您所在的位置: 上海有色 > 有色金属产品库 > 锰酸锂合成 > 锰酸锂合成百科

锰酸锂合成百科

锰酸锂

2017-06-06 17:50:13

 锰酸锂,合成性能好、结构稳定的正极材料锰酸锂是锂离子蓄电池电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其 产业 化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的 金属 离子,能显著改善其循环性能。 锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是 价格 便宜,最大的缺点是容量低(只能发挥到100-110,河南思维典型值:105),压实低,导致不太好压.是钴酸锂和三元材料的过渡产品.在动力电池方面 很有可能被三元取代 。   锰酸锂-特点:锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是 价格 便宜,最大的缺点是容量低(只能发挥到100-110,河南思维典型值:105),不太好压.是钴酸锂和三元材料的过渡产品.锰酸锂比表面积研究是非常重要的,锰酸锂的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器 行业 的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。F-Sorb2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。   锰酸锂主要为尖晶石型锰酸锂,尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有 价格 低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子电池的正极材料。   锰酸锂的生产目前 市场 上主要的锰酸锂有AB两类,A类是指动力电池用的材料,其特点主要是考虑安全性及循环性。B类是指手机电池类的替代品,其特点主要是高容量。  锰酸锂的生产主要以EMD和碳酸锂为原料,配合相应的添加物,经过混料,烧成,后期处理等步骤而生产的。从原材料及生产工艺的特点来考虑,生产本身无毒害,对环境友好。不产生废水废气,生产中的粉末可以回收利用。因此对环境没有影响。   

镍钴锰酸锂

2017-06-06 17:50:12

镍钴锰酸锂镍钴锰酸锂是一种电池材料,锂电池用正极材料--镍钴锰酸锂,俗称三元材料,化学成分Li1+zM1-x-yNixCoyO2,是由氢氧化镍钴锰和锂原材料混合均匀后经三温区烧结得到。该材料比容量高,循环特性好,晶体结构理想,且制备工艺简单,运行成本低,生产周期短,产品性能稳定,是一种更经济,更安全的锂离子电池的正极材料,必将取代其他锂离子电池正极材料。高密度锂离子电池正极材料镍钴锰酸锂的制备方法,一种高密度锂离子电池正极材料镍钴锰酸锂的制备方法,其特征在于:包括将镍化合物、钴化合物、锰化合物混合、造粒,以3~10℃/min的升温速率,通过在一定温度和一定时间下进行第一次烧结,得到中间产物镍钴锰的氧化物(Ni↓[1/3]Co↓[1/3]Mn↓[1/3])↓[3]O↓[4];然后将镍钴锰的氧化物与一定比例的锂化合物均匀混合,以3~10℃/min的升温速率,在高温下,通过一定时间进行第二次烧结,再将烧结产物经过粉碎、粒度分级后得到高密度的镍钴锰酸锂。镍钴锰酸锂在电池材料方面的应用十分广泛。锂离子电池是新一代的绿色高能电池,具有电压高、能量密度大、循环性能好、自放电小、无记忆效应等突出优点,广泛应用于各种便携式电动工具、电子仪表、移动电话、笔记本电脑、摄录机、武器装备等,在电动汽车中也具有良好的应用前景.正极材料是锂离子电池的重要组成部分,是目前锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模 产业 化并广泛应用于商品锂离子电池的正极材料,然钴酸锂的年需求量已超过1万吨,从而导致钴价大幅攀升,钴资源短缺已开始制约 产业 发展。新型锂离子正极材料----复合氧化物镍钴锰酸锂是一种容量比较高的材料,其比容量比钴酸锂高出30%以上,和钴酸锂有相同的上下限电压,而且安全性也相对较好, 价格 相对较低,与电解液的相容性好,循环性能优异,更为重要的是其成本仅为钴酸锂的一半,是非常有前途的正极材料。此材料正逐步取代钴酸锂而成为在小型通讯和小型动力领域应用的主流正极材料。复合氧化物镍钴锰酸锂材料制备的关键是保证镍、钴、锰三元素的分子级混合,并控制其合理的粒度大小和分布。

镍钴锰酸锂

2017-06-02 15:14:45

锂 电池 的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。近年来,中国锂电池产量已大幅提升,锂电池正极材料也已经从单一的钴酸锂材料,发展到钴酸锂、锰酸锂、镍钴酸锂、镍钴锰酸锂、磷酸铁锂等材料齐头并进的阶段。    金瑞科技作为国内最专业的 电解锰 生产企业,拥有电解锰产能4万吨,2008年产量约占全球市场份额的3%;四氧化三锰年产能2万吨左右,市场占有率50%以上。近年来公司通过金丰锰业、获得松桃金瑞矿业和黔东锰矿各50%股权等方式以提高产能及矿山自给率。目前电解锰行业需求出现积极信号。我们预计,未来两年在政府淘汰落后产能的治理中,公司有望进一步扩大市场份额。    公司控股的子公司金天能源材料于2005年12月率先在国内自主研发出了覆钴氧化型氢氧化镍新产品,并建成了1000吨/年的主要用于制作高品质镍氢二次电池以及动力电池产品生产线。目前金天能源主要为比亚迪和日本汤浅供应镍氢电池正极,经过近两年的发展,覆钴氧化型氢氧化镍新产品已经打入了日本电池企业在国内的合资电池厂等高端市场;同时,公司项目系列产品中的动力型氢氧化镍品种已通过了日本松下电池企业的性能检测。目前国内氢氧化镍总需求量约为16000吨/年,其中,高品质的覆钴氧化型氢氧化镍产品仅有不到2000吨/年的生产规模,而金天能源目前拥有氢氧化镍产能2000吨,覆钴氧化型氢氧化镍产能1000吨/年,预计公司能充分享受到行业成长的前景。  此外,公司开展了磷酸亚铁锂制备技术的研究和镍钴锰酸锂三元材料的研究,其中磷酸亚铁锂项目已取得了良好的结果,镍钴锰酸锂三元材料的开发也取得了较好的结果,并获得了科技部75万元的院所基金资助。随着国家鼓励发展电动汽车,大力提倡开发锂离子动力电池,公司电源材料必将受益。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

镍钴锰酸锂

2017-06-06 17:50:13

 锂电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与 价格 。近年来,中国锂电池 产量 已大幅提升,锂电池正极材料也已经从单一的钴酸锂材料,发展到钴酸锂、锰酸锂、镍钴酸锂、镍钴锰酸锂、磷酸铁锂等材料齐头并进的阶段。    金瑞科技作为国内最专业的电解锰生产企业,拥有电解锰产能4万吨,2008年 产量 约占全球 市场 份额的3%;四氧化三锰年产能2万吨左右, 市场 占有率50%以上。近年来公司通过金丰锰业、获得松桃金瑞矿业和黔东锰矿各50%股权等方式以提高产能及矿山自给率。目前电解锰 行业 需求出现积极信号。我们预计,未来两年在政府淘汰落后产能的治理中,公司有望进一步扩大 市场 份额。    公司控股的子公司金天能源材料于2005年12月率先在国内自主研发出了覆钴氧化型氢氧化镍新产品,并建成了1000吨/年的主要用于制作高品质镍氢二次电池以及动力电池产品生产线。目前金天能源主要为比亚迪和日本汤浅供应镍氢电池正极,经过近两年的发展,覆钴氧化型氢氧化镍新产品已经打入了日本电池企业在国内的合资电池厂等高端 市场 ;同时,公司项目系列产品中的动力型氢氧化镍品种已通过了日本松下电池企业的性能检测。目前国内氢氧化镍总需求量约为16000吨/年,其中,高品质的覆钴氧化型氢氧化镍产品仅有不到2000吨/年的生产规模,而金天能源目前拥有氢氧化镍产能2000吨,覆钴氧化型氢氧化镍产能1000吨/年,预计公司能充分享受到 行业 成长的前景。  此外,公司开展了磷酸亚铁锂制备技术的研究和镍钴锰酸锂三元材料的研究,其中磷酸亚铁锂项目已取得了良好的结果,镍钴锰酸锂三元材料的开发也取得了较好的结果,并获得了科技部75万元的院所基金资助。随着国家鼓励发展电动汽车,大力提倡开发锂离子动力电池,公司电源材料必将受益。 

锰酸锂电池

2017-06-02 15:08:17

锰酸锂主要为尖晶石型锰酸锂 尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有价格低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子 电池 的正极材料。    合成性能好、结构稳定的正极材料锰酸锂是锂离子蓄电池[有色商机 : 铅酸蓄电池]电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其产业化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的 金属 离子,能显著改善其循环性能。 锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是价格便宜,最大的缺点是容  锰酸锂量低(只能发挥到100-110,河南思维典型值:105),压实低,导致不太好压.是钴酸锂和三元材料的过渡产品.在动力电池方面 很有可能被三元取代 。    锰酸锂结构:LiMn2O4是一种典型的离子晶体,并有正、反两种构型。XRD分析知正常尖晶石LiMn2O4是具有Fd3m对称性的立方晶体,晶胞常数a=0.8245nm,晶胞体积V=0.5609nm3。氧离子为面心立方密堆积(ABCABC….,相邻氧八面体采取共棱相联),锂占据1/8氧四面体间隙(V4)位置(Li0.5Mn2O4结构中锂作有序排列:锂有序占据1/16氧四面体间隙),锰占据氧1/2八面体间隙(V8)位置。单位晶格中含有56个原子:8个锂原子,16个锰原子,32个氧原子,其中Mn3+和Mn4+各占50%。由于尖晶石结构的晶胞边长是普通面心立方结构(fcc)型的两倍,因此,每个晶胞实际上由8个立方单元组成。这八个立方单元可分为甲、乙两种类型。每两个共面的立方单元属于不同类型的结构,每两个共棱的立方单元属于同类结构。每个小立方单元有四个氧离子,它们均位于体对角线中点至顶点的中心即体对角线1/4与3/4处。其结构可简单描述为8个四面体8a位置由锂离子占据,16个八面体位置(16d)由锰离子占据,16d位置的锰是Mn3+和Mn4+按1:1比例占据,八面体的16c位置全部空位,氧离子占据八面体32e位置。该结构中MnO6氧八面体采取共棱相联,形成了一个连续的三维立方排列,即[M2]O4尖晶石结构网络为锂离子的扩散提供了一个由四面体晶格8a、48f和八面体晶格16c共面形成的三维空道。当锂离子在该结构中扩散时,按8a-16c-8a顺序路径直线扩散(四面体8a位置的能垒低于氧八面体16c或16d位置的能垒),扩散路径的夹角为107°,这是作为二次锂离子电池正极材料使用的理论基础。    市场人士表示,锰酸锂和锰酸锂电池行业的发展前景广阔。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

锰酸锂价格

2017-06-06 17:50:13

目前 市场 上比较常见的正极材料有钴酸锂、锰酸锂、磷酸铁锂、三元材料,而最被看好的则是磷酸铁锂和三元材料这两种,因为目前这两种材料的性价比,以及技术实现难度等都较为适合作为汽车用动力锂电池的正极材料,相较于磷酸铁锂和三元材料,锰酸锂 价格 相对较便宜。但是从更为长远的角度来看,对普通锰酸锂材料进行改良后生产出的尖晶石结构的锰酸锂,可能更适合用作动力锂电池的正极材料。    首先,从能量密度来看,尖晶石结构的锰酸锂电池要优于磷酸铁锂电池。由于受到空间和车重的限制,汽车用动力电池必须要非常轻巧,而且储能量要尽可能大,这就需要动力电池的能量密度要高。目前磷酸铁锂电池的充放电电压在3.7V左右,但是尖晶石结构的锰酸锂可以达到4.2V左右,而锂电池充放电电压高低与其能量密度大小有着正相关的关系,所以从能量密度方面来说,尖晶石结构的锰酸锂电池要更胜一筹。   其次,从使用电池时的安全性来说,锰酸锂电池也有一定优势。正极材料的导电性能与其充放电时释放的热量大小直接相关,即正极材料导电性越好,电池充放电时释放的热量越小。由于磷酸铁锂材料的导电性不如锰酸锂,所以磷酸铁锂电池在充放电会释放出大量的热量,使动力电池组内部的温度急剧升高,这是非常不安全的。  中投顾问研究总监张砚霖也指出,从汽车用锂电池制造成本方面来说,尖晶石结构的锰酸锂电池也具有一定的优势。近年来,磷酸铁锂正极材料的 市场价格 徘徊在15-20万元/吨间,而锰酸锂正极材料的 价格 则处在9-15万元/吨的区间,显然使用锰酸锂作为动力锂电池的正极材料更加有利于降低汽车用动力电池的生产成本。 

锰酸锂电池

2017-06-06 17:50:13

锰酸锂主要为尖晶石型锰酸锂 尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有 价格 低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子电池的正极材料。    合成性能好、结构稳定的正极材料锰酸锂是锂离子蓄电池电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其 产业 化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的 金属 离子,能显著改善其循环性能。 锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是 价格 便宜,最大的缺点是容  锰酸锂量低(只能发挥到100-110,河南思维典型值:105),压实低,导致不太好压.是钴酸锂和三元材料的过渡产品.在动力电池方面 很有可能被三元取代 。    锰酸锂结构:LiMn2O4是一种典型的离子晶体,并有正、反两种构型。XRD分析知正常尖晶石LiMn2O4是具有Fd3m对称性的立方晶体,晶胞常数a=0.8245nm,晶胞体积V=0.5609nm3。氧离子为面心立方密堆积(ABCABC….,相邻氧八面体采取共棱相联),锂占据1/8氧四面体间隙(V4)位置(Li0.5Mn2O4结构中锂作有序排列:锂有序占据1/16氧四面体间隙),锰占据氧1/2八面体间隙(V8)位置。单位晶格中含有56个原子:8个锂原子,16个锰原子,32个氧原子,其中Mn3+和Mn4+各占50%。由于尖晶石结构的晶胞边长是普通面心立方结构(fcc)型的两倍,因此,每个晶胞实际上由8个立方单元组成。这八个立方单元可分为甲、乙两种类型。每两个共面的立方单元属于不同类型的结构,每两个共棱的立方单元属于同类结构。每个小立方单元有四个氧离子,它们均位于体对角线中点至顶点的中心即体对角线1/4与3/4处。其结构可简单描述为8个四面体8a位置由锂离子占据,16个八面体位置(16d)由锰离子占据,16d位置的锰是Mn3+和Mn4+按1:1比例占据,八面体的16c位置全部空位,氧离子占据八面体32e位置。该结构中MnO6氧八面体采取共棱相联,形成了一个连续的三维立方排列,即[M2]O4尖晶石结构网络为锂离子的扩散提供了一个由四面体晶格8a、48f和八面体晶格16c共面形成的三维空道。当锂离子在该结构中扩散时,按8a-16c-8a顺序路径直线扩散(四面体8a位置的能垒低于氧八面体16c或16d位置的能垒),扩散路径的夹角为107°,这是作为二次锂离子电池正极材料使用的理论基础。   市场 人士表示,锰酸锂和锰酸锂电池 行业 的发展前景广阔。

铍铜的合成比

2018-12-13 10:37:27

常用铍铜中铍的质量分数为1.7-2.5%,铍青铜经过淬火和时效可以具有极高的强度和硬度,远超过其他所有的铜合金,甚至可以和高强度钢蓖美.它的弹性极限\疲劳极限\耐磨性\耐腐蚀性也都很好,是各种性能结合得很好的一种合金;还具有很好的物理\化学性能.就是价格太高!!!常用牌号:QBe2\QBe1.5\QBe1.7等.

谁创造了“合成金属”这个术语?

2019-03-04 10:21:10

掺杂共聚合物,以及其他具有金属导电性的有机材料,一般称为组成金属。这个名词经过Alan Mac Diarmid“组成金属:有机聚合物的新式效果”为人们所熟知。该术语也能够在专门介绍这些材料的Elsevier杂志和世界组成金属科学技能会议上看到。“组成金属”这个术语运用的时刻现已满足长,所以很少有人质疑它的来源。因而,回忆一下这一术语的来源前史是有必要的。 人们以为靠前次运用这个术语是Alfred Ubbelohde在1969年开端的。在Weinberg的关于Ubbelohde的列传中能够找到一个明显的案例:“Ubbelohde发明了诱人的表达”组成金属,是包含金属传导材料发明的,但这些材料又完全由非金属原子如碳、氮、氢、卤素和氧组成的。但事实上,这个术语的呈现早于Ubbelohde,这能够在1911年的Herbert Mc Coy的着作中找到。 Herbert Newby Mc Coy(1870-1945)于1898年在芝加哥大学取得博士学位,并在前往工厂之前具有犹他州和芝加哥的职位。虽然他为人所熟知的是稀土化学专业的研讨,但也被以为是经过电解(CH3)4N+盐在1911年靠前位制备有机金属的人。这可追溯到1808年关于合金的报导,McCoy以为复原铵能够显现类似于的金属性质。 运用电极,电解发生类似于钠齐的具有金属光泽的固体。虽然不是很安稳,但被确以为是具有金属导电性的铵自由基的齐。Mc Coy总结道:“效果刚被检查过,虽然数量很少,但很有或许制备复合金属物质,就是称为组成金属的物质,而且这些组成元素中至少一部分对错金属的。”1986年,Bard和搭档以为,这些产品实际上是由复原NH4+(Hg4-)发生的的Zintl离子盐。因而,这些不是较初以为的有机金属,而似乎是“组成金属”的来源。该术语随后在文献中不再运用,直到1969年Ubbelohde运用它描绘插层石墨时再次呈现。 Alfred Rene Ubbelohde(1907-1988)1941年被牛津大学颁发D.Sc. 学位,之后在皇后大学和帝国学院担任学术职位,他的研讨生计触及一系列科研方向,包含石墨和插层化合物,金属氢,相变材料和离子熔体。Ubbelohde报导的嵌入石墨显现出高达2.5×105Scm-1的电导率,因而成为供给金属有机物质的靠前实例。他在1951年初次描绘这些材料,但直到1969年才将它们描绘为组成金属。1969年的论文中报导的电导率明显高于他曾经的陈述,这或许是为什么他会用这个术语来描绘这些后来的材料的原因。不管什么原因,这个词之后成为他的着作中的干流,这导致了人们信任是他发起了这个词。 那么,到底是Ubbelohde独立开发了“组成金属”这一词,仍是在Mc Coy的作业中学到了它,并简略地将它应用于自己的作业。这个问题是不或许有定论的,虽然Ubbelohde的列传能够供给一些头绪,可是需求留意的是,Ubbelohde从来没有宣称这个术语是他自己的,他也从不界说这个术语。他总是运用这个术语,就好像它是一个已知的术语,不需求解说。例如,他在1969年靠前篇论文中靠前句话说到:“跟着出产近抱负石墨的办法的开展和操控逐步形成插层化合物的办法的改善研讨,这些组成金属中电荷载流子行为的改变是有或许的,会比研讨天然金属的可运用性的状况愈加具体。” 这个术语没有被解说,他也没有供给参阅内容。虽然Mc Coy从未被提及,但应该留意的是,Ubbelohde在1951年宣布了2篇关于铵齐的论文,这与Mc Coy的组成金属原文是相同的论题,因而他了解Mc Coy的作业似乎是合理的。虽然这不能被证明,笔者以为,Ubbelohde是从Mc Coy那学习到这个术语的,而且没有独登时开展它。假如这个说法是正确的,那Ubbelohde从未参阅或供认Mc Coy的原因将依然是一个令人困惑的奥妙。 在20世纪70年代初,发现了别的的金属材料,包含有机电荷转移盐、金属链化合物和聚硫氮化物。因为这项研讨覆盖了一系列科学和地舆学科,1976年的夏天在匈牙利的希奥福克举办了一个研讨会,将这些跨学科研讨人员集合在一起。从此发生了一个长时间的世界会议,即世界组成金属科学和技能会议,一般称为ICSM。该会议自1976——1982年每年举办一次,1982年后每2年举办一次。 1976年11月,研讨人员发现经过掺杂聚薄膜能够得到高导电性材料,Mac Diarmid、Heeger和Shirakawa初次在纽约市的第二届ICSM会议上陈述了这一研讨。这一研讨结果随后呈现在1977年底的文献中,然后扩展了组成金属的规模,即包含掺杂的聚。虽然该术语并未用于原始的聚论文中,但Mac Diarmid在1979年的谈论文章中界说了组成金属是衍生于自聚硫氮化物,聚和石墨的金属化合物。跟着导电聚合物的持续开展,该术语在1991年得到进一步延伸,包含掺杂聚合物,如聚对、聚亚基亚乙烯、聚、聚和聚。 到1979年10月,一份新的Elsevier杂志被推出,专门报导这些材料,名为组成金属。到目前为止,这依然是的有机导电材料杂志。 组成金属的前史能够追溯到比一般以为的愈加长远。此外,因为咱们的导电材料概念在曩昔50多年中也发生了改变,因而“组成金属”这一术语所代表的材料自从初次运用以来也发生了改变。但是,在所有状况下,这些材料都契合Mc Coy较早在1911年提出的组成金属是用来表明“复合金属物质从组成元素来看,其间至少部分元素对错金属的”这一观念。

铂金合成方法

2019-03-06 10:10:51

1.工业上出产铂可用铂矿经干法制作;亦能够铜、镍的硫化矿制取铜、镍的出产进程中生成副产物作为质料,经湿法冶炼制得。湿法在已提取镍、铜的残留组分中参加进行抽提,过滤,向滤液中参加氯化铵进行反响,生成铵沉积,过滤,把铵加热分化,制得约99.99%铂制品。或许将铵溶液参加电解槽中,在槽电压约1.5V、电流密度为2~3 A/cm3的情况下进行电解,制得约99.98%铂制品。 超细铂粉制法:用溶解海绵铂得溶液。调理溶液酸度,参加分散剂和还原剂,加热并拌和、再静置冷却、洗刷和烘干即得超细铂粉。 2.将薄屑或海绵状铂置于玻璃或瓷质器皿中,用高纯溶解。取出(或倾泌出)溶液放在蒸腾皿顶用小火当心蒸腾。将浓缩物溶于和热水后用很多水稀释,并加热至80℃。加碳酸钠使呈弱小碱性。通入少数Cl2,使或许存在的IrO2沉积。开始构成的胶状沉积很快凝结成黑色絮状沉积,它在橙红色溶液中敏捷沉降。参加少数乙醇可明显增加沉降速度。中和溶液时,溶液愈挨近中性(pH值不能小于7),吖氧化物别离得愈彻底。 关于其他铂系金属、金和重金属,可参加次氯酸盐使它们生成氧化物沉积。专一能溶于过量次氯酸盐中的是黑色RuO2,它随即转变成挥发性的RuO4。滤出的含铂溶液在烧杯中加热,参加NH4Cl,分出(NH4)2PtCl6沉积。过滤,用蒸馏水煮沸萃取,以溶解或许含有的少数(NH4)2PdCl6。 灼烧后得到的纯铂不含其他铂系金属、金和重金属。若其间仍含千(或万)分之几的铱,可重复上述纯化进程。

合成法生产二硫化钼

2019-02-12 10:08:00

所谓合成法,是损坏钼精矿里辉钼矿的结构和组成,经从头组合、结晶生成人工晶格二硫化钼。     明显,合成法里的钼阅历了Mo4+→Mo6+→Mo4+的两次氧化复原反响,经过了由辉钼矿转化生成钼酸铵或高纯三氧化钼到三硫化钼等中间产品,终究从头转化成人工合成的辉钼矿的一系列物相转化(图1、图2)。工艺以辉钼矿为目标,从钼的物相转变来除杂。常见的出产实践如下:   图1  合成法(一)出产流程   图2  全成法(二)出产流程       1、湿法硫化工艺     该工艺经钼酸铵、三硫化钼中间产品,选用H2S作钼酸铵的硫化剂来出产高纯二硫化钼。     出产钼酸铵的工艺许多,只需获高纯钼酸铵溶液,选用哪种办法都行。     此工艺出产、净化钼酸铵的进程已在第二节作过介绍,经净化后的钼酸铵溶液不经结晶、分出,直接通入气体进行硫化。很多H2S的通入,溶液中将发作如下反响:   (NH4)2MoO4+3H2S=MoS3↓+2NH3↑+4H2O       根据Б.B.涅克拉索夫(Hexpacos)论说,反响机理是:首要,钼酸铵溶液通入H2S后发作硫逐一替代氧的一系列中间反响:  (NH4)2Mo+H2S(NH4)4MoSO3+H2S(NH4)2MoS3O→→+H2S(NH4)MoS3O→(NH4)2MoS4 →+H2S     [next] 这一系列硫代钼酸铵均可溶于水而无法分出。反响后,再对溶液酸化,将发作如下反响,生成沉积:  (NH4)2MoS4+2H+→2NH+4 +H2MoS4     酸分化      MoS3↓H2S↑     终究发生MoS3的深褐色沉积。将MoS3热解可产MoS2:  MoS3△MoS2+S↑=       工业实践中,要留意阻隔空气,尤其是氧气。不然即便进入了极少量的氧气,也会发作如下反响:   2MoS3+9O2=2MoO3+6SO2↑       工业实践中还须留意,焙烧进程要尽量能使S得到充沛提高,不然,游离硫与三氧化钼混入二硫化钼后,将会大大添加产品酸值、阻碍其使用。     2、火法(焙烧)硫化工艺     该工艺从钼精矿作质料,先制成高纯三氧化钼,高纯三氧化钼与硫化钙在焙烧中反响,硫化是本工艺特色。出产高纯三氧化钼的进程也已在第四节作过介绍。MoO3与CaS反响如下:  MoO3+3CaS△MoS3+3CaO=       在发生此置换反响的一起,MoS3也会发生自氧化复原反响。焙烧完毕后,可通过水溶别离出CaO,碱溶或酸溶以脱除未充沛反响,残留的MoO3或CaS。但MoS3因自氧化复原反响所应留意的事项要求相同。     综上所述,合成法可在钼的物相转化进程里最大极限脱除杂质,出产出MoS2纯度很高的产品。可是,它也存在着以下的几点缺乏:     (1)工艺冗长、钼回收率低、加工费高、本钱高。     (2)三硫化钼自氧化复原后,产品往往呈现游离硫和三氧化钼。而这些物质是二硫化钼的主杂质,对使用影响很大。     (3)普遍认为,人工晶格的二硫化钼,不如天然晶格二硫化钼的光滑性能好。

纳米钛白粉的制备方法---水热合成法

2019-01-25 15:50:14

近年来,将微波技术和超临界技术、电极埋弧等新技术引入水热法,合成一系列纳米级陶瓷粉体,使水热法成为最有前景的纳米TiO2合成技术之一。其基本操作是:在内衬耐腐蚀材料的密闭高压釜中,加入纳米TiO2的前体(充填度为60%~80%),按一定的升温速度加热,待高压釜达到所需的温度值,恒温一段时间,卸压后经洗涤、干燥即可得到纳米级的TiO2。水热法为TiO2前体的反应、溶解、结晶提供了一种特殊的物理和化学环境。水热法制备的纳米TiO2粉体具有晶粒发育完整中、原始粒径小、分布均匀、颗粒团聚较少的特点。特别是用水热法制备纳米TiO2,有可能避免为了得到金红厂型TiO2而要经历的高温煅烧,从而效地控制了纳米TiO2微粒间团聚和晶粒长大。水热法合成纳米TiO2的关键问题是设备要经历高温、高压,因而对材质和安全要求较严,而且成本较高。

浅谈白炭黑合成工艺研究进展

2019-03-07 09:03:45

白炭黑是白色粉末状无定形硅酸和硅酸盐产品的总称,主要是指堆积二氧化硅、 气相二氧化硅、超细二氧化硅凝胶和白炭黑气凝胶,也包含组成硅酸铝和硅酸钙等。 1、白炭黑用处 白炭黑的用处较广,在橡胶组成中的补强剂,组成油类、油漆的退光剂,绝缘漆的调合剂,电子元件包封材料的触变剂,荧光粉的堆积剂,彩印胶板填充剂,铸造的脱模剂等有广泛的用处。自炭黑在聚乙烯等塑猜中都可作为填充材料,在电缆上可显着进步电缆的电绝缘性;在纸张上作为胶剂可增加纸张的白度和不通明度,改善其力学功能及观赏性:在农业化学制品的制作中,运用白炭黑作载体或稀稀释剂增加至农药、高效喷施肥猜中,因其具有高吸附力、易于悬浮、杰出的亲和性及化学稳定性然后坚持产品效能耐久。 2、白炭黑组成工艺 白炭黑出产办法主要有堆积法和气相法,气相法白炭黑常态下为白色无定形絮状半通明固体胶状纳米粒子(粒径小于100nm),但制备工艺杂乱, 产品报价昂贵;堆积法有传统堆积法和特殊堆积法,前者是指以硫酸、、CO:与水玻璃为根本质料出产的白炭黑,后者是指选用超重力技能、溶胶一凝胶法、化学晶体法、二次结晶法或反相胶束微乳液法等特殊办法出产的白炭黑。 2.1 气相法 我国从2O世纪60年代开端小规模出产气相白炭黑。2 0 02年前国内仅有3家公司出产气相白炭黑,其间两家所用质料均为;别的一家在国内初次完成使用有机硅副产物出产气相白炭黑, 俗称“纳米白炭黑”。 化学气相堆积(CAV) 法(简称气相法),又称热解法、干法或焚烧法, 其质料一般为硅氧烷、 、六乙基硅氧烷、氧气(或空气)和,高温下反响而成。 空气和别离经过加压、别离、冷却脱水、硅胶枯燥、除尘过滤后送人组成水解炉,将质料送至精馏塔精馏后,在蒸腾器中加热蒸腾,并以枯燥、过滤后的空气为载体,送至组成水解炉,在高温下气化(火焰温度1000—1800℃) 后, 与必定量的氢和氧(或空气)在1800℃左右的高温下进行气相水解;此刻生成的气相二氧化硅颗粒极细,与气体构成气溶胶,不易捕集,故使其先在集合器中集合成较大颗粒,然后经旋风别离器搜集,再送入脱酸炉,用含空气吹洗气相二氧化硅至 pH值为4—6即为制品。 2.2 堆积法 现在工业上遍及选用的是堆积法,其工艺道路大体上是:在必定温度下经过石英(砂) 与反响制得工业水 玻璃配制成稀溶液 ,然后在必定条件下使二氧化硅堆积出来,再经清洗、过滤、枯燥、破坏, 制得产品白炭黑。堆积法有多种办法,国内以酸法为主 。 2.2.1 酸法 酸法是将可溶性硅酸盐与硫酸或其他酸反响,当反响到达某一 pH值时中止加酸,陈化、过滤、洗刷,脱除N%S O后,送枯燥、 破坏后得到产品。 酸法制备白炭黑的工艺流程示意图 酸法中的关键步骤是加酸进程,需求一起处理几个参数之间的联系。从反响进程物质改变能够看出,产品的功能与工艺操控条件有关。可溶性的硅酸盐首要改变成为单体硅酸,一部分持续生成疏松的絮状物(集合作用),另一部分生成细密的胶粒(凝胶作用)。 2.2.2 碳化法 碳化法出产白炭黑是选用二氧化碳与可溶性硅酸盐溶液反响生成含水固体 SiO 2 后过滤、枯燥 、破坏 、包装 。 碳化法制备白炭黑工艺流程示意图 此工艺硅酸钠转化率较低,一般需增加过滤设备,能够收回副产物纯碱降低成本。表面活性剂对白炭黑的功能也有影响,选用聚乙二醇(6ooo)作为表面活性剂应用于碳化法制白炭黑的工艺中作用比较好。 喷雾碳化法新工艺,是以含CO混合气体和水玻璃为质料,选用 喷雾碳化 、全自动压榨厢式压滤机、旋转闪蒸枯燥等先进工艺及设备制取活性(或通明级)白炭黑,该工艺具有气 一液触摸面积大、反响速度快、出产成本低、连续出产、劳动强度小、产品质量好、视比容大、密闭性好、热效率高、节能节电显着、环境效益及经济效益显着等特色。 2.2 .3 矿藏解离法及其他新工艺 非金属矿作为质料制取白炭黑的有硅藻土、蛋白土、蛇纹石、艟,润土 、高岭土 、硅灰石 、石英砂 、海泡石、凹凸棒石 、粉煤灰 、锆 英石 、煤矸石、矿等 。 文献报导使用非金属矿制取白炭黑的研讨结果表明其经济技能性可行,为其资源化使用供给一条新的途径 。 3、定论 (1)白炭黑的用处很广 ,且不同产品有不同的用处。怎么选用更简略、更经济的办法来出产与制备白炭黑是现在急需解决的。 (2)使用工业废渣(如炉渣)制备白炭黑需进行系统研讨,开宣布一条技能、经济可行的工艺 。

用金尾矿合成赛隆族材料

2019-01-24 09:37:13

尾矿是矿山工业开采后的废弃物。当前尾矿处理存在很多问题:占用大量土地,造成巨大矿产资源浪费,严重影响生态环境。尾矿的二次利用过程中,也存在高附加值产品少、缺少市场竞争力的弊端。金矿尾矿是复杂的难处理资源,其对环境的污染十分突出,排放量又十分巨大,我国仅河南灵宝市黄金集团总公司一家目前就已堆存金尾矿1500多万t。因此,研究金金尾矿的综合利用工艺技术,对于充分合理地开发和利用矿产资源具有重要意义。     赛隆资料(SiAlON)是一种以Si3N4为基,由Si、Al、O、N形成的固溶体,具有良好的高温抗氧化性、耐热冲击性和抗侵蚀性,使用前景广阔。Ca-α-SiAlON是固溶碱土金属的五元系赛隆族材料,拥有高硬度、良好的耐磨性和耐侵蚀性等独特性能。本研究探讨以灵宝金尾矿为主要原料,利用碳热还原氮化方法合成Ca-α-SiAlON/SiC粉体,以期获得高附加值的金尾矿产品,从而为金尾矿的高效综合利用开辟一条可行的途径。     一、实验原理     J.W.T.Van Rutten等人1995年曾经在CaO或CaSiO3、SiO2和Al2O3原料体系中配入碳粉,通过碳热还原氮化法合成Ca-α-SiAlON的反应机理进行了研究,后来人们普遍接受了他们的理论解释。他们发现:Ca-α-SiAlON的生成温度为1450℃以上。在1500℃下保温65h,可进一步合成单相Ca-α-SiAlON;在1350℃下,主要的产物是SiO2和Si2N2O;1450℃时,主要得到α-SiAlON和β-SiAlON;温度高于1650℃时,主要的产物是SiC,而不是Ca-α-SiAlON。研究指出,整个反应过程可以概括为两步:     (一)形成低Z值的β-SiAlON: 4.6SiO2+0.7Al2O3+9.9C=Si4.6Al1.4O1.4N6.6(1)     (二)固溶Ca和更多的N: 0.8CaO+2Si4.6Al1.4O1.4N6.6+2.4C+0.8N2=Ca0.8Si9.2Al2.8O1.2N14.8(2)     二、实验原料     实验主要原料为河南灵宝金矿尾矿,配入适量硅砂和分析纯CaO调整原料组分。灵宝金尾矿和硅砂的化学组成如表1所示。 表1  灵宝金尾矿和硅砂的化学组成  %原 料成分含量SiO2Al2O3CaOK2ONa2OFe2O3烧 损金尾矿49.0216.8913.683.853.0813.481.57硅  砂99.300.180.200.150.17       三、实验方法    将尾矿、硅砂、分析纯CaO和活性炭以无水乙醇为介质在氧化铝球磨罐中湿混24h,料浆入烘箱,在60℃下充分干燥后,再在氧化铝球磨罐中干混4h,确保原料充分混匀,然后在40MPa压力下压成型。素坯采用BN埋粉,置于氮气炉中进行常压烧结,高纯氮气(含N2量>99.999%)流量控制在1.0L/min。烧成后的试样于800℃空气气氛中恒温6h,除去残余游离碳。样品制成后,利用X射线衍射(XRD)分析其物相组成,利用电子扫描显微镜(SEM)观察其形貌。     本研究固定硅砂的加入量为SiO2满足化学计量、活性炭的加入量为理论配碳量的1.3倍、烧结保温时间为5h,着重考察CaO掺量和温度这两个因素对合成Ca-α-SiAlON的影响。以Ca0.8Si9.2Al2.8O1.2N14.8为基准。可算出按化学计量时原料中CaO 掺量应为4.2%,本实验研究CaO按化计量掺入(4.2%)和过量掺入(6.3%)时,在5个不同级别高温下的反应情况。二因素五水平正交优化实验方案如表2所示。 表2  二因素五水平正交优化实验方案实验号烧结温度/℃CaO掺量/%1 2 3 4 5 6 7 8 9 101350 1350 1450 1450 1500 1500 1550 1550 1600 16004.2 6.3 4.3 6.3 4.3 6.3 4.3 6.3 4.3 6.3     四、实验结果与讨论     (一)CaO掺量对生成产物的影响     在以往制备α-SiAlON的过程中,常选择稀土添加剂作为烧结助剂。以CaO作为烧结助剂,较稀土添加剂便宜,应用前景更为广阔。CaO含量对生成产物有重要影响。在可以生成Ca-α-SiAlON的温度区域内,不同实验条件下生成产物的物相分析结果见表3。表中生成产物中的Ca-α-SiAlON和SiC两物相的质量分数比WCa-α-SiAlON/WSic由下式计算:   (3)     式中Iα(102),Iα(210)分别为Ca-α-SiAlON在(102)和(210)面的X射线衍射峰积分强度;Isic(111),Isic(111)为SiC在(111)和(220)面的X射线衍射峰积分强度。 表3  实验条件与产物物相分析结果产物号温度/℃CaO掺量/%主要物相WCa-α-SiAlON/WSic1 2 3 4 5 6 7 8 9 101350 1350 1450 1450 1500 1500 1550 1550 1600 16004.2 6.3 4.2 6.3 4.2 6.3 4.2 6.3 4.2 6.3C,玻璃相 C,玻璃相 C,SiC,玻璃相 C,SiC,玻璃相 Ca-α-SiAlON,SiC Ca-α-SiAlON,SiC Ca-α-SiAlON,SiC Ca-α-SiAlON,SiC Ca-α-SiAlON,SiC Ca-α-SiAlON,SiC0 0 0 0 0.35 0.68 0.66 0.97 2.58 1.05     实验结果表明:烧结温度为1350℃、1450℃时,没有生成Ca-α-SiAlON相;1500℃下,CaO掺量为化学计量(4.2%)和6.3%时,生成了少量Ca-α-SiAlON相;1550℃下,随CaO掺量升高,产物中Ca-α-SiAlON含量增加,SiC含量相对减少;1600℃下,在CaO的化学计量点(4.2%)生成了最多的Ca-α-SiAlON,而CaO掺量为6.3%时Ca-α-SiAlON比便减小。由此可知,CaO过量加入时,温度的升高对Ca-α-SiAlON相对比例的影响减弱(1550℃时为0.97,1600℃时为1.05)。但在较高合成温度时,CaO的过量加入又会减少Ca-α-SiAlON在产物中的比例。所以合成过程中一定要综合考虑温度和CaO加入量两个条件。这也难了J.W.T.Van Rutten等人的理论,即温度较低时,只有CaO过量才能有更多的Ca固溶到物相中形成Ca-α-SiAlON,而反过来,CaO过量加入,Ca2+更多地固溶到物相中,又使得在较低温度时就形成了Ca-α-SiAlON。温度较高时,Ca2+活度增加,更易固溶到物相中,此时如果过量加入CaO,Ca2+将更多地进入硅氧四面体形成较为稳定的硅酸盐网络织构,减少O2-进入[SiN4]8-四面体的机会,因而不易生成Ca-α-SiAlON。     (二)温度对生成产物的影响     Ca-α-SiAlON的理论生成温度是1450℃。1350℃时实验产物中大多是残存的游离炭和玻璃相,而没有发现Ca-α-SiAlON相,说明低温时很难发生生成Ca-α-SiAlON的反应。图1是CaO掺量为化学计量(4.2%)时,不同温度下生成产物的XRD图谱。    图1  CaO掺量为4.2%时不同温度下制得样品的XRD图谱 ▲-C;◆-β-SiC;□-α-Si2N4;■-β-Si3N4;●-Ca-α-SiAlON(因故图表不清,需要者可来电免费索取)     通过对比不同温度下生成产物的XRD图谱,可归纳出Ca-α-SiAlON的生成随温度升高经历以下过程:     1、在1350℃下几乎没有发生氧化物的碳热还原,产物主要为未反应的碳粉及玻璃相。图1(a)中显示了玻璃衍射形成的散射峰,说明在此温度附近主要是发生液相产生过程。     2、1450℃时,SiO2开始碳热还原反应,生成SiC相。此时氮化过程尚未发生,主要产物为SiC,并且XRD图谱中显示仍有散射峰。虽然理论上1450℃即可生成Ca-α-SiAlON,但对于实验中的高杂质含量复杂原料体系,此温度下尚不能产生SiAlON相,还需要更高的反应温度。     3、1500℃时,氮化过程开始,生成产物的主要物相为SiC、α-Si3N4和β-Si3N4。高温下,高杂质含量的原料体系比低杂质含量的原料体系产生更多的液相,而在大量液相存在的情况下,Al3+离子更容易与Si-O四面体中的Si4+互换而进入四面体形成稳定结构,只有反应温度足够高时,Al3+才能获得中够能量从Si-O骨架中解脱出来,与Si、O、N重新结合形成SiAlON。     4、到1550℃时,、α-Si3N4和β-Si3N4逐渐消失,产生了少量的Ca-α-SiAlON,产物的物相为Ca-α-SiAlON和SiC,其中SiC为主要物相。     5、1660℃时,体系中SiC的量相对减少,Ca-α-SiAlON量明显增加,此时生成产物的物相为Ca-α-SiAlON和SiC,且Ca-α-SiAlON占居主导地位。     综上所述,随着温度升高,反应产物依次为SiC、α-Si3N4、β-Si3N4和Ca-α-SiAlON。在1600℃时,Ca-α-SiAlON大量生成而α-Si3N4和β-Si3N4消失,说明α-Si3N4和β-Si3N4仅是反应过程中的中间产物。     (三)合成Ca-α-SiAlON的工艺条件选择     CaO掺量为化学计量(4.2%)、烧结温度为1600℃时,所获得产物(表3所列9号产物)WCa-α-SiAlON/WSic值最高,由式(3),可算出该产物结晶相中Ca-α-SiAlON的相对含量达到72%。对该产物进行了电子显微扫描,以确认Ca-α-SiAlON的形貌,结果见图2。    图2  9号产物的SEM照片  (因故图表不清,需要者可来电免费索取)     显微扫描结果显示,9号产物主要以柱状晶体貌存在。而图1(e)XRD分析结果表明,此时主晶相为Ca-α-SiAlON,因此可推断柱状晶为Ca-α-SiAlON相。根据晶体结构理论,α-SiAlON的基体α-Si3N4的晶胞参数c/a=0.38,在烧结过程中,c轴方向为它的择优生长方向,所以产物主要为柱状晶。温度再升高,如J.W.T.Van Rutten等人所指出的,主要产物将是SiC,而不是Ca-α-SiAlON。据此,确定9号产物所对应的工艺条件为合成Ca-α-SiAlON/SiC的适宜条件。     五、结论     (一)一定温度范围内,升高温度有利于合成Ca-α-SiAlON相。随反应温度升高,反应产物依次是SiC、α-Si3N4、β-Si3N4和Ca-α-SiAlON,α-Si3N4、β-Si3N4和SiC是合成Ca-α-SiAlON的中间产物。     (二)对于本原料体系,合成Ca-α-SiAlON的适宜条件为烧结温度1600℃,保温5h,CaO按化学计量(4.2%)配入。生成产物以Ca-α-SiAlON为主,有少量SiC,Ca-α-SiAlON的形貌为柱六晶。

卤水合成镁氧反应条件的确定

2019-01-21 18:04:35

一、前言 镁氧(MgO)是重要的耐火原料,可以广泛应用于冶金、建筑、化工等行业。镁氧的制取有多种途径,重质镁氧是煅烧菱镁矿和白云石、硫酸镁热分解以及氯化镁水解而制得。以卤水石灰为原料,从溶液中沉淀出氢氧化镁,然后进行热处理可以制得具有不同活性的镁氧。从理论上讲,卤水合成氧化镁,由于反应产物Mg(OH)2的溶解度远小于Ca(OH)2,反应Mg2++Ca(OH)2=Ca2++Mg(OH)2↓在一般条件下理应进行得比较容易和充分,而在实际生产过程中,要想制得品质优良、能耗较低、工艺流畅的镁氧产品却并非易事,会受到多种因素的制约,其反应条件需要我们通过试验和研究逐一加以确定。 二、反应条件的确定 (一)卤水中SO42-的去除 从测得的卤水试样成份看:Mg2+=1.97mol/L≈2mol/L,SO42-=0.607mol/L≈0.6mol/L,卤水中SO42-的含量远高于海水。由于KspCaSO4=9.1×10-6(25℃),较低。因此,当向卤水中直接加入Ca(OH)2时,势必在Mg(OH)2析出的同时伴随有CaSO4沉淀的产生。实验证明,用不去除SO42-的卤水直接与灰乳反应制得的Mg(OH)2含40%的CaSO4,制得的MgO产品含30%的CaO。 去除卤水中SO42-的办法是向卤水中预先加入CaCl2溶液,使之形成CaSO4沉淀而除去。CaCl2溶液为后道反应过程所产生的母液,母液中CaCl2的浓度视卤水中的Mg2+、SO42-的含量以及沉淀的反应时所加灰乳浓度而定,本着有效去除SO42-,减少工艺流程液体处理量,在实际许可的范围内应尽量使母液中CaCl2的浓度高一点。这里我们可获得的母液CaCl2含量在0.8mol/L~1mol/L。 反应SO42-+CaCl2(母液)→CaSO4↓+2Cl-的当量点视最后加入的CaCl2不再使卤液产生沉淀为准,再适当过量一点。关键的问题是若不严格控制CaCl2的加料速度,沉淀物的沉降速度将很缓慢,难与母液分离。我们在不同的时间内向一定量卤水中加入CaCl2溶液,测定各沉淀的沉降速度,结果如表1。 表1  CaCl2的加料速度与CaSO4沉降速度的关系由表1可看出,只要将CaCl2的加料时间控制在30min左右,就会获得沉降性能较好的粘连晶簇的石膏沉淀。 (二)反应终点的确定 准确确定石灰卤水合成Mg(OH)2反应的当量点对于提高产品的质量,改善料浆的物理性能具有非常重要的意义,为了消除实际操作过程中难以避免的计量误差,我们采用pH值显示的方法确定反应终点。 准确称取NaOH、CaCl2,配制1mol/L的灰乳,将此灰乳按量分批加入一定量去SO42-卤水中(Mg2+=1mol/L),控制一定的加料速度和搅拌速度,使其充分反应,记录反应溶液pH值的变化,结果如表2、图1。 表2  反应液pH值随反应进程的变化图1  反应溶液PH值随反应进程的变化 由图1可看出,反应初期PH几乎维持在9.80,这是因为加入的石灰乳全部消耗在Mg(OH)2的形成上,当反应接近等当点时(PH=10.46),Mg2+与石灰反应基本完全,若再加入少量灰乳出现PH的突变,沉淀过程的PH变化反映了反应的进程,因此我们可以根据PH来确定反应的终点,此处的反应终点为10.46,实际上为了保证产品的纯度,避免出现不完全反应,我们一般将PH控制在10.4左右。 (三)反应程序的确定 所谓反应程序,这里主要是指反应的操作程序。反应的操作程序的不同,直接影响产物的颗粒大小,从而影响Mg(OH)2料浆的沉降和过滤性能,不适当的反应程序所产生的Mg(OH)2呈胶状物,结晶非常细小(小于1μm),比表面积大,沉降过滤性能差。对这一问题的解决,已经成为工艺过程最为关键的技术之一。目前解决的办法,主要有两个:一是让反应处于浓CaCl2介质中,从而减缓反应的速度,促使产物颗粒长大;二是通过晶种回输的办法使得Mg(OH)2颗粒不断长大,但这种工艺目前在国外只适用于含镁量低的海水的提镁过程,卤水提镁过程使用该法没有先例。我们通过制定特定的反应程序,成功地将晶种法运用到这一过程,取得了非常理想的效果。具体研究结果将在今后的文章中作详细介绍。 (四)灰乳浓度、加料速度及反应搅拌速度的确定 如上所述,反应程序的设计对产物的沉降、过滤性能具有重要的影响,而温度、灰乳浓度、加料及搅拌速度、反应时间、C/M等同样对反应的进程、反应产物的品质及物理性能具有重要的作用。考虑从实际出发,反应只能在常温条件下(25℃左右)进行,从理论上讲,该反应的反应速度是很快的,反应时间这项指标,实际上是与灰乳的加料速度联系在一起的,关于C/M主要取决于反应终点,已确定为PH=10.4。因此,我们这里仅仅需要确定的是:灰乳浓度、灰乳的加料速度,以及反应的搅拌速度。 试验方案按正交表L9(34)进行设计,选定因素及水平见表3。试验共进行9次,每次试验均取等量的相同晶种,置于1L烧杯中,采用晶种法将含1mol/LMg2+的去SO42-卤水与灰乳连续反应四次,各次反应结束后倾出1/4浆料,控制PH=10.4,最后测定浆液沉降速度、过滤系数K及其产品纯度,再按正交试验法计算规则进行数据处理、绘图及分析。(如图2)。图2  沉淀反应各因素对技术指标的影响 试验结果显示,无论是从料浆的沉降、过滤性能看,还是从产品的纯度看,均以A1、B1、C3条件为最佳,即:灰乳浓度取0.5mol/L、灰乳加料速度取8mL/min,搅拌速度取200r/min。但仔细分析一下,当转速在150r/min~200r/min范围内变化时,对三项指标的影响均不很大,因此,搅拌速度可控制在150r/min~200r/min之间任一数值。关于灰乳的浓度,若取0.5mol/L,虽然有利于促进反应的转化,提高产品的纯度,但是,反应终了母液中Ca2+含量太低,用来去除卤水中的SO42-,所需的母液量势必增大。整个过程所需处理的溶液量增加,反应容器变大。由图2看出,灰乳浓度若取1.2mol/L,料浆K值及产品纯度并无较大变化,而反应母液中Ca2+达0.7mol/L~0.8mol/L。 表3  沉淀反应条件试验因素水平表综上所述,较为合理的灰乳浓度:1mol/L~1.2mol/L,灰乳加料速度:8mol/min、搅拌速度:150r/min~200r/min 三、结语 文章系统分析了石灰-卤水法提取镁氧产品反应过程的几个主要影响因素,通过试验和研究反应的几个主要条件,加以逐一确定,从而保证了在实际生产过程中,使产品品质更优良,能耗更低,工艺更简洁、更流畅、更合理。对综合开发沿海卤水资源具有重要的现实意义,最终的反应条件是:反应终点定为PH=10.4;灰乳的浓度:1mol/L~1.2mol/L,灰乳加料速度:8mL/min;搅拌速度:150r/min~200r/min,反应运用晶种法提高产物的沉降过滤性能;在卤水去SO42-过程中,CaCl2的加料时间定为30min。

酞莆钴脱硫催化剂合成方法

2019-03-14 10:38:21

本发明归于化工组成办法$将4水磺酸铵,均本四二酐,工业尿素,6水氯化钴和钼酸铵以100∶10∶90∶21∶7∶2的分量比混合均匀,放于铁锅中熔融均匀,发泡并成兰色后,移于250℃的高温炉中枯燥2小时,得松脆、多孔、易溶于水的兰色产品。$该产品适用于天然气、组成气、焦炉气、裂解气、煤气及汽油、含硫化物废水等需求脱出无机硫和有机硫的工业。

有机铬的合成及其产品质量评价

2019-02-14 10:39:39

摘 要 三价铬离子是构成葡萄糖耐量因子的重要组成部分,可以增强胰岛素的作用,是人和动物不行短少的微量元素之一。有机铬化合物在生物机体中具有多种极其重要的活性功用,假如人体缺铬,将导致糖尿病和其它相关疾病;动物缺铬,则会导致对应激灵敏、免疫功用受按捺、繁衍功用下降以及胴体质量下降等。本文总述了有机铬化合物的生物功用及其组成办法,介绍了产品的检测及质量点评办法,并对其发展远景做了必定的展望。    关键词 饲料添加剂;有机铬;生物功用;组成;质量点评    中图分类号 S816.72     Schwarz和Mertz在啤酒酵母中发现一种新的养分素——葡萄糖耐量因子(Glucose Tolerance Factor,简称GTF),后来又判定出GTF为含有烟酸、甘酸、谷酸、半胱酸的三价有机铬合作物。GTF作为铬的活性方式,具有增强胰岛素活性的作用。家禽集约化饲养中,动物的养分应激、环境应激、免疫应激和代谢应激等可导致动物糖代谢、矿物质代谢发作一系列改动,引起糖原降解和糖异生作用加强,葡萄糖运用的加强导致铬发动添加并终究排出体外。动物假如缺少铬,会发作葡萄糖、脂质和蛋白质代谢妨碍。对应激动物弥补铬,可添加免疫力,改善内分泌,削减发病率和进步出产功用。    铬盐一般分为三价铬盐和六价铬盐,以及有机铬盐和无机铬盐。六价铬毒性较大,三价铬毒性较小,但在现在饲料法规则条件下,在畜禽饲猜中添加无机铬是不答应的。而的三价铬盐是无毒的,可用于饲料的添加。在的三价铬盐中,2-的三价铬盐(俗称有机铬)是最常用的饲料添加剂。现在国际上作为饲料抗应激添加剂的有机铬首要为GTF组成相相似的合作物,如烟酸铬、酵母铬、铬、基酸螯合铬和蛋白质铬等。无机铬的吸收率很低,约0.4%~3%或更低(杨凤,1991),六价铬比三价铬易吸收,一般要高3~5倍(张乔,1994);有机铬的吸收率相对较高,例如畜禽对啤酒酵母中的铬-葡萄糖耐量因子(GTF)的吸收率高达10%~25%。    β-兴奋剂曾在我国的养猪业中运用,它可使生猪臀腿肌肉发达饱满,背脂厚度下降,瘦肉率进步。但是,添加β-兴奋剂后,易发作后肢腿软、肌肉震颤、心跳加速、不耐受运送应激,乃至有的宰后呈现苍白、柔软、渗水猪肉或干、硬黑猪肉。因为β-兴奋剂在猪肉中残留,人食用后可呈现不同程度的中毒现象,症状包含心悸、肌哆嗦、头昏、吐逆、出汗等。鉴于这种情况,不少西方国家已制止在动物出产中运用β-兴奋剂,现在我国农业部也已明令制止运用。有机铬是β-兴奋剂的抱负替代品。[next]    铬的首要生理作用是经过强化胰岛素功用而影响碳水化合物、脂类及蛋白质的代谢。近年来的研讨证明,在动物高强度成长时刻,铬不只可调理蛋白质代谢,并且还可作为免疫调理剂来影响动物的健康和成长功用。铬可以激活某些酶,并表现出与蛋白组成、核酸和脂类代谢有关。铬可以削减动物的发病率和抗生素的运用量。如雏鸡日粮中添加三价铬可进步成长功用和饲料功率。假如给猪弥补铬可进步或加强能量代谢,改善胴体性状,进步成长率,还可使血清胆固醇和皮质醇量下降,免疫球蛋白浓度进步。假如缺铬,动物一般会引起成长不良,生命缩短,葡萄糖、脂类和蛋白质代谢紊乱,畜产质量量下降。在我国的粮食结构中,因为精制、加工和土壤被淋洗,铬的摄取量很少。因而,不论是人类仍是动物一般都缺铬,这种作用可以从补铬后动物出产才能的有利反响中简单看出,可以说畜牧出产所用的日粮中含铬量都不行,铬的补给应该说到日程上来。假如缺少满足的GTF,胰岛素的作用会遭到按捺。借助于GTF,胰岛素可以将葡萄糖和重要基酸敏捷传输,经过细胞膜,进入细胞,发作能量和构成安排。血糖浓度因而得以保持正常水平,基酸用于蛋白质的组成,发作肌肉。除了参加蛋白质和碳水化合物的推陈出新,铬还在脂类的推陈出新中起重要作用,它似乎是动物体内血清胆固醇浓度调理剂,然后避免脂肪安排的堆积。它可以添加胰岛素的活性,参加蛋白质的组成和核酸、脂肪的代谢,下降体内脂肪含量,进步瘦肉率。铬还可以使动物体内免疫系统加强,进步机体对不良情况与应激情况的抵抗力,进步瘦肉份额,下降脂肪,进步抗应激才能和机体免疫力。改善饲料酬劳,促进动物成长。 进步母猪产仔率,下降乳猪的死亡率。近年来,跟着铬在畜禽生物学研讨方面的发展,发现铬(Ⅲ)在下降畜禽应激、促进成长、进步酮体质量、增强免疫力、改善繁衍功用等方面表现出强壮的优势,铬在未来饲养出产实践中具有极大的发展潜力和运用远景。铬(Ⅲ)作为饲料添加剂可促进成长育肥猪的增重,进步采食量并且缩短饲养周期。    1 铬的生物学功用    1.1 进步胴体质量    研讨标明,补铬下降了饲喂缺铬日粮的实验动物及畜禽血液中循环胆固醇水平,胆固醇又是组成皮质醇的前体,故弥补铬可以改善肉质。在育肥猪饲粮中补铬,进步了胴体质量和瘦肉率,下降背膘厚、脂肪率。铬改善胴体质量的原因现在以为是铬增强了外周安排对葡萄糖的有用运用,削减了蛋白质的降解,进步了成长激素的浓度。许多实验标明,在成长时刻补铬对增重和饲料功率无作用,在育肥期可进步日增重。Harper(1995)以断奶仔猪为实验目标,在玉米-豆粕-乳清粉的根底日粮中添加200μg/kg有机铬,成果仔猪出产功用得以改善,肥育期背膘厚显着下降(P<0.01)。Page等(1992)在成长育肥猪饲猜中补加200μg/kg的羧酸铬,也明显进步了胴体质量和瘦肉率,下降了第10肋背膘厚。Lindemann等(1995)证明了猪14.5~104.3kg体重阶段添加200μg/kg有机铬时,背最长肌面积进步2.0cm2,第10肋骨处背膘厚下降3.4mm,瘦肉率进步2.1%。别的还有许多学者研讨了不同来历的铬和不同饲喂周期对成长育肥猪和胴体质量的影响,成果都确认了铬的作用。其它畜禽,如鸡、鸭、牛、羊等动物中都证明铬能明显改善胴体质量。    1.2 促进成长    铬的运用可以促进畜禽增重、进步采食量和缩短饲养周期。Lindemann等(1995)在对14.5~104.3kg体重的猪进行实验时,不只研讨了铬对胴体性状的影响,还研讨了猪成长功用的改变,其成果显现,饲猜中添加200、500、1 000μg/kg的有机铬时,200、500μg/kg组日增重由0.83kg别离添加到0.84、0.86kg,1 000μg/kg组日增重没有改变。200、500μg/kg日采食量由2.43kg别离增长到2.48、2.55kg,1 000μg/kg组日采食量没有改变。添加剂量以500μg/kg作用最明显,但考虑到对胴体性状的影响,作者以为添加200μg/kg最抱负.也有人在育肥猪平分添加与不添加两个组研讨铬对日增重的影响,成果在60~90kg阶段和60~110kg阶段,添加组比不添加组的日增重别离进步22.7%和15%,证明有机铬的添加有利于促进成长.其它许多学者(Shbiyatno等,1993;Wang等,1995;Boleman等,1995)也得出相似的定论。[next]    1.3 改善繁衍功用    铬能改善母猪繁衍功用,明显进步繁衍力,在猪的日粮中添加含铬有机化合物,可进步母猪的产仔数。     Lindemann等(1994)的研讨成果标明,含铬有机化合物可以显着进步初产母猪的产仔数。很多成果显现,有机铬的运用改善了畜禽繁衍功用的很多目标,繁衍力明显进步。Lindemann等(1994)的研讨成果标明,羧酸铬可以明显进步初产母猪的窝产仔数。翟桂玉(1992)对兔的研讨标明,缺铬会添加精子变形率、下降精液质量和母兔的产活仔数。Lindemann等(1995)也研讨了有机铬对繁衍母猪及其子孙的影响,成果再次必定了有机铬在改善繁衍功用上的好处。    1.4 增强免疫力    铬可以增强免疫力,这是由加拿大Guelph大学初次报导的。后来许多学者对这一范畴进行了很多研讨,首要集中于对牛的研讨(Chang等,1992;Sartin等,1988;Bunting等,1994)。Burton等(1993)给小肉牛补加铬,成果明显进步了传染性牛鼻气管炎疫苗的效价。同年,他用泌乳牛做实验,成果发现补铬也能进步许多抗原抗体反响。Chang等(1992)也证明补铬可以进步牛血清中免疫球蛋白水平。很显着,铬在某些特殊免疫反响中充任免疫调理因子的作用,它经过对免疫反响的调理,增强机体的抗病力和适应性。    1.5 加强抗应激作用    现在发现,有机铬的添加作用是广泛的,除了能改善胴体质量和繁衍功用,促进成长和增强免疫力之外,还表现在改善内分泌、下降应激等方面。跟着集约化饲养的呈现,各种要素(如热、运送、饥饿、拥堵、病原突击等)都会引起应激。有人(Orr等,1990;Nockels等,1990)研讨证明,牛因运送、禁食等要素呈现应激时,尿中铬的排泄量添加,人和大鼠中也有相似现象(Borel等,1984;Anderson等,1988),阐明应激条件下铬的需求量添加。Chang等(1994)在应激牛的日粮中补铬,发现牛的外周淋巴细胞增殖作用加强,阐明抗应激作用加强。    2 有机铬的组成    有机铬是近年来发展起来的一类重要的饲料及食物添加剂,尤其是在饲料工业方面有着广泛的用途。据材料介绍,关于一位成年人,每日铬的摄取量至少为50μg,关于动物来说,每日有机铬的摄取量为1μg/kg。这可以看出,有机铬用量是很大的。有机铬可明显促进动物的成长,可大大进步动物的瘦肉率,鸡、鸭的产蛋率。该产品无毒无害,出产工艺基本无三废,契合环保要求。 该产品的组成工艺有多种,但依据最新材料报导,出产有机铬运用的首要质料为2-甲基,产品经两步反响而得:首先是2-甲基经氧化反响得2-,然后2-再与铬盐反响即得产品。    2.1 烟酸铬的组成    称取烟酸124g(1mol)置于1 000ml烧杯中,用100ml水湿润,用6mol/l NaOH调pH值至8.0左右,一起加热至80℃。另称取CrCl3•6H2O 88g (0.33mol)于500ml烧杯中,加300ml水,加热溶解并升温至80℃左右,在拌和下倒入上述烟酸钠盐溶液中,用少数水洗烧杯后合并入上述反响液中,在拌和下用6mol/l NaOH调pH值到6.8~7.2,加水至总体积900ml,冷却至室温。抽滤,滤饼用水洗刷,再用乙醇(95%)洗一次,抽滤干,于室温下挥发去乙醇,再用110℃充沛枯燥,得灰色烟酸铬(Ⅲ)140g。[next]    2.2 2-铬的组成    2-铬,即为铬或羧酸铬。李重生等在100ml三角瓶中参加4.3g (35mmol) 2-的乙醇溶剂(溶于20ml无水乙醇)和2.0g (35mmol),加热拌和10min,再滴加2.6g (10mmol)三氯化铬的乙醇溶液(溶于30ml无水乙醇),持续拌和回流1h,有沉积生成。过滤,真空枯燥得3.7g玫瑰红粉末,产率90.2%,熔点>300℃。用相似办法也可制得3-铬(墨绿色粉末)和4-铬(灰蓝色粉末)合作物。周保学等[5]对组成办法进行改善,用2.66g CrCl3•6H2O与3.69g酸,溶于l00ml水中,在250ml烧瓶中混合,于80℃加热拌和30min,溶液由绿变红,用浓NH3•H2O缓慢调理溶液pH值至6.0,持续拌和1h,冰箱中5℃冷却过夜,得深赤色产品Cr(C6H4NO2)3•H2O,抽滤,用水重复洗刷,55℃真空枯燥4d,产率为96%。    初文毅等选用2-甲基为质料,经氧化和络合接连反响组成了2-羧酸铬,最佳反响条件:2-甲基与及三氯化铬的最佳摩尔比为1:2.5:0.35,溶剂量为2-甲基的22倍,氧化温度为80~82℃,络合温度为40~45℃,收率为82.7%,不只使得组成工艺简化,并且出产成本下降。    2.3 蛋酸铬的组成    称取DL-蛋酸150g(1mol)置于2 000ml烧杯中,称取CrCl3•6H2O 88g (0.33mol)与蛋酸混合,参加750ml水,拌和并加热至80℃左右。在拌和状态下用6mol/l NaOH调至溶液pH值为6.8~7.2,反响液由绿变成玫瑰赤色。冷却至20℃以下抽滤,滤饼用水洗刷,抽干,再用95%乙醇洗刷后抽干,先于室温下枯燥,再于100℃充沛枯燥,得玫瑰赤色蛋酸铬(Ⅲ)152g。最佳的反响条件:pH值为7.0,温度为80℃,配体摩尔比为Met:Cr=3:1,蛋酸浓度为15%。该制备进程的蛋酸螯合铬产率为48.41%。蛋酸铬的分子式为CrC15H30N3O6S3,结构式为Cr(NH2CHCH2CH2SCH3COO)3,相对分子质量497.0。37℃时的溶解度为42mg/100ml,熔点为352~356℃。    3 有机铬产品的质量点评    有机铬是由三价铬离子和有机配体组成的化合物,因为出产办法的不同,市售产质量量良莠不齐,导致三价铬离子和有机配体的含量不符合,即产品的纯度或含量不高,产质量量欠好。因为在出产进程中一般选用调理pH值的办法来出产有机铬产品,必定会因操作工艺和条件的收支,使部分三价铬离子生成氢氧化铬沉积,使产品中的铬含量偏高。如无水的铬及烟酸铬中铬的理论含量均为12.43%,而市售产品中铬的含量一般都在14%以上,有的更高。[next]    3.1 有机铬产品中铬的含量测定与质量点评    从物质结构上分析,有机铬的分析可以经过无机和有机分析两种途径进行。无机分析可以直接检测其间铬元素,但缺陷是无法区别是人体所必需的三价铬仍是对人体有害的六价铬,且无法了解与铬相连的是何种基团。有机分析可以经过特征呼应波长对整个有机铬分子进行合理精确地分析,因而归于比较抱负的查验办法。有机铬含量较好的测定办法是选用高效液相色谱分析办法,将标准溶液及试样溶液注入色谱仪中,以保存时刻定性,以试样峰高或峰面积与标准比较定量。但这种办法需求该种有机铬的标准样品,购买比较困难。    万玉萍等选用高效液相色谱法测定保健食物中铬的含量,色谱条件:AgilentC18色谱柱(5μm,4.6mm×150mm),活动相为甲醇:乙睛:0.1mol/l NaH2PO4(H3PO4调理pH值为3)=10:5:85的溶液,检测波长为254nm,流速为1ml/min,柱温为30℃。实验成果标明,铬在0.232~1.16μg规模内色谱峰面积与进样量呈杰出的线性关系,回归方程:y=2.27+1.96×103x,r=0.999 9。    实践中一般选用测定样品中的三价铬含量来点评产质量量,测定办法比较多,有原子吸收法、ICP办法、分光光度法、滴定分析法等。如在万分之一电子天平上称取上述制备的各种铬螯合物内络盐各25mg左右(平行两份)于100ml三角瓶中,参加2.5ml浓HNO3和2ml浓HCl于电炉上小火消化,随之蒸宣布大部分酸,冷却,用水洗入100ml容量瓶中,定容并摇匀(溶液呈Cr3+的蓝色)。用等离子发射光谱仪测定Cr含量,以50μg/ml的Cr3+标准液为标准品,按上述办法平等处理后的溶液做空白校对。金婵等选用原子吸收法测定了铬的含量,取0.2~0.5g酵母干粉样品于消化瓶中,参加8ml左右的HClO4-HNO3(4:1)混合液,将消化瓶置于电炉上消化,当溶液变为无色时即可中止消化。将消化液转移到10ml的容量瓶中,用5.0%浓度的HNO3溶液定容。测验条件为:灯电流I=12mA,通带AA=1.6nm,波长λ=357.8nm,燃烧器高度=7.5mm,空气流量=9.4L/min,气流量=2.5L/min。依据标准曲线即可得出待测样中的铬含量。王晴等用ICP办法测定了烟酸铬(Ⅲ)中的铬含量,称取烟酸铬(Ⅲ)25mg于100ml三角瓶中,参加浓硝酸2.5ml和浓2ml置于电炉上小火消化,冷却后,用水定容至100ml容量瓶中(溶液呈Cr3+的蓝色),选用等离子发射光谱仪测定,以50μg/ml的Cr3+标准液对照,同法做空白试剂。    只秉文等选用了两种容量分析办法测定烟酸铬中铬的含量。①湿法氧化法。精确称取约2.000 0g样品,溶于100ml水中,参加15ml硫酸-磷酸混合液,加热至欢腾,浓缩至体积约为30ml,此刻溶液为绿色通明溶液,冷却后转入250ml容量瓶中,加水至刻度,摇匀。用移液管精确移取上述液25.00ml于锥形瓶中,加0.1mol/l溶液和10g/l硫酸锰溶液各1ml,加热至欢腾后分数次参加固体过硫酸铵直至呈现的紫赤色后再煮沸10~15min,滴加氯化钠饱和溶液至溶液的紫赤色消失,持续煮沸10min,冷却。加8ml(1+1)硫酸,3滴N-基指示剂,用0.100 0mol/l硫酸亚铁铵标准溶液滴定,溶液由樱赤色变为翠绿色即为结尾。②干法氧化法。精确称取1.500 0g样品于坩锅中,加5g和3g混匀。在电炉上炭化至无烟后,将样品放入箱式炉中,于800℃灼烧2h后,取出冷却。用4mol/l硫酸及少数水分次浸取,将浸取物完全转入250ml容量瓶中,用水定容至刻度,混匀。用移液管精确汲取上述液50.00ml于碘量瓶中,加1g碘化钾和4mol/l硫酸20ml,摇匀,于暗处放置10min,加80ml水,用0.100 0mol/l硫代硫酸钠标准溶液滴定,近结尾时参加5g/l淀粉溶液指示剂3ml,持续滴定至溶液蓝色消失,一起作空白实验。[next]    高铬酵母中的铬大部分以有机铬的方式存在,且有机铬的含量多少也是点评高铬酵母养分价值的标准之一。丁文军等对高铬酵母中有机铬和无机铬进行了别离测定,将0.2~0.3g酵母干粉参加盛有9ml蒸馏水的离心管中,每隔一段时刻进行完全的拌和,静置12h,然后以3 500r/min转速离心20min,重复进行几回,汲取上清液用原子吸收法测定无机铬含量。将基层沉积移出离心管,消化、定容,便可测得有机铬含量。    3.2 有机铬产品中配体的含量测定    有机铬产品中配体的含量一般选用高效液相色谱分析办法测定。王晴等测定了烟酸铬(Ⅲ)中的烟酸,称取烟酸铬(Ⅲ)30mg于50ml容量瓶中,参加草酸500mg,再参加水3ml,于沸水浴上加热直到溶液弄清并呈蓝色(阐明烟酸铬中的铬为Cr3+)。冷却后参加0.02mol/l乙二胺四乙酸二钠20ml,摇匀后再参加6mol/l2ml,定容、摇匀,放置30min,过滤后取滤液用高效液相色谱仪分析。分析条件如下,色谱柱:Dupont SAX(高250mm,直径4.6mm);活动相:0.1mol/l磷酸二氢钾+0.01mol/l乙二胺四乙酸二钠,pH值为4.2;检测波长:λ=261nm;流速:1.0ml/min。    3.3 有机铬产品中其它组分的测定    有机铬产品中其它组分,如氯离子、砷、铅可参阅有关饲料标准进行测定。特别是砷、铅的含量应低于国家对饲料产品答应的规模之内。因为出产有机铬产品时,一般用三氯化铬与烟酸、、基酸、柠檬酸等有机配体反响,经过用碱(烧碱或纯碱)调理pH值的办法来得到产品,因而必定会有氯化钠之类的副产品生成,要使产质量量好,应把氯化钠别离除掉,产品中的氯离子含量应较低。    因而,三价铬离子和有机配体的含量是否符合;是否与其分子结构组成共同;产品中的氯离子含量的凹凸;砷、铅等有毒元素的含量;六价铬离子含量等,这些都是点评有机铬产质量量好坏的重要标准。    总归,对含铬有机化合物的很多研讨标明,它在生物机体中具有多种极其重要的活性功用。安稳常数相对小、溶解度相对大的铬(Ⅲ)螯合物对动物养分作用将或许更好。跟着人们研讨的深化和知道的进步,信任含铬有机化合物将会在咱们日子中发挥越来越大的作用。从现在实验成果的报导来看,对有机铬的运用研讨取得了令人鼓舞的作用,有机铬由此或许成为可以给人类健康和动物出产带来重大意义的新式养分型添加剂。

科学家研发铝-石墨烯-氧合成电池

2019-01-09 11:26:51

据报道,总部位于布里斯班的能源技术公司LWP Technologies Limited宣布将投资于具有开创意义的铝-石墨烯合成与电池制造技术,收购三项“准专利”,准备推动新技术的营销、专利授权与商业化。俄籍澳洲科学家及发明家VictorVolkov发明的颠覆性电池技术已经完成国际实验室测试,这种名为“铝-石墨烯-氧”合成电池较锂电池的性能更是优越。石墨烯产品将较早在电池领域迎来产业化曙光,国内石墨烯相关公司将迎来产业化良机。    新技术将首先应用在电池制造领域。电动汽车制造商与电池供应商正投资数亿用于锂电池研发,希望获得更高储能表现,并减少充电时间,但锂电子技术进步十分有限。并且,尽管锂电池需求前景广阔,锂电池表现不稳定且存易燃爆风险是共识。相比之下,石墨烯技术的能源密度要高于锂电池,且应用范围更广。

科学家首次合成特种氢铝化合物

2019-02-28 09:01:36

本报华盛顿1月29日电  美、德两国科学家日前成功组成出具有共同化学特性的氢铝化合物。这一研讨成果有助于人们开宣布推力更强壮的固体火箭燃料,也有望使用在氢动力轿车和其他动力方面。有关研讨报告宣布在较新出书的美国《科学》杂志上。         据悉,经过理论和试验相结合,来自美国约翰·霍普金斯大学、弗吉尼亚联邦大学和德国两所大学科学家组成的研讨小组初次组成了这种氢铝化合物,该化合物具有适当安稳的化学特性,其结构相似由硼和氢组成的。         现在,大都火箭以铝作为辅佐燃料。约翰·霍普金斯大学化学和材料学系吉特·博文教授表明,他们组成的这种氢铝化合物具有多方面使用的潜力,其适当安稳的特性是确保该化合物往后或许用作固体火箭燃料的要害,一起氢铝化合物燃料将比现在的燃料功率更高、推力更大。         研讨人员还表明,新的氢铝化合物有助于处理储氢问题。在未来的“氢经济”社会中,驱动轿车和电网的电能将产生于全球较丰厚的元素———氢。但是贮存氢燃料是一大难题,人们希望能寻找到有用“抓获”并在需求时及时释放出氢的固体储氢材料。因而,博文以为,虽然新化合物实践使用还要处理一系列问题,但他们的研讨在氢经济社会里必然会具有极为广泛的用处。

纳米氧化锌在合成纤维中的应用

2019-03-08 11:19:22

跟着现代科学技能的开展,单一功用的材料已不再能够满意人们的需求。纳米技能的开展和系列功用纳米材料的开发和商场化为开展多功用的健康纺织品带来了要害。运用纳米材料的各种特殊功用从根本上改动化学纤维原有的物理机械及化学功用,已获得了一系列适合于不同用处的优秀复合纤维如:抗紫外纤维;抗菌、抑菌和除臭纤维;远红外纤维;导电纤维;防辐射纤维。但总的来说,无机功用涣散相在成纤高聚物基体中的纳米标准涣散这一要害技能问题和纳米技能与工业的共性问题,仍没有得到充沛处理。现在已部分工业化的功用纤维,功用粒子在纤维中的涣散、纳米材料的原有特性没有充沛发挥,可控性程度还较低,导致出产的连续性和安稳性不行。 因此,虽然纳米技能的飞速开展成为制备特种功用纤维的重要手法之一,为特种功用纺织品的开展注入了新的生机,但是功用材料在高聚物基体中的纳米标准涣散仍是纳米功用纺织品研发的要害技能和瓶颈问题。所以虽然纳米氧化锌(ZnO)具有许多的优异功用,在许多方面都有较为广泛的运用,但因为其无机纳米材料自身的极性和颗粒纤细化,因此具有极大的比表面积和较高的比表面能,使它们不易在非极性介质中涣散。在极性介质中易凝集,然后直接影响了其功用的发挥。 以至于终究运用时失去了纳米颗粒所具有的功用。且因为它们为无机物,与有机物类的物质亲和性较差,这导致了纳米氧化锌(ZnO)在高聚物纤维中的实践运用困难,因此在纳米氧化锌(ZnO)的开发进程中有必要处理这一要害的瓶颈问题。 我公司与有关高校进行协作研讨,运用自产的纳米氧化锌经过表面改性处理后与高聚物基体丙纶(pp)、涤纶(PET)以及尼龙6(PA)共混具有抗菌、抗紫外功用的高技能复合纤维。在整个研讨进程中,咱们经过讨论纳米氧化锌粉末的内部结构及其功用,研讨纳米氧化锌粉末的抗菌机理(纳米氧化锌粉末在与细菌触摸时,锌离子会缓慢释放出来,与细菌细胞膜及膜蛋白结合,损坏其结构,进入细胞后损坏电子传递体系的酶并与DNA反响,抵达抗菌意图)和其抗紫外效应(一般来说紫外线的透过率在10%以下(或遮盖率在90%以上)的可称之为防紫外线织物。),以及不断调整操控其高聚物基体共混造粒纺丝的工艺参数,终究制得各含纳米氧化锌(ZnO)的抗菌、抗紫外功用纤维。经过选用抗菌功用实验办法,对各功用纤维进行抗菌功用测验,其结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚物功用纤维的抗菌率能够抵达99.9%,经过运用双光束紫外可见分光光度计(积分球)对之进行测验,结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚纤维的紫外光均匀透过率小于7%。 因此,在必定程度上能够说,咱们研讨开宣布纳米氧化锌(ZnO)具有抗菌、抗紫外功用高技能纤维的自主知识产权。 当今国际上在抗菌纤维研发方面基本上都是选用含银沸石作为抗菌剂,而运用当时研讨的热门纳米级半导体光催化抗菌剂纳米氧化锌作为抗菌粉体添加剂的报导并不多。但因为纳米氧化锌(ZnO)具有独特的“表面效应”在阳光(尤其是在紫外线)照耀下,能自行分化出自在移动的带负电的电子,一起留下带正电的空穴。这种空穴能够激活空气中的氧变为活性氧,有极强的化学活功用与多种有机化合物反响(包含细菌内的有机物),然后把大都病菌和病毒死。)、光催化效应以及报价相对低价的长处,使得对选用其作为新的抗菌粉体添加剂具有非常大的实践意义。 不仅如此,因为地球臭氧层遭到损坏,导致了紫外线对地球生物圈辐射量的不断添加,人们特别是年轻人在户外休闲的逐步延伸,射线对人类健康形成的损害正在日益加剧。虽然近年来国际上开端约束运用引起臭氧层变薄的化学物质,但就现在臭氧层遭到损坏的程度而言,对人体最有害的UVB区(280~320nm)、UVA区(320~400nm)的短波紫外线仍能抵达地上。因为这些短波段紫外光的照耀会发生自在基,形成细胞及安排损害,加速老化进程,然后导致皮肤晒黑及由紫外线吸收形成的皮肤疾患,甚至会皮肤癌,对人类的健康形成很大的损伤。因此,为了下降各种波长的紫外线对人类的损害,开宣布一种防紫外线穿透的纤维以满意不断增加的日子需求也是影响深远。 要制作含抗紫外线添加剂的抗紫外线纤维,首先要挑选适宜的抗紫外线添加剂(又称紫外线吸收剂、紫外线安稳机剂)。这是一类能挑选吸收波长为290~400nm的紫外线,有用的避免和按捺光、氧化效果而自身结构不起改变的助剂。这类紫外线吸收助剂还应具有无毒、低挥发性、杰出的热安稳性、化学安稳性、耐水解性、耐水中萃取性、与成纤高聚物的相容性等特色,其间因为纳米氧化锌(ZnO)具有紫外线透射率较低的特性,因此能够考虑用于抗紫外线纤维的制备。 依据氧化锌的一些自身特性,咱们发现纳米氧化锌是一种绝佳的抗菌、抗紫外无机粉体,具有适用面广、效率高、有用期长的特色,可用于制备一起兼备抗菌和抗紫外两种功用的高技能纤维。它差异于以往常用的有机抗菌剂(易发生微生物耐(抗)药性,并存在易搬迁、耐热性等缺陷,在塑料加工温度下还易分化失效,且分化产品可能会形成二次污染。),而选用物理吸附离子交换办法,将锌金属附载于多孔材料表面,运用金属离子的抗菌才能,经过缓释效果抵达长效抑菌的意图。因为它不发生耐药性且安全无毒,特别是其杰出的耐热性(>600℃),使得纳米氧化锌在抗菌材料运用中有着显着的工业优势。它的纳米微粒优异的光吸收特性还差异于以往的抗紫外线添加剂(大大都是有机物,有必定毒性,跟着涂层日晒时刻的延伸,其紫外线屏蔽功用会逐步下降,终究失效。),具有有用效果时刻长,紫外线屏蔽波段长,以及化学安稳性和热安稳性好、无毒、无刺激性等长处,因此运用很安全,具有实践运用的优势。 事实上,运用纳米功用无机材料作为抗菌剂和抗紫外添加剂的抗菌、抗紫外纤维正逐渐成为商场上继保健功用远红纤维、负离子纤维之后的又一种新颖的新式功用纤维。因此,咱们所研发开宣布的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维是一种极具有开发远景的防护功用性纤维。咱们估计想象的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维的实践运用范畴首要的有以下几方面: A、日子日用品范畴 纳米氧化锌(ZnO)在服饰方面的运用,例如:运动衫、罩衫、制服、套裤、职业服、泳衣和童装等,也用于帽子、面罩和太阳伞的质料。此外,它还被用于工业和装修方面,例如:广告用布、户外装修布等。纳米氧化锌(ZnO)的抗菌功用可用于出产涤纶长丝产品,它能够广泛用于针织的内衣裤、运动服装、袜子、地毯等。 B、专业卫生范畴(医用及民用) 在医用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够与棉混纺制成医院用的床布、手术服、医师工作服、病员服等。而在民用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够用于食品行业专用服以及各种床上用品、家具布、装修布等。紫外,纳米氧化锌(ZnO)还能够制备各种医用及民用无纺布产品,例如:无菌手术服、无菌口罩、卫生包覆材料、过滤材料以及妇女卫生用品、尿布等产品。 C、户外户外作业范畴 跟着经济的开展,旅游业在不断兴隆开展,各类相应户外产品因此也相继问世。纳米氧化锌(ZnO)的抗紫外功用使得其可用于出产各类遮阳伞、窗布、运送蓬布和各类帐子用布等。 在我国参加世界贸易安排后,我国纺织业迎来了巨大的开展机会,一起也面临着严峻的应战;在新形势下,我国化学纤维开展的要点已从“开展总量”转变到“开展先进出产力与结构调整并重”,其间推进技能晋级和加速结构调整是重中之重。纳米技能的飞速开展为特种功用纺织品的开展注入了新的生机,已成为制备特种功用纤维的重要手法之一。纳米氧化锌(ZnO)是一种面向21世纪的新式高功用精密无机产品,在纤维中能一起表现抗菌和抗紫外线的功用,是很多纳米无粉体中性价比具竞争力的一种,在人们日益寻求健康、舒适、安全纺织品的今日,纳米氧化锌(ZnO)/高聚物复合功用纤维是一种运用远景非常宽广,经济效益非常可观的高新技能产品。

镁合金固相合成和回收的研究进展

2018-12-17 09:52:31

镁合金因为密度低、比强度和比刚度高、阻尼减振效果佳、机加工性能优良等特点,在航空、航天、汽车、家电和通讯等领域的应用迅速扩展,并逐步成为大众化民用材料。而镁冶炼属于高耗能型,故在产品设计时需考虑循环再生问题。目前镁合金产品生产以压铸和触变成形工艺为主,在成形过程中产生的废料如水口、浇道、流道及机加工的车屑占原料的20%~50%【1】。目前处理这些边角料是采用重熔精炼法,缺乏安全性且成本较高。因此,发展一种固态回收镁合金废料的方法具有重要意义。  1 镁合金固态回收技术   1.1 注塑成型工艺   在室温条件下,颗粒状的镁合金原料由料斗强制输送到料筒中,料筒中旋转的螺旋体使合金颗粒向模具运动;当其通过料筒的加热部位时,合金颗粒呈半固态(图1)。在螺旋体剪切作用下,呈半固态的枝晶组织转变成颗粒状初生相组织;当其积累到预定体积时,以高速(5.5 m/s)将其压射到抽真空的预热模具中成形。成形时,加热系统采用了电阻、感应复合加热工艺,合金固相体积分数高达60%,同时通入氩气进行保护。触变注射成形的铸造压力高,能促进金属模具和镁合金料间的热传递,导致表面附近的晶粒微细化,对成形产品赋予了高的耐蚀性和力学强度。   料的温度与压铸方法相比低50%~100℃,因而能控制产品由于热收缩而引起的尺寸变化,并提高模具的使用寿命。此外,触变注射成形的零件可以热处理,而且不需要配备熔化炉,不使用SF6防燃气体,不产生浮渣和炉渣等,兼顾了安全性和环保要求(SF6会破坏大气臭氧层)【2-5】。图1 镁合金半固态注射成型原理图   1.2 反复塑性加工方法   由东京大学研究开发的多次加工方法原理如图2所示【6-7】。这种方法是将镁合金料加工成屑或粗粒粉末填充到模具内,经单纯压缩成形后再进行挤压,两种方式反复进行,使材料充分搅拌和粉末充分均匀化,在反复加工过程中,材料固化到一起,晶粒得到细化,最终得到的材料为具有微细组织的成形固体。 图2多次加工方法的模具结构及循环过程示意图   Katsuyoshi Kondoh【6】等用AZ9lD镁合金屑(约2mm~3mm)经上述反复加工后,材料的晶粒变形并随着循环次数的增多而逐渐变细,经过500次反复加工后,通过显微镜便很难分辨晶界,碎屑间的边界也因塑性变形发生冶金结合而消失。原材料中的具有网状和层片状结构的中间相化合物Mg17Al12使晶界易滑移,影响了AZ91D镁合金的抗蠕变性能。但通过反复挤压之后,该金属间化合物得到了细化并均匀分布,经过500次反复塑性加工后,Mg17Al12被固溶到基体中使晶格发生畸变,阻碍了晶界滑移,从而使AZ91D镁合金具有优良的高温抗蠕变性能。另外经反复塑性加工后AZ91D镁合金的硬度达到127HY(N=100次加工获得的材料)和139 HV(N=500次加工获得的材料)。   1.3 固相合成镁合金技术   由日本产业技术综合研究所发明的固体循环法【1,8】,不对镁合金边角料进行重熔和预备成型,直接通过热挤压由边角料制成高性能的型材,这种方式将边角料表面氧化膜破坏,通过新生面强制固化结合,在强制加工过程中。伴随着动态再结晶,可获得微细晶粒组织【9】。目前,其研究的镁合金主要是AZ91【11-13】、AZ31【8-14】和ZK60【15】。刘英,李元元等【16】则通过此法制备出了AZ80镁合金。结果均发现,镁合金经碎屑热挤出制备成形后,无论是抗拉强度、屈服强度还是伸长率均优于铸造材料的。   目前,固相合成方法包括直接挤压和间接挤压。间接挤压为将镁屑置于模筒中,将其在一定温度下挤压成一锭坯,之后在一定挤压比下将其挤压成棒材,其挤压过程示意图如图3所示。MamoruMabuchi【10,15】分别对ZK60、AZ31合金进行试验,并通过改变挤压温度、挤压比、应变速率等参数来观察氧化弥散相分布情况和晶粒细化现象。同时又将在不同变形温度下获得的挤压棒材同烧结所获得AZ91镁合金进行比较,结果发现烧结的AZ91D镁合金碎屑不能充分结合且不能发生氧化弥散现象;而挤压所获得棒材的组织基本没有裂纹和空穴,晶粒得到明显细化且氧化相均匀弥散,同时在573 K温度下显示有超塑性现象。   直接挤压为将置于具有一定挤压比模筒的镁合金屑,加热到固定温度后保温一段时间并直接挤压成形。Yasumasa Chino等【17】将车削的AZ31镁合金屑在673 K保温1h后,直接在45:1的挤压比下挤压成棒,之后又将棒再次车削成屑,再进行上述步骤,这样反复进行1~5次。结果由于反复循环使位错密度增加,晶粒组织也发生了严重变形并且弥散的氧化相进一步阻碍了晶粒的长大。还发现循环次数越多其抗拉强度和屈服强度越高。这主要是因为随着循环次数的增多,晶粒变得越细小。Yasumasa Chino【17】还将材料磨光脱脂后浸在含有饱和Mg(OH)2,的5%NaCl溶液中3 d,之后再将其浸入铬酸(ρ(CrO3)=110 g/l)沸水溶液中清除镁合金表面的腐蚀产物。试验结果发现,随着循环次数的增多,模具中的铁元素浸入试样越多,由于铁不能固溶于镁中,只能以游离态分布在晶界,从而降低镁合金的抗蚀性。另外,与一次循环相比,尽管多次循环后材料的氧含量增加,但其结构由原来连续的网状结构变成了不连续的网状结构,这一点使AZ9 I D合金的抗腐蚀性大大降低。图3 固相合成法的间接挤压过程示意图  2 固相合成镁合金的工艺原理   2.1 镁合金动态再结晶机制   镁合金的动态再结晶形核机制,形核的多少与核心长大的速度,均受位错运动能力的控制。当变形温度过低时,位错难以通过运动而实现重组,因而动态再结晶不易发生。当温度升高时,合金中原子热振动及扩散速度增加,位错的滑移、攀移、交滑移及位错节点脱锚比低温时更容易,动态再结晶的形核增加,同时晶界迁移能力增加,因此温度的升高可促进镁合金动态再结晶的发生;动态再结晶是一个速度控制的过程,变形速度不仅影响新晶粒的形核,而且对新晶粒的尺寸有很大影响,通常情况下,挤压速度提高,挤压时的应变速率增加,Z值增大而晶粒变小。挤压时由于摩擦及变形能等因素,常使变形区内金属温度剧烈升高。因此,挤压速度升高,挤压温度升高,也就是变形温度爿高,Z值减小,晶粒变大。所以当挤压速度增加时,变形速率与温升从两个相反的方向影响晶粒的大小,两者在挤压过程中对晶粒尺寸的贡献相当,使挤压速度对晶粒尺寸影响较小;此外,变形程度对动态再结晶晶粒尺寸也有很大影响,增大变形程度可使晶内位错密度增加、晶格畸变加剧,从而使新晶粒形核数目增多而细化晶粒。在挤压生产中,通常以挤压比(变形程度)来表示金属变形量的大小。挤压比过小,挤压变形不充分,会造成制品性能不均,不能消除材料中的铸造组织,DOO-Myun【18】等通过研究固相合成AZ91D合金发现,挤压比小于15:1所获得的碎屑不能完全结合;挤压比过大,挤压热效应引起的温度迅速升高,影响材料的组织和性能。   2.2 弥散强化机制   在热挤压过程中,动态再结晶使晶粒得到细化;同时由于镁合金易氧化,所以在车削成屑过程中会引起镁合金的表面氧化,氧化层会阻止挤出过程中碎屑的结合,但由于热挤压能够提供大的剪切应力而将该氧化层打破,所以仍能达到充分的冶金结合。打破的氧化层在挤压过程变细,并形成了外加的第二相被均匀弥散在镁合金中【16】。这些弥散相粒子具有钉扎作用,再结晶时,第二相处于晶界上,阻碍晶界或亚晶界的迁移,降低了晶界和亚晶界的迁移速度,能有效地强化晶界和阻碍位错运动,从而提高合金的屈服强度。另外,在外加的弥散第二相周围,挤压时明显产生畸变,畸变区域具有高的位错密度和相对大的晶界取向差,畸变区域成为再结晶的核心,增大了形核率【9】。   3 固相合成方法存在的问题和发展前景   固相合成镁合金的组织与普通挤压制品组织相似,都具有不均匀性,这都是由变形不均匀引起的。通常在挤压过程中,变形温度由制品的中心向外层,由头部向尾部逐渐增加。挤压温度和速度的变化会引起组织的不均匀。翟秋亚【20】等人对AZ31镁合金挤压俸材的研究表明,在横截面和斜截面上,周边组织比中心区组织略显细小和致密些。相应地,纵向挤压组织中也有晶粒大小和剪切条纹分布不均匀现象,边缘区比轴线附近的条纹更加细密,晶粒更小,这主要是因为挤压棒材周边变形量较大,中心变形量较小,导致晶粒细化程度不均。   另外,镁合金特别是再生镁合金中的夹杂对其力学性能有显著危害,疲劳裂纹往往在夹杂处起源。目前用碎屑热挤压的方法回收镁合金还局限在干净的废料上,对于镁合金废料中的Ni 、Cu等杂质还没有有效的处理办法。   由于镁合金固相合成方法简单、安全,制备过程不需要用任何对大气能造成污染的保护熔刹和保护气体SE6、SO2,所制备的材料性能优于一般铸造材的,因此是一种低成本,高收益的工艺方法。.

用锆英粉合成锆英石基陶瓷颜料工艺

2019-02-13 10:12:33

一、前语    钻英石基陶瓷颜料是以ZrSiO4晶体为基体的陶瓷色料,具有优异的功能,如在各类釉中显色安稳、艳丽、高温安稳性好、耐化学腐蚀,能与很多种其它品种的色料配色,混溶性好等长处。依据色元素在ZrSiO4基体中的不同状况,可以分为固溶体型如铬钒蓝、锆谱黄和包裹型如锆铁红两类。锆英石颜料是根据ZrO2和SiO2组成ZrSiO4的机理而构成。传统的办法是以氧化锆和石英为根本出产质料,因为运用贵重的氧化锆为质料,使得锆英石颜料本钱很高。本试验直接使用锆英砂这种较为廉价的质料,代替氧化锆和石英,直接组成锆英石基颜料——锆钒蓝、锆镨黄、锆铁红。二、原理    锆钒蓝、锆镨黄是在ZrSiO4构成进程平分别由V4+和Pr4+。占有ZrSiO4中Zr4+。的方位,进入ZrSiO4晶格而呈色。铬铁红是ZrSiO4的晶体内包裹Fe2O3而呈色。为了下降组成温度和使更多上色离子进入ZrSiO4晶格而选用适量的氯化钠和作为矿化剂。    因为锆英石中ZrSiO4结合的化学键十分结实,晶体结构十分安稳,上色离子无法直接进入其间而显色。要想使上色离子进入锆英石晶体,有必要便ZrO2和SiO2完成别离,然后在其从头组成锆英石的进程中使上色离子进入晶体而呈色。    本试验以NaCO3,和锆英石为质料,使锆英石在高温下分化,再用硫酸对其分化产品进行中和处理,化学反响式如下:ZrSi04+Na2CO3,=Na2SiZrO5+CO2(1)其间部分Na2SiO5用硫酸处理生成ZrO2xSO3。Na2SiZrO5+ZrO2xSO3+SiO2=(X+1)ZrSiO4+Na2SO4(2),在(2)反响进程中增加上色离子pr4+、V4+出产镨黄、天蓝。三、试验进程    1、将磨细的锆英石约300M与大致等当量的Na2CO3,(当量比为11.0~2.0混合均匀,混合物煅烧至1050~1100℃保温1~2小时。    2、将煅烧分化物置于水中,制成悬浮液,接着往悬浮液中增加98%的硫酸。增加酸后原先具有自在流动性的混合物缓慢硬化,最终则彻底固化。为了保证质量,有必要将酸混合均匀,可将适量的各成分接连或许间歇引进,并要在尽量缩短湍流的时间内进行混合。    3、将上述固化物预先枯燥之后,加适量的NaF、V2O3、NH4VO3制成天蓝,煅烧温度在900~1150℃;加适量的NaF、Pr6O11制成镨黄,煅烧温度在900~1150℃;加适量的NaF、Fe2O3制成锆铁红,煅烧温度在900~1150℃。四、试验结果与评论    l、锆英砂的细度对组成天蓝、镨黄的影响很大,锆英砂与Na2CO3份额也是,最佳份额为11.2~1.5。    2、固化物增加NaF与上色氧化物的份额,经过试验,最佳是    天蓝 NaF5wt% V2O53wt%    镨黄NaF5wt% Pr11O53.5wt%    锆铁红NaF 6wt% Fe2O38wt%五、定论    1、使用锆英砂可以组成功能优异的锆英石基陶瓷颜料,其间锆钒蓝、锆镨黄呈色作用与传统产品根本相同,锆铁红呈色作用稍差。    2、经过试验,断定了使用锆英砂组成锆英石基陶瓷颜料的工艺准则。    3、用锆英石组成锆基陶瓷颜料的办法与ZrO2、SiO2组成法比较,每吨颜料大约能下降本钱4000-5000元,具有很好的经济效益。    参考文献    l、华南理工大学《陶瓷工艺学》,北京我国建筑工业出版社,1981年。    2、俞康泰,《现代陶瓷色釉料与装修技能手册》,1999年。

一种人工合成金刚石分选工艺

2019-01-17 10:51:24

摘要:本发明公开了一种人工合成金刚石分选工艺,包括如成品初选、外型筛选、磁性筛选、精选包装等四个步骤。本发明可有效的实现对同批次间、不同批次间及不同厂家间所生产的合成金刚石从粒度、色泽、外观形状及磁场特性上等方面的严格统一的分类,分类清晰准确,从而提高了人工合成金刚石产品品质,也有助于使用合成金刚石做为原料的设备质量的提高。 独立权利要求: 1.一种人工合成金刚石分选工艺,其特征在于:所述的人工合成金刚石分选工艺包括如下步骤:第一步、成品初选,将完成生产制备的金刚石成品放置到筛选机筛选台上,筛选机筛选粒度、筛选频率设置固定,不得进行人为进行调整,当使用对台筛选机进行初选时,多台筛选机间的筛选粒度、筛选频率均统一设置且固定,不得进行人为调整;第二步、外型筛选,将完成初选分类过后的合成金刚石再次放置到筛选机上,对同一类型的合成金刚石进行粒度及外型结构选择,筛选是筛选机筛选粒度、筛选频率设置固定,不得进行人为进行调整,当使用对台筛选机进行初选时,多台筛选机间的筛选粒度、筛选频率均统一设置且固定,不得进行人为调整;第三步、磁性筛选,经过外型筛选的合成金刚石分类放置到磁选机上,并输送合成金刚石通过至少两种磁场强度的磁选机,其中合成金刚石输送速度及磁场强度均固定,当多台磁选机同时工作时,各磁选机之间的输送速度及磁场强度均统一设置且固定,不得人为改变,其中输送合成金刚石速度为0.5—5米/分钟。

冶金废料炉渣合成新一代工程材料

2018-12-18 09:41:12

赛隆(Sialon)是近年来在工程材科中出现的一种十分引人注目的新型超强度陶瓷,被公认为一种具有广阔发展前途的工程材料。赛隆是由Si-Al-O-N系所构戊的多种化合物群的总称,是一种氧氮化硅铝SiAlON的译音。它是英国卢卡斯-库克森赛隆在Si3N4基础上通过用氧部份置换作为Si3N4结构单胞的SiN4四面体中的氮,同时以铝部份置换其中的硅的方法研制成功的,因此是氮化硅陶瓷的新一代产品。  与耐热合金相比,赛隆陶瓷材料的高温强度与硬度高、蠕变小、抗氧化、耐腐蚀、耐磨损;与硬质合金相比,高温强度高、硬性好、抗热震性好;与其他陶瓷相比,热膨胀系数小、抗热冲击性好、断裂韧性高。强如钢、硬似金刚石、轻若铝的赛隆陶瓷一出现,就倍受人们的青睐。它在各个工业部门和新技术领域的应用已展现出诱人的前景,许多学者对其制备方法进行了多方面的深入研究。目前采用的以商业产品为原料制备赛隆的方法成本很高且制备过程复杂。因此,降低成本且保持其优异性能成为今后Sialon陶瓷发展的重要方向。  近年来有学者研究了以冶金废渣即高炉炉渣为原料合成赛隆粉。中科院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室研究了以高炉炉渣为原料,用高温自蔓延燃烧工艺合成了较为纯净的单相(Ca,Mg)α-sialon粉料(简称炉渣α-sialon粉),并用无压和热压烧结工艺将炉渣α-sialon粉烧结成了炉渣α-sialon陶瓷,对炉渣α-sialon陶瓷的力学性能进行了检测,结果表明,炉渣α-sialon陶瓷有较好的力学性能,优良的抗冲刷性能和抗酸腐蚀性能。中科院上海硅酸盐研究所分别于2002年、2004年公开了低成本合成赛隆陶瓷粉方法中国专利,具体如下:公开号题目公开日申请日1349956一种低成本合成赛隆陶瓷粉料的方法2002.05.222001.09.14摘要该发明涉及一种低成本合成赛隆陶瓷粉料的方法。该方法利用冶金炉渣或石灰石或粉煤灰工业废料,或廉价天然矿物为原料,通过添加金属硅粉、铝粉以及部分晶种,以α-sialon的通式MxSi12-(m+n)Alm+nOnN16-n中的x、m、n值作为设计赛隆陶瓷主要参数(当M 为Nd、Sm、Gd、Dy、Y和Yb时,0.33<x<0.67,m=3x,m=2n;当M为Ca 时,0.4<x<1.4,m=2n=2x),原料经球磨烘干后,经高温自蔓延工艺合成再经过处理得到单相α-sialon粉料,该粉料具有非常好的烧结性,可在1600-1800℃ 之间无压烧结,密度达3.07g/cm2,硬度为15.53GPa,韧性4.72MPa·m1/2,并具有远高于Al2O3和ZrO2陶瓷和优于SiC陶瓷的的耐冲刷性能。独立权项一种合成α-赛隆陶瓷粉料的方法,其特征在于利用冶金炉渣或石灰石或粉煤灰工业废料,以Si3N4和A1N粉作为晶种,通过添加金属硅粉、铝粉,以α-赛隆的通式MxSi12-(m+n)Alm+nOnN16-n中的x、m、n值作为设计赛隆陶瓷主要参数,原料经球磨、混料、烘干后由高温自蔓延工艺合成再经处理制备而成,其中,当M为Nd、Sm、Gd、Dy、Y和Yb时,0.33<x<0.67,m=3x,m=2n:当M为Ca时,0.4<x<1.4,m=2n=2x,晶种的加入量占15wt%-40wt%。公开号题目公开日申请日1521141低成本α-赛隆粉体的自蔓延高温合成制备方法2004.08.182003.02.14摘要一种低成本α-赛隆粉体的自蔓延高温合成制备方法,属于非氧化物超细粉体制备领域。该发明是由金属硅粉、金属铝粉、炉渣或某些天然矿物或它们的混合物和赛隆粉根据Sialon组份设计按5-50∶5-30∶5-30∶5-60的比例混合,并通过以3MPa-15MPa氮气。本发明的特点是:不需要预先压块;反应是在碳毡制的直立环状筒或盘状容器中进行;仅仅采用该发明合成的 Sialon添加到反应体系中,而不需要在反应体系中添加价格较高的氮化硅和氮化铝粉,能进一步降低合成成本;Sialon的加入,在燃烧反应过程中提供 Sialon合成的晶种,而且也作为稀释剂,既有利于减缓反应速度,又可减少整个反应体系的杂质含量,而且促使燃烧产物结构的疏松。独立权项一种低成本α-赛隆粉体的自蔓延高温合成制备方法,α-赛隆是以α-Sialon的通式MxSi12-(m+n)Alm+nOnN16-n中的x、m、n值作为设计α-赛隆粉体的主要参数,当M为Nd、Sm、Gd、Dy、Y、Yb或它们的复合粉体时,0.33(x<0.67,m=3x,m=2n;当M为Ca时,0.4<x<1.4,m=2n=2x,其特征在于:(1)金属硅粉、金属铝粉、炉渣或某些天然矿物或它们的混合物和本发明合成的α-赛隆粉按α-Sialon组份设计按5-50:5-30:5-30:5-60的比例混合配料;用硅粉和铝粉的自蔓延合成的Si3N4、AlN代替配料中所需的Si3N4和A1N;(2)在球磨筒中干混2-48小时,取出后经筛网过筛; (3)混合均匀的粉料装于碳毡制的容器中,再放置在自蔓延高温炉内,点火高温合成,氮气压力为3-15Mpa,合成后在炉内或空气中自然冷却。  此外,北京科技大学物理化学系刘克明等2001年曾报道了在热力学分析的基础上,以高炉渣为原料,引入适当的添加剂,利用碳热还原-氮化的方法制备了Ca-α-Sialon-SiC粉,得到的Ca-α-Sialon含量最高可以达到81%;利用统计模式识别结合人工神经元网络优化了工艺。  目前以高炉炉渣为原料合成赛隆,在国内除以上报道外,未见其它研究报道,在国外未见类似研究的公开报道。  利用高炉炉渣合成赛隆,不仅可避免工业废料,有益于环境保护;而且利用该工艺可降低赛隆的合成成本,变废为宝,使工业废料再生利用,具有重要的现实意义。.

碳化法制备纳米碳酸钙的工业合成方法

2019-01-04 15:16:46

纳米碳酸钙的制备方法按制备过程中是否发生化学反应分为化学方法和物理方法,其中化学方法包括碳化法、乳液法、夹套反应釜法、复分解法。碳化法是生产纳米级轻质碳酸钙的主要方法。首先,将精选的石灰石煅烧,得到氧化钙和窖气。然后,使氧化钙消化,并将生成的氢氧化钙悬浊液在高剪切力作用下粉碎、多级悬液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浊液。然后通入二氧化碳气体,加入适当的晶形控制剂,碳化至终点,得到要求晶形的碳酸钙浆液。再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。碳化是整个生产工艺的核心,根据碳化反应过程二氧化碳气体与氢氧化钙悬浮液接触方式的不同,纳米碳酸钙的工业合成方法可分为间歇鼓泡法、喷雾碳化法、喷射吸收法和超重力碳化法。 间歇鼓泡法 间歇鼓泡碳化法是目前国内外大多采用的方法。间歇鼓泡碳化法,也称釜式碳化法,是将石灰乳通过冷冻机降温到25℃以下,泵入碳化塔,通入CO2混合气,在搅拌下进行碳化反应。通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件间歇制备纳米碳酸钙。该法可以生产普通微细碳酸钙,但对于生产纳米级碳酸钙就需要严格控制一些工艺条件,如碳化反应温度、石灰乳浓度等,而且也相应地需对鼓泡塔做一些改进,比如加搅拌器、挡板或通过气体分布器控制等,但也存在着粒度分布不均匀,而且不易控制、粒度不够细化、批次间产品质量重现差、工业放大困难等缺点。陈先勇等人采用间歇鼓泡碳化法,通过对碳化反应温度、灰乳密度、添加剂等因素的严格控制,成功制得粒度分布均匀、平均粒径为40nm左右的单分散球形纳米碳酸钙产品。 多级喷雾碳化法 制备纳米碳酸钙的基本步骤为:按工艺要求的浓度配制精制的石灰乳悬浮液,然后加入适量的添加剂,充分混匀后泵入喷雾碳化塔顶部的雾化器中,在高速旋转产生的巨大离心力作用下,乳液被雾化成微细粒径的雾滴;把干燥的含有适量CO2的混合气体从塔底部通入,经气体分布器均匀分散在塔中,雾滴在塔内和气体进行瞬时逆向接触发生化学反应产生 CaCO3。经过多级喷雾碳化法制备的CaCO3产品的粒度细小且均匀,平均粒径在30~40nm 范围内,微粒晶型可以调节控制。此法生产能力大,产品质量稳定,能耗低,投资较小。 喷射吸收法 喷射吸收法是由中南工业大学满瑞林等研究的一种工艺,这工艺是将窖气通过降温降尘后,经风机送入喷射碳化器中,再用浆液泵把石灰乳送入喷射碳化器中,在碳化器狭窄的喉管处,窖气与石灰乳高度分散,相互剪切混合,因此具有很大的气液接触面积。该工艺具有投资少、设备简单、碳化效率高、维修方便、能耗低等优点。 超重力法 超重力法是利用离心力使气-液、液-液、液-固两相,在比地球重力场大数百倍甚至上千倍的超重力场条件下的多孔介质中产生流动接触,巨大的剪切力把液体撕裂成极薄的膜和极细小的丝和滴,产生了巨大的和快速的相界面,使相间传质的体积传质速率比塔器中的大1~3个数量级,使微观混合速率得到了极大的强化。超重力结晶法从根本上强化反应器内的传递过程和微观混合过程,而且CaCO3成核过程和生长过程分别在两个反应器中进行,即将反应成核区置于高度强化的微观混合区,宏观流动型式为平推流,无返混(超重力反应器);晶体反应器置于宏观全混流区(带搅拌的釜式反应器)。与传统的碳化法所采用的工艺相比较,这种组合工艺确保结晶过程满足较高的产物过饱和度、产物浓度空间分布均匀、所有晶核具有相同的生长时间等要求。在超重力反应结晶法制备立方形纳米CaCO3过程中,因为CO2吸收传质过程为整个碳化过程的关键步骤,所以强化CO2在液相中的传质速率是提高整个过程速率的有效途径。同时,由于溶液中CO32-的浓度是由化学吸收而生成的,因此控制CO2的吸收速率也是控制体系中过饱和度高低的有效手段之一。超重力加速度g、液体循环量、气体流量、Ca(OH)2初始浓度等操作条件对碳化反应过程均有影响。运用超重力反应结晶法可以制备出平均粒度为15-40nm、分布较窄的CaCO3,碳化反应时间比传统方法大大缩短。立方形纳米CaCO3的晶体结构为方解石晶型,属六方晶系。该晶体结构和普通碳化法合成的产物相同,立方形纳米CaCO3颗粒因表面效应显著,其热分解温度下降了195℃。

常压体系合成高纯二硫化钴粉末的方法

2019-03-14 10:38:21

请求专利号 CN03156711.8  专利请求日 2003.09.08  称号 常压体系组成高纯二硫化钴粉末的办法   揭露(布告)号 CN1594108揭露(布告)日 2005.03.16  类别 化学;冶金颁证日  优先权  请求(专利权) 北京矿冶研讨总院  地址 100044北京市西直门外文兴街1号 创造(规划)人 李强;唐威  世界请求  世界发布  进入国家日期  专利署理组织 上海智信专利署理有限公司  署理人 李柏  摘要本创造归于无机组成技术领域,特别触及一种用单质粉末为质料,在常压体系下,经二次高温组成而得到高纯、细粒二硫化钴粉末的办法。该办法是在真空及在氩气或氮气等慵懒气氛维护条件下进行的。该高纯二硫化钴粉末纯度大于99%,可用作高温热电池的正级材料。  主权项1.一种常压体系组成高纯二硫化钴粉末的办法,其特征是:所述的办法过程包含: (1).将高纯单质钴粉和粉混合均匀,放入耐高温容器中,其间粉的用量是理论分量的1~5倍;对体系进行真空脱气,然后在氩气或氮气慵懒气氛维护下置于有温度梯度的马弗炉内,常压下在100~700℃范围内坚持,将与产品进行别离,冷却至室温,经破碎得到粗品; (2).将过程(1)得到的粗品研磨、过筛或分级,使产品颗粒小于 0.074mm后从头放入耐高温容器中,在氩气或氮气慵懒气氛维护下,置于马弗炉内,温度为100~700℃,将与产品进行别离,冷却至室温,即得到高纯二硫化钴粉末。

纳米碳酸钙合成工艺及应用研究进展(一)

2019-03-06 10:10:51

导读ID:bjyyxtech纳米碳酸钙是上世纪80时代发展起来的一种新式功能性材料,其粒径介于1~100 nm,因为其粒子晶体结构和表面电子结构发作很大的改动,产生了普通碳酸钙所不具备的体积效应、表面效应、量子尺度效应和微观量子地道效应。 纳米技能是20 世纪80 时代末延生并兴起的高科技,它的根本寓意是指在纳米尺度范围内研讨物质的组成,通过直接操作和组织原子、分子而创造新物质。已被许多国家列为世界性、先导性高技能,运用它来进步塑料、橡胶、造纸等传统产业,可带来巨大的经济和社会价值。纳米技能在我国尚处于起步阶段,可以产业化的只要为数不多的几个种类,纳米碳酸钙是其间最有代表性的种类之一。纳米碳酸钙是上世纪80时代发展起来的一种新式功能性材料,其粒径介于1~100 nm,因为其粒子晶体结构和表面电子结构发作很大的改动,产生了普通碳酸钙所不具备的体积效应、表面效应、量子尺度效应和微观量子地道效应。与普通产品比较,纳米碳酸钙在补强性、透明性、涣散性、触变性等方面都显示出显着的优势,与其他材料微观之间的结合,状况也会发作改动,然后引起微观功能的改动,是现在可以到达工业化出产和广泛运用的纳米填充材料之一,广泛运用于橡胶、塑料、造纸、油墨、胶粘剂、造纸等工业范畴,市场前景非常宽广。1 纳米碳酸钙的制备工艺 纳米粉体材料的制备有固相法、液相法和气相法,纳米碳酸钙首要选用液相法组成。液相法是现在试验室和工业上最为广泛选用的组成纳米粉体的办法,它是使溶液通过加水分化或粒子反响生成沉积物,依据组成机理的不同又可分为三种反响体系,实践出产中大多选用Ca2+-H2O-CO32-反响体系,其反响液相中存在着Ca(OH)2固体颗粒,反响较杂乱,因而对该反响体系的机理研讨较少。Juvekar和Sharma研讨了Ca(OH)2悬浊液吸收CO2的碳化反响进程,成果标明,反响首要在气液膜中进行。诸葛兰剑曾通过透射电子显微镜(TEM)和X射线衍射(XRS)检测研讨了CaCO3结晶进程。Yamada H等运用pH计和电导率仪盯梢反响进程,研讨了质量分数为0.5 %~3.5 %Ca(OH)2悬浊液 在15 ℃时的结晶进程。工业出产运用的Ca(OH)2悬浊液质量分数一般较高,但国外研讨的大多是低浓度(≤4 %)Ca(OH)2悬浮液,不适用于工业化运用。与普通轻质碳酸钙比较,纳米碳酸钙的制备工艺进程差不多,关键是怎么操控产品的晶型和获得较窄且均匀的粒度散布。纳米碳酸钙传统制备办法首要有间歇式碳化法、喷雾碳化法、超重力反响结晶法等,此外还有许多没有大规模工业化的办法,如微乳液法、膜涣散微结构反响器法、超声空化法等,成为国内外研讨的热门。1.1 复分化法 该法通过选用水溶性钙盐(如氯化钙等)与水溶性碳酸盐(如碳酸铵或碳酸钠等),在恰当的工艺条件下进行反响,通过液-固相反响进程制得纳米级碳酸钙产品。Yue[研讨了在PS-b-PAA溶液中组成球形碳酸钙粒子,并联用热重法和红外光谱法分析了产品的热力学特征,并指出了最佳工艺条件。Lysikov等研讨用乙醇(95 w%)做溶剂,用NH4HCO3和Ca(NO3)2反响制得了粒径为7~10 μm的立方体和球形粒子。国内许多院校学者在这方面也做了许多研讨工作,获得了必定发展。此法所得产品纯度高、白度好,但因为吸附在碳酸钙中的很多氯离子很难除尽,出产中运用的倾析法往往需求很多的时刻和耗费很多的洗刷用水,故现在国内外很少选用。1.2 间歇式碳化法 按CO2和Ca(OH)2触摸办法的不同,它又可分为间歇鼓泡式碳化法和间歇拌和式碳化法两种,国外研讨Ca(OH)2悬浮液吸收CO2的碳化反响进程,大多是低浓度Ca(OH)2悬浮液(≤4 %),不适用于工业化运用。间歇鼓泡式碳化法是国内外较常用的出产办法,其工艺特点是:由塔底通入的CO2窑气,被涣散成气泡与精制石灰乳(5~8°Bé、25 ℃)进行碳化反响,通过改动操作条件、增加不同的晶型操控剂等操控产品的晶型和粒径。陈先勇等选用间歇鼓泡碳化法,参加少数复合增加剂PBTCA和CTAB,制得了散布均匀、涣散性好、均匀粒径为40 nm的球形纳米碳酸钙粒子。姜鲁华、张瑞社等选用鼓泡碳化法,以无机酸为增加剂,通过优化碳化条件,制备了粒径小(均匀20 nm)涣散比较均匀的针状和链状纳米碳酸钙。此法气-液触摸时刻长,易于操控晶型,但归于间歇出产。间歇式拌和碳化法与间歇鼓泡式碳化法最大的差异就是参加了拌和设备,首要特点是通过拌和打碎CO2气泡,进步气体涣散度,增大气液触摸面积来加速反响进程。向兰等选用鼓泡碳化法调查了两种布气办法及增加剂在碳化进程中的效果,探究制备粒径0.1 μm左右的超细球形碳酸钙的工艺条件;赵春霞等选用克己自吸式反响器,选用拌和碳化法,通过参加晶形操控剂,操控增加剂的用量和参加时刻等条件制成了片状纳米碳酸钙。1.3 接连喷雾碳化法 常温接连喷雾碳化法是河北科技大学胡庆福教授于20世纪80时代中期创造并推广运用的。一般选用三级串联碳化工艺,氢氧化钙悬浮液浓度为0.1 %~10 %(质量)、温度为1~30 ℃、必定液滴直径及必定的空塔速度,可制得小于0.1 μm的立方形碳酸钙。该办法出产纳米碳酸钙效率高,经济效益较好,并能完成自动化大规模出产,不足之处是设备出资较大。该法以液体作为涣散剂进行气液传质反响,大大增加了气液触摸面积,在反响初期易构成很多晶核。可在常温下出产纳米碳酸钙,打破了传统的“低温鼓泡式”碳化形式。该工艺的喷雾碳化与后续工序的喷雾干燥合称“双喷工艺”。河北科技大学化工规划研讨所选用该工艺制作出了塑料专用型和橡胶专用型活性纳米碳酸钙产品,功能优秀,并在湖南资江氮肥厂建立了年产3 kt的出产线,运转杰出。1.4 超重力反响结晶法 超重力技能(HIGEE技能)率先由Ramshaw和Fowler作为旋转填充床用于物质别离进程。1995年,北京化工大学教育部超重力工程研讨中心成功将超重力技能运用到纳米粉体制备中,提出了超重力反响结晶法(简称超重力法)组成纳米级碳酸钙新办法,获得重大突破。王玉红等研讨了以Ca(OH)2悬浊液和CO2气体在超重力反响器(旋转填充床反响器)中进行碳化反响制备立方形纳米碳酸钙,试验研讨了超重力加速度,Ca(OH)2初始浓度等操作条件对产品粒度及其散布的影响,制得粒径为15~40 nm、散布较窄的纳米CaCO3,碳化反响时刻较传统办法缩短约4~10倍,朱开通等通过试验断定了超重力反响法制备纳米碳酸钙粒子的最佳反响时刻,对工艺条件的挑选具有较大影响。该中心选用该技能成功制备出均匀粒径为17.5~21.5 nm的碳酸体,并把握了工艺扩大关键技能,成功完成工业化出产。2000年12月,广东广平化工实业有限公司建成了世界首条年产3 kt的超重力法纳米碳酸钙工业化出产线。别的还有内蒙古蒙西高新材料股份公司、山东隆重科技股份有限公司、安徽巢东纳米材料科技股份有限公司运用该技能建造的工业化出产设备也已顺畅投产。1.5 超声空化法 Gatumel等为了操控结晶的性质,研讨了超声波对沉积的影响,发现超声波能使硫酸沉积的均匀粒径大大减小,粒径散布更窄,他指出超声波能加大成核的速率并改动颗粒的形状。Virone研讨了超声空化现象对结晶成核的诱导效果,通过比照试验得出空化气泡的崩塌压与晶核构成速度有关。Castro研讨了超声波对结晶进程的影响,试验标明:超声波可以明显下降结晶进程的诱导期、过饱和度和亚安稳区的宽度。Mateescu等选用液-液反响体系,在低温条件下运用超声波,制得了纯度高、粒径散布均一的棒状纳米碳酸钙粒子。李根福等申请了超声空化法出产纳米碳酸钙的专利,通过出产进程中三次超声空化处理,得到粒径20~100 nm的产品,制备时刻比单一化学法缩短5~30倍,出产成本低,效率高。Sonawane研讨了声化学碳化法制备纳米碳酸钙晶体,得出了CO2的微观高效混合新办法。韩峰等研讨标明:经超声波照耀制备的碳酸钙,其粒径减少了50 %~80 %,最小可到达20 nm,而且粒径更均匀,晶形更规矩,涣散性更好;而且产品粒径随石灰乳液浓度下降而减小。赵春霞等对超声空化法制备纳米级碳酸钙中运用及组成进程的影响研讨,也获得满足成果。该工艺选用的超声波仪市场上有售,简略易得,无须规划,处理了单一的化学法存在的相间的传质速度较慢等缺点。与单一的化学法出产纳米碳酸钙比较,具有工艺立异,规划新颖,操作便利,产品功能安稳,制备时刻比单一的化学法缩短一倍,出产成本低,效率高,便于电脑自动操控,是大规模工业化出产纳米碳酸钙产品的抱负加工技能。

纳米氧化锌(ZnO)在合成纤维中的应用开发

2019-02-18 15:19:33

跟着现代科学技能的开展,单一功用的材料已不再能够满意人们的需求。纳米技能的开展和系列功用纳米材料的开发和商场化为开展多功用的健康纺织品带来了要害。运用纳米材料的各种特殊功用从根本上改动化学纤维原有的物理机械及化学功用,已获得了一系列适合于不同用处的优秀复合纤维如:抗紫外纤维;抗菌、抑菌和除臭纤维;远红外纤维;导电纤维;防辐射纤维。但总的来说,无机功用涣散相在成纤高聚物基体中的纳米标准涣散这一要害技能问题和纳米技能与工业的共性问题,仍没有得到充沛处理。现在已部分工业化的功用纤维,功用粒子在纤维中的涣散、纳米材料的原有特性没有充沛发挥,可控性程度还较低,导致出产的连续性和安稳性不行。 因此,虽然纳米技能的飞速开展成为制备特种功用纤维的重要手法之一,为特种功用纺织品的开展注入了新的生机,但是功用材料在高聚物基体中的纳米标准涣散仍是纳米功用纺织品研发的要害技能和瓶颈问题。所以虽然纳米氧化锌(ZnO)具有许多的优异功用,在许多方面都有较为广泛的运用,但因为其无机纳米材料自身的极性和颗粒纤细化,因此具有极大的比表面积和较高的比表面能,使它们不易在非极性介质中涣散。在极性介质中易凝集,然后直接影响了其功用的发挥。 以至于终究运用时失去了纳米颗粒所具有的功用。且因为它们为无机物,与有机物类的物质亲和性较差,这导致了纳米氧化锌(ZnO)在高聚物纤维中的实践运用困难,因此在纳米氧化锌(ZnO)的开发进程中有必要处理这一要害的瓶颈问题。 我公司与有关高校进行协作研讨,运用自产的纳米氧化锌经过表面改性处理后与高聚物基体丙纶(pp)、涤纶(PET)以及尼龙6(PA)共混具有抗菌、抗紫外功用的高技能复合纤维。在整个研讨进程中,咱们经过讨论纳米氧化锌粉末的内部结构及其功用,研讨纳米氧化锌粉末的抗菌机理(纳米氧化锌粉末在与细菌触摸时,锌离子会缓慢释放出来,与细菌细胞膜及膜蛋白结合,损坏其结构,进入细胞后损坏电子传递体系的酶并与DNA反响,抵达抗菌意图)和其抗紫外效应(一般来说紫外线的透过率在10%以下(或遮盖率在90%以上)的可称之为防紫外线织物。),以及不断调整操控其高聚物基体共混造粒纺丝的工艺参数,终究制得各含纳米氧化锌(ZnO)的抗菌、抗紫外功用纤维。经过选用抗菌功用实验办法,对各功用纤维进行抗菌功用测验,其结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚物功用纤维的抗菌率能够抵达99.9%,经过运用双光束紫外可见分光光度计(积分球)对之进行测验,结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚纤维的紫外光均匀透过率小于7%。 因此,在必定程度上能够说,咱们研讨开宣布纳米氧化锌(ZnO)具有抗菌、抗紫外功用高技能纤维的自主知识产权。 当今国际上在抗菌纤维研发方面基本上都是选用含银沸石作为抗菌剂,而运用当时研讨的热门纳米级半导体光催化抗菌剂纳米氧化锌作为抗菌粉体添加剂的报导并不多。但因为纳米氧化锌(ZnO)具有独特的“表面效应”在阳光(尤其是在紫外线)照耀下,能自行分化出自在移动的带负电的电子,一起留下带正电的空穴。这种空穴能够激活空气中的氧变为活性氧,有极强的化学活功用与多种有机化合物反响(包含细菌内的有机物),然后把大都病菌和病毒死。)、光催化效应以及报价相对低价的长处,使得对选用其作为新的抗菌粉体添加剂具有非常大的实践意义。 不仅如此,因为地球臭氧层遭到损坏,导致了紫外线对地球生物圈辐射量的不断添加,人们特别是年轻人在户外休闲的逐步延伸,射线对人类健康形成的损害正在日益加剧。虽然近年来国际上开端约束运用引起臭氧层变薄的化学物质,但就现在臭氧层遭到损坏的程度而言,对人体最有害的UVB区(280~320nm)、UVA区(320~400nm)的短波紫外线仍能抵达地上。因为这些短波段紫外光的照耀会发生自在基,形成细胞及安排损害,加速老化进程,然后导致皮肤晒黑及由紫外线吸收形成的皮肤疾患,甚至会皮肤癌,对人类的健康形成很大的损伤。因此,为了下降各种波长的紫外线对人类的损害,开宣布一种防紫外线穿透的纤维以满意不断增加的日子需求也是影响深远。 要制作含抗紫外线添加剂的抗紫外线纤维,首先要挑选适宜的抗紫外线添加剂(又称紫外线吸收剂、紫外线安稳机剂)。这是一类能挑选吸收波长为290~400nm 的紫外线,有用的避免和按捺光、氧化效果而自身结构不起改变的助剂。这类紫外线吸收助剂还应具有无毒、低挥发性、杰出的热安稳性、化学安稳性、耐水解性、耐水中萃取性、与成纤高聚物的相容性等特色,其间因为纳米氧化锌(ZnO)具有紫外线透射率较低的特性,因此能够考虑用于抗紫外线纤维的制备。 依据氧化锌的一些自身特性,咱们发现纳米氧化锌是一种绝佳的抗菌、抗紫外无机粉体,具有适用面广、效率高、有用期长的特色,可用于制备一起兼备抗菌和抗紫外两种功用的高技能纤维。它差异于以往常用的有机抗菌剂(易发生微生物耐(抗)药性,并存在易搬迁、耐热性等缺陷,在塑料加工温度下还易分化失效,且分化产品可能会形成二次污染。),而选用物理吸附离子交换办法,将锌金属附载于多孔材料表面,运用金属离子的抗菌才能,经过缓释效果抵达长效抑菌的意图。因为它不发生耐药性且安全无毒,特别是其杰出的耐热性(>600℃),使得纳米氧化锌在抗菌材料运用中有着显着的工业优势。它的纳米微粒优异的光吸收特性还差异于以往的抗紫外线添加剂(大大都是有机物,有必定毒性,跟着涂层日晒时刻的延伸,其紫外线屏蔽功用会逐步下降,终究失效。),具有有用效果时刻长,紫外线屏蔽波段长,以及化学安稳性和热安稳性好、无毒、无刺激性等长处,因此运用很安全,具有实践运用的优势。 事实上,运用纳米功用无机材料作为抗菌剂和抗紫外添加剂的抗菌、抗紫外纤维正逐渐成为商场上继保健功用远红纤维、负离子纤维之后的又一种新颖的新式功用纤维。因此,咱们所研发开宣布的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维是一种极具有开发远景的防护功用性纤维。咱们估计想象的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维的实践运用范畴首要的有以下几方面: A、日子日用品范畴 纳米氧化锌(ZnO)在服饰方面的运用,例如:运动衫、罩衫、制服、套裤、职业服、泳衣和童装等,也用于帽子、面罩和太阳伞的质料。此外,它还被用于工业和装修方面,例如:广告用布、户外装修布等。 纳米氧化锌(ZnO)的抗菌功用可用于出产涤纶长丝产品,它能够广泛用于针织的内衣裤、运动服装、袜子、地毯等。 B、专业卫生范畴(医用及民用) 在医用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够与棉混纺制成医院用的床布、手术服、医师工作服、病员服等。而在民用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够用于食品行业专用服以及各种床上用品、家具布、装修布等。紫外,纳米氧化锌(ZnO)还能够制备各种医用及民用无纺布产品,例如:无菌手术服、无菌口罩、卫生包覆材料、过滤材料以及妇女卫生用品、尿布等产品。 C、户外户外作业范畴 跟着经济的开展,旅游业在不断兴隆开展,各类相应户外产品因此也相继问世。纳米氧化锌(ZnO)的抗紫外功用使得其可用于出产各类遮阳伞、窗布、运送蓬布和各类帐子用布等。     在我国参加世界贸易安排后,我国纺织业迎来了巨大的开展机会,一起也面临着严峻的应战;在新形势下,我国化学纤维开展的要点已从“开展总量”转变到“开展先进出产力与结构调整并重”,其间推进技能晋级和加速结构调整是重中之重。纳米技能的飞速开展为特种功用纺织品的开展注入了新的生机,已成为制备特种功用纤维的重要手法之一。纳米氧化锌(ZnO)是一种面向21世纪的新式高功用精密无机产品,在纤维中能一起表现抗菌和抗紫外线的功用,是很多纳米无粉体中性价比具竞争力的一种,在人们日益寻求健康、舒适、安全纺织品的今日,纳米氧化锌(ZnO)/高聚物复合功用纤维是一种运用远景非常宽广,经济效益非常可观的高新技能产品。

硅灰石合成多孔二氧化硅研究及应用进展

2019-01-31 11:05:59

硅灰石是天然产出的偏硅酸盐纤维矿藏,具有许多优异的工业使用特性[1]。磨细硅灰石是优质的陶瓷质料、冶金助剂;高长径比硅灰石是石棉和短玻璃纤维的抱负替代品,可用作橡胶、塑料和油漆涂料的填料,起增量与补强的两层效果。但是,作为填充剂在涂料、橡胶、塑猜中使用的效果并不抱负。硅灰石精矿中CaSiO3含量高,杂质少,又易与无机酸反响,是制备无定形二氧化硅廉价的天然硅源。无定形SiO2广泛用作高级橡胶、密封胶、纸张、塑料、电缆中的补强剂、填充剂、隐瞒剂及涂料、油墨中的增稠剂、防沉剂,具有蜂窝状多孔结构、高比表面的SiO2,在高科技范畴中能够作为新式催化剂载体、选择性吸附剂、航空用绝缘材料等[2]。使用硅灰石与酸反响制备高比表面积SiO2,成为归纳开发使用硅灰石的一个首要开展方向。 一、研讨概略 用硅灰石与酸反响制备高比表面积SiO2研讨是目前国内无机材料界进行研讨的重要内容,国内一些学者相继宣布了相关的研讨成果。彭人勇[3]使用硅灰石悬浮液与反响制备多孔高比表面积SiO2,研讨结果以为:当pH值≤1.0时,硅灰石与反响生成很多安稳的硅酸溶胶;反响终究(pH值=4.0)使硅酸水解和缩聚以及Si-O与OH基团氢键的构成以适合的速度进行,构成弱交联、网状、低密度的硅酸凝胶,终究产品SiO2的比表面积增大。 陈庆春等[4]使用硅灰石悬浮液与反响组成多孔二氧化硅,在反响过程中参加无机助剂和有机助剂,使用反响系统的pH值操控加酸速度。结果表明:硅灰石组成多孔二氧化硅,产品比表面积首要与聚合速度K有关,但第一步溶解速度K将约束聚合反响速度K,当反响系统安稳pH值>2时,产品比表面积显着偏低;而当pH值 王延吉等[5]经过在反响液中参加增加剂组成出高比表面积多孔SiO2。其组成条件为pH值≤1.5,增加剂为聚乙二醇和NH4CI,反响后系统中和到pH值=4.0,经固液别离,烘干,650~750℃灼烧2h得产品。经过测验获取的产品比表面积为479±45m2/g,表观密度0。34±0.03g/cm3,DBP吸着率173±16mL/100g,均匀中位径氏为6.9±0.5gm,孔径散布会集在l~2nm。 陈庆春等[6]使用五要素四水平正交试验调查了对硅灰石组成多空SiO2粉体产率的影响要素。研讨以为:当反响时刻一致为80min,陈化时刻20min,反响温度50~55℃,所用酸为12mol/LHCl,硅灰石用量为80g时,悬浮液质量分数对粉体产率影响最大,NH4C1增加量影响最小。产率最大的条件为悬浮液质量分数20%,表面活性剂选用PEC20000,系统终究pH值为6.0,NH4C1增加量为5%,表面活性剂参加时刻为40min。 二、多孔二氧化硅的制备办法 关于制备高比表面积SiO2的报导有许多[7],但大多以正硅酸乙酯(TEOS)或(TMOS)为质料,选用sol-gel法,经过增加试剂或超临界枯燥法来完成。 有关硅灰石制备多孔性二氧化硅研讨相对较少,在相关文献[3,4]中提出制备多孔性二氧化硅过程中存在CaSiO3溶解和硅酸聚组成固态时的两步反响,即: CaSiO3+2HCl+H2O=H4SiO4+CaCl2 上式为溶解反响。反响速度决议于酸浓度,即系统pH值越低,反响速度越快。 硅酸聚合反响比较复杂。在较大酸度条件下,硅酸首要以可溶性低聚物 和 方式存在,其间Am代表[Si(OH)4m+2]2-,An代表[Si(OH)4n+2]2-,其反响式如下: 上式为聚合反响,无 放出,系统pH值不发作改变。若 分子量不够大,还能够与中性低聚物分子H2An持续聚合,直到高聚物发作相变沉积分出水合二氧化硅停止。聚合速度与系统H2An和浓度有关( 决议系统 的浓度)。总反响为: CaSiO3(s)+2HCI=SiO2(s)+CaCl2+H2O 三、功用特色分析 因为多孔二氧化硅是人工组成的无定型二氧化硅超微粒子,具有耐酸、耐碱、耐高温功用以及杰出的电绝缘和涣散功用。一起因为无定形二氧化硅研讨正在向高孔隙率开展,具有高比表面积,特别是介孔(孔径2~50nm),因为孔径中等,散布规模窄且均匀,比表面积巨大,特别适协作大有机分子组成的催化剂载体。 四、使用研讨 (一)在吸附范畴的使用。 多孔二氧化硅具有巨大的比表面积和孔体积,在吸附范畴,尤其是对有机染料的吸附方面具有巨大的使用远景。 (二)在硅橡胶中的使用。 多孔SiO2能促进硅橡胶生胶成型,对硅橡胶具有必定的增强效果,其间,硫化胶拉伸强度、拉伸率等力学功用能够满意某些橡胶制品的要求。与酸处理硅灰石所得具有不同比表面积和粒径的其他样品比较,多孔SiO2的小粒径、高比表面积对其增强功用起促进效果[8]。 (三)制备纳米二氧化硅绝热薄膜。 纳米多孔二氧化硅薄膜作为二氧化硅气凝胶的薄膜形状,简直承继了其所有的优异特性,可用作宽带减反射膜、防眩光涂层、高效绝热层、声阻抗耦合材料、低介电常数绝缘层、超高速集成电路基片以及别离薄膜、过滤薄膜、催化薄膜等。因此在光学、热学、声学、电学和化学等范畴具有宽广的使用远景[9]。 (四)其他使用。 因为多孔二氧化硅的多孔性和高比表面积,能够进行其他如催化剂载体、尾气净化等方面的使用。 五、结语 高比表面SiO2是一种新式的轻质多孔非晶态固体材料,具有许多特殊性质和宽广的使用远景。在基础研讨方面,多孔SiO2的结构及其网络与吸附分子之间的相互效果等引起人们的浓厚兴趣;在使用方面,多孔SiO2现已被用于催化剂载体、气体过滤材料、高效隔热材料等。因为硅灰石具有共同的理化功用,使用硅灰石制备高比表面积的SiO2将是往后硅灰石开发使用的首要开展方向。 参考文献: [1] 王广驹,杨林春.国际硅灰石出产、消费及国际贸易[J].我国非金属矿工业导刊,2005,(5):57—59. [2] 张凌燕,肖玉菊,方平和.我国硅灰石资源开发使用现状及开展趋向[J].矿产维护与使用,2003,(2):45-47. [3] 彭人勇.硅灰石制备多孔高比表面积二氧化硅机理讨论[J].我国粉体技能,2003,(6):12-15. [4] 陆庆春等.硅灰石组成多孔二氧化硅[J].华东地质学院学报,  2001,24(1):64 66. [5] 王延吉等.硅灰石组成高比表面积多孔二氧化硅及其表征[J].华东地质学院学报,2002,25(2):212-215. [6] 陆庆春等.影响硅灰石制多孔SiO2粉体产率要素的调查[J].化工矿藏与加工,2003,(4):16-18. [7] 王延吉,肖旭贤,彭人勇.硅灰石与反响动力学规则讨论[J]. 无机盐工业,1998,(5):12-13. [8] 陈庆春,刘晓东,邓慧宇.硅灰石制多孔二氧化硅在硅橡胶中的使用研讨[J].化工矿藏与加工,2003,(10):2l-23. [9] 赵宗彦等.纳米多孔二氧化硅绝热薄膜的研讨进展[J].功用材料,2006.37(12):1859-1862.

利用同分异构原理合成新的锡石捕收剂

2019-02-26 16:24:38

2-羟基-3-甲羟肟酸(代号F203)是锡石细泥的杰出捕收剂,1-羟基-2-甲羟肟酸(代号ZJ-3)与F203是同系列同分异构体,它们有相同的官能团,仅仅羟基和甲肟基方位不同。依据浮选药剂的同分异构体原理,ZJ-3对锡石细泥也应有杰出的捕收功能。用ZJ-3作捕收剂浮选大厂车河选厂-19um占90.0%、含Sn1.16%的锡石细泥,通过-次粗选两次精选-次扫选取得含Sn 18.29%、回收率92.68%的锡精矿,作用较好,证明浮选药剂的同分异构体原理是正确的。