钠(钾) % ≥ 90.0 90.0 游离碱 % ≤ 0.2 0.2 水及挥发物 % ≤ 4.0 4.0直径(mm) 3~6 - 长度(mm) 5~15 - 有效期(月) 12 12 包 装 120公斤/铁桶 900公斤/多层板箱,50公斤/塑编袋等120公斤/铁桶 60公斤/塑编袋

锡酸钠价格

2017-06-06 17:49:54

锡酸钠价格是锡投资者会感兴趣的一个话题,其关系到锡的投资与操作。产品名称:柠檬酸亚锡酸钠类别: 食品添加剂 / 防腐剂品牌:国产/进口规格型号:25kg/袋价格:65.0 元/千克分子式:MS Song">Na2SnO3·MS Song">3H2O性状:无色六角板状结晶或白色粉末;溶于水,不溶于醇和丙酮;加热至140℃时失去结晶水而成无水物;在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。用途:其最重要的用途是用于电镀工业的碱性镀锡及其合金(例如:锡>-锌、锡>-镉、锡>-铜和锡>-铝合金)。此外,还用于纺织工业用作防火剂、增重剂;染料工业用作媒染剂;也用于玻璃、陶瓷等工业。在电镀工业中,其性能稳定可靠,易于操作并能获得高质量镀层,且对钢无腐蚀。该镀层经过“流动熔化”处理可变得光亮。锡酸钠也用于浸没镀锡,可在汽车铝合金活塞等零件上形成光洁镀层。另外,锡酸钠还用于制造在相当大的温度范围内具有均匀介电常数的陶瓷电容器的基体、颜料和催化剂。包装:塑料袋包装,外用纸板桶密封,或按用户要求包装。每袋净重5Kg,每桶净重25kg。 【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。如果你想更多的了解锡酸钠价格等其他信息,你可以登陆上海有色网进行查询。

锌置换沉淀金的原理和影响金沉淀的因素

2019-02-19 11:01:57

锌置换贵液中的金是按如下反响式进行的: 2Au(CN)2-+Zn=2Au↓+Zn(CN)42- 该反响敏捷,置换彻底。 当溶液中含浓度和碱浓度较小时,溶解于溶液中的氧会使已生成沉积的金再溶解,并使锌氧化生成氢氧化物沉积。上述反响中生成的Na2Zn(CN)4也会分化生成化锌沉积: Zn+ O2+H2O=Zn(OH)2↓ Na2Zn(CN)4+Zn(OH)2=2Zn(CN)2↓+2NaOH 生成的氢氧化锌和化锌,会在金属锌表面构成白色薄膜沉积,而阻碍金、银从化溶液中彻底沉积分出。 在含和碱较高的溶液中,锌除生成Zn(CN)42-的络阴离子外,还会按下式发作溶解井放出氢: 4NaCN+Zn+2H2O=Na2Zn(CN)4+2NaOH+H2↑ 2NaOH+Zn=Na2ZnO2+H2↑ 这一反响使锌的耗费量增大,并放出很多的氧。但氢与溶液中溶解的氧反响生成水,可下降乃至阻挠已生成沉积的金发作反溶解。也可使金属锌不再被氧化。 在正常锌粉置换条件下,进入置换沉积箱的含金溶液中,浓度应控制在0.02%左右,氧化钙0.01%左右。锌丝置换时,因为有些工厂不进行溶液的除气,和碱浓度要相应高些。当然,最好是含金溶液送锌丝置换前先经除气塔除掉溶液中溶解的氧,以彻底消除对置换沉积金的有害影响。 化液一般的含铅量较少,因为铅与锌结合能改进金的沉积,故常向母液中参加适量的或。但过量的铅会因为发作许多边际反响而导致锌的耗费增大与金的沉积缓慢和不彻底,或因生成Pb(OH)2沉积而使沉积物遭受污染,故—般只向每吨母液中参加5~10g。 铜的存在会生成金属铜沉积而耗费锌。会和锌生成合金。 硫离子的存在,会生成ZnS和PbS沉积而污染金属锌。 因为化液中含有钙和氢氧根离子,所以镍的存在会严重影响沉积物。故克尔·阿迪逊(Kerr Addison)工厂的贫液中含镍挨近90×10-6即行抛弃。 锌沉积法与浓度、氧浓度与金回收率的联系,经试验标明:当化液中金15mg/L、NaCN0.015%~0.07%、NaOH0.015%、氧0~3.1mg∕L,锌的添加量为1g∕L。当NaCN浓度添加时,因为易生成沉积而使锌的耗费量添加。当溶液中含氧1mg∕L时,金的回收率可达97%~100%,而含氧添加至30mg∕L时,金的回收率仅为78%~80%。

丁基黄原酸钠(钾

2019-01-16 17:42:23

产品名称: 丁基黄原酸钠(钾) 产品类别: 医药与生物化工 产品规格: 项 目 指 标 - 干 燥 品 丁钠合成品 - 粒 状 粉 状 粉状 丁基黄原酸钠(钾)% ≥ 90.0 90.0 84.5 游离碱 % ≤ 0.2 0.2 0.5 水及挥发物 % ≤ 4.0 4.0 - 直径(mm) 3~6 - -长度(mm) 5~15 - - 有效期(月) 12 12 6 包 装 110公斤/铁桶 800公斤/多层板箱 50公斤/塑编袋等 110公斤/铁桶50公斤/塑编袋等 120公斤/铁桶 50公斤/塑编袋等

赤铁矿的水解沉淀

2019-01-24 17:45:48

赤铁矿系Fe2O3三方晶系,结构属刚玉型,有两种结晶形态,即α-Fe2O3(赤铁矿)和α-Fe2O3(磁赤铁矿)。这两种不同晶型的转变温度大致在400℃左右,γ-Fe2O3在热力学上是不稳定的,处于介稳状态,在400℃左右会向α-Fe2O3转变。天然赤铁矿α-Fe2O3主要是含铁的硅酸盐、硫化物和碳酸盐风化的产物,是自然环境中最稳定的铁化合物。从低温溶液水解析出的氢氧化铁加热时首先得到的产物是一水氧化铁即针铁矿,继而是半水氧化铁即水赤铁矿,进一步加热则得到α型Fe2O3。针铁矿和γ型Fe2O3的转变温度大致在160℃附近。如果采用高温水解的方法,随着不断提高水解温度,也可以依次得到一水、半水和无水三氧化二铁。工业上用以沉淀除铁的赤铁矿法系高温水解方法。温度愈高水解速度愈快,愈有利于在较高酸度下沉淀铁。在200℃高温下,即使硫酸浓度高达100kg∕m3,溶液中残留的铁浓度仍可降低到5~6kg∕m3。

钨酸钠价格

2017-06-06 17:50:12

钨酸钠 价格 :09月25日全国主要地区钨酸钠 价格行情 产品                价格 (万元/吨)                  地区                                 9.1                        姜堰 钨酸钠96%                       9.3-9.6                  江苏                                9.6-9.7                   河北                                9.4-9.5                    江西  钨酸钠是白色具有光泽的片状结晶或结晶粉末,溶于水呈微碱性(PH8.5-9),不溶于乙醇, 微溶于氨。在空中风化。加热到100℃失去结晶水而成无水物。与强酸(氢氟酸除外)反应生成不溶于水的黄色钨酸, 与磷酸或磷酸盐反应生成磷钨杂多酸络合物, 与酒石酸、柠檬酸、草酸等有机酸反应生成相应有机酸络合物。用途1 生产钨材料的中间产品,也可用于媒染剂、催化剂颜料和分析试剂,纺织工用作织物加重剂、水处理药剂,制造防火、防水材料, 以及磷钨酸盐、硼钨酸盐。2 用于制造 金属 钨、钨酸、钨酸盐、染料、油墨、催化剂等。3 用于 金属 钨、钨酸及钨酸盐类的制造。用做媒染剂、颜料和催化剂。还可做织物防火剂以及分析化学试剂。4 本品用作织物助剂,由钨酸钠、硫酸铵磷酸铵等组成的混合物用于纤维的防火和防水。此种纤维可制作防火人造丝和人造棉。亦可用于织物加重,皮革鞣制,电镀镀层防腐。本品作助溶剂引入瓷釉色料能起降低烧成温度和补色作用。更多有关钨酸钠 价格 请详见于上海 有色 网 

锡酸钠溶解度

2017-06-06 17:50:01

锡酸钠溶解度是一种投资者想知道,因为了解它可以帮助操作。无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。【中文名称】锡酸钠   【英文名称】sodium stannate   锡酸钠【结构或分子式】Na2SnO3·3H2O   【分子量】 266.73   【CAS号】12209-98-2   【性状】   白色至浅褐色晶体   【溶解情况】   溶于水,不溶于乙醇、丙酮。   【用途】   可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。   【制备或来源】   由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。   【其他】   加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。 如果你想更多的了解关于锡酸钠溶解度的信息,你可以登陆上海 有色 网进行查询和关注。

烷基硫酸钠浮选锡石

2019-02-27 08:59:29

烷基硫酸钠浮选锡石 一般说来,烷基硫酸钠 与其它捕收剂比较只能得到中等的浮选目标,例如 ,关于以石英、电气石、赤铁矿为脉石的锡石,十六烷基硫酸钠用量为135g/t,在增加钠的条 件下,得到SnO236.5%的粗精矿及含SnO246%的终究 精矿,回收率为86%。

高锰酸钠价格

2017-06-06 17:49:53

高锰酸钠价格,根据报告数据,来源于国家统计局、国家海关总署、国务院发展研究中心、国内外相关刊物杂志的基础信息以及高锰酸钠科研单位等。报告对我国高锰酸钠行业发展现状与前景、国际高锰酸钠行业发展现状与前景、高锰酸钠行业数据、高锰酸钠行业标杆企业、高锰酸钠行业上下游、高锰酸钠价格和销售渠道价格管理、高锰酸钠行业投资策略、营销策略、经营管理和竞争战略等进行深入研究,并重点分析了高锰酸钠行业的前景与风险。该报告揭示了高锰酸钠市场潜在需求与潜在机会,为战略投资者选择恰当的投资时机和公司领导层做战略规划提供准确的市场情报信息及科学的决策依据,同时对银行信贷部门也具有极大的参考价值。一、健康危害   侵入途径:吸入、食入、经皮吸收。   健康危害:本品有强烈刺激性。高浓度接触严重损害粘膜、上呼吸道、眼睛和皮肤。接触后引烧灼感、咳嗽、喘息、气短、喉炎、头痛、恶心和呕吐等。   二、毒理学资料及环境行为   危险特性:强氧化剂。遇硫酸、铵盐或过氧化氢能发生爆炸。遇甘油、乙醇能引起自燃。与还原剂、有机物、易燃物如硫、磷等接触或混合时有引起燃烧爆炸的危险。   燃烧(分解)产物:氧化锰。   3.现场应急监测方法:   4.实验室监测方法:   原子吸收法(EPA方法 7770、7460)   等离子体光谱法(EPA方法 200.7)   5.环境标准:   中国(TJ36-79)车间空气中有害物质的最高容许浓度 0.2mg/m3[MnO2]一、泄漏应急处理  隔离泄漏污染区,限制出入。建议应急处理人员戴自给式呼吸器,穿防毒服。不要直接接触泄漏物。勿使泄漏物与有机物、还原剂、易燃物接触。小量泄漏:用砂土、干燥石灰或苏打灰混合。收集于密闭容器中作好标记,等待处理。大量泄漏:用塑料布、帆布覆盖,减少飞散。然后收集回收或运至废物处理场所处置。二、防护措施  呼吸系统防护:可能接触其粉尘时,建议佩戴头罩型电动送风过滤式防尘呼吸器。   眼睛防护:呼吸系统防护中已作防护。   身体防护:穿胶布防毒衣。   手防护:戴氯丁橡胶手套。   其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。三、急救措施  皮肤接触:立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。就医。   眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。   吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。   食入:误服者用水漱口,给饮牛奶或蛋清。就医。   灭火方法:灭火剂:雾状水、砂土。小编还了解到,高锰酸钠的健康危害,和环境污染,小编也给你搜寻了关于处理高锰酸钾的危害有关内容。

锌粉置换沉淀法

2019-02-19 11:01:57

锌粉置换堆积法从含金溶液中收回金始于1894年,它是现在最广泛运用的办法。锌粉置换法的设备前期选用压滤机和置换槽。后来发展起来的梅里尔·克劳法是锌粉置换堆积法中一种典型的办法。它的设备和办法不光经受了梅里尔·克劳工厂多年生产实践的检测,并且还被世界上一些首要化工厂所选用。 锌粉置换堆积法用的锌粉,是经过蒸馏锌制得的。锌粉应含锌95%~97%,铅1%左右,粒度小于0.01mm(美国规则97% -0.04mm)。其间的粗粒锌和ZnO都会下降置换堆积作用。运用炼锌厂产的蓝粉,含ZnO约10%~15%,对沉金晦气。因这些ZnO不起堆积金的作用而彻底进入金泥中。锌粉简单氧化,应在密封容器中储存和运送。 一、压滤机锌粉置换堆积法。这种办法是由一种胶带式或其他型式给料器,接连向锥形混合槽给入锌粉,并于过滤机中置换(图1)。除气槽的除氧溶液部分放至锥形混合槽与锌粉混组成锌浆从槽底排出,与用潜水离心泵(离心泵浸于含金溶液池中,以避免吸入空气)抽送的其他除气液兼并一同送压滤机或框式过滤机,于过滤机过滤一起产出金泥并别离贫液。图1  压滤机锌粉置换设备体系 1-除气塔;2-真空泵;3-锥形混合槽;4-给粉器;5-离心泵 6-潜水离心泵;7-压滤机;8-金泥槽;9-贫液槽;10-离心泵 二、置换槽锌粉置换堆积法。这是一种于置换堆积器中进行金置换和堆积的办法,其所用的设备见图2。置换堆积器为一锥形底的圆槽。与槽内相对应的四壁装置有四只铺布袋过滤片的结构,呈放射状固定于中心管上。结构呈“U”形,一端铺设过滤片,另一端与脱金贫液总管上的支管相连。脱金液总管盘绕槽体外面,经过支管与滤框相通,总管则与真空泵和离心泵相连。图2  置换槽锌粉置换设备体系 1-除气塔;2-直空泵;3-潜水离心泵;4-混合槽; 5-给粉器;6-置换堆积槽;7-布袋过滤片; 8-中心管;9-螺旋浆;10-中心轴;11-小叶轮; 12-传动组织;13-支管;14-总管和真空泵;15-离心泵 除气溶液和锌粉供入混合槽混合后,由槽底自流给入置换堆积器,并在螺旋桨和小叶轮的作用下,锌浆沿中心管上升。凭借真空泵的吸力金泥堆积于滤布上,贫液透过滤布经支管由总管排出。依据生产实践,金的置换堆积首要不是发作在与锌粉混合的时分,而是发作在含金溶液穿过滤布表面锌粉层的过滤时分。为使置换堆积槽开动之后能敏捷在滤布表面上构成锌粉堆积层,故须在开端过滤时,直接往敞口置换堆积槽内参加构成锌粉堆积层总量一半以上的锌粉,以有利于金泥的堆积。虽然置换堆积槽是敞口的,空气直接与锌浆表面触摸,但因为过滤速度很快,且慢速滚动的螺旋桨和小叶轮(拌和上层锌浆用)的拌和力很弱,所以锌浆没有吸入多少氧。因为间歇卸出金泥,所以当进行接连置换堆积时,应备有2~3只置换堆积槽供替换运用。 或是用滴液管从混合槽上滴入锌粉面上,使其在锌粉表面生成铅膜以强化锌粉的置换才能。铅盐的参加量为锌粉分量的10%。含金溶液的NaCN和CaO别离低至0.014%和0.018%时,金的堆积作用也很好,脱金贫液每小时用比色法测定一次,如含金超越0.15g∕m3则回来重新处理。锌粉的耗费量视含金溶液的含金量为l5g∕m3到50g/m3。 三、梅里尔·克劳工厂接连加锌粉置换堆积法。梅里尔·克劳法(图3)的置换作业是将除气后的母液直接抽送乳化器,经过锌粉加料机将锌粉接连参加乳化器并与溶液乳化。锌粉参加量为每吨液15~70g。金的堆积实质上在加锌后当即发作。乳化后的溶液于真空堆积室中置换并堆积出金。经恰当时刻,溶液中99%以上的金被复原堆积,贫液中含金约0.02g∕t。从溶液中过滤堆积物一般运用Sock式或框式过滤机或压滤机,更广泛运用的是斯特拉(Stellar)过滤机。接连生产时,从过滤机中整理堆积物的周期为3~28d。整理出的堆积物送熔炼合质金锭。图3  梅里尔·克劳(Merrill Crowe)法的设备体系(伍德科克,1976年) 选用计算机控制的梅里尔·克劳接连加锌粉置换金银的MC2000体系,已由湿法冶金工业公司完结开发,并运用于美国蒙大那州格鲁布斯塔克金矿。该体系每隔15min主动取样一次,依据测定成果主动调理锌粉参加量,并主动控制各项作业。 四、选用压滤机锌粉饼过滤置换含金化液,可下降锌的耗费,进步金泥的含金档次。经锌粉饼过滤置换的贫液含金可降至痕量。

钛白的水解沉淀

2019-03-05 09:04:34

钛液的水解是硫酸法从钛铁矿出产钛白(二氧化钛)的重要进程。钛铁矿经酸免除杂后得到净化的钛液,再经热水解得到偏钛酸(水合二氧化钛),煅烧后得到钛白。 与—般盐类水解不同,钛液的水解没有固定的pH值,稀释或加热都能分出氢氧化钛的水合物沉积。甚至在高达400~500kg∕m3硫酸的条件下长期煮沸也能水解分出沉积。常温下稀释分出的是胶体氢氧化钛,不能满意钛白出产的要求。工业上是加热钛液并保持欢腾水解分出水合二氧化钛,化学计量式可表示为:    (1) 关于钛液热水解的精确机理尚不彻底清楚,一般认为是H+离子的搬运进程和胶体的凝集进程。其离子搬运进程大致如下。 钛离子在溶液中为6配位水和配离子[Ti(H2O)6]4+,其水解进程大致分为3个阶段:晶核构成,晶核生长与沉积构成,水解作用进一步使沉积物及溶液组成改动。水解成核的第一步是从一个H2O分子中脱去1个H+离子而下降了钛的水合高子的电荷:    (2) 此羟基水合钛离子在溶液中发作二聚,构成二核钛离子-八水合二羟基钛配离子:    (3) 放置时该钛的羟桥配离子中H2O分子上的H+持续搬运,构成更安稳的氧桥配离子    (4) 钛氧桥配离子中H2O分子上的H+离子再搬运,进一步离解成羟桥配离子,再搬运成氧桥,就可能结组成四钛合作物:[(H2O)4Ti(O)2Ti(H2O)2(O)2Ti(H2O)2Ti(O)2(H2O)4]4+。这种H+离子的搬运跟着水解进程持续发展,便逐步构成多核合作物。多核合作物中H+离子的不断搬运直至电中性而成为直径3~10nm的水合二氧化钛。该水合二氧化钛为无定型或具有不显着的锐钛型微晶结构,它们按必定方向20~30个聚组成胶粒,胶粒加快凝集至>10μm则开端沉积分出。跟着水解的发展,溶液中TiO2的含量逐步下降,而游离酸浓度不断进步。这样能使沉积的少数粒子部分溶解,而后又从头分出新组成的沉积。这个进程不断持续,直至只剩下极少数钛及较浓的硫酸。 钛液热水解时其组成和质量,尤其是钛含量、F值(酸度系数)、铁钛比、三价钛含量、弄清度和安稳性等,对水解产品水合二氧化钛的纯度、微晶的结构和胶粒的巨细影响很大。安稳性差的钛液在贮存和放置进程中有陈化而逐步分出胶状污浊或沉积倾向,用而在水解前自身即已发生某些胶性结晶中心,使水解产品粒子不均,且易吸附较多杂质使终究颜料产品的白度、上色力和分散性都显着下降。 钛液浓度太低,例如TiO2小于150kg∕m3时,水解产品煅烧后转化成粗粒型二氧化钛,其颜料功能极差。钛液浓度进步可促进终究产品上色力进步,但水解速度会减慢。而当钛液TiO2浓度>200kg∕m3时浓度的进步对产品上色力的进步已不显着。因而,对非颜料用钛白出产多选用低浓度水解以取得较高水解率并简单水洗,对颜料用钛白出产需在TiO2为190~230kg∕m3下水解以发生契合质量要求的颜料钛白。 钛液中含硫酸亚铁高会使水解速度减慢、水解产品过细,一起母液黏度和比重添加,水解产品洗刷速度减慢。但硫酸亚铁含量过低会添加冷冻结晶硫酸亚铁工序的担负、水解产品颗粒也变粗。出产中Fe∕TiO2一般操控在0.2~0.3之间。 在水解操作中,晶种、水解温度、时刻、加热方法、拌和速度是重要的操作参数。晶种活性和数量都对钛液热水解有很大影响。晶种活性取决于其制备条件。晶种的制备归纳起来有稀释法(自生晶种)和中和法(外加晶种)两大类,其实质都是先制得一种正钛酸肢体,然后在稀硫酸或稀中加热胶溶、熟化,在TiO(OH)2颗粒表面吸附具有必定电荷的TiO2+和Ti4+,构成不溶于稀酸的胶体溶液(晶种)。晶种可正确诱导热水解的进行,不光影响水解速度、收率和水解产品粒子巨细,并且可决定产品的晶型(锐钛型或金红石型)。一般来说,晶种参加量0.6%~2%时产品上色力最好。 水解温度对水解速度及产品粒度也很有影响。欢腾温度下水解速度最能契合工业出产要求,操作也最易操控。一般常压下水解以2~4h为宜。

锌丝置换沉淀法

2019-02-19 11:01:57

锌丝置换法从化液中置换收回金的工艺始于1889年。锌丝置换沉积箱(图1)一般为木质的、钢的或混凝土的。一般分为5~10格,总长3.5~7m,宽0.45~1m,深0.75~0.9m。筛网安于铁框上,孔径3.36~1.68mm(网目为6~12目)。锌丝是用金属锌在车床上车削成厚0.02~0.04mm,宽1~3mm的车屑,或将熔融金属锌接连均匀地倾泻在用水冷却的高速旋转生铁圆筒上制成粒。图1  锌丝置换沉积箱 1-箱体;2-箱缘;3-下挡板;4-上挡板; 5-筛框;7-锌丝;8-金泥;9-排放口;10-把手 含金溶液在箱中流过期,与锌丝触摸的时刻约17~20min,在此时刻内,约能使99%以上的金被置换下来。出产实践中,定时将固定于筛网中心的把手悄悄提起上下拦动,可使锌丝松动并放出泡,以及使金泥脱离锌丝而下沉槽底。经一段时刻后,将箱内能持续运用的旧锌丝移至箱的前几格中,新锌丝则参加后边几格中,这样能使含金低的溶液与置换力强的新锌丝触摸,进步金的沉积率。装入锌丝时有必要抖松后均匀铺撒,特别要留心每格中的四个角,避免溶液从空泛处流过,下降置换作用。 沉积箱一般每月出金泥l~2次。取出的锌丝经圆筒筛别离金泥后,筛出的锌丝供下批置换用。金泥由排放口放出,于过滤箱或压滤机过滤收回。 锌丝置换法虽具有设备简略、简单操作、不耗动力等长处,但锌丝耗费量大(出产1kg金需锌4~20kg)、NaCN耗费量也大(因用于锌丝置换法的贵液一般不经除气,锌在高氧溶液中会氧化生成白色沉积)、金泥含锌高且设备占地多。故锌丝置换法在大中型矿山现已多为锌粉置换法所替代。

针铁矿的水解沉淀

2019-01-24 17:45:48

针铁矿是羟基氧化铁的一种,称为α型羟基氧化铁α-FeO(OH)。自然界有4种羟基氧化铁同质异象体,其余3种分别是:四方纤铁矿β-FeO(OH),纤铁矿γ-FeO(OH)和六方纤铁矿δ-FeO(OH)。针铁矿是自然界中最常见的羟基氧化铁矿物,反映了它在风化条件下最稳定。事实上占通常是自然界中含铁的硫化矿、氧化矿、碳酸盐和硅酸盐风化的产物。研究指出,在常压的沸点下pH1.5~3.5范围内及硫酸根总浓度3mol∕L以内针铁矿是高铁水解最可能的产物。大多数针铁矿都以固溶体形式含有其他元素。 针铁矿也可看为α型-水氧化铁α-Fe2O3·H2O,其结构上与一水硬铝矿相同,属斜方晶系。在针铁矿的晶体结构中,只有Fe3+,O2-和OH-3种离子,三者的配合比为1∶1∶1。其中O2-位于八面体的顶点,而Fe3+处于八面体的中心,并为O2-所包围。O2-离子与4个Fe3+离子相联结,即共用于4个八面体之间,其中每一个价键仅为1/2价。OH-离子则共用于2个八面体之间,每一个价键也是1/2所。位于八面体中心的高铁离子具有很强的极化能力,使四周配位离子的外层电子云产生偏移,导致正负离子外层电子云的相互重叠,并形成共价键。由于  O2-较OH-更易于发生变形,因而配位氧离子将具有较配位氢氧离子为强的共价键,即键的极性较弱。 热力学计算指出,针铁矿较三水氧化铁具有更大的晶格能,表明针铁矿比后者更稳定。因此,在通常情况下(酸度不大和温度不高于140℃),高铁水解产物在热力学上的稳定结构应是针铁矿而不是胶态氢氧化铁。但在实际上,当用中和法使高铁从水溶液中析出时,得到的沉淀物都是三水氧化铁胶体而不是结晶态的针铁矿。出现这种情况的主要原因在于pH对溶液中高铁的过饱和程度影响很大,因而中和水解时,随着溶液pH的升高造成巨大的高铁过饱和度,形成很大的成核速度,使得水解产物呈肢体析出。鉴于高铁溶液中和水解很难控制系统的过饱和度,欲避免胶件氢氧化铁析出,关键是水解时要将溶液中的高铁离子浓度控制在很低的水平,一般低于1kg·m-3。针铁矿法正是针对这一问题而提出来的。它采用的水解条件是利用空气氧化、低过饱和度及较高温度,既有利于水合物的脱水和缩合,也有利于有关质点有序排列,从而使水解产物呈晶体而不是肢体。针铁矿法有两种模式来控制高铁浓度。其一是先将溶液中的高铁离子还原成低价,再中和至pH值为4.5~5,这时因高铁浓度很低,不会析出胶态氢氧化铁,而亚铁离子在此pH值下也不会形成Fe(OH)2沉淀。然后通空气在90℃左右的温度下再将亚铁重新氧化成高铁,小量产生的高铁离子一经出现即水解形成少量晶核,并缓慢发育成针铁矿晶体而沉淀,相关的反应方程式为:    (1) 高铁的还原剂可以有很多选择,但生产中使用的还原剂应价格低廉,操作简便,而且氧化后不引入任何危害。从这种实际的角度考虑,硫化锌精矿是硫酸锌电解液针铁矿法净化的最佳还原剂。用硫化锌还原高铁的结果,ZnS中的锌即以Zn2+离子形式进入溶液,硫则以元素硫的固体形式留在渣中,对其后的作业无任何危害。硫化锌还原高铁的总反应式为:    (2) 热力学计算得到该氧化还原反应的标准电动势为0.506V,具有足够的热力学推动力。实践表明反应的速度也比较高,在90℃温度下一般只需3~4h就可达到相当的还原深度。例如,由反应式(2)的标准电动势求得的平衡常数为Kc=[Fe2+]2[Zn2+]∕[Fe3+]2=1017.09,若取锌离子的活度为0.1mol∕L,则求得[Fa2+]∕[Fe3+]≈109,说明硫化锌使高铁的还原进行得比较彻底。 针铁矿法中亚铁的再氧化采用空气中的氧作氧化剂,其氧化反应方程为:    (3) 在25℃温度下空气的标准氧化电位E=1.22-0.059pH。在pH=4时,氧的标准电位为0.984V,仅此Fe3+∕Fe2+电对的标准电位(0.771V)高0.213V。但是,由于在此时Fe3+已预还原成Fe2+,此电对的实际电位E 大为降低。例如当Fe3+/Fe2+=10-4时,      E 降至0.538V,从而氧化反应(9)的电位提高到0.316V。同时,在水解沉铁体系中,氧化产生的高铁高子即时水解沉淀,因而能始终保持体系中[Fe3+]/[Fe2+]为一个较低的值。 亚铁氧化沉淀包括亚铁氧化和高铁水解这两个连续的环节。氧气氧化亚铁的过程又包括氧气的溶解、氧分子由相界面向溶液内部的扩散、亚铁离子对氧分子的吸附、氧分子裂解为氧原子、亚铁离子与氧原子之间的电子交换等多个步骤。其中氧分子裂解为氧原子为控制速度的关键步骤。提高氧分子裂解反应的速度可以采取3种办法:提高氧分压,如使用富氧鼓风和利用压缩空气并维持整个反应进程在较高的压力下进行,提高温度;采用催化,一般以Cu2+作为催化剂。 被吸附的氧分子转变为被吸附的氧原子后,即发生氧原子与亚铁离子之间的电子转移,其结果是亚铁离子被氧化成高铁离子,而氧原子则还原为O2-离子:另一个氧原子也将以同样方式被还原成离子O2-,所形成的O2-会和高铁离于强烈结合,形成(Fe-O-Fe)4+这样的配合物离子。它再与OH-离子结合,并进一步脱水综合,就生成了针铁矿:针铁矿法另一种控制高铁浓度的模式是澳大利亚电解锌公司开发的,它不经过先还原,而是直接将热的高铁溶液连同中和剂以控制的速度加入沉淀槽中,使高铁的浓度维持在1kg·m-3以下。在70~90℃温度下并维持pH在2.8左右,针铁矿随着高铁的加入连续析出。相关的反应为:    (4)