氧化镧 国际标准
2019-01-03 14:43:33
氧化镧 Lanthanum oxide1、技术要求Technique Request: 分子式 Formula:La2O3分子量 M.Wt:325.82 产品牌号 Product Code化学成份%Chemical compositions%La2O3 REO ≥杂质含量≤impurities content max稀土杂质/REO RE impurities/REO非稀土杂质Non-RE impuritiesCeO2Pr6O11Nd2O3Sm2O3Y2O3Fe2O3SiO2CaOCuONiOPbO2La2O3-1A99.990.0020.0020.0010.0010.0050.00050.0050.0050.00050.0010.001La2O3-1B99.990.0030.0030.0020.0010.0010.0050.0060.010.00050.0010.001La2O3-299.950.010.010.0050.0050.0050.0050.010.015---La2O3-399.9含量0.10.010.010.05---La2O3-499.5含量0.50.010.010.10---2、形状颜色特性:白色粉末,不溶于水,易溶于无机酸,极易潮解,应置于密封器内。3、用途:主要用于制造各种光学玻璃部件以及光导纤维,也常用于陶瓷、催化剂等。 4、包装:50Kg/塑编袋,内衬塑料袋或用250—500公斤柔性集装袋包装。
铁精矿反浮选除磷
2019-01-21 18:04:24
铁精矿中的磷杂质主要以磷灰石、胶磷矿形式存在,少量呈稀土磷酸盐矿物存在。虽然磷矿物的可浮性优于铁矿物,但二者的可浮性差别不大,因此一般尽可能采用磁选方法脱除粗粒嵌布的磷矿物,然后用反浮选脱除呈细粒嵌布的磷矿物。反浮选时一般加入大量水玻璃或适量淀粉以抑制铁矿物,用阴离子捕收剂浮选磷矿物,其适宜的pH值为10左右,并且矿浆加温有利于提高除磷效果。例如瑞典格兰耶斯贝里铁矿(Grangesberg )选厂和阿根廷耶巴公司(Hipasam)铁矿选厂等在工业上都采用了该工艺,铁精矿中的磷可分别从1%和0.45%降至0.016%和0.16%;我国包钢选厂铁精矿中的磷(稀土磷)从0.3%降至0.15%;梅山选厂铁精矿反浮选降磷试验结果表明,磷可从0.4%左右降至0.18%以下。虽然该方法是目前工业应用较多且简单的工艺,但一般浮磷泡沫中的铁损失较多,因此通常采用泡沫再经磁选回收再选的办法来减少铁份损失。
为了使磷矿物和硅质矿物一起脱除,可以采用在强碱性介质中(pH =11~12)、以淀粉作抑制剂、以Ca++作活化剂的阴离子捕收剂反浮选工艺。如娜威拉纳格鲁贝(Rana Grubery)公司对拉纳选厂的铁矿石进行了多种方案除磷工艺研究,最后认为采用该工艺的效果最佳,铁精矿品位可以提高至65%,含磷降至0.015%以下。
另外,对于微细粒嵌布的含磷弱磁性铁矿石,可以采用选择性絮凝脱泥-阴离子捕收剂(ca++活化)反浮选工艺同时除磷、硅等杂质,如对美国蒂尔登(Tilden)铁矿石采用该工艺进行了试验,结果证明,该工艺的除磷效果好于选择性絮凝脱泥-阳离子捕收剂反浮选工艺。
脱铁除磷过程的配料计算
2019-01-29 10:09:41
稀土精矿球团脱铁除磷制备稀土精矿渣过程中,各种原料的入炉配比必须经过准确的计算,所用原料要进行化学分析。当稀土精矿球团中铁、磷、锰、钛全部为碳还原时,则焦炭量可按下式计算。
C=Q(0.21Fe+0.22Mn+0.97P+0.5Ti) [1]C固(1-A)
式中 C——焦炭入炉量,kg;
Q——稀土精矿球团入炉量,kg;
C固——焦炭中含碳量,%;
A——焦炭烧损量,%;
Fe、Mn、P、Ti——分别为稀土精矿球团中根据化学分析数据换算出的含铁、锰、磷、钛元素,%。
在实际生产中,为了简化计算过程,焦炭加入量可按下列经验公式计算:
C=1.2Q(0.58Fe+0.32P) [2]
式中 C——焦炭入炉量,kg;
Q——稀土精矿球团入炉量,kg;
Fe、P——分别为稀土精矿球团中含铁、磷量,%。
为了提高铁、锰和钛等的还原率,可向炉内加入占稀土精矿球团总量2%~3%的75硅铁。如果稀土精矿含铁量低于6%,可以加入占稀土精矿球团量2%~5%的生铁或废钢。
稀土精矿球团脱铁除磷
2019-01-24 17:45:52
稀土精矿球团经电弧炉、矿热炉脱铁除磷制备稀土精矿渣,是冶炼合格稀土硅铁合金的重要环节。下面重点介绍电弧炉脱铁除磷制备稀土精矿渣,的工艺和原理。
稀土精矿球团电弧炉脱铁除磷的工艺 利用电弧炉进行稀土精矿脱铁除磷制备稀土精矿渣,具有工艺简单、操作便利、设备利用率高等优点,因而在工业生产中采用。其工艺流程如图1所示。所用设备为冶炼稀土硅铁合金的电弧炉,渣铁罐为耐高温铸铁件。罐内渣铁经过8h以上的静止冷却,即可完全分离,注意不可将高磷铁混入渣中。
中南除磷剂-铁矿降磷捕收剂zn-158
2019-01-17 09:43:52
铁矿降磷捕收剂zn-158(商品名 中南除磷剂) 使用目的:铁矿提铁降磷 浮选性能:具有良好的降磷选择性能,提铁降磷。使用方法:将药剂用水兑成2-5%水溶液使用。 适用范围:高磷铁矿、高磷鲕状赤铁矿,胶磷矿。 环保性能:药剂无毒无害,易生物降解,对环境友好,符合环保要求。产品特点: 1. 含磷铁矿反浮选降磷,使磷< 0.2% ; 2. 可常温浮选,节能降耗; 3. 泡沫适中,浮选稳定,易于生产操作; 4.对高磷、特高含磷各类铁矿提铁降磷有特效,可实现含磷铁矿资源化。 产品质量标准:Q/CRX002-2008 包装规格:170公斤铁桶或塑料桶。 运输与贮存:不燃不爆,按一般化工产品运输。 密封,贮于阴凉干燥处。
高磷低锰难选矿石除磷提锰工艺技术
2019-01-21 18:04:43
我国是一个锰矿资源比较丰富的国家,早在1960年已探明锰矿储量仅次于前苏联和印度,而居世界前列。随着工业迅速发展,锰的金属需要量增加,富锰矿日益减少,冶金用锰精矿的各种品极,除了对矿石中锰的含量有要求外,对锰铁比、磷锰比、二氧化硅的含量都有具体的严格要求,而军工、化学、电池用锰,则需要杂质含量更低的优质锰精矿。然而由于低锰矿石结构复杂,嵌布粒度微细,且含有害杂质(磷、硫、铁、硅等)高的特点,给锰矿的选别和利用带来困难。特别是杂质磷,以熔溶胶结状态的非晶质胶磷矿形式存在于含锰矿石中,目前国内外单用机械选矿方法来除磷,提高锰矿品位,均不能达到满意的效果。
为了充分利用矿产资源,提高该锰矿床的工业利用价值,采取机械选矿与化学选矿相结合的工艺流程除去杂质,提高锰矿品位,早就引起国内外选矿工作者的重视。
本文就陕西某地高磷低锰矿石选锰除磷工艺特点进行论述。
一、原矿性质
该矿属于沉积型含锰碳酸盐矿石。原矿含锰低(11%),杂质磷高(1.10%),锰矿物以碳酸锰为主,锰的氧化物极少。碳酸锰矿物有锰白云石、菱锰矿、锰方解石,其含量占67.20%。其中锰白云石为主,菱锰矿约占8%,锰方解石极少。锰白云石主要呈粒状和脉状集合体,脉状粒径0.085~0.1455㎜,粒状多在0.0291~0.0485㎜,菱锰矿呈球状或环带状,包有石英细粒或碳质、泥质,粒径多在0.0485~0.194㎜。脉石矿物为石英、白云石、方解石等。有害杂质为胶磷矿,具有软体动物的生物构造,如苔藓虫、价形虫,并与石英及锰白云石呈脉状集合体连生,似蛋白石,有裂纹解理,并沿裂纹解理被方解石所替代,粒径多在0.1455~0.0813㎜,还有少量细晶磷灰石。
原矿多元素及物相分析
原矿多元素分析结果见表1,锰的物相分析结果见表2。
表1 原矿多元素分析结果%成 分
含 量Mn
10.88P
1.09TFe
0.80SiO2
17.20Al2O3
1.73CaO
19.21成 分
含 量MgO
9.74S
0.543Cu
0.003Pb
0.01Zn
0.01CO
0.002
表2 原矿锰的物相分析结果/%锰物相碳酸盐中锰二氧化锰与铁结合锰全锰含 量10.820.420.0211.26占有率96.063.730.18100.0
由于锰矿物和脉石矿物均为碳酸盐类,它们物化性质相近,阳离子半径近似,则彼此可无际代换,从而形成一系列类质同相矿物,使锰白云石中含锰的范围变化比较大,造成碳酸锰矿物多样性、复杂性、直接影响机械选矿指标。
二、机械选矿方法和工艺流程的研究
目前在世界范围内,对难选贫碳酸锰矿石的机械选矿方法及工艺,多趋向几种选矿方法组成的联合流程。如前苏联的波科罗夫斯克碳酸锰矿选矿厂,采用洗矿—磁选—浮选联合流程,使锰的品位由16.55%提高到28.60%,回收率为86.95%。前苏联的恰图拉选矿厂,采用洗矿—重选—磁选—浮选流程,使锰矿品位由7.85%提高到29.30%,回收率为85%左右。当碳酸盐中主要矿物为菱锰矿时,采用单一浮选方法进行分选。因菱锰矿是含锰矿物中可浮性较好的,用脂肪酸类阴离子捕收剂选别是比较成功的。如日本的大江菱锰矿,用浮选工艺处理含锰13.20%的矿石,以油酸为捕收剂(578g/t)可获得含锰32.30%、回收率为82.90%的锰精矿,该矿石中96%锰为菱锰矿和锰白云石,可采用浮选选别。
(一)浮选除磷提高锰矿品位
鉴于该矿石中含锰矿物和脉石矿物大多为碳酸盐类,其物理、化学性质差别不大,特别值得注意的是,胶磷矿与碳酸盐矿物除在密度、导电性、可浮性相近和互相紧密共生外,还因胶磷矿中部分PO43-被碳酸盐中的CO32-取代,F-被OH-取代,导致晶体常数、表面电性更接近于碳酸盐类矿物,因此使胶磷矿和含锰矿物可浮性相近,用脂肪酸类捕收剂直接浮锰,或反浮选除磷,均难达到富集锰、除磷的目的。如试验采用油酸为锰矿物的捕收剂,硅酸钠为抑制剂,在原矿细度为95%-74µm,矿浆pH8~9的条件下,浮选泡沫产品含锰12.19%、含磷1.2%,锰和磷均未富集。
试验研究了阳离子捕收剂进行反浮选除磷的可能性。选用十八碳胺500g/t,苛性淀粉800 g/t,碳酸钠1000 g/t,磨矿细度74µm占90%,矿将温度25℃左右,pH8~9的条件,经一次粗选,可除去原矿中33%以上的磷。即泡沫产品锰的含量为5.5%,占有率为11.37%,磷的含量为1.8%,占有率为60.06%,槽内产品中,锰的含量为12.70%,占有率为88.63%,磷的含量为0.82%,占有率为39.40%。为了除去这部分磷,曾试验了几种流程及选用不同类型 的抑制剂,但均未得到含磷在0.2%以下的锰精矿。
(二)干式强磁选试验
从所周知,无论碳酸锰或是锰的氧化物,均属于弱磁性矿物。因该矿含锰矿物与脉石矿物以及含有害杂质矿物的比磁化系数有较大的差异,故强磁选是该矿的有效选别方法之一。常见的几种锰矿物和脉石矿物的比磁化系数见表3。
表3 常见几种锰矿物和脉石矿物比磁化系数矿 物粒 度/㎜比磁化系数/(cm3·g-1)菱锰矿
软锰矿
水锰矿
硬锰矿
含锰方解石
方解石
白云石
石 英
磷灰石-0.83
-0.83
-0.83
-0.83
-0.83
-0.13
-0.13
-0.13
-0.13(135~140)×10-6
27×10-6
(28×81)×10-6
(24~49)×10-6
(66~94)×10-6
0.3×10-6
2×10-6
(0.2~10)×10-6
(9.39~819)×10-6
根据该矿石的特性,试验比较了脱泥与不脱泥、分级与不分级的干式强磁选方案,确定了脱泥—分级—磁选流图(见图1),获得表4的选别指标。由于矿泥的占有率为22.59%,锰、磷的含量都接近原矿品位,因此对矿泥进行温式强磁选,使锰的回收率增加10%左右。分级干式强磁选可除掉原矿中约67%的磷,即磁选精矿中锰的含量可提高到18.41%,磷可降到0.31%,达到部颁五级锰精矿的品位要求。若要再提高锰的品位,使磷降至0.2%以下,仍是该方法难以解决的问题。
表4 脱泥—分级—磁选试验结果/%产品名称产 率品 位回收率MnPMnP精 矿
尾 矿
合 计44.01
55.99
100.018.41
5.76
11.330.31
1.55
1.0071.16
28.84
100.013.46
86.54
100.0
(三)温式强磙选试验
湿式强磁选机适宜处理细粒物料,也是选别含锰矿物的有效磁选设备。
试验采用环式磁选机,进行不分级磁选。磁性产品锰品位提高到22%。磷降低0.3%,而锰的回收率仅为23%,尾矿品位6%以上。采用夹板式强磁选机,对三种流程作了比较:(1)脱泥(-25µm)磁选;(2)分级磁选;(3)反浮选精矿磁选。
原矿磨至-75µm占65%,脱泥后粗砂和矿泥单独进行湿式强磁选,获得含锰17.14%、回收率为63.03%、含磷为0.41%的产品。其流程和选别指标见图2、表5。表5 湿式强磁选试验结果/%产品名称产 率品 位回收率MnPMnP精 矿
尾 矿
合 计40.60
59.40
100.017.14
7.36
11.330.41
1.47
1.0463.03
36.97
100.016.21
83.79
100.0
分级湿式强磁选得到含锰17.17%、含磷0.42%的锰精矿,与脱泥后单独磁选的品位相近,回收率为59.42%。
反浮选除磷后,槽内产品进行强磁选再处理,可获得含锰17.35%、含磷0.39%、回收率为57.2%的锰精矿。
经过几种试验方案比较,干、温式强磁选均是处理该矿石的有效方法,但要进一步降低锰精矿含磷量和提高锰品位,单一强磁选则是不容易解决的。
三、化学方法除磷,提高锰矿品位
机械选矿所获得的锰精矿,其含锰矿物的物化性质及矿物组成未发生变化,亦属于碳酸盐矿物。锰的含量为18%左右,磷以脱磷矿及少量极细的磷灰石存在,其含量为0.4%左右,约占原矿的1/3,采用单一机械选矿方法难以除掉这部分磷。国内外在处理这种类型矿石时,多采用化学方法,如火法选锰、焙烧—酸浸或水浸、亚流酸盐法、二氧化硫法、硫酸锰—电化法、连二硫酸盐法、硝酸法、离子交换法、细菌浸出法等。
参照国内外对含杂质高的碳酸锰矿石类型的化学处理方法,对该锰矿的磁选粗精矿进行中性焙烧—酸浸试验,进一步提高锰矿品位,降低磷的含量。
(一)中性焙烧试验
根据矿物的化学性质和酸浸除磷的作用,将碳酸锰进行中性焙烧,使碳酸锰转化为锰的氧化物,而不被稀酸所溶解。并且焙烧时碳酸锰矿物分解,排出CO2和其它挥发物,使锰的含量进一步提高,降低冶炼过程中燃料耗及缩短冶炼时间。
碳酸锰矿石焙烧原理:碳酸锰受热分解,放出二氧化碳、结晶水及挥发物,使碳酸锰变成氧化物而得到氧化亚锰,这一变化随着温度的升高,氧化则较多,使焙烧矿中含锰量也相对降低。焙烧氧化过程为:
焙烧试验采用箱式马弗炉,进行焙烧时间、温度的条件试验。当温度为800℃,时间为75min时,焙烧后的锰精矿品位提高到26%~28%,磷的含量也随之上升到0.43%~0.53%。
(二)稀硫酸的除磷试验
由于焙烧试验本身不是一个完整的工艺,为此进行了酸浸除磷试验。根据氧化亚锰不易与稀硫酸作用、而磷易被稀酸所溶解的化学性质,进行了稀硫酸浸出除磷试验。酸浸除磷原理:
磷酸钙(胶磷矿)在稀硫酸溶液中,生成磷酸二氢(可做化肥)存在于溶液中。其化学反应式为:
Ca3(PO4)2+2H2SO4+4H2O=Ca(H2PO4)2+2(CaSO4·2H2O)
焙烧后的锰精矿,含钙镁氧化物也部分溶解在酸溶液中。由于焙烧不完全所致,焙烧后的锰精矿仍残存有少量的碳酸锰,而碳酸锰中的锰易被稀硫酸所溶解变为硫酸锰,故在酸浸除磷过程中,损失了部分锰。酸浸提标见表6。酸浸面机械搅拌下进行,当硫酸浓度为6%,浸出时间为60~90min,固液比为1:7至1:15时,锰精矿品位提高到30%~33%,磷降到0.2%以下,最终达到除磷、提高锰精矿品位的目的。
表6 酸浸试验结果/%焙烧入料浸渣重量/g浸渣中锰浸渣中磷浸渣中锰
占有率干式磁选精矿
湿式磁选精矿46.0
48.032.94
30.180.193
0.19282.31
83.40
四、结语
(一)该矿石中锰品位,且含锰矿物为一系列组分不定的锰白云石及其它碳酸锰矿物,而有害杂质磷含量高,且以胶结状非晶质胶磷矿存在,构成矿石性质复杂、多样,造成机械选矿难以处理。
(二)原矿磨至-74µm占65%~85%时,脱除-25µm的矿泥,各粒极进行干式或湿式强磁选,矿泥进行湿式强磁选,能获得低品级的锰精矿。
(三)用焙烧—稀酸浸出的化学方法处理机械选别的锰精矿,是除磷的有效途径,使最终锰精矿品位提高到30%以上,磷的含量降到0.2%以下,锰的回收率为60%左右。
(四)化学处理难选贫锰矿石,对原矿没有严格的要求,各种类型的含锰矿石都可以使用,并能获得含杂质少的优质精矿产品,特别适用于化学、电池、军工和冶金用锰原料,还可以综合回收其伴生元素。
崔恩静 任金菊 马晶 李洁
(陕西有色金属控股集团有限公司,西安 710006)
参考文献
[1]西北有色地质研究院,陕西陕南地区高磷低锰难选矿石试验报告[R],2000,12。
[2]西北有色地质研究院,陕西石泉钒钛磁铁矿石选矿试验研究报告[R],2003,8。
[3]丁楷如,余逊贤,锰矿开发与加工技术[M],长沙:湖南科学技术出版社,1991,527。
铋的氧化精炼除砷、锑
2019-03-05 12:01:05
一、氧化机理
如图1所示,因为砷、锑的氧化物与铋的氧化物的自由焓相差甚大,所以在氧化精粹中,砷、锑会优先氧化而与铋液别离。
图1 金属氧化物的自由焓图
依据质量作用定律,首要铋被氧化为Bi2O3,Bi2O3再使砷、锑氧化为As2O3与Sb2O3,部分蒸发,余下的进一步氧化为As2O3与Sb2O5入渣。实践中,砷与锑约三分之一以三氧化物蒸发,约三分之一以五氧化物入渣。
从As-Bi系状态图可见(见图2),图中液相线从铋的熔点上升至砷的熔点,共晶点为270.3℃,正坐落纯铋熔点邻近。砷在铋中的可溶性,在共晶点温度时为0.42%(原子),在100℃时为0.24%(原子),在室温下为0.2%(原子),所以,铋与砷构成的共晶化合物中含砷量是不高的,剩余的砷与铋构成有限固熔体,选用鼓风氧化的办法,很简单除掉铋液中的砷。 图2 As-Bi系状态图
Sb-Bi系状态图列于图3。图3 Sb-Bi系状态图
图3中锑与铋在液态彻底互溶,液相线以上的区域为均匀的液相,而固相线以下的区域为固溶体,液相线与固相线之间区域为液相与分出固溶体两相共存,因为锑与铋在液相与固相均能彻底互溶,所以铋液中能溶解很多的锑。图中液相线接近于直线,阐明其组成与温度近似成正比联系。
氧化精粹受动力学条件分配。铋液中杂质金属的氧化进程由两阶段构成,即杂质金属氧化物在铋液与鼓入的压缩空气气泡界面上的构成进程,和生成的杂质金属氧化物在铋液中的分散进程。也就是说,铋液中杂质元素的氧化速度,取决于铋液中砷、锑与氧的触摸情况和生成的砷、锑氧化物的分散速度。铋液中杂质金属的浓度的改变速度v,与液-气两相界面处杂质元素的浓度c0,和铋液中杂质元素的浓度cx之差,以及液-气两相分界表面积F的联系,可用下式描绘:式中K-份额常数,为分散系数的函数。
由上式可知,添加气-液两相的触摸表面和使生成的杂质氧化物敏捷从铋液中别离,是加速杂质氧化的重要途径。
某厂实践中测定氧化特炼时铋液中砷、锑的氧化程度如图4所示。图4 砷、锑的氧化程度
在生产实践中间,氧化精粹一般选用压缩空气鼓风氧化,也有用压入湿木块与通入水蒸汽氧化。氧化精粹温度控制在700℃左右,此刻铋比砷、锑的氧化物的自由焓相差约105焦耳/摩尔氧分子,砷、锑氧化物自由焓的直线方位在铋的氧化物自由焓直线方位的下方,故砷、锑优先氧化蒸发。As2O3在500℃时已很多蒸发,Sb2O3在700℃以上时明显蒸发,而铋及铋的氧化物在800℃以上时才开端蒸发。所以,为了使砷、锑氧化蒸发而铋又不蒸发丢失,氧化除砷、锑温度控制在700℃是恰当的。即便有部分铅、铋氧化,只需铋液中还存在砷与锑,也会发生如下复原反响:鼓入之压缩空气中的氧与铋液中砷、锑触摸而将其氧化,生成的砷,锑氧化物又因为压缩空气鼓入时,使铋液激烈翻腾而被带出液面敏捷蒸发逸出。
因为粗铋中很多杂质铅存在,而铅的氧化物的自由焓又比铋的氧化物的自由焓更负,故在氧化精粹后期,过量的氧会使铅氧化成PbO,PbO熔点888℃,呈固态浮渣,捞渣时铋被机械夹藏而丢失,所以应把握好除砷、锑的结尾,以防止产出氧化铅渣。
有的工厂为了别离砷与锑,以求副产低砷的氧化锑烟尘,则选用碱性除砷后再氧化挥锑的工艺。
碱性除砷的机理是依据砷能优先与Na2O结组成盐。其反响为:碱性除砷温度控制在450~500℃之间,参加的NaOH量为铋液中含砷量的3倍,并参加适量NaNO3,鼓入压缩空气,时刻4~6小时。
二、氧化精粹实践
除铜后之铋液,升温至680~750℃,鼓入压缩空气,使砷、锑氧化蒸发,作业时刻依据粗铋中砷、锑含量而定,一般为4~12小时,至白烟淡薄,铋液表面呈现氧化铅渣时,则为除砷、锑的结尾。在操作中如渣掩盖液面时,可酌情捞出,避免影响气体蒸发逸出,渣稀时,可参加少数固体碱或谷壳、木屑,使渣变干,便于捞渣。除砷、锑氧化渣量,约为料重的4%~8%。氧化渣组成列于下表。
表 氧化精粹渣成分(%)
中低品位稀土精矿脱铁除磷制备稀土精矿渣
2019-02-20 09:02:00
稀土精矿渣是冶炼稀土硅铁合金的重要质料。稀土精矿是由白云鄂博稀土铁矿经过选铁后的尾矿在经选矿处理而取得的。跟着选矿技能的不断进步和进步,现在稀土精矿的稀土氧化物含量能够到达60%以上。但用高档次稀土精矿冶炼稀土硅铁合金在经济上不合理,因此在工业规划的出产中未得到运用。现在很多运用白云鄂博中低档次稀土精矿冶炼稀土硅铁合金,其化学成分见表1。
表1 包头稀土精矿的化学成分 单位:%品 级REOCaOCaF2SiO2MnOTiO2P2O5TFeBaOThO2S中等第
低等第54.18
30.420.95
1.1215.83
23.001.31
1.020.29
0.660.11
0.275.74
7.683.49
10.305.67
8.810.11
0.131.80
2.60
从中低档次稀土精矿的化学成分能够看出,稀土精矿中含有较多的杂质,特别是含磷量较高,这些氧化物,除在冶炼进程中要耗费必定数量的还原剂,不利于进步稀土硅铁合金的稀土含量,并且给产品质量构成很坏影响。因此稀土精矿有必要经过处理,以下降造渣的本钱。
中低档次稀土精矿的粒度一般都在200mm以下,且含有较高的水分,因此稀土精矿有必要经过造块和枯燥后,才干入炉进行脱铁除磷。
(1)稀土精矿的造块 常用的稀土精矿造块办法有球团法和压块法。
①稀土精矿球团的制备 依据稀土精矿球团的固结温度的不同,将其分为低温固结球团和高温焙烧球团两种。
低温固结球团的制备 稀土精矿球团制备工艺流程如表2所示。
时刻/min02.55101530405075120合金含钙量/%0.3915.93 21.5321.1522.3321.8721.3019.0515.20合金含硅量/%75.7067.5059.10 56.1056.10 55.7055.8057.00
低温固结的稀土精矿球团需求挑选适宜的黏结剂,常用的有水玻璃(Na2SiO3)和消石灰[Ca(OH)2]等。造球工艺简略易行,首先向水分小于8%的稀土精矿进入占其精矿球团。生球在烘干炉内烘干40min,操控烘干炉底层球团温度为120~150℃。经过烘干的稀土精矿球团抗压强度能够到达390N/球以上。
制备低温固结稀土精矿球团的另一种办法是碳酸化冷固结。其工艺进程是用枯燥的稀土精矿增加10%~15%的消石灰及少数的玻璃,混合均匀,然后用造球机制成φ15~25mm的球团,成球率为70%~80%,经过天然枯燥后生球抗压强度大于50N/球,将枯燥的球团投入碳酸化罐内,通入热炉废气(CO2>20%,50~80℃)。经过处理的球团抗压强度能够到达30~50N/球。稀土精矿球团中的消石灰不只参加了碳酸化反响,一起又作为熔剂进步了球团的碱度。
稀土精矿 固体水玻璃 ↓ ↓料仓 破碎机 ↓ ↓混料机 球磨机↓ ↓造球机 料仓↓ 稀土精矿球团
图1 低温固结球团制备工艺示意图
图2烧结炉示意图
1-炉体;2-抽风口;3-除尘阀4-手轮
高温焙烧球团的制备 稀土精矿不加黏结剂或只加少数熔剂。经过混匀后用造球机制成φ15~25mm的球团,经高温焙烧,依托球集体自身构成的渣相到达固结的意图。高温焙烧的办法有多种,稀土精矿球团常用烧结炉焙烧法和回转窑焙烧法。
用φ1600mm的圆盘造球机和0.24m3的烧结炉进行稀土精矿的造球和焙烧[15],造球机圆盘倾盘为45°。边高180mm,转速17r/min,每吨稀土精矿可制得1.0~1.1t生球团,出产率为900kg/(m2·h)。生球功能列于表3。烧结炉如图2所示,所用风机的风压为4000Pa,转速2850r/min,功率2.8kW,每炉可产稀土精矿熟球0.8~1.0t,返矿率为5%~8%。焙烧的技能条件和熟球功能别离列于表3和表4。
表3 稀土精矿生球功能消石灰参加量%生球直径/mm抗压强度/(N/球)冲击强度/(次/50mm)堆密度/(t/m3)含水量/%9~1010~155.363.61.72~1.819.5~10.5
表4 焙烧技能条件焙烧时刻最高尾气温度/℃料层厚度/mm笔直焙烧速度(mm/min)最高焙烧温度/℃45~55450~500350~4006~81140~1150
表5 焙烧熟球功能堆密度/(t/m3)抗压强度/(N/球)转数目标(>5mm)/%1.54395089.6
回转窑的首要参数为:窑身直径700mm,长度12000mm,有用容积4.6m3,内衬耐火砖厚115mm,窑身倾角5°,转速别离为0.465r/min、0.58r/min和1.2r/min。以焦炉煤气作燃料。空气助燃。窑内坚持弱小负压,火焰为弱氧化性,在窑尾设有钟式给料机,球团经过φ120mm排料弯管给入窑内,从窑头排出的制品球团存于料斗内。实践标明,当回转窑倾角为5°、转速0.58r/min,烧焙温度为115~1130℃时,能够取得利用系数1.45~1.54t/(m3 ·d ),制品率87.4%~91.1%的出产目标,球团抗压强度约为1100N/球。
在实践出产中,选用回转窑或烧焙炉进行稀土精矿球团的焙烧,都能够满意脱铁除磷及冶炼稀土硅铁合金的需求。
②稀土精矿压块 稀土精矿压块工艺简略易行。将稀土精矿与消石灰(参加量为精矿量的8%~10%)在混料机内混合均匀,然后送入压块机内约束成型。稀土精矿压块的巨细能够依据出产要求用替换不同模具来改动,一般操控在65mm×110mm×240mm。这种压块经天然枯燥后,强度能够满意电炉脱铁的要求。此法简略,操作便当,但压块强度较低,在长时间贮存和运送进程中会构成破损,因此运用有必定约束。
③稀土精矿球团的矿藏组成 稀土精矿球团的矿藏组成很大程度上取决于其焙烧温度和碱度。低温固结稀土精矿球团基本上坚持原稀土精矿的矿藏组成,其首要矿藏有独居石、氟碳铈矿、赤铁矿(Fe2O3)、磁铁矿(Fe3O4)、萤石(CaF2)和重晶石(BaSO4)等。
高温焙烧的高碱度稀土精矿球团的矿藏组成与低温固结球团有所不同,首要原因是在高温焙烧条件下,球团内部发作了一些物理化学变化,其矿藏组成首要有赤铁矿(Fe2O3)、铁酸钙(CaO·Fe2O3)、萤石(CaF2)、重晶石(BaSO4)、晶石(3CaO·CaFe2·SiO2)和铈针石(Ce2O3)等。铈针石的呈现显然是在焙烧进程中由独居石和氟碳铈矿发作分化发生的。而高碱度(CaO/SiO2>1.87)和高温(1100~1200℃)焙烧是发生铈针石的心要条件。高碱度高温焙烧的稀土精矿球团,对出产优质稀土精矿渣和冶炼土硅铁合金非常有利,在工业出产中应予推行。 参 考 文 献 15、JI.B.CлeпoBa и дp..CMaJIb 1980,6:507
关于红铜你知道多少?
2019-05-24 11:10:38
红铜即纯铜,又叫紫铜,具有很好的导电性和导热性,可塑性极好,易于热压和冷压力制作,很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品。由硫化物或氧化物铜矿物提炼得来的纯铜,可用以铸钱及制作器物。 红铜因为高纯度,安排细密,含氧量极低,无气孔、沙眼、裂纹、杂质,导电功能佳。电蚀出的模具表面光洁度高,经 红铜热处理技术,电极无方向性,合适精打、细打。现很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品,须防磁性搅扰的磁学仪器、外表,如罗盘、航空外表等。硫酸铜在农业和林业上可防看病虫灾,按捺水体中藻类的很多繁衍。
磷青铜
2019-05-30 18:44:29
磷青铜一、特性及适用范围: 因含磷量较高,其抗疲劳强度较高,弹性和耐磨性较好,但在热制作时有热脆性,只能接受冷压力制作。二、化学成份:铜 Cu :余量锡 Sn :6.0~7.0铅 Pb:≤0.02铅 Pb:≤0.02硼 P:0.26~0.40铝 Al:≤0.002铁 Fe:≤0.02硅 Si :≤0.002铍 Sb :≤0.002铋 Bi:≤0.002三、力学性能:抗拉强度 σb (MPa):≥410伸长率 δ10 (%):≥15伸长率 δ5 (%):≥18