您所在的位置: 上海有色 > 有色金属产品库 > 硫氧化镧 > 硫氧化镧百科

硫氧化镧百科

氧化镧 国际标准

2019-01-03 14:43:33

氧化镧 Lanthanum oxide1、技术要求Technique Request: 分子式 Formula:La2O3分子量 M.Wt:325.82 产品牌号 Product Code化学成份%Chemical compositions%La2O3 REO ≥杂质含量≤impurities content max稀土杂质/REO RE impurities/REO非稀土杂质Non-RE impuritiesCeO2Pr6O11Nd2O3Sm2O3Y2O3Fe2O3SiO2CaOCuONiOPbO2La2O3-1A99.990.0020.0020.0010.0010.0050.00050.0050.0050.00050.0010.001La2O3-1B99.990.0030.0030.0020.0010.0010.0050.0060.010.00050.0010.001La2O3-299.950.010.010.0050.0050.0050.0050.010.015---La2O3-399.9含量0.10.010.010.05---La2O3-499.5含量0.50.010.010.10---2、形状颜色特性:白色粉末,不溶于水,易溶于无机酸,极易潮解,应置于密封器内。3、用途:主要用于制造各种光学玻璃部件以及光导纤维,也常用于陶瓷、催化剂等。 4、包装:50Kg/塑编袋,内衬塑料袋或用250—500公斤柔性集装袋包装。

硫金精矿的氧化焙烧

2019-02-21 13:56:29

硫金精矿的首要组分为黄铁矿、磁黄铁矿,有时也含有少数毒砂,经过焙烧可使精矿转化为疏松多孔的氧化铁焙砂,并使其中所荷载的细粒和微细粒金解离呈单体,以便下步浸出或用其他办法收回。 依据卡尔古利金矿的实践,黄铁矿在具有过剩空气的炉中焙烧时,因为下式的反响生成淡棕色焙砂: 4FeS2+11O2 2Fe2O3+8SO2 当焙烧是在操控温度下缓慢地进行(初期550℃,停止时近700℃)时,则可取得金易为溶解的红棕色多孔焙砂。如在约束空气参加量的条件下焙烧,则会产出黑色的磁铁矿焙砂: 3FeS2+8O2 Fe3O4+6SO2 当供焙烧的精矿中含有多于0.5%的锑时,会使焙烧进程中焙砂熔结,给化作业带来晦气影响。铅的存在给焙烧所形成的困难是众所周知的,且当质料含铅多于0.2%时,很多残留在焙砂中的铅便被带进化进程。铜的存在虽对焙烧作业影响不大,但进入化进程后需耗费很多的。焙烧时参加少数的氯化钠,能进步金的化提取率,但可能会添加金在焙烧时的蒸发丢失。 焙烧通常是在单膛爱德华(Edward)炉或欢腾层焙烧炉中进行,而坎贝尔红湖(Campbell Red Lakc)矿业公司则选用双膛多尔(Dorr)欢腾炉。榜首膛供入有限的空气,在570℃焙烧产出黑色焙砂,再入第二膛供入过量空气在770℃焙烧取得赤色焙砂。

铋矿浆电解硫的阳极氧化

2019-01-24 09:38:21

矿浆电解工艺的一个显著优点是,硫化矿在矿浆电解过程中,矿物中的硫以元素硫的形态产出,并可提取回收。所产元素硫便于贮存和运辐,解决了火法冶炼SO2污染和硫酸产量过剩,硫酸运输和销售难的问题。 辉铋矿矿浆电解时元素硫的产出过程是矿浆电解阳极氧化过程的一个重要方面,王成彦、邱定蕃等测绘了S0与H2S在石墨阳极上的极化曲线。 试验条件:333K、NH4Cl为200g∕L、H+为1g∕L、搅拌转速600min-1、扫描速度1mV∕s,测得的阳极极化曲线见图1。图1  S及H2S的阳极化曲线 1-NaCl(200g∕L)+H+(1g∕L); 2-NaCl(200g∕L)+H+(1g∕L)+S(L∶S=10∶1); 3-NaCl(200g∕L)+H+(1g∕L)+Na2S(0.01mol∕L); 由图1可以看出,线1与线2基本重合,说明元素硫在阳极上基本不被氧化,而线3有明显的阳极电流,说明有S2-的氧化反应在阳极发生,由于是在酸性体系中进行的研究,可以认为该反应是Na2S酸溶产生的H2S在阳极上的氧化反应:由该图还可以看出,在阳极电流密度大于7mA/cm2(70A/m2)时,阳极将发生析氧反应。因此,在实际的矿浆电解条件下(阳极电流密度为15~25mA∕cm2),H2S在阳极上的氧化反应并不是主要的。阳极反应主要是Fe2+的氧化反应。 由于动力学的原因,Fe3+对S0的氧化很缓慢,说明元素硫在矿浆电解的条件下较稳定。有关的研究工作电表明,在水溶液中元素硫氧化为SO42-、HSO4-的过程极为缓慢。这就是矿浆电解过程能获得较高的元素硫产出率的原因。

球团矿中磁铁矿的氧化和硫的氧化

2019-01-25 15:49:26

磁铁矿精矿粉是生产球团矿的主要原料,在焙烧过程中,应力求磁铁矿充分氧化成赤铁矿,它对于球团矿的固结有重要意义。    第一,磁铁矿氧化为赤铁矿伴随晶格结构的变化。磁铁矿晶体为等轴晶系,而赤铁矿为六方晶系,氧化过程中的晶格变化及新生晶体表面原子具有较高的迁移能力,有利于在相邻的颗粒之间形成晶键。    第二,磁铁矿氧化为赤铁矿是一放热反应。它放出的热能几乎相当焙烧球团矿总热耗的一半。所以保证磁铁矿充分氧化,可以节约能耗。    第三,磁铁矿氧化若不充分,则在球团矿中心尚有剩余的磁铁矿。如果它进入高温焙烧带,温度升高,氧的分压降低,更不剥于磁铁矿氧化。在这种情况下磁铁矿将与脉石SiO2反应,生成低熔点的化合物,在球团矿内部出现液态渣相。它冷却时收缩,使球团矿内部出现裂纹,这不仅影响球团矿的强度,而且恶化其还原性。    磁铁矿的氧化从200℃开始,分两个阶段进行。                        4Fe3O4+O2=6γ-Fe2O3                (1)                        γ-Fe2O3=a-Fe2O3                   (2)    第一步只发生化学变化,没有晶形转变,因为γ---Fe2O3仍为等轴晶系;第二步只有晶形转变,最后变为六方晶系的a-Fe2O3。如果在较高温度下氧化,也可以由等轴晶系的Fe3O4,一步氧化为六方晶系的a-Fe2O3.    磁铁矿球团的氧化,由表层向中心推进;受到扩散因素的控制。它符合吸附-扩散学说。首先介质中的氧被吸附在磁铁矿颗粒的表面上,与Fe+2反应生成Fe+3,然后Fe+3向晶粒内部扩散。    磁铁矿的氧化反应在开始几分钟进行很快,然后氧化速度急剧下降,见上图随着温度上升,不仅氧化速度加快,氧化度也迅速升高。当温度超过900℃,反应已足够迅速,再提高温度,对氧化进程的影响已不大明显。温度超过1200℃,氧化速度与氧化度已不再增加了。    等温条件下磁铁矿球团的氧化需要时间可用下式表示:    式中  d———球团矿直径;          k———氧化速度系数;          ω———氧化度。    氧化速度系数k与焙烧介质含O2有关,若为空气:          K=(1.2±0.2)•10-4          厘米2/秒             (4)    若为纯氧:          K=(1.4±0.1)•10-3           厘米/秒             (5)          焙烧介质含O2是变化的,但总是低于空气中含O2,因此k值较公式(4)为小。所以应力求将磁铁矿在预热阶段充分氧化。此外根据热力学分析,1383℃可使赤铁矿在空气中分解。由于焙烧介质中氧的分压远低于空气中氧的分压,所以赤铁矿在焙烧过程中分解为磁铁矿的温度低于1383℃.为使磁铁矿充分氧化为赤铁矿焙烧温度不宜过高。    由于球团矿的焙烧过程是-强氧化过程,故对脱硫反应十分有利。磁铁矿一般含硫较高,硫的赋存形态常为FeS2-黄铁矿或CuFeS2-黄铜矿.FeS2在200°~300℃即开始分解,688℃硫的分解压力达到1大气压(98066.5帕),反应式如下:         FeS2=FeS+S                                     (6)         S+O2=SO2                                       (7)         4FeS2+11O2=2Fe2O3+8SO2                          (8)         3FeS+5O2=Fe3O4+3SO2                             (9)         FeS+10Fe2O3=7Fe3O4+SO                           (10)    一般焙烧球团矿过程中,可以除去矿石中90%以上的硫。    硫对氧的亲合力大于Fe+2的亲和力,因此硫有阻碍磁铁矿氧化的作用。如果用高硫磁铁矿生产球团矿,更应注意预热阶段磁铁矿是否已充分氧化,否则将影响球团矿的品质。

稀土元素镧(La)的用途

2019-01-30 10:26:34

稀土的分类 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 镧(La)“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为“镧”。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。

高硫铝土矿除硫技术

2019-02-21 11:21:37

我国铝土矿资源丰富,已探明的铝土矿储量达23亿t。其间含硫高的一水硬铝石型铝土矿储量达1.5亿t,占总储量的11.0%左右。这类矿石以中高铝、中低硅、高硫、中高铝硅比矿石为主,且此类矿石高档次所占份额大,需加工脱硫才干运用,因而研讨经济合理的脱硫办法,具有巨大的潜在工业含义。       在氧化铝出产流程中,铝土矿中的硫不只构成Na2O的丢失,并且溶液中S2-进步后会使钢材遭到腐蚀,蒸腾和分化工序的钢制设备因腐蚀而损坏,添加溶液中铁含量。在拜耳法出产氧化铝过程中假如铝土矿中硫的含量超越0.3%,就能导致氧化铝档次因铁的污染而超支,别的还能使氧化铝的溶出率下降。跟着氧化铝工业的不断发展,科学研讨者对脱硫办法进行了许多的研讨工作,但效果及运用均不尽人意。因而有必要对高硫铝土矿进行进一步脱硫研讨,到达拜耳法氧化铝厂对铝土矿含硫的要求。       铝土矿中硫首要以黄铁矿(FeS2)办法存在,因为黄铁矿简略用黄药等捕收剂浮选,而含铝矿藏以氧化物和氢氧化物办法存在,亲水,不易被黄药捕收,因而,浮选用黄药理论上简略完成黄铁矿和含铝矿藏的别离。用浮选的办法下降铝土矿中硫的含量,最早被原苏联人员选用。在我国,浮选脱除铝土矿中的含硫矿藏还未见文献报导。因而,针对我国铝土矿的特色,用选矿脱除铝土矿中含硫矿藏的研讨具有重要含义。       针对河南某地出产的铝土矿的特色,选用黄药等作捕收剂,对反浮选除掉铝土矿中的硫化物进行了实验研讨。       一、实验部分       (一)实验质料       河南高硫矿,碳酸钠(分析纯,上海虹光化工厂),六偏磷酸钠(分析纯,天津市科密欧科技有限公司),(分析纯,天津市科密欧化学试剂开发中心),硫酸铜(化学试剂,天津市博迪化工有限公司),丁基黄药(株洲选矿药剂厂),戊基黄药(长沙矿冶研讨院选矿所),松醇油(株洲选矿药剂厂),单质碘和碘化钾(分析纯,汕头市西陇化工厂)。对河南高硫矿进行了化学分析。首要化学成分列于表1。   表1  试样的首要化学组成(质量分数)/%Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST61.6212.654.603.003.001.810.080.420.96       (二)实验设备及仪器       实验一切设备及仪器包含浮选机,拌和机,pH计,过滤设备,电炉,烘箱,管状炉,石英管,滴定管等。       (三)实验办法       各添加剂预先装备成必定的浓度备用。药剂添加次序为:六偏磷酸钠→→硫酸铜→丁基黄药→戊基黄药→松醇油,实验中各药剂的用量及添加药剂后的拌和时刻见表2。实验所用脱硫浮选办法为简略的一段浮选。浮选产品别离过滤、洗刷、烘干后分析。   表2  药剂用量及拌和时刻药剂称号药剂用量/(g·L-1)拌和时刻/min碳酸钠 六偏磷酸钠硫酸铜 丁基黄药 戊基黄药 松醇油2.5 7.65×10-3 4.00×10-4 1.88×10-2 3.13×10-2 3.13×10-2 0.125  1 1 2 1 2 1       二、条件实验       选用六偏磷酸钠作为按捺剂,和硫酸铜作为活化剂,丁基黄药和戊基黄药作为捕收剂,对高硫铝土矿进行一段浮选脱硫条件实验,研讨各添加剂用量对浮选成果的影响。       (一)碳酸钠用量的影响       在pH>11的高碱环境下,黄铁矿表面会有亲水的氢氧化物生成,进而浮选遭到按捺。碱性增强对黄铁矿的按捺不断增强。低pH值系统中难以浮选,乃至浮选没有泡沫,这与铝土矿结构以及实验条件有关。碳酸钠另一效果是对黄铁矿具有活化效果。在CO32-与HCO3-离子效果下,铁的氢氧化物又可转变成铁的碳酸盐,使黄铁矿表面掩盖的氢氧化物和硫酸盐脱落暴露出新鲜的表面。因而碳酸钠添加量对浮选的效果有较大的影响。按表2所示条件,进行了碳酸钠用量对脱硫效果的影响的研讨,成果见表3。   表3  碳酸钠用量条件实验成果碳酸钠用量/(g·L-1)pH值产品称号产率/%S档次/%S收回率/%0.59.70低硫铝土矿 高硫尾矿82.44 17.560.41 3.5435.25 64.751.010.10低硫铝土矿 高硫尾矿89.91 10.090.420 5.7739.35 60.652.510.43低硫铝土矿 高硫尾矿96 40.44 13.4444 563.510.78低硫铝土矿 高硫尾矿93.4 26.580.48 7.7846.67 53.33       由表3可知,跟着碳酸钠用量的添加和矿浆pH值升高,高硫尾矿中硫的档次越来越高,硫的收回率在逐步下降,低硫铝土矿的产率较大起伏的升高,到碳酸钠用量为2.5g/L,pH值为10.43时,硫的档次达最大值,随后又开端下降,硫的收回率持续下降,低硫铝土矿的产率也到达最大值后又下降。由此可见碳酸钠对浮选具有较大影响。归纳考虑以上要素,高硫矿浮选碳酸钠用量应为2.5g/L,pH值为10.43左右。       (二)按捺剂用量的影响       六偏碳酸钠在含量高时对一水硬铝石具有按捺效果,但在pH>10时,其按捺效果较弱,只要在较高用量的条件下才具有较强的按捺效果。六偏磷酸钠的按捺效果为在浮选过程中损坏和削弱一水硬铝石与捕收剂之间相互效果,增强一水硬铝石表面的亲水性。它的效果办法有3种:消除活化离子;在矿藏表面构成亲水薄膜;消除矿藏表面的活化薄膜。六偏磷酸钠一起可对矿浆起涣散效果。按表2所示条件,进行六偏磷酸钠用量对脱硫效果的影响,成果见表4。   表4  六偏碳酸钠用量条件实验成果六偏碳酸钠用量/(×10-3g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿93 70.54 6.5852.02 47.987.65低硫铝土矿 高硫尾矿96 40.44 13.4444 5615.30低硫铝土矿 高硫尾矿95.34 4.660.48 10.7947.68 52.32       由表4可知,跟着六偏碳酸钠用量的添加,高硫尾矿中硫的档次先进步然后下降,硫的收回率也是先进步后下降,低硫铝土矿的产率在小起伏规模内改变。六偏碳酸钠用量以7.65×10-3g/L为宜。       (三)活化剂用量的影响       活化剂的效果是在矿藏表面生成促进捕收剂效果的薄膜。浮选电化学以为,某些硫化矿藏具有半导体性质和必定的电子传导才能,表面的静电位是HS-离子能否在其表面氧化生成元素S0的要害,当表面静电位Ems高于HS-氧化成S0的平衡电位时,则这种氧化在热力学上能够完成。黄铁矿表面静电位Ems高于HS-氧化成S0的平衡电位,因而HS-可能在黄铁矿表面氧化成元素(S0)。王淀佐等人测定了黄铁矿的表面静电位,在pH>8今后一直高于EHS-/S0,所以HS-能够在其表面氧化。Na2S参加矿浆中后,矿浆中存在许多的HS-离子,黄铁矿因为表面静电位较高,对HS-离子有较强的电催化效果,HS-在其表面有如下反响:   HS(aq)-→HS(ad)-     HS(aq)-→H++S(ad)0+2e-       S0吸附于黄铁矿表面使其变得疏水,因而黄铁矿具有杰出的诱导可浮性。       当黄铁矿表面氧化较深时,可被Cu2+活化。其机理为Cu2+可替代黄铁矿品质中的Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。铜离子比较简略进入黄铁矿的晶格,铜和硫的亲和性比铁和硫的亲和性更大,使黄铁矿表面构成铜膜,铜离子不影响矿藏晶格深处,在黄铁矿表面上掩盖铜相当于分散处理黄铁矿表面,即影响到黄铁矿表面的导电类型。黄铁矿为电子型半导体,晶格表面层上富集电子的表面,因而不能安稳的吸附黄药。一些二价Cu2+从其表面取得电子,Cu2+浓度下降为Cu2+,使黄铁矿表面层电子浓度下降。黄铁矿表面导电性的转化,这时能安稳地吸附黄药。       综上所述,首要对黄铁矿起到诱导浮选效果,但因为黄铁矿镶嵌于结构杂乱的铝土矿中,且黄铁矿的含量小,尤其是当黄铁矿表面氧化较深时,对黄铁矿就起不了诱导浮选效果,而Cu2+能够进入黄铁矿晶格中替代Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。因而和硫酸铜均可起到活化效果,其用量多少对硫档次影响很大。按表2所示条件,别离进行了和硫酸铜用量对脱硫效果的影响研讨,成果别离见表5和表6。   表5  用量条件实验成果用量/(×10-4g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿95.25 4.750.50 10.1649.73 50.272低硫铝土矿 高硫尾矿94.12 5.880.48 8.5747.51 52.494低硫铝土矿 高硫尾矿96 40.44 13.4444 5610低硫铝土矿 高硫尾矿96.62 3.380.61 1161.27 38.73   表6  硫酸铜用量条件实验成果硫酸铜用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿92.89 7.110.48 7.2348.59 51.411.88低硫铝土矿 高硫尾矿96 40.44 13.4444 563.75低硫铝土矿 高硫尾矿93.20 6.800.55 6.5553.6 46.4       由表5可知,跟着用量的添加,高硫尾矿中硫的档次先下降后升高,随后又下降,硫的收回首先升高后下降,低硫铝土矿的产率改变不大。用量以4×10-4g/L为宜。       由表6可知,跟着硫酸铜用量的添加,高硫尾矿中硫的档次先升高后下降,改变的起伏比较大,硫的收回首先逐步升高然后较大起伏的下降,低硫铝土矿的产率改变不大。硫酸铜用量以1.88×10-2g/L为宜。       (四)捕收剂用量及其品种的影响       在浮选中运用捕收剂,能够进步有用矿藏表面的疏水性。黄铁矿捕收剂首要是黄药类等捕收剂。在许多情况下,已成功地运用单一种捕收剂。但混合运用多种硫代捕收剂可大大进步硫化矿浮选目标。按表2所示条件,丁基黄药及戊基黄药用量对脱硫效果的影响成果别离见表7和表8。   表7  丁基黄药用量条件实验成果丁基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿94.29 5.710.55 7.8253.49 46.511.56低硫铝土矿 高硫尾矿95.10 4.900.57 8.5456.41 43.593.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿97.06 3.740.50 12.9251.68 48.32   表8  戊基黄药用量条件实验成果戊基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿 高硫尾矿96.62 3.380.56 12.4556.17 43.831.56低硫铝土矿 高硫尾矿95.69 4.310.45 12.344.78 55.223.13低硫铝土矿 高硫尾矿96 40.44 13.4444 566.25低硫铝土矿 高硫尾矿96.5 3.50.57 11.5957.74 42.26       由表7可知,跟着丁基黄药用量的添加,高硫尾矿中硫的档次和收回率都随之添加,然后下降,低硫铝土矿的产率在小规模内增大。丁基黄药对浮选效果具有较大影响。丁基黄药用量以3.13×10-2g/L为宜。       由表8可知,跟着戊基黄药用量的添加,高硫尾矿中硫的档次在小起伏内先升高后下降,硫的收回率在较大起伏内先升高后下降,低硫铝土矿的产率改变不大。戊基黄药对硫的收回率影响较大。戊基黄药用量以3.13×10-2g/L为宜。       三、优化条件的浮选成果       通过以上各条件实验的影响,得出高硫铝土矿一段浮选除硫的最佳条件实验为:碳酸钠用量2.5g/L,六偏磷酸钠用量为7.65×10-3g/L,拌和1min,用量为4.0×10-4g/L,拌和1min,硫酸铜用量为1.88×10-2g/L,拌和2min,丁基黄药用量为3.13×10-2g/L,拌和1min,戊基黄药用量为3.13×10-2g/L,拌和2min,松醇油用量为0.125g/L,拌和1min,实验成果见表9。   表9  原矿一段浮选实验成果产品称号产率/%S档次/%S收回率/%低硫铝土矿 高硫尾矿 原矿96 4 1000.44 13.44 0.9644 56 100       由表9可知,在优化的浮选条件下,原矿通过一段浮选即可取得硫档次高达的13.44%,收回率56%,而产率仅为4%的高硫尾矿;一起取得产率为96%,硫档次为0.44%的低硫铝土矿。这一成果比前苏联研讨人员浮选高硫铝土矿一段浮选尾矿含硫达9%的工艺目标还好。       对浮选所得低硫铝土矿和高硫尾矿进行化学分析,分析成果见表10。为了便于对照,将原矿相应数据也列于表10中。   表10  浮选产品化学分析成果(质量分数)/%产品称号Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST1)低硫铝土矿 高硫尾矿 原矿62.10 51.96 61.6212.83 8.18 12.654.17 14.94 4.602.95 4.71 3.003.07 1.43 3.001.85 0.95 1.810.08 0.11 0.080.42 0.40 0.420.44 13.44 0.96        1) 此为化学分析成果,不是荧光分析成果       由表10可知,一段浮选高硫尾矿的A/S比为6.35,与A/S比为4.87的原矿比较,高硫尾矿的A/S比高,这是因为铝比硅更简略浮选,成果导致高硫尾矿中A/S比稍高。因为被浮选的高硫尾矿产率不大,因而对低硫铝土矿的A/S比的影响不大。高硫尾矿中硫和铁含量比原矿明显进步,铁略有进步,其它元素含量都偏低。而低硫铝土矿与原矿比较,除了铝,硅以及钾比原矿略低高外,其它元素都有所下降。       四、结语       (一)选用浮选的办法,以碳酸钠为pH调整剂,六偏磷酸钠为按捺剂,和硫酸铜为活化剂,丁基黄药和戊基黄药为捕收剂,松醇油为起泡剂,进行高硫铝土矿的一段反浮选,取得硫含量高达13.44%,收回率56%,氧化铝含量为51.96%,而产率仅为4%的高硫尾矿,一起取得产率为96%,氧化铝含量为62.10%,硫档次为0.44%的低硫铝土矿。因为铝比硅更简略浮选,高硫尾矿的A/S比升高,但因为高硫尾矿的产率低,仅为4%,因而对低硫铝土矿的A/S比影响不大。       (二)对原矿进行一段浮选的最佳条件是:碳酸钠用量为2.50g/L,六偏磷酸钠用量为7.65×10-3g/L,用量为4.00×10-4g/L,硫酸铜用量为1.88×10-2g/L,丁基黄药用量为3.13×10-2g/L,戊基黄药用量为3.13×10-2g/L,松醇油用量为1.25×10-1g/L。矿浆最佳浮选pH值规模是10.4~10.5左右。       (三)本研讨测验一起运用2种活化剂,即和硫酸铜,活化的效果大于单一活化剂的效果,进步硫的浮选收回率。丁基黄药与戊基黄药2种捕收剂按份额混合运用可进步硫的档次及收回率。

硫的知识

2019-03-12 11:03:26

元素称号:硫俗称:元素符号:S元素原子量:32.066晶体结构:晶胞为正交晶胞。 莫氏硬度:2.0 元素类型:非金属发现进程:古代人类已认识了天然硫。硫散布较广。单质物理性质:一般为淡黄色晶体,它的元素名来历于拉丁文,本意是鲜黄色。单质硫有几种同素异形体,菱形硫(斜方硫)和单斜硫是现在已知最重要的晶状硫。它们都是由S8环状分子组成。 密度 熔点 沸点 存在条件 菱形硫(S8) 2.07克/厘米3 112.8℃444.674℃ 200℃以下 单斜硫(S8) 1.96克/厘米3 119.0℃444.6℃ 200℃以上 硫单质导热性和导电性都差。性松脆,不溶于水,易溶于(弹性硫只能部分溶解)。无定形硫主要有弹性硫,是由熔态硫敏捷倾倒在冰水中所得。不安稳,可转变为晶状硫(正交硫),正交硫是室温下仅有安稳的硫的存在方式。化学性质: 化合价为-2、+2、+4和+6。榜首电离能10.360电子伏特。化学性质比较生动,能与氧、金属、、卤素(除碘外)及已知的大多数元素化合。还可以与强氧化性的酸、盐、氧化物,浓的强碱溶液反响。它存在正氧化态,也存在负氧化态,可构成离子化合物、共价化合成物和配位共价化合物。元素来历:重要的硫化物是黄铁矿,其次是有色金属元素(Cu、Pb、Zn等)的硫化物矿。天然的硫酸盐中以石膏CaSO4·2H2O和芒硝Na2SO4·10H2O为最丰厚。可从它的天然矿石或化合物中制取。火山口处存在许多。元素用处:大部分用于制作硫酸。橡胶制品工业、火柴、焰火、硫酸盐、盐、硫化物等产品中也需求许多。部分用于制作药物、虫剂以及漂染剂等。元素辅佐材料:硫在自然界中存在有单质状况,每一次火山爆发都会把许多地下的硫带到地上。硫还和多种金属构成硫化物和各种硫酸盐,广泛存在于自然界中。单质硫具有明显的橙黄色,焚烧时构成激烈有刺激性的气味。金属硫化物在焚烧时发生的气味可以断语,硫在远古时代就被人们发现并使用了。在西方,古代人们以为硫焚烧时所构成的浓烟和激烈的气味能驱除魔鬼。在古罗马博物学家普林尼的作品中写到:硫用来打扫住屋,由于许多人以为,硫焚烧所构成的气味可以消除全部妖魔和全部凶恶的实力,大约4000年前,埃及人现已用硫焚烧所构成的二氧化硫漂白布疋。在古罗马闻名诗人荷马的作品里也讲到硫焚烧有消毒和漂白效果。中西方炼金术士都很注重硫,他们把硫看作是可燃性的化身,以为它是组成全部物体的要素之一。我国炼丹家们用硫、硝石的混合物制成黑色。不管在西方仍是我国,古医药学家都把硫用于医药中,我国闻名医师李时珍编著的《本草纲目》中,将到硫在医药中的运用:治腰久冷,除凉风顽痹寒热,生用治疥廯。的广泛应用促进了的提取和精粹,跟着工业的开展,硫在制取硫酸中起着关键效果,而硫酸就是工业之母,无处不需求它。1894年出生在德国的美国工业化学家弗拉施发明用过热水的办法,将硫从地下深处直接提取出来。世界上每年耗费许多的硫,其间一部分用于制作硫酸,另一部分用于橡胶制品、纸张、硫酸盐、硫化物等的出产,还有一部分硫用于农业和漂染、医药等。1789年法国化学家拉瓦锡宣布近代榜首张元素表,把硫列入表中,断定硫的不可分割性。18世纪后半页,德国化学家米切里希和法国化学家波美等人发现硫具有不同的晶形,提出硫的同素异形体。硫在地壳中的含量为0.048%

含硫、磷、砷的氧化矿捕收剂

2019-02-27 08:59:29

烃基磺酸钠、烷基硫酸钠、烃基、烃基胂酸等。从它们的分子结构看,也是一端为极性基其它端为非极性基的复极性化合物。本章所述药剂都可作氧化矿捕收剂,前两种可替代脂肪酸,而含磷、砷的捕收剂选择性强,对锡石和黑钨浮选作用较好。一、结构 烃基磺酸钠视其烃基不同又可分为烷基磺酸钠 和烷基芳基磺酸钠,它们的通式如下: RSO3Na R-Ar-SO3Na RO-SO3Na 烷基磺酸钠烷基芳基磺酸钠 烷基硫酸钠 二、性质 (1)烃基磺酸钠和烷基硫酸钠均为白色粉状物,易溶于水,毒性很低。 (2)烃基磺酸分子中的C-S键很安稳,因而烃基磺酸钠不易分化,配成溶液后,放置好久均可运用, 不会失掉洗刷才能和捕收才能。 (3)烷基硫酸钠与烃基磺酸钠不同,能水解称醇和 :RO-SO3Na+H2O→ROH+NaHSO4 特别是在加热条件下水解更快,因而,烷基硫酸钠 溶液放置过久,会部分水解下降其捕收才能,运用时应当天制造的溶液当天运用为好。

硫渣的处理

2019-01-08 09:52:48

硫渣为黑灰色粉末,其中铜的形态主要呈硫化物,少部分呈金属铜;锡主要呈金属形态,部分呈硫化物。此外,还有一些其他的硫化物,如FeS, As2S3等。从硫渣中回收锡和铜,有直接焙烧-酸浸提铜与浮选分离出锡精矿后再氧化焙烧-酸浸提铜的两种方法。

钠硫蓄电池

2018-05-11 19:20:30

钠硫蓄电池钠硫电池的优点:一个是比能量高。其理论比能量为760W•h/kg,实际已大于100W•h/kg,是铅酸电池的3~4倍;另一个是可大电流、高功率放电。其放电电流密度一般可达200~300mA/mm2,并瞬时间可放出其3倍的固有能量;再一个是充放电效率高。由于采用固体电解质,所以没有通常采用液体电解质二次电池的那种自放电及副反应,充放电电流效率几乎100%。钠硫电池缺点,主要其工作温度在300~350℃,所以,电池工作时需要一定的加热保温。而高温腐蚀严重,电池寿命较短。现在已有采用高性能的真空绝热保温技术,可有效地解决这一问题。也有性能稳定性及使用安全性不太理想等问题。在80~90年代,国外重点发展钠硫电池作为固定场合下(如电站储能)应用,并越来越显示其优越性。这方面日本企业进展最为显著。作为近期普遍看好的电动汽车蓄电池,已被美国先进电池联合体(USMABC)列为中期发展的电动汽车蓄电池,德国ABB公司生产的B240K型钠硫蓄电池,其质量为17.5kg,蓄电量19.2Kw•h;比能量达109W•h/kg,循环使用寿命1200次,装车试验时最好的一辆无故障地行驶了2300km。

嗜酸氧化亚铁硫杆菌doxDA操纵元的鉴定与分析

2019-02-20 11:03:19

Abstract: Reverse transcriptase-PCR experiments suggest that the two clusters of genes potentially involved in the oxidation of reduced sulfur compounds are organized as operons in strain of the acidophilic, chethoautotrophic bacterium Acidithiobacillus ferrooxidans ATCC 23270, the two clusters of genes including such the ORF of putative sulfate-thiosulfate-molybdate binding proteins, the ORF of putative thiosulfate: quinone oxidoreductase and the ORF of the rhodanese-like protein (P21). Bioinformatic analyses have predicted the possible promoters sequences and the possible +1 start site of transcription for the doxDA operons.近年来因为金属硫化矿生物浸出对资源运用的重要性以及金属硫化矿废堆酸性渗流液引起的环境问题,有关金属硫化矿生物氧化和生物浸出机制的研讨引起了相关科学工作者的注重。现在,对重要的硫化矿生物浸出功用菌嗜酸氧化亚铁硫杆菌(A.ferrooxidans)为代表的嗜酸硫杆菌属的能量代谢机制方面的研讨最为广泛和深化[1]。嗜酸氧化亚铁硫杆菌是一种硫杆菌属化能自养菌,归于革兰氏阴性细菌,好氧嗜酸,首要成长在pH1~3的环境中,是迄今已报导的20多种浸矿细菌中研讨最多的浸矿细菌。浸矿酸性环境中,A.ferrooxidans在有氧条件下依托Fe2+、金属硫化矿分化发作的元素硫以及其它各种复原性硫化物氧化来供给成长能量,促进嗜酸硫氧化细菌本身成长;一同保持浸矿环境中金属离子不断浸出所需求的高铁离子和质子[2,3]。相对于亚铁氧化体系[4],硫氧化体系愈加杂乱,相关研讨还有许多悬而未决的问题。 嗜酸硫氧化细菌对元素硫的氧化是一个错综杂乱的进程。在该进程中,细菌的胞外物质介导着细菌对元素硫的吸附,细菌外膜蛋白进而将吸附硫转运到细胞周质空间,元素硫经过一系列生物氧化途径,终究被氧化为硫酸根离子,并被开释至胞外介质中。对A.ferrooxidansATCC23270全基因组基因功用注释分析发现,没有与元素硫氧化体系相关的功用基因的具体注解。虽然人们对硫复原功用基因以及硫复原途径有了较深化的了解,但至今对硫生物氧化途径的了解仍然是零散和不完整的。 RamírezP等[5]研讨A.ferrooxidans在不同能量基质中成长的细菌的双向电泳蛋白质差异展现时发现,在元素硫基质中成长的细菌细胞体内有一类硫酸酶P21高度表达,而该蛋白质在亚铁基质中简直没有表达。并估测该类硫酸酶P21坐落细胞周质空间中。对p21基因地点基因座进行分析,发现p21基因前后存在一些和硫氧化相关的或许的敞开阅览框(ORF),编码比如类硫酸盐-硫代硫酸盐结合蛋白(sulfate-thiosulfate-molybdatebindingproteins:SBP-1和SBP-2)的sbp-1和sbp-2、编码膜结合类硫代硫酸盐-辅酶Q氧化复原酶(thiosulfate:quinoneoxidoreductase:TQO-1和TQO-2)的doxDA-1和doxDA-2等敞开阅览框。估测这些基因的编码产品和硫氧化有密切关系。在高通量的生物芯片研讨亚铁氧化和硫氧化的成果中也验证p21地点基因座中的上述一些ORF和硫氧化相关,在硫氧化基质中的表达水平相对于在亚铁基质中的表达水平成显着性添加[6],因为它们在A.ferrooxidans基因组中顺次摆放,猜测这些基因在转录时归于共转录,别离归于猜测的doxDA-1操作元和doxDA-2操作元。本文在已有研讨成果的基础上,运用RT-PCR办法从转录水平上别离判定了p21基因地点的doxDA-1操作元,以及和doxDA-1操作元在编码次序上相对的doxDA-2操作元,并运用生物信息学的常识对doxDA操作元或许的启动子序列进行了猜测和分析。 一、材料和办法 (一)菌株、培育基和培育条件菌株A.ferrooxidansATCC23270来源于美国形式菌种搜集中心。试验运用9K培育基进行液体培育,对菌种进行活化和传代,在含5.0g/L元素硫的9K培育基中,成别离离为:(NH4)2SO4,3.0g/L;MgSO4·7H2O,0.5g/L;KCl,0.1g/L;K2HPO4,0.5g/L;Ca(NO3)2,0.01g/L和FeSO4·7H2O,44.5g/L。培育液初始pH值用5mol/L的H2SO4来调整至2.5。细菌用250mL锥形瓶于30℃、160r/min摇床中恒温振动培育。 (二)细菌DNA和RNA提取以及cDNA组成培育至对数中后期成长的菌液,滤去元素硫颗粒,滤液经离心搜集细胞沉积,用5mmol/LH2SO4洗刷细胞2次后,低温冷冻保存,作为提取细菌DNA和RNA的样品。 细菌DNA的提取:用400μLTE重悬细胞沉积,再参加80μL20%SDS,3μL20g/L蛋白酶K混匀后,55℃放置1h;顺次参加100μL5mol/LNaCl和80μL十六烷基三甲基化铵(CTAB)-NaCl溶液(0.7mol/LNaCl中含10%CTAB),充沛混匀,65℃放置10min;参加等体积的/-乙醇后旋涡振动混合均匀;12000r/min离心15min;搬运上层液至一新管后参加2~3倍体积的沉积DNA;12000r/min离心10min搜集DNA沉积;70%乙醇洗刷DNA沉积2次;真空枯燥后参加100μL已灭菌双蒸水溶解备用。 细菌RNA的提取:总RNA提取选用Trizol试剂盒(GIBCO,LifeTechnologies),按Trizol试剂盒阐明书上的办法进行。最后用无RNase的水溶解RNA,于-70℃保存备用。 cDNA的组成:总RNA用DNase室温处理30min后用于cDNA组成。以总RNA(1μg~3μg)为模板,运用cDNA组成试剂盒(MBI)中的随机引物六聚体回转录取得cDNA,回转录办法参照阐明书。 (三)引物规划与PCR反响依据A.ferrooxidansATCC23270全基因组敞开阅览框序列来规划引物。doxDA-1和doxDA-2操作元中或许的敞开阅览框基因序列在A.ferrooxidans全基因组中的基因座位序列编号别离为:AFE_2973、AFE_2974、AFE_2975、AFE_2976、AFE_2977、AFE_2978、AFE_2979、AFE_2980、AFE_2981、AFE_2982和AFE_2983。依据这些序列规划的引物如表1所示。寡聚核苷酸引物的组成由上海生工生物工程有限公司完结。表1  本文中所用的PCR引物 Table 1  The oligonuceotides used in this studyPrimerSequence(5′ to 3′)73-74-1TTGCCGTTTATCTGGAC73-74-2CGACTTCAAAACGGTTC74-75-1GATGGCGGCCGAGTTTAC74-75-2GGGCCAGCCGTGTG75-76-1CAGAGGCGTGGAAC75-76-2GCCCCAAATCCAAC76-77-1GAATGGCAGCGTCTG76-77-2CGTTGCCACATCGGACT77-78-1GTGCAGTGGGCGGAATC77-78-2AACGTCGTCGGCGT78-79-1GCTCGGTTATGACGCCTAC78-79-2TATTCCTCCTGGCATCGC79-80-1CCTGCCGTCAACGATGC79-80-2GGAGGCCACCGATACCGA80-81-1TGCTTCCGCCGTCAAGG80-81-2CGGCAAGAAGGGCGATGG81-82-1GTTGCAGTTGGCGGGCTAT81-82-2TGATGGATCGCGGGATTG82-83-1GCGGCATGTGGGTCGG82-83-2CGGTGGGCAACAGGTTGG83-84-1CCATGTTCGCGGCAAAC83-84-2CTGGAGAAACAGGGCGA      PCR扩增反响体系(50μL):1.0μL(10mmol/L)引物,2.0U(2.0μL)TaqDNA聚合酶(Fermentas),5μL10×PCR缓冲液,1μL(10mmol/L)dNTPs,4μL(25mmol/L)MgCl2,0.5μL模板(DNA模板和cDNA模板),加水补至50μL。DNA扩增进程:93℃3min;93℃30s,56℃30s,72℃30s,32个循环;72℃10min;程序完毕后4℃保存。将PCR产品于2.0%的参加化乙锭的琼脂糖凝胶检测,紫外检测仪下调查成果。 (四)序列分析嗜酸氧化亚铁硫杆菌A.ferrooxidansATCC23270的全基因组数据库中的基因序列来自TIGR数据库。针对拟分析的敞开阅览框序列所编码的蛋白质,别离选用Protparam模块(http://www.expasy.ch/cgi-bin/protparam.htm)分析蛋白质分子量和等电点、TMPRED(http://www.ch.embnet.org/software/TMPRED)和TMHMM(http://www.cbs.dtu.dk/services/TMHMM)模块猜测蛋白质跨膜螺旋序列、以及SignalP(http://www.cbs.dtu.dk/services/SignalP)模块分析蛋白质的信号肽序列。原核生物启动子的猜测分析软件模块为BDGP(http://www.fruitfly.org/seq_tools/promoter.html)。 二、成果 (一)doxDA-1和doxDA-2操作元中敞开阅览框编码多肽的生物信息学分析doxDA-1和doxDA-2操作元中敞开阅览框以及其相邻敞开阅览框的序列的一些根本生物学信息如表2所示,它们在A.ferrooxidansATCC23270全基因组中的基因座位摆放次序如图1所示。图1doxDA-1和doxDA-2操作元中敞开阅览框以及其相邻敞开阅览框序列在 A.ferrooxidans基因组中的摆放次序     (二)doxDA-1和doxDA-2操作元中敞开阅览框的共转录分析运用表1中的引物,别离以基因组DNA和对RNA回转录得到的cDNA为模板进行PCR反响,扩增意图产品。成果如图2所示。 (三)doxDA-1和doxDA-2操作元中启动子序列分析包含在doxDA-1操作元中的敞开阅览框AFE_2978、AFE_2979、AFE_2980、AFE_2981、AFE_2982和AFE_2983所代表的或许基因别离为unknown、P21、doxDA-1、sbp-1、tat-1和cdt基因。依据其序列规划的引物别离以基因组DNA和对RNA回转录得到的cDNA模板进行PCR反响时得到了巨细与预期相一致的产品,如图2所示,而cdt与其接近的敞开阅览框AFE_2984之间能以基因组DNA为模板进行PCR反响得到反响产品,而以cDNA为模板时没有扩增产品。这阐明unknown、P21、doxDA-1、sbp-1、tat-1和cdt六个敞开阅览框的基因转录应该归于共用一个启动子序列的共转录。对cdt敞开阅览框上游进行有关启动子序列信息分析时,发现有一段与原核生物启动子特征十分类似的核苷酸序列,有典型的-10序列和-35序列保存区域,如图3所示。图2doxDA-1和doxDA-2操作元中的敞开阅览框以及其相邻敞开阅览框的PCR和RT-PCR产品电泳效果图 a:以基因组DNA为模板进行PCR反响得到的产品; b:以总RNA回转录得到的cDNA为模板进行PCR反响得到的产品 包含在doxDA-2操作元中的敞开阅览框AFE_2974、AFE_2975、AFE_2976和AFE_2977所代表的基因别离代表tat-2、sbp-2、doxDA-2和unknown。依据其序列规划的引物别离以基因组DNA和对RNA回转录得到的cDNA为模板进行PCR反响时得到了巨细与预期相一致的产品,如图2所示,而tat-2与其接近的敞开阅览框AFE_2973之间能以基因组DNA为模板进行PCR扩增,而以cDNA为模板时没有扩增产品。这阐明tat-2、sbp-2、doxDA-2和unknown四个敞开阅览框在基因转录时应该归于共转录。 应该特别阐明的是,在模板浓度、酶量和循环数等反响条件完全相同的条件下以cDNA为模板进行PCR扩增时,发现操作子doxDA-2中的序列的PCR产品浓度显着低于操作子doxDA-1中的序列PCR产品浓度,如图2所示。阐明doxDA-2操作元中的tat-2、sbp-2、doxDA-2和unknown基因所属的转录单元在元素硫成长基质中的转录量相对于doxDA-1操作子转录单元的转录量相差显着。 doxDA-1操作元中tat-2敞开阅览框和与之接近的敞开阅览框AFE_2974之间没有距离的核苷酸序列,tat-2敞开阅览框的翻译开始密码子ATG与敞开阅览框AFE_2974的翻译开始密码子ATG之间构成堆叠,如图4所示。在对敞开阅览框AFE_2974进行启动子序列信息分析时,猜测到2个或许的启动子序列,如图4所示。但2个或许启动子序列都没有显着契合-35序列和-10序列的原核生物启动子特征的寡聚核苷酸片段。图3 doxDA-1操作元中cdt.敞开阅览框上游的启动子序列信息图4 doxDA-2操作元中tat-2敞开阅览框上游的核苷酸序列中或许存在的启动子序列     三、评论嗜酸氧化亚铁硫杆菌在不同的环境条件下,能量代谢首要由体内的亚铁氧化体系和硫氧化体系来完结。QuatriniR等[6]选用基因组芯片技能展开了亚铁和复原性硫化合物氧化进程中的NAD(P)复原途径相关的酶体系和电子传递链上的一些敞开阅览框的转录差异谱研讨,发现在复原性硫化合物基质中,doxDA-1操作元中的敞开阅览框doxDA-1和P21的表达水平显着高些,也高于doxDA-2操作元中的敞开阅览框doxDA-2的表达水平。在基因组中寻找到与古生菌A.ambivalens编码硫代硫酸盐-辅酶Q氧化复原酶基因类似的双复制基因doxDA-1和doxDA-2基因[7],散布于编码次序相对的操作元doxDA-1和doxDA-2中。风趣的现象是别离在doxDA-1和doxDA-2基因的上游一同存在2个类硫酸盐-硫代硫酸盐结合蛋白编码双复制基因sbp-1和sbp-2,在进一步对SBP-1和SBP-2的结构进行模仿分析时,发现SBP-1和SBP-2在三维结构上与E.coli的ModA蛋白的结构在硫酸盐、硫代硫酸盐和钼原子的要害结合位点都十分类似[8]。类硫代硫酸盐-辅酶Q氧化复原酶和类硫酸盐-硫代硫酸盐结合蛋白的存在或许与硫酸盐、硫代硫酸盐的转运和氧化运用密切相关。在doxDA-1操作元中doxDA-1下流有1个类硫酸水解酶编码基因p21,P21在硫化物、硫和硫代硫酸盐基质中高度表达,这阐明P21和硫代谢有重要的相关性,可是经过体外很多表达的P21,未能检测到硫酸水解酶活性[5]。doxDA-1操作元上游的tat-1和cdt至今未见任何研讨,它们与sbp-1、doxDA-1和p21一同组成doxDA-1操作元,它们编码的蛋白质之间或许存在相互效果,或和体内的其它蛋白质组成复合体系,在A.ferrooxidans的硫氧化体系中或许扮演着和硫化合物的获取、转运和吸收有关的人物。 在doxDA-2操作元中,因为tat-2敞开阅览框的翻译开始密码子ATG与敞开阅览框AFE_2974的翻译开始密码子ATG之间构成堆叠,使得它们在转录次序上发作竞赛,然后导致转录量的差异。其实,这种转录量的差异首要是由转录调理操控的。在细胞成长和发育进程中,基因的表达可按必定时刻次序发作,并且跟着细胞表里环境条件的改动而改变,构成时序调控和习惯调控。原核生物的转录和翻译简直一同进行,转录水平的调控就显得更为重要。QuatriniR等[6]和AcostaM等[9]在分析硫氧化相关基因表达时,都曾以doxDA-1和p21作为参照目标,而不以doxDA-2操作元中的doxDA-2为参照目标,这或许是因为doxDA-2操作元中的基因表达水平太低的原因,这与咱们前面所述的doxDA-2操作元中各个基因的全体转录水平低的状况相一致。这种现象也或许和doxDA-1操作元别离所具有的启动子序列有关,原核生物的转录进程需求有σ因子引导RNA聚合酶正确辨认和安稳结合到DNA启动子上,启动子序列的差异导致σ因子所引导RNA聚合酶正确辨认和安稳结合到DNA启动子上构成差异,形成转录水平上的差异。doxDA-1操作元中cdt敞开阅览框上游的核苷酸序列中具有σ因子特异性辨认的-35序列以及-10序列,可是doxDA-2操作元或许的启动子序列中却没有-35序列和-10序列特征的核苷酸片段。为什么双复制的doxDA基因,双复制的sbp基因别离出现不同的转录量,双复制基因各自编码的产品功用是否相平等问题,还有待进一步的研讨。这些问题的处理,以及硫氧化体系中一些要害酶的别离和基因的判定,各种含硫化合物在酶体系效果下的酶催化机制的论述都将为嗜酸硫氧化细菌硫氧化体系的完善供给有利协助。 参考文献[1]RawlingsDE.Characteristicsandadaptabilityofiron-andsulfur-oxidizingmicroorganismsusedfortherecoveryofmetalsfrommineralsandtheirconcentrates.MicrobialCellFactories,2005,4:13.(http://www.microbialcellfactories.com/content/4/1/13). [2]RohwerderT,GehrkeT,KinzlerK,etal.BioleachingreviewpartA:Progressinbioleaching:fundamentalsandmechanismsofbacterialmetalsulfideoxidation.AppliedandEnvironmentalMicrobiology,2003,63(3):239-248. [3]SandW,GehrkeT,JozsaPG,etal.(Bio)chemistryofbacterialleaching-directvs.indirectbioleaching.Hydrometallurgy,2001,59(2-3):159-175. [4]张成桂,夏金兰,邱冠周.嗜酸氧化亚铁硫杆菌亚铁氧化体系研讨进展.我国有色金属学报,2006,16(7):1239-1249. [5]RamírezP,ToledoH,GuilianiN,etal.Anexportedrhodanese-likeproteinisinducedduringgrowthofAcidithiobacillusferrooxidansinmetalsulfidesanddifferentsulfurcompounds.AppliedandEnvironmentalMicrobiology,2002,68(4):1837-1845. [6]QuatriniR,Appia-AymeC,DenisY,etal.InsightsintotheironandsulfurenergeticmetabolismofAcidithiobacillusferrooxidansbymicroarraytranscriptomeprofiling.Hydrometallurgy,2006,83(1-4):263-272. [7]MüllerFH,BandeirasTM,UrichT,etal.Couplingofthepathwayofsulphuroxidationtodioxygenreduction:characterizationofanovelmembrane-boundthiosulphate:quinoneoxidoreductase.MolecularMicrobiology,2004,53(4):1147-1160. [8]ValenzuelaL,BeardS,GuilianiN,etal.DifferentialexpressionproteomicsofAcidithiobacillusferrooxidansgrowthindifferentoxidizablesubstrates:studyofthesulfate/thiosulfate/molybdatebindingproteins.Proceedingsofthe16thinternationalbiohydrometallurgysymposium.Editors:STLHarrison,DERawlingsandJPetersen,ISBN:1-920051-17-1.2005,pp.773-780. [9]AcostaM,BeardS,PonceJ,etal.IdentificationofputativesulfurtransferasegenesintheextremophilicAcidithiobacillusferrooxidansATCC23270genome:structuralandfunctionalcharacterizationoftheproteins.OMICS:AJournalofIntegrativeBiology,2005:9(1):13-29.

铜硫混合如何浮选?

2019-01-16 17:42:18

矿石的矿物组成及结构构造:    矿石中的矿物组成有30多种,主要金属矿物为磁铁矿。硫化物以黄铁矿、黄铜矿为主,矿石结构以半自形-他形晶粒状结构为主。矿石中有益组分有:铁、铜、钴、镍、金、银。有害组分主要有:硫、磷、砷等。 以某铁矿为例:选别作业采用的是先浮选后磁选工艺。浮选作业又包括混合浮选和分离浮选2个作业。磁选又分为单一弱磁选和弱磁-中磁-强磁选两种流程。    铜硫混合浮选作业共分4个系列,每个系列有20m3浮选机12槽、6A浮选机10槽(四系列6A浮选机12槽)。二次球磨分级溢流先由20m3浮选机进行粗选,粗选精矿再由6A浮选机进行两次精选,精选精矿即为铜硫混合精矿。铜硫混合精矿由砂浆泵送8#浓缩机浓缩脱药,粗选尾矿由砂浆泵送弱磁选选铁。     铜硫分离浮选有2个系列,一个系列生产,一个系列备用。有6A浮选机4排共48槽。铜硫混精经8#浓缩机脱药后,由砂浆泵送入一排14槽(或18槽)6A浮选机粗选、一次扫选,粗选精矿再由另一排8槽6A浮选机两次精选,精选精矿即为铜精矿,由砂浆送入6#浓缩机,扫选尾矿为硫钴精矿,由砂浆泵送入7#浓缩机。具体浮选流程如下:

水氯化法提金—从高银低硫氧化型金矿中浸出金

2019-02-14 10:39:39

新疆伊犁河区域某金矿,归于含金石英脉型。金以游离天然金为主,赋存态简略,绝大部分与石英和黄铁矿伴生。金属矿藏以黄铁矿为主,其次为黄铜矿、天然金和方铅矿等。化学分析含Au13.4g/t,Ag 452.4g/t, Cu0.11%,Fe 4.95%,S O.147%。可见,该金矿是一个高银低硫的氧化型金矿。用化浸出将污染伊犁河,所以选用非化工艺。    金和银均能与氯离子构成较安稳的络合物,在氯化物溶液中有氧化剂存在时,金和银的浸出反响可简略表明为:                                                       Au+OX+4Cl-—→AuC14-+OX′                              Ag+OX+4C1-—→AuC143-+OX′                                   Ag+Cl-—→AgCl                           AgCl+2NH3—→[Ag(NH3)2]++C1-    式中:OX为氧化剂,OX′为该氧化剂的复原态。    针对上述反响,探究在有氯盐或(和)存鄙人从该金矿石浸出金、银的或许性,并经过操控恰当的浸出条件,以到达别离浸出金银的意图。    1) NH4H-NaCl系统氯化浸出金和银    试验成果表明,在NH37%,氧化剂5%、NaCl 20%、液固比=10:1,浸出时刻120min,温度80℃浸出条件下,用含氧氯化物作为氧化剂,有或许先挑选浸出银,银的浸出率达98%。而大部分金留在浸出渣中,便于独自处理。缺乏的是,约有24%的金同银一道被浸出进入溶液。要到达别离浸出金、银的意图,需要进一步改善浸出进程的挑选性。    2)HCl-NaCl系统氧化浸出金和银    为调查在HCl-NaCl系统中参加不同类型氧化剂一起浸出金和银的或许性,试验中,浸出条件定为:液固比=10:1、浸出时刻120 min,温度80℃时,氧化剂用量增加但金浸出率增加不明显,而银浸出率影响则比较复杂。当氧化剂用量为2% -5%时,银浸出率大于96%,过多参加氧化剂将导致银浸出率下降,随后又有所上升。为了到达在该系统中一起浸出金和银的意图,曾探究了增加不同氧化剂的试验,典型的试验成果见下表。试验成果表明:在HCl-NaCl系统中,用一种金属离子和含氧氯化物作为氧化剂,可以一起浸出金和银,金浸出率到达96%,银浸出率大于98%。该浸出系统工艺简略,适于处量含银高的氧化型金矿。增加不同氧化剂一起浸出金、银的成果温度/℃浸出系统增加氧化剂金浸出率/%银浸出率/%80H4OH-NaCl含氧氯化物24.65.180HCl-NaCl金属离子85.399.890HCl-NaCl含氧氯化物91.799.790HCl-NaCl双氧化剂92.599.890HCl-NaCl双氧化剂96.199.9

树脂的单质硫中毒

2019-03-05 12:01:05

树脂的连多硫酸盐和硫酸盐中毒,树脂的单质硫中毒实际上是前者的第二阶段,与前者比较,后者归于物理中毒,树脂吸附的连多硫酸盐或硫酸盐分解出单质硫阻塞树脂上的自在通道以及活性基团。使树脂中毒的单质硫可以用NaOH溶液有效地去除。溶液处理中毒树脂时,单质硫变成硫化物或多硫化物,而硫化物或多硫化物很容易用盐溶液除掉。用上述办法,树脂上的硫能彻底除掉。

硫糖铝价格

2017-06-06 17:50:03

硫糖铝作为一种药物,硫糖铝 价格 在广大消费者之间受到比较大的关注。一般在 市场 上比较稳定,在2元-7元不等。接下来简单介绍一下硫糖铝。硫糖铝本品为蔗糖硫酸酯的碱式铝盐。白色或类白色粉末;无臭,几乎无味;有引湿性。在水中、乙醇或氯仿中几乎不溶,在稀盐酸或稀硫酸中易溶,在稀硝酸中略溶。能与胃蛋白酶络合,抑制该酶分解蛋白质;并能与胃粘膜的蛋白质(主要为白蛋白及纤维蛋白)络合形成保护膜,覆盖溃疡面,阻止胃酸、胃蛋白酶和胆汁酸的渗透、侵蚀,从而利于粘膜再生和溃疡愈合。 适应症 常用于胃及十二指肠溃疡。注意事项:1.不良反应发生率约为4.7%,其中主要有便秘(2.2%)。个别病人可出现口干、恶心、胃痛等,可与适当抗胆碱药合用。 2.治疗收效后,应继续服药数月,以免复发。 3.不宜与多酶片合用,否则二者疗效均降低。此由于多酶片中含有胃蛋白酶、胰酶和淀粉酶,其药理作用正与本品相拮抗,所含消化酶特别是胃蛋白酶影响溃疡愈合。与西咪替丁合用时,可能使本品疗效降低。更多关于硫糖铝和硫糖铝 价格 的信息可以登陆上海 有色 网查询!

石硫合剂法提金

2019-03-06 09:01:40

石硫合剂(Lime-Sulfur-Synthetic-Solution),缩写为LSSS,是运用廉价易得的石灰和合制而成,原是一种农药,无毒有利于环保。我国张箭、兰新哲等将石硫合剂用于提金,进行了系统的研讨与开发作业。石硫合剂的首要有效成分是多硫离子(Sx2-)和硫代硫酸盐离子(S2O32-),可以以为石硫合剂法浸金进程实质上是多硫化物与硫代硫酸盐两者的联合作用。在强碱性介质中,石硫合剂对一些含砷、锑、碳、铜、铅的硫化物难处理金矿能有较好的浸金作用。在经济性和对环境友好方面,石硫合剂法具有必定的优越性。 石硫合剂中含有S2O32-、SO32-、S2-等离子,在氧化剂存鄙人,它们与Au(I)均能构成安稳的合作物,其安稳性高于与Au(I)的合作物,并挨近与Au(I)的合作物,其次序为:配体Thio<S2O32-<SO32-<S2-<CNlgβ25.329.330.039.841.0 这就是石硫合剂可以浸金的首要依据。 制成的石硫合剂为橙红色液体,具有气味,是一种成分适当杂乱的溶液,除含有硫代硫酸盐离子、各种价态的多硫离子外,还含有单质硫等,它们之间会发作各种反响。其性质不安稳,空气中的氧可使其缓慢氧化,而空气中的二氧化碳也会将其分化;遇酸会分化分出元素硫并放出H2S和SO2,所以必须在碱性介质中运用。这些性质使其在制备、保存、运用等方面带来必定的杂乱性和困难。 兰新哲等进一步用、、和少数石灰为质料,开发与制备出改性石硫合剂(ML),其首要溶金成分是HS-、S2O32-和SO32-。并运用该系统对金山含砷的金精矿进行了浸金新工艺研讨,该金精矿含Au95.8g/t、Au2.15%,选用两段浸出、浸液用铜粉复原收回金的流程。通过小型条件实验和循环浸出扩展实验,取得了金浸出率达93%~95%,比强化化法的金浸出率高10%~15%的杰出作用。 鉴于石硫合剂法是一种相对较新的办法,该溶液系统成分杂乱,运用的添加剂品种及影响要素较多,操控条件较严,尚有待进一步改善,简化工艺和加强对不同类型金矿的适应性,以便于其在工业上运用。

铁精矿反浮选除硫

2019-01-24 09:37:13

铁精矿中有害杂质硫一般以黄铁矿和磁黄铁矿的形式存在,以黄铁矿形式存在的硫可通过加黄药浮选或磁选即可脱除,而以磁黄铁矿形式存在的硫,因其具有强磁性,且其可浮性易受各种因素的影响,因此难于脱除。国内外研究和实践证明,磁黄铁矿表面易于氧化(生成铁的氢氧化物)、泥化、磁团聚等,大大降低了其可浮性,为此在浮选除硫时,一般采用加酸擦洗表面、加分散剂分散、脱磁、多段活化、强化捕收等措施来提高其脱除率。

氧化铝厂赤泥剂的固硫反应动力学特性研究

2019-03-11 09:56:47

研讨廉价复合脱硫剂的硫化反响机理与反响动力学特性,进步钙基材料的最佳脱硫温度和运用率,探寻有用的脱硫剂材料,是动力运用与环境范畴亟待解决的课题之一.赤泥是由铝土矿制作氧化铝过程中产出的工业废渣,含有丰厚的CaO.前期的研讨口 标明,赤泥同石灰石相同,具有必定的脱硫功能.    煤是我国蕴藏最丰厚和运用极广的化石动力,其直接焚烧发生的SO 是污染空气和构成酸雨的首要物质之一.石灰石资源丰厚,廉价易得,已成为操控燃煤SO 排放的首要钙基材料,但受材料成分和内部结构的约束,大部分脱硫剂都存在气窒息和高温烧结等现象,然后使其最佳脱硫温度和钙运用率偏低.选用参加化学添加剂或催化剂的办法虽能改进脱硫剂的温度特性,进步运用率 ,但使脱硫剂本钱大大进步,然后约束了焚烧脱硫技能的快速开展.研讨廉价复合脱硫剂的硫化反响机理与反响动力学特性,进步钙基材料的最佳脱硫温度和运用率,探寻有用的脱硫剂材料,是动力运用与环境范畴亟待解决的课题之一.赤泥是由铝土矿制作氧化铝过程中产出的工业废渣,含有丰厚的CaO.前期的研讨口 标明,赤泥同石灰石相同,具有必定的脱硫功能.           我国的赤泥资源比较丰厚,但现在这些赤泥多被堆积,假如作为固硫剂运用,可以使两种对环境非常有害的废弃物得以中和,特别是含碱赤泥,原有的碱性及水硬性得以削弱或消除,到达以废治废的意图.本试验对赤泥的脱硫功能及其动力学参数进行研讨,并与石灰石的脱硫功能进行比较;一起选用压仪和SEM,比较赤泥和石灰石结构的差异以及脱硫剂结构对脱硫功能的影响,讨论其固硫机理,以便对赤泥进行改性,为其替代石灰石用作燃煤固硫剂供给理论依据.

硫铁矿烧渣回收硫

2019-02-11 14:05:30

硫铁矿烧渣在选别之前,通过筛分预处理。筛下产品经磁选-重选的联合工艺流程来制取铁精矿,而筛上的部分含S量比较高,有4%左右。为了不至于白白浪费此部分资源,所以用筛上的产品来收回S,到达充分利用烧渣的意图。 从工艺矿藏学视点看,磁铁矿和赤铁矿属氧化矿类,而磁黄铁矿等含硫矿藏属硫化矿类,因而能够选用反浮选法脱除磁铁矿精矿中所含的硫化矿杂质。因为硫首要赋存在磁黄铁矿中,而对其它几种硫化矿来说,磁黄铁矿的可浮性最差,若能将磁黄铁矿浮出,那大部分的硫将会被分离出来,到达收回硫的意图。 浮选工艺规划为一粗一精两段流程。因为筛上等级比较大,所以要事先进行磨矿。恰当的磨矿能够使烧渣中的磁黄铁矿表面的氧化膜及杂质吸附物得以剥磨和铲除,以新鲜的表面分子结构与药剂作用,然后可使硫的收回率进步。持续进步磨矿细度,烧渣中的磁黄铁矿极易被氧化和过破坏,加速了矿藏的氧化和泥化进程,使其可浮性下降。 在挑选药剂时,首要针对磁黄铁矿的浮选来进行药剂的组合。用硫酸铜、作为活化剂,硫酸和石灰调整pH值,丁基黄药和中性柴油作捕收剂,2#油为起泡剂。 近来对黄药类捕收剂作用机理的研讨以为黄药类捕收剂在硫铁矿藏表面大多是发作电化学吸附。黄药由烃基(R-)和亲固基(-OCSS-)组成,起捕收作用的是(ROCSS-)阴离子。因为磁黄铁矿表面的不均匀性和晶格缺点多,很简单在表面发作氧化复原反响,发生阴、阳区。在磨矿进程中,溶解氧很简单使磁黄铁矿氧化并生成部分可溶性盐,跟着碱性进步,氧化速度加速,结果在矿藏表面生成亲水性的Fe(OH)2薄膜,阻碍了捕收剂的吸附。因而跟着矿浆减度的进步,磁黄铁矿收回率下降比较显著。当pH值小于5时,因为黄药的不稳定性,黄药水解的黄原酸很快地自发分化,生成了CS2和ROH,然后使黄药失去了捕收作用。因而,当pH值过低时,磁黄铁矿的收回率也不高。当pH值<5时: ROCSSM ROCSS-+M+, ROCSS-+H2O=ROCSSH+OH-, ROCSSH→CS2+ROH 当矿浆pH值呈碱性时,因为磨矿时氧的存在,使矿藏表面自由电子削减,氧是一种很好的电子接受体,可攫取晶格上的自由电子:O2-+H2O→2OH- FeS→Fe2++S Fe2++2OH-→Fe(OH)2 在酸性介质中,烧渣中的磁黄铁矿表面亲水性氧化膜,能够被酸溶去,使其显露硫化物表面,有利于捕收剂的吸附,然后使磁黄铁矿得到活化。因为酸对设备具有必定的腐蚀性,对环境保护也有必定的影响,所以宜在弱酸条件下进行,pH值取6.5左右。 收回硫的工艺流程如图1所示:将预先筛分的硫铁矿烧渣筛上各等级产品,在棒磨机中磨矿10min,磨矿浓度为70%;浮选时pH值调整为6.5左右,粗选和精选的药剂准则分别为:CuSO4100g/t、50g/t,Na2S150g/t、60g/t,丁黄120g/t、60g/t,2#油作为起泡剂。得到的硫精矿产品含S档次为30%以上,收回率为47.83%。浮选进程中,泡沫有结板的现象,所以在其他条件不变的情况下,参加六偏磷酸钠作为分散剂调理矿浆,泡沫情况有所改进,但作用不是很显着。后来用中性柴油替代六偏磷酸钠,泡沫情况显着得到改进,并且能够进步浮选速度和黄药的捕收才能,刮出量增大,刮泡时刻也可由本来的5分钟降为4分钟左右。终究能够得到硫档次为38.67%,收回率为54.60%的硫精矿,根本上到达了收回硫的意图。    图1  收回硫

铋-硫-水系的热力学

2019-01-31 11:06:17

王成彦、邱定蕃等使用有关文献所供给的各物质的热力学数据核算制作了常温下Bi2S3-H2O系的E-pH图,见图1。图1  Bi(Ⅲ)-S-H2O系电位-pH图图中对应的化学方程式和平衡方程式如下:图1指出,凡具有标准氧化复原电位高于0.499V的氧化剂,均可使Bi2S3氧化浸出。二的EFe3+/Fe2+=0.771V,的ECl2∕Cl-=1.35V,都可以将Bi2S3氧化浸出。

硫及硫铁矿分析综述

2019-02-11 14:05:44

硫铁矿包含黄铁矿、白铁矿及磁黄铁矿。     硫是地壳中散布很广的元素之一,大多以硫化物状况存在。天然硫也有散布 ,但质纯者则较少见,一般常搀杂有泥质及有机质。     在硫化矿藏中,常见的有黄铁矿FeS2、白铁矿FeS2、磁黄铁矿FenSn+1等。黄铁矿和白铁矿两者结晶不同,为同质异象体,含硫高达53.4%。磁黄铁矿含硫达39%-40%。     天然流有时搀杂有硒、碲和砷,其中有硒和砷为有害杂质。硫铁矿常与铜、铅、锌等硫化矿床共生,含有少数金、银、钴、镍、铂、硒和碲等。伴生的氟与砷为有害杂质。     硫及硫铁矿广泛用来出产及硫酸。是造纸工业的质料,橡胶工业中可作为硬化剂,农药中可用作去草剂和虫剂。其他如人造纤维、医药等方面使用也较广泛。     硫的工业要求:鸿沟档次为≥8%,工业档次为≥12%,有害组分Pb+Zb≤1%、F应≤0.03%-0.05%、As应≤0.5%,由于这些元素对硫酸的出产有影响。     硫铁矿的分析项目,除硫以外,有时需求测定砷、氟等有害杂质,对可归纳利用的元素也应留意归纳分析。     硫铁矿样品的加工,只须经过100筛目。试样应在60°烘干,以减小样品的氧化。天然硫样品不能用机械加工。

锑化物之硫代锑酸锑

2019-01-31 11:06:17

硫代锑酸锑(SbSbS4)是一种功能极端优秀的光滑油脂极压抗磨添加剂及固体光滑剂,20世纪80年代由美国首要研制成功并很快使用于水兵配备。许多文献作了报道并对其功能给予了高度的点评;少数添加于光滑脂中,可显着进步其承载才能和抗磨损才能,其极压抗磨性远优于传统的MoS2、WS2和石墨;与一切的根底脂如锂基脂、粘土脂、硅脂及复合铝基脂等都有较好的相容性;对各种合金包含难以光滑的铬工具钢及不锈钢等,均有很好的光滑效果;热安稳性好;适合于高真空、高负荷、辐射等特殊状况下运用。硫代锑酸锑的各种组成办法、功能及其使用作一概括性的总结。 一、组成办法 组成硫代锑酸锑的根本反响为 Sb3++SbS43-=SbSbS4 SbSb43-一般经过Na2S2氧化Na3SbS3制得,Na3SbS3则为Sb2S3(或辉锑矿)与Na2S的反响产品 Sb2S3+3Na2S=2Na3SbS3             (1) Na3SbS3+Na2S2=Na3SbS4+Na2S       (2) 反响(1)可由固相反响或液相反响完结,其他反响均在溶液中进行。这两步反响也能够一步完结,总反响式表明为 Sb2S3+3Na2S+2S=2Na3SbS4 这步反响要用N2维护,不然不能彻底生满足硫代酸盐(产品色暗)。经过参加少数辅佐试剂,处理了这一问题,不再需求N2维护。 Sb3+可直接由SbCl3供给,也能够由Sb3+的合作物供给。依据供给Sb3+的办法不同,可将硫代锑酸锑的组成办法分红以下几类。 (一)直接由SbCl3与Na3SbS4反响 因为SbCl3在水中激烈水解,尽管能在强酸溶液中配成水溶液,但一遇碱性的Na3SbS4溶液,当即水解,使产品中含SbOCl;一起Na3SbS4遇 强酸性的SbCl3溶液时,也会发作分化,分出单质硫于产品中: SbCl3+H2O=SbOCl十2HCl 2SbS43-+6H+=Sb2S3+2S+3H2S 这两种状况都会形成产品使用时对冲突副表面的腐蚀,尤其是后者。为削减这些副反响的发作,一般将SbCl3配成有机溶剂(乙醇等)的溶液,严格控制SbCl3溶液的滴加速度,而且用很多的有机溶剂(CS2、CCl4等)洗刷终究产品。即便这样,所得硫代锑酸锑的腐蚀性也难过关,产品功能不安稳,何况反响周期长,还有有机溶剂对操作者健康的影响和生产成本的增加等问题。 (二)以Sb2O3的浓碱溶液与Na3SbS4反响 将Sb2O3溶于浓的KOH溶液后,与Na3SbS4溶液混合反响一段时刻,用无机酸(HCl,H3PO4等)中和,可用下式表明: 2Na3SbS4+Sb2O3+2KOH+8HCl=2SbSbS4+2KCl+6NaCl+5H2O 用酸中和时,发生很多的H2S气体,伴随着硫代酸盐的分化,产品中含较多游离硫,也需用很多有机溶剂洗刷。 (三)以配离子[SbCl4]与Na3SbS4反响 此办法是将SbCl3或Sb2O3先溶解在浓度较大的溶液中,再在NaCl饱满的状况下,渐渐稀释溶液,溶液中始终坚持较高的氯离子浓度,使Sb3+以配离子[SbCl4]的方式存在于溶液中: SbCl3+Cl-=[SbCl4]- Sb2O3+6HCl+2C1-=2[SbCl4]-+3H2O 这样所得的Sb3+离子的溶液,其间酸的浓度能够比不必NaCl饱满时小得多,其酸性大为削弱,对处理反响时Na3SbS4的分化问题大有优点。因为该溶液加人Na3SbS4溶液时,其间的氯离子浓度变稀,故SbCl3的水解仍在所难免。不过按此办法制得的硫代锑酸锑产品功能与直接用SbCl3制备时要稳 定得多,腐蚀试验经过率大大进步。 (四)以Sb3+离子的多羟基援酸合作物与Na3SbS4反响 为了彻底处理SbCl3水解及Na3SbS4遇酸分化的问题,以Sb3+离子的较安稳的多羟基羧酸合作物与Na3SbS4反响制备硫代锑酸锑的办法因为该合作物在酸碱介质中有满足的安稳性,可一起处理SbCl4水解及Na3SbS4遇酸分化的问题。将合作物溶液调成弱酸性(意图是使反响结束时溶液呈中性, 进步产率)。直接与Na3SbS4溶液以恣意次序和速度相混合,反响必定时刻,过滤,水洗,即可获得功能优秀的硫代锑酸锑产品。 二、性质 (一)根本性质 SbSbS4为红棕色粉末状固体,易溶于碱溶液,不溶于大多数有机溶剂和无机酸。SbSbS4在N2环境中对热安稳,510℃熔化,525℃坚持36 h后,样品失重9.1%,相当于SbSbS4转化为Sb2S3的失分量,终究产品经X射线衍射证实为Sb2S3晶体。在空气中,SbSbS4的热安稳性稍 差,在193~371℃范围内有约8%的质量分数丢失。 (二)极压抗磨功能 将硫代锑酸锑在成脂过程中加于锂基光滑脂中,用MQ-800型四球机对其极压抗磨性进行鉴定,数据见表l:将其加于锂、钙基光滑脂中也显示出杰出的极压抗磨功能(表2)。 表1 含SbSbS4的锂基脂的四球测试数据极压剂 及含量(质量分数计)PB/NPD/N027415703%MoS264730901%SbSbS474539203%SbSbS474560805%SbSbS48047840 表2 含SbSbS4的锂钙基脂的四球测试数据SbSbS4含量/%(质量 分数计)PB/NPD/N047024501% SbSbS464739202% SbSbS469649004% SbSbS49217840 还将SbSbS4与石墨、二硫化钼、CaCO3及Sb2O3等复合,组成二元、三元复合添加剂,加于锂基脂中,鉴定了其极压抗磨性。成果表 明,SbSbS4与这些添加剂有杰出的协同效果,特别对进步其PB值具有十分显着的效果,见表3。 表3  复合添加剂对锂基脂极压抗磨性的效果添 加剂组成(质 量分数计)PB/NPD/N2% SbSbS4+1% MoS292149002% SbSbS4+0.5% Sb2O392149002% SbSbS4+0.5% CaCO392149002% SbSbS4+0.5%石墨+0.5% MoS29214900 三、使用 硫代锑酸锑具有优秀的极压抗磨功能,用于光滑脂中,可明显进步负荷承载才能和抗磨损才能,与多种脂有好的相容性,对根底脂的理化目标无不良影响,可在高真空、高负荷及辐射条件下起效果,并对一般光滑剂难以光滑的原料,有较好的光滑效果,其使用远景十分宽广。可作成多种极压、长寿命光滑脂,用于普通机械或特殊机械部位的光滑,还能够作成固体光滑剂使用。使用硫代锑酸锑制成极压锂、极压锂钙及多功能军用通用光滑脂产品在戎行的轿车、坦克、舰船及当地车辆等配备上使用,获得杰出的经济效益和军事、社会效益。

矿石分选试验—铅锌硫浮选分离

2019-02-27 12:01:46

一、试验意图 1、了解硫化铅锌矿石浮选所用的浮选药剂. 2、了解铅锌浮选药剂的作用; 3、了解铅锌浮选试验操作进程;4、了解试验铅锌矿石浮选试验成果的处理办法。 二、试验原理 2.1常见的铅锌矿藏及其可浮性铅锌是人类从铅锌矿石中提炼出来的较早的金属之一。铅锌广泛用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等范畴。此外,铅金属在核工业、石油工业等部分也有较多的用处。在铅锌矿中铅工业矿藏有11种,锌工业矿藏有6种,以方铅矿、闪锌矿最为重要。方铅矿的化学式为PbS,晶体结构为等轴晶系,硫离子成立方最严密堆积,铅离子充填在一切的八面体空地中。新鲜的方铅矿表面具有疏水性,未氧化的方铅矿很易浮选,表面氧化后可浮性下降。黄药或黑药是方铅矿的典型的捕收剂,黄药在方铅矿表面发作化学吸附,白药和乙硫氮也是常用捕收剂,其间丁铵黑药对方铅矿有选择性捕收作用。重铬酸盐是方铅矿的有用按捺剂,但对被Cu2+活化的方铅矿,其按捺作用下降。被重铬酸盐按捺过的方铅矿,很难活化,要用或在酸性介质中,用氯化钠处理后才干活化。不能按捺它的浮选,对方铅矿的可浮性很灵敏,过量硫离子的存在可按捺方铅矿的浮选;二氧化硫、及其盐类、石灰、硫酸锌或与其它药剂协作可以按捺方铅矿的浮选。闪锌矿的化学式为ZnS,晶体结构为等轴晶系,Zn离子散布于晶胞之角顶及一切面的中心。S坐落晶胞所分红的八个小立方体中的四个小立方体的中心。浓度为4~6×10-5摩尔/升时对活化的闪锌矿有较强的按捺作用,浓度偏高时却使其杰出浮游。其作用机理为:浓度低时与闪锌矿表面活化膜及表面晶格离子反响生成的金属羟基化合物起按捺作用并使黄药脱附,浓度高时则在矿藏表面发作氧化复原反响生成许多元素硫。可以激烈的按捺闪锌矿,此外硫酸锌、硫代硫酸盐等都可以按捺闪锌矿的浮选。黄铁矿是地壳中散布最广的硫化物,构成于各种不同的地质条件下,与其他矿藏共生。彭明生等经过对黄铁矿的安稳性和其成分与电子结构的联系的研讨以为:黄铁矿能在多种安稳场中存在是因为Fe2+的电子构型t2g为低自旋,它进入硫离子组成的八面体场中获得了较大的晶体场安稳能及附加吸附能。因此,黄铁矿可构成并安稳于各种不同的地质条件下。除了黄铁矿的晶体结构、化学组成、表面结构等要素对其可浮性有影响之外,许多研讨也标明,黄铁矿的矿床成矿条件、矿石的构成特色、矿石的结构结构等要素也有影响。石透原对日本十三个不同矿床的黄铁矿的化学分析成果指出,各矿样的S/Fe比值大都在1.93~2.06范围内动摇,S/Fe比愈挨近理论值2,则黄铁矿可浮性愈好。陈说文等对八种不同产地的黄铁矿的可浮性进行了研讨,以为单纯用硫铁比来判别其可浮性有必定的局限性,黄铁矿的可浮性还与其半导体性质及化学组成有关。两者的联系为:S/Fe比高的黄铁矿为N型半导体,其温差电动势为负值,可浮性差,易被Na2S、Ca2+等离子按捺;S/Fe比挨近理论值2者既可能是P型也可能是N型半导体,在酸性介质中可浮性好,在碱性介质中可浮性差;S/Fe比值低的黄铁矿为P型半导体,温差电动势大,在碱性介质中可浮性好,难以被Na2S、Ca2+等按捺,但在酸性介质中可浮性差。短链黄药是黄铁矿的传统捕收剂,其疏水产品为双黄药。在黄药作用下,黄铁矿在pH小于6的酸性介质中易浮,但pH为6~7间有不同研讨标明其可浮性变差或更好浮。凌竞宏等研讨则标明这一现象和矿样处理方式有关。在碱性条件下,黄铁矿可浮性跟着pH值的升高而下降。黄铁矿的活化剂一般运用硫酸,此外也可用Na2CO3或CO2来活化。作用机理为:其一是下降溶液pH值,使黄铁矿表面Ca2+、Fe2+、Fe3+等离子构成络合物或难溶盐从黄铁矿表面脱附而进入溶液,康复黄铁矿的新鲜表面;其二是因为活化剂的存在使黄铁矿表面难以被氧化,然后被按捺的黄铁矿得以活化而上浮。当黄铁矿表面氧化较深时,可被Cu2+活化。其机理为Cu2+可替代黄铁矿晶格中的Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附作用;但当黄铁矿吸附捕收剂或遭到石灰按捺较深时,则需在酸性介质中或经酸清洗后方可被CuSO4活化。2.2铅锌浮选捕收剂铅锌矿的常用捕收剂有: 1、黄药类这类药剂包含黄药、黄药酯等。其结构式如下:黄药的学名是烃基二硫代碳酸盐,通式为ROCSSMe,式中Me为碱金属离子。黄药是用醇、氢氧比钠(或)及制成的:ROH十NaOH=RONa十H2O RONa十CS2=ROCSSNa 所用质料醇中的烃基不同,可得到各种黄药,如C2H5—乙黄药;(CH3)2CH—异丙黄药等,黄药分为钠黄药和钾黄药。黄药是淡黄色粉剂,常因含有杂质而色彩较深,比重1.3—1.7。具有刺激性臭味,易溶于水,运用经常配成1%水溶液。为了避免黄药分化失效,常在碱性矿浆中运用。初级黄药比高档黄药分化快,例如,在1%的HCl溶液中,乙黄药彻底分化的均匀肘间为5一10分,丙黄药20一30分,丁黄药50—60分,戊黄药90分。因此,如有必要在酸性介质中进行浮选时应尽量运用高档黄药。黄药遇热简单分化,并且温度愈高,分化愈快。为了避免分化,要求将黄药贮存在密闭的容器中,避免与湿润空气和水触摸;留意防火,不庄曝晒;不宜长时刻寄存;制造黄药溶液不变停置过久,更不要用热水制造。黄药的捕收才能与其分子中非极性烃链长度、异构有关。烃链增长(即碳原子数增多)捕收才能增强,当烃链过长时,其选择性和溶解功能随之下降,因此,烃链过长反而会下降药剂的捕收作用。常用的黄药烃链中碳原子数是2—5个。2.硫氮类 硫氮类(铵基二硫代盐)它是(或)与、反响生成的化合物。乙硫氮是白色粉剂,因反响时有少数黄药发作,工业品常呈淡黄色。易溶于水,在酸性介质中简单分化。乙谎氮也能同重金属生成不溶性堆积,捕收才能较黄药强。它对方铅矿、黄铜矿的捕收才能强,对黄铁矿捕收才能校弱,选择性好,浮选速度较快,用处比黄药少。对硫化矿的粗粒这生体有较强的捕收比它用于铜铅硫比矿分选时,可以得到比黄药更好的分选作用。3.黑药类黑药是硫化矿的有用捕收剂,其捕收才能较黄药弱,同一金属离子的二烃基二硫代磷酸盐的溶解度积均较相应离子的大。黑药有起泡性。黑药和黄药相同,也是弱电解质,在水中解离(RO)2PSSH=(RO)2FSS-十H+但它比黄药安稳,在酸性矿浆中,不象黄药那样简单分化,黑药较难氧化,氧化后生成双黑药,在有cu2+、或黄铁矿、辉铜矿存在时,也能氧化成双黑药;双黑药也是一种较难溶于水的非离子型捕收剂,大多数为油状物,性质安稳,可作硫化矿的捕收剂,也适用于堆积金属的浮选。黑药有些毒性,选择性较黄药好,在酸性矿浆中不易分化,当有必要在酸性矿浆中浮选时,有时选用黑药。工业常用黑药有:25号黑药、丁铵黑药、胺黑药、环烷黑药。其间丁铵黑药(二丁基二硫代磷酸铵)为白色粉末,易溶于水,潮解后变黑,有必定起泡性,适用于铜、铅、锌、镍等硫化矿的浮选。弱碱性矿浆中对黄铁矿和磁黄铁矿的捕收才能较弱,对方铅矿的捕收才能较强。2.3铅锌浮选调整剂 调整剂按其在浮选进程中的作用可分为:按捺剂、活化剂、介质pH调理剂、矿泥分散剂、凝聚剂和续凝剂。调控剂包含各种无机化合物(如盐、碱和酸)、有机化合物。同一种药剂,在不同的浮选条件下,往往起不同的作用。 一、按捺剂 1.石灰石灰(CaO)有激烈的吸水性,与水作用生成消石灰Ca(0H)2。它难溶于水,是一种强碱,参加浮选矿浆中的反响如下:CaO十H2O=Ca(OH)2 Ca(OH)2=CaOH+十OH- CaOH+=Ca2+十0H-石灰常用于进步矿浆PH值,按捺硫化铁矿藏。在硫化铜、铅、锌矿石中,常伴生有硫化铁矿(黄铁矿、磁黄铁矿和白铁矿、硫砷铁矿(如毒砂),为了更优点浮选铜、铅、锌矿藏,常要加石灰按捺硫化铁矿藏。石灰对方铅矿,特别是表面略有氧化的方铅矿,有按捺作用。因此,从多金属硫化矿中浮选方铅矿时,常选用碳酸钠调理矿浆pH。假如因为黄铁矿含量较高,有必要用石灰调理矿浆pH时,应留意操控石灰的用量。石灰对起泡剂的起泡才能有影响,如松醉油类起袍剂的起泡才能,随PH的升高而增大,酚类起泡剂的起泡才能,则随pH的升高而下降。石灰自身又是一种凝聚剂,能使矿桨中微细颗粒凝聚。因此,当石灰用最适其时,浮选泡沫可坚持必定的粘度;当用量过大时,将促进微细矿粒凝聚,而使泡沫粘结胀大,影响浮选进程的正常进行。2.(NaCN、KCN)是铅锌分选时的有用按捺剂。首要是和,也有用的。是强碱弱酸生成的盐,它在矿浆个水解,生成HCN和CN- KCN=K+十CN- CN十H2O=HCN++OH-由上述平衡式看出,碱性矿浆中,CN—浓度进步,有利于按捺。如pH下降,构成HCN(氢酸)使按捺作用下降。因此,运用,有必要坚持矿浆的碱性。是剧毒的药剂,多年来一直在进行无或少按捺剂的研讨。 3.硫酸锌硫酸锌其纯品为白色晶体,易溶于水,是闪锌矿的按捺剂,一般在碱性矿浆中它才有按捺作用,矿浆pH愈高,其按捺作用愈显着。硫酸锌在水中发作下列反响:ZnSO4=Zn2+十SO42- Zn2+十2H20=Zn(OH)2十2H+ Zn(OH)2为**化合物,溶于酸生成盐Zn(OH)2十H2S04=ZnSO4十2H2O 在碱性介质中,得到HZnO2-和ZnO2-。它们吸附于矿藏增强了矿藏表面的亲水性。Zn〔OH)2十NaOH=NaHZnO2十H2O Zn(OH)2十2NaOH=Na2ZnO2十2H2O硫酸锌独自运用时,共按捺作用较差,一般与、、盐或硫代硫酸盐、碳酸钠等协作运用。 硫酸锌和联合运用,可加强对闪锌矿的按捺作用。 一般常用的份额为::硫酸锌=1:2—5。此刻,CN-和Zn2+构成胶体Zn(CN)2堆积。 4.、盐、S02气体等、盐、二氧化硫气体这类药剂包含二氧化硫(SO2)、(H2S03)、钠和硫代硫酸钠等。 二氧化硫溶于水生成:S02十H2O=H2S03二氧化硫在水中的溶解度随温度的升高而下降,18℃时,用水吸收,其间的浓度为1.2%;温度升高到30℃时,的浓度为0.6%。及其盐具有强复原性,故不安稳。可以和许多金属离子构成酸式盐、氢盐或正盐(盐),除碱金属正盐易溶于水外,其他金属的正盐均微溶于水。在水平分二步解离,溶液中H2SO3、HSO3-和SO32-的浓度,取决于溶液的pH值。运用盐浮选时,矿桨PH常操控在5—7的范围内。此刻,起按捺作用的首要是HSO3-。二氧化硫及(盐)首要用于按捺黄铁矿、闪锌矿。用溶解有二氧化硫的石灰构成的弱酸性矿桨(pH=5—7),或许运用二氧化硫与硫酸锌、硫酸亚铁、硫酸铁等联协作按捺剂。此刻方铅矿、黄铁矿、闪锌矿遭到按捺,被按捺的闪锌矿,用少数硫酸铜即可活化。还可以用硫代硫酸钠、焦钠替代盐),按捺闪锌矿和黄铁矿。关于被铜离子激烈活化的闪锌矿,只用盐其按捺作用较差。此刻,假如一起增加硫酸锌,或,则可以增强按捺作用。盐在矿浆中易于氧化失效,因此,其按捺作用有时刻性。为使进程安稳,一般选用分段增加的办法。5. 起泡剂起泡剂应是异极性的有机物质,极性基亲水,非极性基亲气,使起泡剂分子在空气与水的界面上发作定向摆放,大部分起泡剂是表面活性物质,可以激烈地下降水的表面张力。同一系列的有机表面活性剂表顶活性按“三分之一”的规则递加,此即所谓“特芳贝定则”。起泡剂应有恰当的溶解度。起泡剂的溶解度,对起泡功能及构成气泡的特性有很大的影响,如溶解度很高,则耗药量大,或敏捷发作许多泡沫,但不能耐久,当溶解度过低冰来不及溶解,随泡沫丢失,或起泡速度缓慢,连续时刻校长,难于操控。要点优先浮选 3、试验办法及过程 3.1 矿样性质及制备 3.2药剂及设备 3.3试验流程 3.4过程 4、试验成果分析与评论

硫代硫酸盐提金

2019-02-22 09:16:34

硫代硫酸盐一般为硫代硫酸的钠盐和铵盐,它们报价便宜,浸金速度快,无毒,对杂质不灵敏,浸金指标高。 巴格达萨良等人对硫代硫酸钠溶液溶金动力学研讨标明,温度在45~85℃范围内,金的溶解速度与温度呈直线联系,但为了防止硫代硫酸盐剧烈分化,浸出温度应控制在65.75℃。罗杰日科夫等人用含和氧化剂的硫代硫酸盐溶液从矿石中浸金的动力学研讨中得出另一种定论,即只要在热压浸出器中较高的温度条件下(130~140℃),才干到达满足的速度和回收率。卡科夫斯基等人还发现,铜离子对硫代硫酸盐溶金有催化作用,可使金的溶解速度进步17~19倍。我国的姜涛、曹昌琳等人对硫代硫酸盐提金的机理进行了较为具体的研讨。 但由于硫代硫酸盐法要求得太高,且硫代硫酸盐化学上不稳定,此法至今未得到推广应用。

铅锌尾矿回收硫实例(广东粤北、粤西)

2019-01-21 18:04:37

广东粤西和粤北地区多处铅锌浮选尾矿采用螺旋溜槽重选回收尾矿中的黄铁矿。粤北、粤西铅锌浮选尾矿的矿物组成、硫铁矿单矿物分析、铅锌尾矿多项分析、筛分分析分别见表1至表4。   表1  矿物组成粤北铅锌尾矿粤西铅锌尾矿  黄铁矿及少量铅矿、闪锌矿;脉石以绢云母、石英、方解石、绿泥石为主,次有白云石等。  黄铁矿、少量铅锌矿物及赤、褐铁矿;脉石矿物为石英、长石、高岭石、绢云母、白云石、方解石。            表2  粤北硫铁硫单矿物分析                   (%)成分SFePbZnCu合计质量分数52.7343.350.490.0710.00596.85            表3  粤北铅锌尾矿多项分析                   (%)成分SAsSiO2Al2O3CaOAg(g/t)质量分数30.50.2116.332.807.2164.0              表4  筛分分析结果             (%)粒级/mm粤北粤西产率品位分布率产率品位分布率+0.27.0614.853.73———-0.20+0.1027.0023.2222.317.162.320.71-0.10+0.07612.2533.5414.6230.1814.3718.68-0.076+0.04318.8735.9224.1224.5531.8533.68-0.043+0.0306.0838.858.4117.6532.8524.96-0.03028.7426.2126.8120.4624.9321.97合计100.0031.46100.00100.0023.22100.00        以试验,铅锌尾矿经螺旋溜槽一次选别(流程见图1)可获得品位39.75%~44.08%、回收率58%~74%的硫铁矿精矿。图1  粤北铅锌尾矿试验流程

Nature Nanotech:二氧化硫涂层可以有效改善锂硫电池的性能

2019-01-03 09:37:11

未来锂硫电池有可能取代锂离子电池的地位。锂硫电池的能量密度比锂离子电池高很多,是锂离子电池的5倍(~2600Wh·kg-1)。锂硫电池的成功与否很大程度上取决于阳极材料的金属锂的应用。金属锂很容易长出锂枝(锂枝晶是指采用液态电解质的锂电池在充电时,锂离子还原时形成的树枝状金属锂单质。),对一些电解质来说很容易反应,影响电池的效率和安全性。而且锂硫电池和金属锂很容易遭到硫化物的污染。美国北德克萨斯州大学的研究者们研发了一种10nm厚的二维二硫化钼可以作为金属锂阳极的保护层,大大提高了锂电池的性能。而且研究者观察到稳定的锂电沉积和抑制枝晶成核位置。在电流密度为10mA·cm−2时,对称的二硫化钼涂层的金属锂电池进行沉积和溶解,循环寿命提高了3倍。研究测定在锂硫电池中用二硫化钼涂层的金属锂作为阳极,碳纳米管-硫作为阴极,得到能量密度为最高达589Whkg-1,在充电电流为0.5C时,1200次循环后循环效率达98%。此方法可能会实现高能量密度和安全的金属锂电池。

如何用石硫合剂法提金

2019-03-07 09:03:45

硫合剂法是我国创始的新式无提金技能,所用浸金试剂由石灰或Ca(OH)2 与组成。该试剂具有无毒、易于组成、浸金速率快、能在碱性介质中运用、对设备和原料要求不高级长处。石硫合剂法浸金时有效成分主要是多硫化钙 (CaSx)和硫代硫酸盐,由于多硫化物与硫代硫酸盐都适于金的浸出,因而,该办法具有昙好的浸金功能。在浸金过程中,多硫根离子具有氧化和配R的双重作 用,而S2- 03可做合作体。   石硫合剂法具有药剂价廉易得、浸金速率快、对难处理矿石浸出率高、适应性强、无毒无污染等特色,但后续工艺还不完善,有待进一步研讨。   如何用次法提金?   用在介质中溶金在工业中运用早于化法,但化法的快速运用开展使得氯浸金技能一向停滞不前,跟着非化浸金法的研讨开展,水氯化浸金从头遭到冶金学家的注重。氯浸金试剂有、次氯酸、和次等含氯试剂。   在氯水溶液中,金被氯氧化而且与氯离子合作,因而此法被称为水化法浸金。用作水氯化法氧化剂的主要是氯及其含氧酸的盐。   由于比较简略走漏,形成安全事故,所以现在研讨得比较多得是用和次在氯盐系统中浸出金,称为次浸金。次浸金本质是次氯酸浸金,运用次的氧化性溶金。用含氯试剂浸金,由于氯的活性很高,不存在金粒标明钝化问题,因而与化法比较,金的浸出速率快、能耗低、设备简略、成本低、回收率高。缺陷是次浸金需要在酸性系统中进行,含氯溶液有极强的腐蚀性,使设备运用周期大大缩短,不过塑 料工业的开展给该法大规模的工业运用发明了或许。

铜、铅、锌硫可浮性特点

2019-02-22 14:08:07

一、铜、铅、锌硫化矿的可浮性 1、铜矿藏的可浮性 (1)黄铜矿CuFeS2,含Cu 34.57%。斑岩铜矿。 捕收剂:初级黄药、黑药。机理:化学吸附,与铜离子作用生成黄原酸铜;物理吸附,以双黄药方式吸附与Fe3+离子表面。按捺剂:CN-、NaCN、kCN、k4[Fe(CN)6]、k3[Fe(CN)6],均在碱性介质中运用。H2O2、NaClO经过过氧化作用而下降其可浮性,在酸性介质中运用。 活化剂:CuSO4。 (2)辉铜矿和铜兰的可浮性(归于次生铜矿) 辉铜矿Cu2S:含Cu 79.83%,天然可浮性最好。 铜兰 CuS:含Cu 64.4%,天然可浮性很好。捕收剂:初级黄药,黑药,PH值1~13。 机理同上。按捺剂:Na2OS3、Na2S2O3、k4[Fe(CN)6]、k3[Fe(CN)6]、Na2S,均在碱性介质中运用。 按捺作用较差。特色:这两种矿藏均性质较脆,磨矿易泥化,溶解性也相对较大,收回率较低,矿浆中的[Cu2+]离子含量高,形成按捺困难,且简单活化其它矿藏,致使浮选选择性差。 (3)斑铜矿 Cu5FeS4,Cu含量 63.3%,可浮性介于上述(1)、(2)两种矿藏之间。 捕收剂同上,PH值5~10。按捺剂:CN-、石灰在碱性介质中运用。一般规则:1)凡不含铁矿藏,可浮性类似,CN-、石灰对它们的按捺弱。2)凡含铁矿藏,CN-、石灰在碱性介质中能够按捺其可浮性。 3)含铜量越高,可浮性越好。 2、铅矿藏的可浮性 代表性矿藏为方铅矿。PbS含Pb 86.6%,立方晶体结晶,天然可浮性较好。 捕收剂:1)PH值 10.5后方铅矿受必定的按捺。 捕收机理为化学吸附,产品为黄原酸铅。按捺剂:诺克斯试剂(K2CrO4+KCrO2)、Na2S、CaO。按捺后的活化:诺克斯试剂按捺用HCl或酸性介质顶用NaCl活化,后者在酸性介质顶用CuSO4活化。CN-无按捺作用。(含铁时在外)。 3、闪锌矿ZnS,含Zn量67.10%。 天然可浮性较1、2均弱。 捕收剂:用Cu2+活化后,用黄药捕收。未活化则黄药无效。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。特色:常有Fe及Cd呈类质同象混入。形成可浮性下降,使按捺更简单。其间Cd需收回,现在Cd均来自从闪锌矿中的收回。 4、铁硫化矿藏的可浮性 1)黄铁矿的可浮性 FeS2,含S 53.4%。 有必定的天然疏水性,但不充沛,其表面恰当氧化后有利于黄药捕收。过度氧化则可浮性下降。 捕收剂:在弱酸性介质中,用黄药捕收。机理:电化学吸附机理。黄药首要被氧化成双黄药,黄药中的孤对电子和Fe2+离子的空轨迹结合,经过孤对电子的给予黄药吸附在矿藏表面。 按捺剂:石灰,。活化剂:石灰按捺用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附; 按捺用硫酸铜活化。 2)磁黄铁矿 Fe1-xS,x:0.1~0.2,其可浮性弱于黄铁矿,用高档黄药捕收,按捺剂同黄铁矿。 二、铜、铅、锌、硫的别离(各种硫化矿的简称) 1、铜硫别离办法:取决于矿石性质。主要有下列两种办法。 1)优先浮选:适用于细密块状矿石,在比较粗的磨矿粒度条件下Cu与S能充沛单体解离。次序:按捺硫先浮铜。2)混合浮选:适用于矿石中Cu与S结合严密,Cu与S的集合体粒度较粗,而单体矿藏粒度较细时,用混合浮选先甩出合格尾矿,再把Cu与S混合精矿再磨脱药,再选别离。条件:Cu的捕收剂为黄药或黑药,石灰做pH值调整剂及铁矿藏的按捺剂,必要时参加辅佐按捺。活化剂:只要石灰按捺,用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附;合作按捺后用硫酸和硫酸铜活化。 2、铅、锌别离优先浮选法,按捺闪锌矿,捕收方铅矿。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。 3、铜、锌别离优先浮选法,按捺闪锌矿,捕收铜矿藏。别离难度大于2的铅锌别离,应加强对锌的按捺。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。 4、铜、铅别离 一般为铜铅的混合精矿别离,先脱药,再优先浮选。 脱药办法:机械法,再磨脱药,拌和洗刷脱药,Na2S脱药,活性炭吸附脱药,加温,焙烧等。1)按捺铅浮铜 适用于次生铜矿,Cu2+离子溶解较多不易按捺的状况。 按捺铅:诺克斯试剂(K2CrO4+KCrO2)和Na2S合作运用;或氧硫法:1)SO2(或)+淀粉;2),;3)硫代硫酸钠+或硫酸亚铁;4)碳酸钠十硫酸亚铁。2)按捺铜浮铅适用于原生铜矿。捕收剂:黄药、黑药,PH值9~9.5,用CaO调整。 按捺剂:及其代替按捺剂。或加温脱药按捺铅40~70℃(PH值≤7)。 5、锌、硫别离 选用按捺硫,浮选锌的流程。 捕收剂:黄药,锌必须经硫酸铜活化。

铁矿降硫捕收剂zn-138

2019-01-17 09:43:54

铁矿降硫捕收剂zn-138 使用目的:含硫铁矿提铁降硫。 浮选性能:对硫具有良好的捕收性和选择性,能使含硫铁矿降硫至0.1%以下。建议用量:500-1500克/吨给矿。 配制方法:兑水稀释成2-5%水溶液直接使用; 适用范围:黄铁矿、磁黄铁矿,含硫铁矿提铁降硫。产品质量标准:Q/CRX003-2010 包装规格:20公斤内膜编织袋。 运输与贮存: 不燃不爆,按一般化工产品运输。密封,贮于阴凉干燥处。

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。