为何纯电动客车独爱磷酸铁锂动力电池?
2019-01-03 09:36:39
近日,国家工信部发布2017年第8批《新能源汽车推广应用推荐车型目录》(以下简称“目录“)。其中纯电动动力新能源车型在国内发展势头依然强劲,推荐纯电动产品共249个车型,占总车型的91%。
数据显示,在纯电动车型中,有142款纯电动车型使用磷酸铁锂动力电池,81款车型使用三元动力电池,9款车型用钛酸锂电池,5款车型用锰酸锂电池。分布比例如下:
在推荐的249款纯电动车型中,纯电动客车共有113款,纯电动新能源专用车共有107款,纯电动乘用车共有29款车型。占比如下:
在113款纯电动客车中,使用磷酸铁锂电池的车型约为98款,占总体比重的87%;三元电池仅为1款,约占整体比重的1%;钛酸锂电池使用数量为9款,约占整体比重的8%;使用锰酸锂电池的车型为3款,约占整体比重的2%。
磷酸铁锂电池为何在纯电动客车领域独占鳌头?
磷酸铁锂电池方面,纯电动客车磷酸铁锂电池的系统能量密度区间约为87-135Wh/kg,车辆的续驶里程区间为200-576km不等;三元电池方面,纯电动城市客车使用的宁德时代三元动力电池,系统能量密度达到136.05Wh/kg,续驶里程450km。
纯电动客车独爱磷酸铁锂动力电池主要是因为其拥有比三元电池更高的安全性。新能源客车载人较多,一旦出现安全事故往往容易造成比乘用车更大的危害。而动力电池被认为是影响新能源汽车安全性能的主要因素,这直接关系到电池行业的发展,并影响到国家政策和舆论的导向。
因此,尽管三元动力电池的续航能力更好,能量密度也优于磷酸铁锂电池,但在安全性作为首要考虑问题的客车领域,基于我国磷酸铁锂电池产业化、技术成熟度较高的背景下,纯动力客车领域还是倾向于使用安全性更高的磷酸铁锂电池。
一张图了解磷酸铁锂
2019-01-03 15:20:48
锂电正极材料磷酸铁锂的制备方法简述
2019-01-04 17:20:18
一、磷酸铁锂简介 磷酸铁锂的晶格结构图
磷酸铁锂在自然界中以磷铁锂矿的形式存在,具有有序的橄榄石结构。磷酸锂铁化学分子式为:LiMPO4,其中锂为正一价;中心金属铁为正二价;磷酸根为负三价,常用作锂电池正极材料。磷酸铁锂电池的应用领域有:储能设备、电动工具类、轻型电动车辆、大型电动车辆、小型设备和移动电源,其中新能源电动车用磷酸铁锂约占磷酸铁锂总量的45%。
二、磷酸铁锂作锂电正极材料与其他锂电池正极材料相比,橄榄石结构的磷酸铁锂更具有安全、环保、廉价、循环寿命长、高温性能好等优点,是最具潜力的锂离子电池正极材料之一。
安全性能高
磷酸铁锂晶体中有稳固的P-O键,难以分解,在过充和高温时不会结构崩塌发热或生成强氧化物,过充安全性较高。
循环寿命长
铅酸电池的循环寿命在300次左右,使用寿命在1~1.5年之间。而磷酸铁锂电池循环次数可达2000以上,理论上使用寿命能达7~8年。
高温性能好
磷酸铁锂电热峰值可达350℃-500℃,而锰酸锂和钴酸锂只有200℃左右。
环保
磷酸铁锂电池一般被认为不含重金属和稀有金属,无毒,无污染,是绝对的绿色环保电池。
磷酸铁锂作为正极材料的充放电作用机理不同于其他传统材料,其充放电参与电化学反映的是磷酸铁锂的磷酸铁两相,充放电反应如下:
充电反应:放电反应:充电时,Li+ 从LiFePO4中脱离出来,Fe2+ 失去一个电子变成Fe3+;放电时,Li+ 嵌入磷酸铁中变成LiFePO4 。Li+的变化发生在LiFePO4 / FePO4 界面,因此其充放电曲线非常平坦,电位也较稳定,适合做电极材料。
三、磷酸铁锂的制备
制备磷酸铁锂的原料丰富。部分常见锂源、铁源、碳源、磷源如下:
磷酸铁锂粉体的制备在一定程度上会影响其作为正极材料的性能。目前制备磷酸铁锂的方法很多,如高温固相反应法、碳热还原法以及尚未规模化的水热法、喷雾热解法、溶胶-凝胶法、共沉淀法等。
1.高温固相反应法
高温固相反应法是制备磷酸铁锂是目前发展最为成熟也是使用最广泛的方法。将铁源、锂源、磷源按化学计量比均匀混合干燥后,在惰性气氛下,首先在较低温度(300~350℃)下烧结5~10h,使原材料初步分解,然后再在高温(600~800℃)下烧结10~20h得到橄榄石型磷酸铁锂。高温固相法合成磷酸铁锂工艺简单,制备条件容易控制,缺点是晶体尺寸较大,粒径不易控制、分布不均匀,形貌也不规则,产品倍率特性差。
2.碳热还原法
碳热还原法是在原材料混合中加入碳源(淀粉、蔗糖等)做还原剂,通常和高温固相法一起使用,碳源在高温煅烧中可以将Fe3+ 还原为Fe2+,避免了反应过程中Fe2+变成Fe3+,使合成过程更加合理,但是反应时间相对较长,对条件的控制更为严苛。
3.喷雾热解法
喷雾热解法是一种得到均匀粒径和规则形状的磷酸铁锂粉体的有效手段。前驱体随载气喷入450~650℃的反应器中,高温反应后得到磷酸铁锂。喷雾热解法制备的前驱体雾滴球形度较高、粒度分布均匀,经过高温反应后会得到类球形的磷酸铁锂。磷酸铁锂球形化有利于增加材料的比表面积,提高材料的体积比能量。
4.水热法
水热法属于液相合成法,是指在密封的压力容器中以水为溶剂,通过原料在高温高压的条件下进行化学反应,经过滤洗涤、烘干后得到纳米前驱体,最后经高温煅烧后即可得到磷酸铁锂。水热法制备磷酸铁锂具有容易控制晶型和粒径,物相均一,粉体粒径小,过程简单等优点,但需要高温高压设备,成本高,工艺比较复杂。
除上述方法外还有共沉淀法、溶胶-凝胶法、氧化-还原法、乳化干燥法、微波烧结法等多种方法。
四、总结
尽管磷酸铁锂的制备方法较多,但是除高温固相反应法得以工业化应用以外,大都处于实验室研究阶段。随着对磷酸铁锂制备及改性等技术研究的不断深入,磷酸铁锂作正极材料的产业化速度也会不断加快
锂离子电池磷酸铁锂正极材料的研究进展
2019-01-04 13:39:36
锂离子电池因其具有能量密度高、自放电流小、安全性高、可大电流充放电、循环次数多、寿命长等优点,越来越多地应用于手机、笔记本电脑、数码相机、电动汽车、航空航天、军事装备等多个领域。锂电池产业已经成为国民经济发展的重要产业方向之一。目前,锂离子电池正极材料分为以下几类:①具有层状结构的钴酸锂、镍酸锂正极材料;②具有尖晶石结构的锰酸锂正极材料;③具有橄榄石结构的磷酸铁锂正极材料;此外还有三元材料。磷酸铁锂正极材料的理论比容量为170mA/g,电压平台为3.7V,在全充电状态下具有良好的热稳定性、较小的吸湿性和优良的充放电循环性能,因此成为现今动力、储能锂离子电池领域研究和生产开发的重点。LiFePO4基本性能LiFePO4基本结构磷酸铁锂正极材料具有正交的橄榄石结构,pnma空间群,如图1所示。在晶体结构中,氧原子以稍微扭曲的六方紧密堆积的方式排列。Fe与Li分别位于氧原子八面体中心4c和4a位置,形成了FeO6和LiO6八面体。LiFePO4充放电原理磷酸铁锂电池充放电的过程是在LiFePO4与FePO4两相之间进行的,如图2所示,其具体机理为:在充放电过程中,Li+在两个电极之间往返嵌入和脱出。充电时,Li+从正极脱出,迁移到晶体表面,在电场力的作用下,经过电解液,然后穿过隔膜,经电解液迁移到负极晶体表面进而嵌入负极晶格,负极处于富锂状态。与此同时,电子经正极导电体流向正极电极,经外电路流向负极的集流体,再经负极导电体流到负极,使负极的电荷达到平衡。锂离子从正极脱出后,磷酸铁锂转化为磷酸铁;而放电过程则相反。其充放电反应式可表示成式(1)和式(2)充电时放电时LiFePO4改性由于磷酸铁锂正极材料本身较差的导电率和较低的锂离子扩散系数,国内外研究者在这些方面进行了大量的研究,也取得了一些很好的效果。其改性研究主要在3个方面:掺杂法、包覆法和材料纳米化。掺杂法掺杂法主要是指在磷酸铁锂晶格中的阳离子位置掺杂一些导电性好的金属离子,改变晶粒的大小,造成材料的晶格缺陷,从而提高晶粒内电子的导电率以及锂离子的扩散速率,进而达到提高LiFeP04材料性能的目的。目前,掺杂的金属离子主要有T14+、CO2+、Zn2+、Mn2+、La2+、V3+、Mg2+。包覆法在LiFeP04材料表面包覆碳是提高电子电导率的一种有效方法,碳可以起到以下几个方面的作用:①抑制LiFeP04晶粒的长大,增大比表面积;②增强粒子间和表面电子的导电率,减少电池极化的发生;③起到还原剂的作用,避免Fe的生成,提高产品纯度;④充当成核剂,减小产物的粒径;⑤吸附并保持电解液的稳定。材料纳米化相较在导电性方面的限制,锂离子在磷酸铁锂材料中的扩散是电池放电的最主要也是决定性的控制步骤。由于LiFeP04的橄榄石结构,决定了锂离子的扩散通道是一维的,因此可以减小颗粒的粒径来缩短锂离子扩散路径,从而达到改善锂离子扩散速率的问题。纳米材料的优点主要有:①纳米材料具有高比表面积,增大了反应界面并可以提供更多的扩散通道;②材料的缺陷和微孔多,理论储锂容量高;③因纳米离子的小尺寸效应,减少了锂离子嵌入脱出深度和行程;④聚集的纳米粒子的间隙缓解了锂离子在脱嵌时的应力,提高了循环寿命;⑤纳米材料的超塑性和蠕变性,使其具有较强的体积变化承受能力,而且可以降低聚合物电解质的玻璃化转变温度。Ren等对纳米化的磷酸铁锂制备进行了详细的研究,他们利用亲水性的碳纳米颗粒作为模型制备出介孔磷酸铁锂正极材料。发现其具有亚微米大小的颗粒中心在2.9nm和30nm的双峰孔分布,介孔的引入也有利于电解质的流动和锂离子的扩散。在1C倍率下,放电比容量为137mA·h/g。在30C高倍率充放电后,材料的容量仍能恢复到160mA·h/g。可以看出纳米化的磷酸铁锂电化学性能得到了显著地提升。从长杰等利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形磷酸铁锂正极材料。经分析检验结果表明,材料的首次放电比容量达161.8mA·h/g,库仑效率为98.3%,室温下在0.2℃、0.5℃,1℃, 2℃及5℃倍率充放电其首次放电比容量分别为156.5mA·h/g, 144mA·h/g,138.9mA·h/g,125.6mA·h/g和105.7mA·h/g,材料具有较好的电化学性能。Chen等以偏磷酸亚铁和石墨的纳米层状模板,通过水热法制备出拥有纳米层状形态的LiFeP04颗粒。通过SEM分析,尽管原纳米层模板LiFeP04纳米层模板之间存在差异,但最终得到的LiFeP04模板的纳米层状态保存完好。拉曼光谱表明,原纳米有机基团的分层模板成功地转换成细小的具有有序石墨结构的碳颗粒,并很好地分散在层状LiFeP04颗粒之间。经使用循环伏安法和电阻抗法评估,锂离子扩散系数分别是1.5X10-11cm2/s和3.1X10-13cm2/s,而电子电导率为3.28mS/cm,远远高于普LiFeP04的电导率(结语采用离子掺杂、包覆、材料纳米化3种改性方法对磷酸铁锂正极材料在电导率低、锂离子扩散速率慢、低温放电性能差等方面的不足有很大的改进。其中离子掺杂通过掺杂导电性好的离子,改变了颗粒大小,造成材料的晶格缺陷,从而提高了材料电子的电导率和锂离子的扩散率;包覆主要以碳包覆为主,抑制LiFeP04晶粒的长大,增大了比表面积,从而增强粒子间和表面电子的导电率;材料的纳米化一方面增大了材料的比表面积,为界面反应提供更多的扩散通道,另一方面,缩短了离子扩散的距离,减小了锂离子在脱嵌时的应力,提高循环寿命。此外,磷酸铁锂正极材料改性方面仍存在一些不足,如离子掺杂改进材料的导电率和锂离子扩散速率方面仍存在分歧;纳米材料的制备工艺、生产成本要求较高;此外,除了考虑实验室条件下的可行性研究外,还要考虑大规模工业化的生产要求,这些都有待于进一步研究。因此,通过以上方法来全面提高磷酸铁锂的综合性能仍然是当前和今后该领域研究和应用的主要发展方向之一。文章选自:《化工进展》
作者:张克宇,姚耀春
如何提高磷酸铁锂材料的振实密度
2019-01-03 09:36:46
磷酸铁锂作为常用的锂离子电池正极材料以其安全性能好、循环性能优异、环境友好、原料来源丰富等优点,成为当前锂离子电池正极材料的研究热点之一。但是磷酸铁锂的缺点也制约着它的发展,振实密度低、实际比容量低是其相对于另一大热的正极材料三元材料的一大短板。
下面介绍一些改善磷酸铁锂振实密度的途径。
1 合成方法
目前制备LiFePO4方法很多,不同制备方法对LiFePO4的振实密度影响很大。不规则的粉末颗粒不能紧密堆积,如果合成的LiFePO4粉末颗粒为不规则形貌,会造成产物的振实密度很低。一般来说,由规则的球形颗粒组成的粉体,因其不会有团聚和粒子架桥现象,从而具有较高的振实密度。得到规则球形颗粒的方法如下:
①用高密度球形FePO4前驱体合成球形LiFePO4颗粒
制得高密度球形前驱体是得到高密度球形产物的有效途径之一。先合成高密度球形FePO4前驱物,再与其他原料混合均匀,通过高温反应,使锂通过球形前驱体颗粒表面的微孔向各方向均匀、同步地渗入前驱体的中心,保持球形形貌。此方法中,球形前驱体可以消除反应过程中由于扩散途径不同引起的微观组分差异,生成组成均匀的LiFePO4,从而提高材料的性能。
②喷雾干燥法制备球形LiFePO4颗粒
喷雾干燥(热解)法是将各金属盐按制备复合型粉末所需的化学计量比配成前驱体溶液,经雾化器雾化后,由载气带入设定温度的反应炉中,在反应炉中瞬间完成溶剂蒸发、溶质沉淀形成固体颗粒、颗粒干燥、颗粒热分解和烧结成型等一系列的过程,最后形成规则的球形粉末颗粒。
③熔盐法制备球形LiFePO4颗粒
熔盐法通常采用一种或数种低熔点的盐类作为反应介质,合成过程会出现液相,反应物在其中有一定的溶解度,这大大加快了反应物离子的扩散速率,使反应物在液相中实现原子尺度混合,反应就由固-固反应转化为固-液反应。反应结束后,采用合适的溶剂将盐类溶解,经过滤洗涤后即可得到合成产物。
2 粒径分布
LiFePO4的振实密度与颗粒的粒径之间存在着密切的联系。如果由球形颗粒组成的粉体具有理想的粒径分布,使得小颗粒能尽量填补大颗粒之间的空隙,则可以进一步提高其振实密度,从而有利于提高电池的体积比容量。研究表明,纳米级别的LiFePO4振实密度一般较低,而微米级别的LiFePO4具有较高的振实密度。
多孔材料可以实现高的振实密度:大颗粒的产物振实密度一般较高,但也会导致锂离子在固体材料中的扩散路径变长,材料的电化学性能也变差。研究发现多孔的LiFePO4具有相互连接的三维孔通道,且孔之间的距离是纳米级的,孔隙之间相互连接的三维通道缩短了锂离子的脱嵌距离;且多孔材料这种独特的微观结构,使材料具有更大的比表面积,可使材料与电解液充分接触,增大了锂离子的扩散面积,提高了锂离子的迁移速率,有利于解决LiFePO4扩散系数小所导致的电化学性能差的问题。由于制备多孔材料时得到的都是尺寸较大且形貌良好的颗粒,所以多孔材料在保证了材料有较高振实密度的同时,也能具有良好的电化学性能。
3 碳包覆
研究表明碳包覆能增强LiFePO4颗粒之间的导电性,使其电化学性能有明显改善。但是过量的碳将严重降低LiFePO4的振实密度。选择合适的碳源,改进制备工艺,都可以使碳包覆层更加均匀,从而提高材料的振实密度。
4 金属离子掺杂
金属离子掺杂是在LiFePO4中掺杂金属离子,改变其晶格结构,从而提高其自身的导电能力。近年来部分研究表明,掺杂特定种类的金属离子能提高材料的振实密度,从而提高LiFePO4的体积比容量。
目前在提高LiFePO4振实密度的研究方面取得了一定的进展,但还存在一些问题。LiFePO4的形貌和粒度控制工艺通常很复杂,要想稳定大批量制备具有特定形貌和粒径分布的材料存在一定的难度。且不同的制备工艺,不同的原料对LiFePO4的振实密度也有很大影响,因此需要继续探索出简单、低成本且能控制LiFePO4材料的形貌和粒径分布的制备方法。
动力电池技术难关仍待突破
2019-01-04 09:45:34
近年来,随着我国新能源汽车市场的迅猛发展,作为其核心部件的动力电池的需求缺口进一步扩大,动力电池产业的集中度不断提升,但也出现了产能过剩、技术难关仍待突破、电池回收利用仍存障碍等产业发展瓶颈。8月25日,由中国汽车技术研究中心、张家港市人民政府、中美清洁汽车合作联盟联合主办的“2017国际电动汽车动力电池产业发展与技术创新峰会”召开,多位业内专家学者以及企业代表围绕动力电池技术开发与性能优化、动力电池回收与梯次利用等问题展开深入探讨。
“新能源汽车快速发展中有两个问题,一个是续航里程,一个是安全问题。”在此次峰会上,中国工程院院士陈立泉表示,眼下,要破解新能源汽车的续航瓶颈和安全问题,整个行业应着力在电池研发上下功夫。
一般情况下,动力电池分为铅酸电池、镍氢电池和锂电池等,由于锂电池的能量密度和性能具备比较优势,现已成为国内新能源汽车的主要选择。根据材料体系的不同,锂电池又分为不同的类型,主要包括磷酸铁锂电池、三元锂电池、锰酸锂电池等,不同类型的锂电池各方面性能和价格又各不相同,有着各自的优缺点。
国家新能源汽车创新工程项目专家组组长王秉刚表示,动力电池作为电动汽车核心的零部件,近年来保持快速增长态势,一批优秀的动力电池企业已经跻身世界动力电池行业前列。
根据相关研究机构统计数据显示,2016年中国国内锂动力电池企业出货量合计达到30.5GWh,同比2015年的17.0GWh大幅度增长79.4%。另外,目前电池成本占新能源乘用车全部生产成本的40%至60%,其技术进步对整个新能源汽车行业的发展起着至关重要的作用。
王秉刚认为,未来动力电池行业要持续创新,提高电池性能,企业应努力设计出高安全性的电池产品,同时要与整车企业建立紧密联盟,采取精益生产理念,努力降低成本。
一般认为,动力电池组往往是单体电池经过串、并联而组成的集合体,而单体电池在材料、制造过程中的差异往往导致单体之间的不一致性。我国动力电池的一致性和稳定性差长期以来被人诟病,但这一状况在企业的实际生产过程中正得到大幅改善。
天津力神电池股份有限公司战略规划部部长杨华结合企业自身情况谈道,动力电池的一致性长期以来是行业发展的难题和短板,动力电池产品要实现安全、高能量密度等稳定性能,在生产之前就要对产品设备以及各个生产环节做好质量分析,做到燃料的数字化、设备数字化、工艺数字化、环境数字化、测量数字化,通过智能制造提升电池的安全性、一致性,特别是保证产品全生命周期的一致性。
合肥国轩高科动力能源有限公司电池研究院院长张宏立也认为,在进行电池前期设计的时候,要充分考虑温度范围、寿命、安全、能量密度等指标的一致性,进行相应的关键技术研发,继而实现产业化应用。
有研究数据表明,预计到2018年,我国动力锂电池废旧回收市场将初具规模,累计废旧动力锂电池超过12GWh、报废量超过17万吨,到2023年废旧锂动力电池市场将达 250亿元。
眼下,随着新能源汽车的爆发式增长,未来几年无疑会有大量的动力电池“退役”,届时,动力电池梯级利用和电池回收将成为一个不得不面对的现实问题。
“动力电池的回收利用问题已经迫在眉睫,以后每年将有几何级数增长,如果安排不好有可能是一场新的环保灾难。”王秉刚表示,动力电池回收不应只是停留在口头上,更应该得到具体落实,只有这样才能促进行业进步。
据张家港清华研究院再制造产业研究院常务副院长郑郧介绍,为了解决废旧动力电池处理问题,我国已经出台了30多项产业政策,鼓励动力电池梯次利用,明确了电动汽车生产企业承担电动汽车废旧动力蓄电池回收利用的主要责任,梯级利用电池生产企业承担梯级利用电池回收利用的主要责任,报废汽车回收拆解企业应负责回收报废汽车上的动力蓄电池。
锂电池和铝空气电池等动力电池技术解析
2019-02-28 11:46:07
现在在交通运输用动力源方面,首要有四种技能道路:锂离子电池、氢燃料电池、超级电容和铝空气电池。其间锂离子电池、超级电容和氢燃料电池得到广泛的运用,而铝空气电池尚处于实验室研讨阶段。动力补给方面,锂离子电池、超级电容适用于纯电动轿车,可是需求外部充电,而氢燃料电池轿车则需求外部加注,铝空气电池则需求弥补铝板和电解液。
1、氢燃料电池特性 (1)杰出的环境相容性 氢燃料电池供给的是高效洁净动力,其排放的水不只量少,而且十分洁净,因而不存在水污染问题。一起因为燃料电池不像发动机那样需求将热能转化为机械能,而是直接把化学能转化为电能和热能,能量转化功率高,噪音小。 (2)杰出的操作功能 氢燃料电池发电,不需求杂乱巨大的装备设备,电池堆能够模块化拼装。例如,一个4.5MW的发电设备能够有460个电池组件组成,其发电厂占地面积比火力发电厂小得多。氢燃料电池合适作为涣散发电设备。别的与火力、水力和核能发电比较,氢燃料电池电厂的建造周期短,扩建简单,能够彻底依据实践需求分期建造。一起氢燃料电池的运转质量高,应对负载的快速变化(如顶峰负载)特性优秀,在数秒内就能够从低功率变换到额定功率。 (3)高效的输出功能 氢燃料电池作业时将燃料贮存的能量转化为电和热,转化电能的功率在40%以上,而汽轮机只要1/3能够转化为电。 (4)灵敏的结构特性 氢燃料电池拼装十分灵敏,功率巨细简单分配,与传统发动机比较,因为氢燃料电池杰出的模块功能够在不添加基础设施出资的基础上,经过增减单电池的片数即可轻松完结输出功率和电压的调整,所以建造起来也很简单,而且比较简单完结对电网的调控。燃料电池的这一特色进步了体系稳定性。 (5)氢的来历广泛 氢作为二次动力,可经过多种方法获得,如煤制氢、天然气重整制氢、电解水制氢等等。在化石动力被耗尽时,氢将成为世界上的首要燃料及能量。而选用太阳能电解水制氢,进程中没有碳排放,能够以为氢是动力。 (6)存在的瓶颈 从现阶段开展来看,氢燃料电池的遍及遇到必定的瓶颈,如电池自身本钱较高,基础设施没有遍及等。 2、锂离子电池特性 (1)电压渠道 锂离子电池因为选用的正负极材料不同,其单体电池的作业电压规划为3.7~4V,其间运用规划较大的磷酸铁锂单体电池作业电压为3.2V,是镍氢电池的3倍、铅酸电池的2倍。 (2)比能量 当时乘用车锂离子动力电池的能量密度挨近200Wh/kg,估计2020年到达300Wh/kg。 (3)电池寿命短 因为电化学材料特性的限制,锂离子电池的循环次数没有获得打破,以磷酸铁锂为例,单体电池循环次数能够到达2000次以上,成组后仅为1000次以上。无法满意公交运转8年期限的要求。 (4)对环境影响较大 锂离子电池选用轻金属锂,虽然不含、铅等有害重金属,被以为是绿色电池,对环境污染较小。但实践上因为其正负极材料、电解液包括镍、锰等金属物,美国现已将锂离子电池归类为一种包括易燃、浸出毒性、腐蚀性、反响性等有毒有害性的电池,是现在各类电池中包括毒性物质较多的电池,而且因为其收回再运用的工艺较为杂乱导致本钱较高,因而现在的收回再运用率不高,抛弃的电池对环境影响较大。 (5)本钱仍然较高 锂离子电池初期置办本钱高,以现在公交车用动力电池主流产品磷酸铁锂电池为例,报价大约在2500元/kWh,跟着电动轿车的遍及,有望在2020年降低到1000元/kWh以下。因为单体电池成组后循环次数的限制,公交车一般在3年左右即需求替换电池,运营单位本钱压力较大。 (6)对电网影响较大 首要大规划运用纯电动轿车,因为充电需求较大,充电设备对电网的谐波搅扰将会凸显,影响电网的供电质量;其次,在快充时,因为是大倍率充电,因而充电功率较高(乘用车在50kW、客车在150~250kW左右),对电网的负荷冲击较大。 因而,根据现在锂离子电池的技能水平来看,其电动轿车方面的运用首要在行进路程小于200km的近间隔纯电动轿车中。 3、超级电容器特性 (1)极高的充放电倍率 超级电容具有较高的功率密度,可在短时间内放出几百到几千安培的电流,充电速度快,可在几十秒到几分钟内完结充电进程。超级电容公交车和有轨电车就是运用此特性在短时间内完结充电,驱动车辆行进。 (2)循环寿命长 超级电容的充放电进程损耗极小,因而在理论上其循环寿命为无量,实践可达100000次以上,比电池高10~100倍。 (3)低温功能较好 超级电容充放电进程中发作的电荷转移大部分都在电极活性物质表面进行,所以容量随温度衰减十分小,而一般锂离子电池在低温下容量衰减起伏乃至高达70%。 (4)能量密度太低 超级电容运用的瓶颈之一就是能量密度太低,仅为锂离子电池的1/20左右,约10Wh/kg。因而不能作为电动轿车主电源,大多作为辅佐电源,首要用于快速启动设备和制动能量收回设备。 4、铝空气电池特性 (1)材料本钱低、能量密度高 铝空气电池的负极活性材料是含量丰厚的金属铝,报价便宜,环保,正极活性物质是空气中的氧气,正极容量可视无限大。因而铝空气电池具有质量轻,体积小,运用寿命长的优势。 (2)关键技能未获得打破,没有走出实验室 空气电极极化和氢氧化铝沉降等问题是影响金属空气电池走向市场化的重要妨碍,铝空气电池功能的进步遇到很大的瓶颈。现在尚处于实验室阶段,间隔商业化推行还有一段不小的间隔。
我国动力电池格局分析 或将主宰全球电池市场
2019-03-06 10:10:51
导读:我国政府现已清晰了新能源轿车是轿车大国走向强国的必经之路,而必经之路的瓶颈是动力电池技能。那么,我国动力电池格式是怎样的?动力电池技能又能否打破?
面对日韩厂商的竞赛,我国在曩昔一年间将轿车锂电池产能增加了两倍,以满意激增的电动轿车销量。回忆2016年,我国新能源轿车产销规划高达50多万辆,新能源轿车也开端从公交车转向出租车。截止2016年末,我国轿车产销规划已达2800万辆,存量1.67亿辆。据估计,到2020年,新能源轿车产销规划将达200万辆,存量500万辆。
一、动力电池的战略性位置
对燃油轿车而言,发动机是轿车心脏。我国轿车落后于外国,首要是发动机技能落后。假如不能完成技能打破,国人将长时间为外国厂商打工。所以,我国政府提出,开展新能源轿车的根本目的是要改动现在的现状,我国轿车工业必须有新的相貌。 可是,跟着环保要求越来越高,发动机技能水平要求越来越高,国内外技能间隔也越来越大。这种状况下,咱们只能另辟蹊径。怎么另辟蹊径?答案就是新能源轿车。 能完成逾越吗?能! 理由很简单:国内外技能在动力电池方面都是新的。也就是说在动力电池方面,假如我国动力电池研制及出产比外国快一些,这个弯道超车就会成功。
别的,我国开展新能源轿车上升到了国家战略层面:
1.我国对动力电池的研讨起步于“十五”科技部电动轿车要点专项,其时首要是镍氢电池和锰酸锂电池;
2.“十一五”首要是磷酸铁锂电池(磷酸铁锂电池的开展支撑了我国“十二五”电动轿车的开展,我国新能源轿车完成了产销国际第一的规划);
3.“十二五”将研制方向转向三元锂离子电池(因为三元锂离子电池的比能量高达180Wh/kg),现在开端推动三元锂离子电池研制和运用。
二、我国轿车动力电池技能现状
1.工业现状
力神、比亚迪、光宇等厂商现已进入国际前十之列,国内开发的单体技能水平与国外水平适当,产品的一致性方面与日韩厂商还有距离。
2. 比能量现状
①慢充电池以三元材料为主攻方向,负极材料以石墨为主,正极材料为三元材料系统,其密度在110-180Wh/Kg,部分高达200 Wh/Kg;
②快充电池以碳酸锂为主,密度维持在90WH/Kg左右。
3. 本钱现状
2016年,电芯产品报价约1600元/kWh (本钱约1200元/kWh),电池组报价大都在2400~2500元/kWh之间(本钱约1800~1900元/kWh)。
尽管国内动力电池技能开展迅速,但电池产品功能、质量和本钱仍难以满意新能源轿车的推行遍及需求,尤其在根底要害材料、系统集成技能、制作配备和工艺等方面与国际先进水平仍有较大距离。 三、动力电池商场或将面对产能过剩
2016年,许多公司都在扩张动力锂离子电池产能。截止2016年末,商场上有较大影响力的10家干流动力电池供应商的动力锂电算计产能已挨近50GWh,估计2017年将超越85GWh,这其间还不包含很多中小规划的制作商。但依据猜测,2017年我国动力电池总需求量或缺乏35GWh。由此可见,动力电池商场未来将出现产能过剩的状况。 首要动力电池厂商未来产能规划如下:四、国内动力电池商场分析
从上图可知,动力电池的开展紧随新能源轿车全体商场趋势,新能源轿车商场开端大幅上量后,动力电池商场也出现迸发趋势。从2014年的3.70Gwh的出货量跃居至2015年15.7Gwh,同比增加超越3倍。2016年,新能源轿车搭载电池总量达28 Gwh,与上一年同期相比增加79%,超曩昔年全年动力电池出货量近12Gwh。(注:动力电池出货量为保存统计数据,因为未考虑其他影响要素,电池供应商实践产能会高于此。)从上图可知,磷酸铁锂电池依旧是商场主力,搭载量高达20Gwh,占比高达73%。而三元材料电池受制于此前禁用纯电动客车方针的影响,2016年搭载量仅为6.3Gwh,占比22%。其次,包含锰酸锂、钛酸锂、镍氢电池、超级电容等其他材料电池也均有小量搭载,总占比仅5%。
五、怎么在未来电池商场分得一杯羹?
现在,我国具有超越140个电池出产商,电动轿车和电池将在我国崛起成为一个大型职业。据估计,电动轿车在未来20年将占全球轿车收购量的40%。现在,全球轿车每年的出产销量约为1亿辆,这意味着电动轿车每年的供应约为4000万辆。假定电池报价与一般内燃机的6000美元本钱适当,那么电池职业未来就有或许到达2400亿美元。 电池技能发端于日本,在韩国得到进一步开展,现在重心开端向我国搬运。我国电动轿车商场快速增加,加之我国轿车安装厂商偏好运用本乡产品的趋势,为我国电池出产的持续开展供给了很大的潜能。材料显现,我国国产锂离子电池在我国品牌电动车中的运用率现已超越90%。别的,我国电池在全球出产中的份额远高于日本,估计到2020年我国的全球商场份额将上升至70%以上。 现在,我国电池厂商正向以比亚迪、宁德年代、国轩高科等电池巨子为代表的独占式开展,一些小众的电池工业逐步走到开展边际。据统计数据显现,2016年全球动力电池厂商销量排名中,前十排名中有七家厂商来自我国。 总而言之,在行将到来的这场电力革射中,每一个放入车辆的电池组,都会替代一个内燃机。电动轿车的增加会引起全球电池职业的剧变,但这也伴跟着部分发动机及其部件的“消亡”,一场革新行将到来~
吃“软”怕“硬”或成动力电池发展趋势
2019-01-03 15:20:48
作为新能源汽车的最核心部件和产业商业化破局的关键,动力电池产业的发展一直受到各界的关注。近几年来,在国家政策的调控下,各大整车企业对新能源车型产品和供应链进行了大调整,带动了电池行业整体新一轮的发展。在上半年公布的6批公告中,参与配套的电池高达85家。
值得一提的是,软包装电池在这一过程中,显示出了强劲的增长力。据相关研究机构统计,2015年国内方形、圆柱、软包锂电池产量分别为17GWh、10.1GWh、19.8GWh,占比分别为36.4%、21.5%、42.3%,软包电池占比已经超过方形和圆柱电池。2016年前三个季度,受新能源汽车市场波动等因素影响,方形、圆柱电池产量环比都出现了不同程度的下滑,只有软包电池产量环比上升,国内软包电池前三季度产量达13Gwh,其中,第三季度环比增长达20%。
目前,北汽、长安、东风等国内中高端新能源乘用车产品上,都开始采用软包动力电池。LG、AESC等国外动力电池企业也启动了软包电池的大批量生产。
“软包电池未来将在乘用车上得到广泛应用,成为新能源汽车市场的主力军。”北京国能电池科技有限公司(以下简称国能电池)常务副总经理张景舒说。
资料显示,目前,主流的锂电池封装形式主要有三种,即圆柱、方形和软包。
圆柱形锂电池生产工艺成熟,成本较低,产品良率以及电池组的一致性较高,散热性能优于方型电池,便于多种形态组合,适用于电动车空间设计的充分布局。但由于采用钢壳或铝壳封装,自重较高,比能量相对较低。
方形硬壳电池壳体多为铝合金、不锈钢等材料,内部采用卷绕式或叠片式工艺。由于方形锂电池可以根据产品的尺寸进行定制化生产,所以市场上有成千上万种型号,导致工艺难以统一。
相比之下,软包电池的包装材料和结构使其拥有一系列优势。比如重量轻,软包电池重量较同等容量的钢壳锂电池轻40%,较铝壳锂电池轻20%;内阻小,软包电池的内阻较锂电池小,可以极大的降低电池的自耗电;循环性能好,循环寿命更长;设计灵活,外形可变任意形状,可根据客户的需求定制,开发新的电芯型号。
从最近几年的市场发展趋势来看,软包电池的占比越来越高,有专家预计,未来软包电池的市场份额有望超过50%。
海通证券发布的研究报告显示,软包电池未来在动力领域拥有极大发展空间。该报告指出,软包电池相比目前主流技术路线,质量较使用铝壳轻20%、可获得更高的能量密度,具有更好的安全性,循环次数更高;软包电池在国内锂电池整体市场的占有率约为35%,在3C领域已经证明了其优越性,但是在动力电池这一子环节的占有率估算尚不到10%。国内动力软包电池尚处于起步阶段,未来具有极大的发展空间。
最关键的还在于,软包电池安全性能更佳。
“因为是软包装,是通过PP膜热封封口的方式,所以承受的内压比较低。其他两种(硬)包装遇上当防爆阀不能完全打开的情况,可能会发生这种爆炸。因而软包装的安全性能是略胜一筹的。”国内某动力系统有限公司副总经理艾群表示。
目前,许多电池企业已经加大、加快软包电池的研发生产。其中,国能电池是较为领先者。在上半年新车目录中,国能电池的车型配套数量进入前三,已经为安凯客车、东风汽车、东风襄旅、亚星、南京金龙、珠海银隆、北汽银翔等客车、专用车企业进行了配套和批量供货。目前,国能电池已经建设了北京、河南中牟、浙江海宁、湖北襄阳等八大生产基地。今年年底产能将达到11GWh,有望成为全球最大的软包电动力电池制造商,预计在2020年,产能可达到25GWh。
国能电池董事长郭伟表示,国能电池做出发力软包电池这一战略决策,根据就是对技术趋势的判断。
“我国新能源汽车产业正不断发展和升级。动力电池作为最核心的部件,其技术的升级、更迭肯定更快,整个产业发展的方向一定是高性能、高能量密度。最终,市场证明我们的判断是对的。”郭伟说。
据他介绍,国能电池量产的电池组能量密度,在2016年就已达到了125wh/kg,三元单体量产的能量密度达到了200wh/kg。预计到2017年年底,国能磷酸铁锂电池单体密度将突180Wh/kg,三元产品将突破240Wh/kg。
有专家指出,当前动力电池行业的竞争,根本上还是技术的比拼。一支以高水平科研人员为核心、研究方向覆盖电池技术关键领域的技术团队,是国能电池取得领先身位的保障。
据了解,目前国能电池技术团队的核心人员,均为行业高端人才:副总经理吴丛笑是中组部“千人计划”新能源领域的领军人物,中科院电化学博士;技术总监马军同为中组部“千人计划”的专家,曾主持国家863等重大专项项目,拥有十多项电动汽车重大发明。此外,国能首席动力电池科学家李德成,来自索尼动力电池部门,长期从事能源材料研发;首席先进电池科学家文哲泽曾任NEC能源公司技术负责人,为三星、日立等企业开发产品。
目前,国能电池已经成立了北京研发总部和无锡研发基地,上海研发分部年底将正式启用。公司已经具备完善的研发体系和健全的实验条件,拥有高科技研究中心、电池仿真平台、电池管理系统和电池开发实验平台等。
不过,也有声音认为,无论圆柱、方形还是软包电池,目前之所以都能快速发展,是因为它们在各自擅长的应用领域,都得到了很好的应用。在政策与市场的双轮驱动下,动力电池产业正从导入期向高速发展期加速前进。而在技术路线选择上,国内方形、软包、圆柱三足鼎立的局面将长期保持。其市场占比,还要取决于下游市场的具体发展情况。
天然石墨VS人造石墨,谁才是动力电池真正的宠儿?
2019-01-03 09:36:39
近几年,下游新能源汽车市场的繁荣拉动了锂离子电池需求的增长,负极材料作为锂离子电池的四大关键材料之一,也迎来了更广阔的市场。而在负极材料中石墨类碳材料占据最主要市场。天然石墨负极VS人造石墨负极石墨负极材料分为人造石墨和天然石墨,二者结构相近,物理化学性质相同,但在实际应用中有较大差异,那么天然石墨和人造石墨究竟谁是锂离子电池的宠儿?定义(1)天然石墨石墨属复六方双锥晶类,呈六方板状晶体,常见单形有平行双面、六方双锥、六方柱,但完好晶形少见,一般呈鳞片状或板状,集合体呈致密块状、土状或球状。天然石墨的种类较多,根据结晶形态不同,工业上将天然石墨分为致密结晶状石墨、鳞片石墨和隐晶质石墨三类。我国主要有鳞片石墨和隐晶质石墨两大类。天然石墨负极材料一般采用采用天然鳞片晶质石墨为原料。(2)人造石墨一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料。人造石墨的骨料分为煤系、石油系以及煤和石油混合系三大类。其中煤系针状焦以及石油焦应用最广:一般来讲,高比容量的负极采用针状焦作为原材料,普通比容量的负极采用价格便宜的石油焦作为原料,沥青作为粘结剂。理化性质在理化性质方面,天然石墨与人造石墨既有共性,也存在性能上的差异。如天然石墨与人造石墨都是热和电的良导体,但对于相同纯度和粒度的石墨粉体来说,天然鳞片石墨的传热性能和导电性能最好、天然微晶石墨次之,人造石墨最低。两者性能有着各自的优缺点,应用领域也有所不同。天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安全性能较好。微观形貌从上图中就可以看出天然石墨和人造石墨在形貌上的区别。天然石墨大小颗粒不一,粒径分布广,未经处理的天然石墨是不能作为负极材料直接使用的,需要经过一系列的加工后才能使用。而人造石墨在形貌以及粒径分布上就一致多了,一般认为,天然石墨的容量高,压实密度高,价格也比较便宜,但是由于颗粒大小不一,表面缺陷较多,与电解液的相容性也比较好,价格也会贵一些。生产制备天然石墨负极材料是采用天然鳞片晶质石墨,经过粉碎、球化、分级、纯化、表面等工序处理制得,其高结晶度是天然形成的。人造石墨是将骨料和粘结剂进行破碎、造粒、石墨化、筛分而制成。基本的工序流程是一致的。某厂人造石墨制备流程动力电池更加宠爱人造石墨目前市场上负极材料主要以人造石墨与天然石墨为主,受益于动力电池的强劲需求,人造石墨以其可靠性和安全性成为了负极材料的市场主流。中国负极材料市场结构变动我国负极材料市场产量结构变化(吨)天然石墨和人造石墨负极材料性能不同,在实际应用中也会产生较大差别。根据最近几年负极材料市场结构和产量结构的变化可以看出,2013年,中国负极材料市场天然石墨占据主导。2014年以后,在负极材料市场的争夺中,更适用于动力电池的人造石墨市场占比超过天然石墨,并且逐年递增。预计未来几年,受新能源汽车应用影响,人造石墨占比将继续上升:目前国内新能源汽车锂电池所采用的负极材料大多使用人造石墨,新能源汽车在国家政策的扶持下呈爆发式增长阶段,带动动力电池的大幅增长,未来几年动力电池将是拉动人造石墨产量大幅上升的主要引擎。